1      SUBROUTINE CHBGST( VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X,
2     $                   LDX, WORK, RWORK, INFO )
3*
4*  -- LAPACK routine (version 3.0) --
5*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
6*     Courant Institute, Argonne National Lab, and Rice University
7*     June 30, 1999
8*
9*     .. Scalar Arguments ..
10      CHARACTER          UPLO, VECT
11      INTEGER            INFO, KA, KB, LDAB, LDBB, LDX, N
12*     ..
13*     .. Array Arguments ..
14      REAL               RWORK( * )
15      COMPLEX            AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
16     $                   X( LDX, * )
17*     ..
18*
19*  Purpose
20*  =======
21*
22*  CHBGST reduces a complex Hermitian-definite banded generalized
23*  eigenproblem  A*x = lambda*B*x  to standard form  C*y = lambda*y,
24*  such that C has the same bandwidth as A.
25*
26*  B must have been previously factorized as S**H*S by CPBSTF, using a
27*  split Cholesky factorization. A is overwritten by C = X**H*A*X, where
28*  X = S**(-1)*Q and Q is a unitary matrix chosen to preserve the
29*  bandwidth of A.
30*
31*  Arguments
32*  =========
33*
34*  VECT    (input) CHARACTER*1
35*          = 'N':  do not form the transformation matrix X;
36*          = 'V':  form X.
37*
38*  UPLO    (input) CHARACTER*1
39*          = 'U':  Upper triangle of A is stored;
40*          = 'L':  Lower triangle of A is stored.
41*
42*  N       (input) INTEGER
43*          The order of the matrices A and B.  N >= 0.
44*
45*  KA      (input) INTEGER
46*          The number of superdiagonals of the matrix A if UPLO = 'U',
47*          or the number of subdiagonals if UPLO = 'L'.  KA >= 0.
48*
49*  KB      (input) INTEGER
50*          The number of superdiagonals of the matrix B if UPLO = 'U',
51*          or the number of subdiagonals if UPLO = 'L'.  KA >= KB >= 0.
52*
53*  AB      (input/output) COMPLEX array, dimension (LDAB,N)
54*          On entry, the upper or lower triangle of the Hermitian band
55*          matrix A, stored in the first ka+1 rows of the array.  The
56*          j-th column of A is stored in the j-th column of the array AB
57*          as follows:
58*          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
59*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
60*
61*          On exit, the transformed matrix X**H*A*X, stored in the same
62*          format as A.
63*
64*  LDAB    (input) INTEGER
65*          The leading dimension of the array AB.  LDAB >= KA+1.
66*
67*  BB      (input) COMPLEX array, dimension (LDBB,N)
68*          The banded factor S from the split Cholesky factorization of
69*          B, as returned by CPBSTF, stored in the first kb+1 rows of
70*          the array.
71*
72*  LDBB    (input) INTEGER
73*          The leading dimension of the array BB.  LDBB >= KB+1.
74*
75*  X       (output) COMPLEX array, dimension (LDX,N)
76*          If VECT = 'V', the n-by-n matrix X.
77*          If VECT = 'N', the array X is not referenced.
78*
79*  LDX     (input) INTEGER
80*          The leading dimension of the array X.
81*          LDX >= max(1,N) if VECT = 'V'; LDX >= 1 otherwise.
82*
83*  WORK    (workspace) COMPLEX array, dimension (N)
84*
85*  RWORK   (workspace) REAL array, dimension (N)
86*
87*  INFO    (output) INTEGER
88*          = 0:  successful exit
89*          < 0:  if INFO = -i, the i-th argument had an illegal value.
90*
91*  =====================================================================
92*
93*     .. Parameters ..
94      COMPLEX            CZERO, CONE
95      REAL               ONE
96      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
97     $                   CONE = ( 1.0E+0, 0.0E+0 ), ONE = 1.0E+0 )
98*     ..
99*     .. Local Scalars ..
100      LOGICAL            UPDATE, UPPER, WANTX
101      INTEGER            I, I0, I1, I2, INCA, J, J1, J1T, J2, J2T, K,
102     $                   KA1, KB1, KBT, L, M, NR, NRT, NX
103      REAL               BII
104      COMPLEX            RA, RA1, T
105*     ..
106*     .. External Functions ..
107      LOGICAL            LSAME
108      EXTERNAL           LSAME
109*     ..
110*     .. External Subroutines ..
111      EXTERNAL           CGERC, CGERU, CLACGV, CLAR2V, CLARGV, CLARTG,
112     $                   CLARTV, CLASET, CROT, CSSCAL, XERBLA
113*     ..
114*     .. Intrinsic Functions ..
115      INTRINSIC          CONJG, MAX, MIN, REAL
116*     ..
117*     .. Executable Statements ..
118*
119*     Test the input parameters
120*
121      WANTX = LSAME( VECT, 'V' )
122      UPPER = LSAME( UPLO, 'U' )
123      KA1 = KA + 1
124      KB1 = KB + 1
125      INFO = 0
126      IF( .NOT.WANTX .AND. .NOT.LSAME( VECT, 'N' ) ) THEN
127         INFO = -1
128      ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
129         INFO = -2
130      ELSE IF( N.LT.0 ) THEN
131         INFO = -3
132      ELSE IF( KA.LT.0 ) THEN
133         INFO = -4
134      ELSE IF( KB.LT.0 ) THEN
135         INFO = -5
136      ELSE IF( LDAB.LT.KA+1 ) THEN
137         INFO = -7
138      ELSE IF( LDBB.LT.KB+1 ) THEN
139         INFO = -9
140      ELSE IF( LDX.LT.1 .OR. WANTX .AND. LDX.LT.MAX( 1, N ) ) THEN
141         INFO = -11
142      END IF
143      IF( INFO.NE.0 ) THEN
144         CALL XERBLA( 'CHBGST', -INFO )
145         RETURN
146      END IF
147*
148*     Quick return if possible
149*
150      IF( N.EQ.0 )
151     $   RETURN
152*
153      INCA = LDAB*KA1
154*
155*     Initialize X to the unit matrix, if needed
156*
157      IF( WANTX )
158     $   CALL CLASET( 'Full', N, N, CZERO, CONE, X, LDX )
159*
160*     Set M to the splitting point m. It must be the same value as is
161*     used in CPBSTF. The chosen value allows the arrays WORK and RWORK
162*     to be of dimension (N).
163*
164      M = ( N+KB ) / 2
165*
166*     The routine works in two phases, corresponding to the two halves
167*     of the split Cholesky factorization of B as S**H*S where
168*
169*     S = ( U    )
170*         ( M  L )
171*
172*     with U upper triangular of order m, and L lower triangular of
173*     order n-m. S has the same bandwidth as B.
174*
175*     S is treated as a product of elementary matrices:
176*
177*     S = S(m)*S(m-1)*...*S(2)*S(1)*S(m+1)*S(m+2)*...*S(n-1)*S(n)
178*
179*     where S(i) is determined by the i-th row of S.
180*
181*     In phase 1, the index i takes the values n, n-1, ... , m+1;
182*     in phase 2, it takes the values 1, 2, ... , m.
183*
184*     For each value of i, the current matrix A is updated by forming
185*     inv(S(i))**H*A*inv(S(i)). This creates a triangular bulge outside
186*     the band of A. The bulge is then pushed down toward the bottom of
187*     A in phase 1, and up toward the top of A in phase 2, by applying
188*     plane rotations.
189*
190*     There are kb*(kb+1)/2 elements in the bulge, but at most 2*kb-1
191*     of them are linearly independent, so annihilating a bulge requires
192*     only 2*kb-1 plane rotations. The rotations are divided into a 1st
193*     set of kb-1 rotations, and a 2nd set of kb rotations.
194*
195*     Wherever possible, rotations are generated and applied in vector
196*     operations of length NR between the indices J1 and J2 (sometimes
197*     replaced by modified values NRT, J1T or J2T).
198*
199*     The real cosines and complex sines of the rotations are stored in
200*     the arrays RWORK and WORK, those of the 1st set in elements
201*     2:m-kb-1, and those of the 2nd set in elements m-kb+1:n.
202*
203*     The bulges are not formed explicitly; nonzero elements outside the
204*     band are created only when they are required for generating new
205*     rotations; they are stored in the array WORK, in positions where
206*     they are later overwritten by the sines of the rotations which
207*     annihilate them.
208*
209*     **************************** Phase 1 *****************************
210*
211*     The logical structure of this phase is:
212*
213*     UPDATE = .TRUE.
214*     DO I = N, M + 1, -1
215*        use S(i) to update A and create a new bulge
216*        apply rotations to push all bulges KA positions downward
217*     END DO
218*     UPDATE = .FALSE.
219*     DO I = M + KA + 1, N - 1
220*        apply rotations to push all bulges KA positions downward
221*     END DO
222*
223*     To avoid duplicating code, the two loops are merged.
224*
225      UPDATE = .TRUE.
226      I = N + 1
227   10 CONTINUE
228      IF( UPDATE ) THEN
229         I = I - 1
230         KBT = MIN( KB, I-1 )
231         I0 = I - 1
232         I1 = MIN( N, I+KA )
233         I2 = I - KBT + KA1
234         IF( I.LT.M+1 ) THEN
235            UPDATE = .FALSE.
236            I = I + 1
237            I0 = M
238            IF( KA.EQ.0 )
239     $         GO TO 480
240            GO TO 10
241         END IF
242      ELSE
243         I = I + KA
244         IF( I.GT.N-1 )
245     $      GO TO 480
246      END IF
247*
248      IF( UPPER ) THEN
249*
250*        Transform A, working with the upper triangle
251*
252         IF( UPDATE ) THEN
253*
254*           Form  inv(S(i))**H * A * inv(S(i))
255*
256            BII = REAL( BB( KB1, I ) )
257            AB( KA1, I ) = ( REAL( AB( KA1, I ) ) / BII ) / BII
258            DO 20 J = I + 1, I1
259               AB( I-J+KA1, J ) = AB( I-J+KA1, J ) / BII
260   20       CONTINUE
261            DO 30 J = MAX( 1, I-KA ), I - 1
262               AB( J-I+KA1, I ) = AB( J-I+KA1, I ) / BII
263   30       CONTINUE
264            DO 60 K = I - KBT, I - 1
265               DO 40 J = I - KBT, K
266                  AB( J-K+KA1, K ) = AB( J-K+KA1, K ) -
267     $                               BB( J-I+KB1, I )*
268     $                               CONJG( AB( K-I+KA1, I ) ) -
269     $                               CONJG( BB( K-I+KB1, I ) )*
270     $                               AB( J-I+KA1, I ) +
271     $                               REAL( AB( KA1, I ) )*
272     $                               BB( J-I+KB1, I )*
273     $                               CONJG( BB( K-I+KB1, I ) )
274   40          CONTINUE
275               DO 50 J = MAX( 1, I-KA ), I - KBT - 1
276                  AB( J-K+KA1, K ) = AB( J-K+KA1, K ) -
277     $                               CONJG( BB( K-I+KB1, I ) )*
278     $                               AB( J-I+KA1, I )
279   50          CONTINUE
280   60       CONTINUE
281            DO 80 J = I, I1
282               DO 70 K = MAX( J-KA, I-KBT ), I - 1
283                  AB( K-J+KA1, J ) = AB( K-J+KA1, J ) -
284     $                               BB( K-I+KB1, I )*AB( I-J+KA1, J )
285   70          CONTINUE
286   80       CONTINUE
287*
288            IF( WANTX ) THEN
289*
290*              post-multiply X by inv(S(i))
291*
292               CALL CSSCAL( N-M, ONE / BII, X( M+1, I ), 1 )
293               IF( KBT.GT.0 )
294     $            CALL CGERC( N-M, KBT, -CONE, X( M+1, I ), 1,
295     $                        BB( KB1-KBT, I ), 1, X( M+1, I-KBT ),
296     $                        LDX )
297            END IF
298*
299*           store a(i,i1) in RA1 for use in next loop over K
300*
301            RA1 = AB( I-I1+KA1, I1 )
302         END IF
303*
304*        Generate and apply vectors of rotations to chase all the
305*        existing bulges KA positions down toward the bottom of the
306*        band
307*
308         DO 130 K = 1, KB - 1
309            IF( UPDATE ) THEN
310*
311*              Determine the rotations which would annihilate the bulge
312*              which has in theory just been created
313*
314               IF( I-K+KA.LT.N .AND. I-K.GT.1 ) THEN
315*
316*                 generate rotation to annihilate a(i,i-k+ka+1)
317*
318                  CALL CLARTG( AB( K+1, I-K+KA ), RA1,
319     $                         RWORK( I-K+KA-M ), WORK( I-K+KA-M ), RA )
320*
321*                 create nonzero element a(i-k,i-k+ka+1) outside the
322*                 band and store it in WORK(i-k)
323*
324                  T = -BB( KB1-K, I )*RA1
325                  WORK( I-K ) = RWORK( I-K+KA-M )*T -
326     $                          CONJG( WORK( I-K+KA-M ) )*
327     $                          AB( 1, I-K+KA )
328                  AB( 1, I-K+KA ) = WORK( I-K+KA-M )*T +
329     $                              RWORK( I-K+KA-M )*AB( 1, I-K+KA )
330                  RA1 = RA
331               END IF
332            END IF
333            J2 = I - K - 1 + MAX( 1, K-I0+2 )*KA1
334            NR = ( N-J2+KA ) / KA1
335            J1 = J2 + ( NR-1 )*KA1
336            IF( UPDATE ) THEN
337               J2T = MAX( J2, I+2*KA-K+1 )
338            ELSE
339               J2T = J2
340            END IF
341            NRT = ( N-J2T+KA ) / KA1
342            DO 90 J = J2T, J1, KA1
343*
344*              create nonzero element a(j-ka,j+1) outside the band
345*              and store it in WORK(j-m)
346*
347               WORK( J-M ) = WORK( J-M )*AB( 1, J+1 )
348               AB( 1, J+1 ) = RWORK( J-M )*AB( 1, J+1 )
349   90       CONTINUE
350*
351*           generate rotations in 1st set to annihilate elements which
352*           have been created outside the band
353*
354            IF( NRT.GT.0 )
355     $         CALL CLARGV( NRT, AB( 1, J2T ), INCA, WORK( J2T-M ), KA1,
356     $                      RWORK( J2T-M ), KA1 )
357            IF( NR.GT.0 ) THEN
358*
359*              apply rotations in 1st set from the right
360*
361               DO 100 L = 1, KA - 1
362                  CALL CLARTV( NR, AB( KA1-L, J2 ), INCA,
363     $                         AB( KA-L, J2+1 ), INCA, RWORK( J2-M ),
364     $                         WORK( J2-M ), KA1 )
365  100          CONTINUE
366*
367*              apply rotations in 1st set from both sides to diagonal
368*              blocks
369*
370               CALL CLAR2V( NR, AB( KA1, J2 ), AB( KA1, J2+1 ),
371     $                      AB( KA, J2+1 ), INCA, RWORK( J2-M ),
372     $                      WORK( J2-M ), KA1 )
373*
374               CALL CLACGV( NR, WORK( J2-M ), KA1 )
375            END IF
376*
377*           start applying rotations in 1st set from the left
378*
379            DO 110 L = KA - 1, KB - K + 1, -1
380               NRT = ( N-J2+L ) / KA1
381               IF( NRT.GT.0 )
382     $            CALL CLARTV( NRT, AB( L, J2+KA1-L ), INCA,
383     $                         AB( L+1, J2+KA1-L ), INCA, RWORK( J2-M ),
384     $                         WORK( J2-M ), KA1 )
385  110       CONTINUE
386*
387            IF( WANTX ) THEN
388*
389*              post-multiply X by product of rotations in 1st set
390*
391               DO 120 J = J2, J1, KA1
392                  CALL CROT( N-M, X( M+1, J ), 1, X( M+1, J+1 ), 1,
393     $                       RWORK( J-M ), CONJG( WORK( J-M ) ) )
394  120          CONTINUE
395            END IF
396  130    CONTINUE
397*
398         IF( UPDATE ) THEN
399            IF( I2.LE.N .AND. KBT.GT.0 ) THEN
400*
401*              create nonzero element a(i-kbt,i-kbt+ka+1) outside the
402*              band and store it in WORK(i-kbt)
403*
404               WORK( I-KBT ) = -BB( KB1-KBT, I )*RA1
405            END IF
406         END IF
407*
408         DO 170 K = KB, 1, -1
409            IF( UPDATE ) THEN
410               J2 = I - K - 1 + MAX( 2, K-I0+1 )*KA1
411            ELSE
412               J2 = I - K - 1 + MAX( 1, K-I0+1 )*KA1
413            END IF
414*
415*           finish applying rotations in 2nd set from the left
416*
417            DO 140 L = KB - K, 1, -1
418               NRT = ( N-J2+KA+L ) / KA1
419               IF( NRT.GT.0 )
420     $            CALL CLARTV( NRT, AB( L, J2-L+1 ), INCA,
421     $                         AB( L+1, J2-L+1 ), INCA, RWORK( J2-KA ),
422     $                         WORK( J2-KA ), KA1 )
423  140       CONTINUE
424            NR = ( N-J2+KA ) / KA1
425            J1 = J2 + ( NR-1 )*KA1
426            DO 150 J = J1, J2, -KA1
427               WORK( J ) = WORK( J-KA )
428               RWORK( J ) = RWORK( J-KA )
429  150       CONTINUE
430            DO 160 J = J2, J1, KA1
431*
432*              create nonzero element a(j-ka,j+1) outside the band
433*              and store it in WORK(j)
434*
435               WORK( J ) = WORK( J )*AB( 1, J+1 )
436               AB( 1, J+1 ) = RWORK( J )*AB( 1, J+1 )
437  160       CONTINUE
438            IF( UPDATE ) THEN
439               IF( I-K.LT.N-KA .AND. K.LE.KBT )
440     $            WORK( I-K+KA ) = WORK( I-K )
441            END IF
442  170    CONTINUE
443*
444         DO 210 K = KB, 1, -1
445            J2 = I - K - 1 + MAX( 1, K-I0+1 )*KA1
446            NR = ( N-J2+KA ) / KA1
447            J1 = J2 + ( NR-1 )*KA1
448            IF( NR.GT.0 ) THEN
449*
450*              generate rotations in 2nd set to annihilate elements
451*              which have been created outside the band
452*
453               CALL CLARGV( NR, AB( 1, J2 ), INCA, WORK( J2 ), KA1,
454     $                      RWORK( J2 ), KA1 )
455*
456*              apply rotations in 2nd set from the right
457*
458               DO 180 L = 1, KA - 1
459                  CALL CLARTV( NR, AB( KA1-L, J2 ), INCA,
460     $                         AB( KA-L, J2+1 ), INCA, RWORK( J2 ),
461     $                         WORK( J2 ), KA1 )
462  180          CONTINUE
463*
464*              apply rotations in 2nd set from both sides to diagonal
465*              blocks
466*
467               CALL CLAR2V( NR, AB( KA1, J2 ), AB( KA1, J2+1 ),
468     $                      AB( KA, J2+1 ), INCA, RWORK( J2 ),
469     $                      WORK( J2 ), KA1 )
470*
471               CALL CLACGV( NR, WORK( J2 ), KA1 )
472            END IF
473*
474*           start applying rotations in 2nd set from the left
475*
476            DO 190 L = KA - 1, KB - K + 1, -1
477               NRT = ( N-J2+L ) / KA1
478               IF( NRT.GT.0 )
479     $            CALL CLARTV( NRT, AB( L, J2+KA1-L ), INCA,
480     $                         AB( L+1, J2+KA1-L ), INCA, RWORK( J2 ),
481     $                         WORK( J2 ), KA1 )
482  190       CONTINUE
483*
484            IF( WANTX ) THEN
485*
486*              post-multiply X by product of rotations in 2nd set
487*
488               DO 200 J = J2, J1, KA1
489                  CALL CROT( N-M, X( M+1, J ), 1, X( M+1, J+1 ), 1,
490     $                       RWORK( J ), CONJG( WORK( J ) ) )
491  200          CONTINUE
492            END IF
493  210    CONTINUE
494*
495         DO 230 K = 1, KB - 1
496            J2 = I - K - 1 + MAX( 1, K-I0+2 )*KA1
497*
498*           finish applying rotations in 1st set from the left
499*
500            DO 220 L = KB - K, 1, -1
501               NRT = ( N-J2+L ) / KA1
502               IF( NRT.GT.0 )
503     $            CALL CLARTV( NRT, AB( L, J2+KA1-L ), INCA,
504     $                         AB( L+1, J2+KA1-L ), INCA, RWORK( J2-M ),
505     $                         WORK( J2-M ), KA1 )
506  220       CONTINUE
507  230    CONTINUE
508*
509         IF( KB.GT.1 ) THEN
510            DO 240 J = N - 1, I2 + KA, -1
511               RWORK( J-M ) = RWORK( J-KA-M )
512               WORK( J-M ) = WORK( J-KA-M )
513  240       CONTINUE
514         END IF
515*
516      ELSE
517*
518*        Transform A, working with the lower triangle
519*
520         IF( UPDATE ) THEN
521*
522*           Form  inv(S(i))**H * A * inv(S(i))
523*
524            BII = REAL( BB( 1, I ) )
525            AB( 1, I ) = ( REAL( AB( 1, I ) ) / BII ) / BII
526            DO 250 J = I + 1, I1
527               AB( J-I+1, I ) = AB( J-I+1, I ) / BII
528  250       CONTINUE
529            DO 260 J = MAX( 1, I-KA ), I - 1
530               AB( I-J+1, J ) = AB( I-J+1, J ) / BII
531  260       CONTINUE
532            DO 290 K = I - KBT, I - 1
533               DO 270 J = I - KBT, K
534                  AB( K-J+1, J ) = AB( K-J+1, J ) -
535     $                             BB( I-J+1, J )*CONJG( AB( I-K+1,
536     $                             K ) ) - CONJG( BB( I-K+1, K ) )*
537     $                             AB( I-J+1, J ) + REAL( AB( 1, I ) )*
538     $                             BB( I-J+1, J )*CONJG( BB( I-K+1,
539     $                             K ) )
540  270          CONTINUE
541               DO 280 J = MAX( 1, I-KA ), I - KBT - 1
542                  AB( K-J+1, J ) = AB( K-J+1, J ) -
543     $                             CONJG( BB( I-K+1, K ) )*
544     $                             AB( I-J+1, J )
545  280          CONTINUE
546  290       CONTINUE
547            DO 310 J = I, I1
548               DO 300 K = MAX( J-KA, I-KBT ), I - 1
549                  AB( J-K+1, K ) = AB( J-K+1, K ) -
550     $                             BB( I-K+1, K )*AB( J-I+1, I )
551  300          CONTINUE
552  310       CONTINUE
553*
554            IF( WANTX ) THEN
555*
556*              post-multiply X by inv(S(i))
557*
558               CALL CSSCAL( N-M, ONE / BII, X( M+1, I ), 1 )
559               IF( KBT.GT.0 )
560     $            CALL CGERU( N-M, KBT, -CONE, X( M+1, I ), 1,
561     $                        BB( KBT+1, I-KBT ), LDBB-1,
562     $                        X( M+1, I-KBT ), LDX )
563            END IF
564*
565*           store a(i1,i) in RA1 for use in next loop over K
566*
567            RA1 = AB( I1-I+1, I )
568         END IF
569*
570*        Generate and apply vectors of rotations to chase all the
571*        existing bulges KA positions down toward the bottom of the
572*        band
573*
574         DO 360 K = 1, KB - 1
575            IF( UPDATE ) THEN
576*
577*              Determine the rotations which would annihilate the bulge
578*              which has in theory just been created
579*
580               IF( I-K+KA.LT.N .AND. I-K.GT.1 ) THEN
581*
582*                 generate rotation to annihilate a(i-k+ka+1,i)
583*
584                  CALL CLARTG( AB( KA1-K, I ), RA1, RWORK( I-K+KA-M ),
585     $                         WORK( I-K+KA-M ), RA )
586*
587*                 create nonzero element a(i-k+ka+1,i-k) outside the
588*                 band and store it in WORK(i-k)
589*
590                  T = -BB( K+1, I-K )*RA1
591                  WORK( I-K ) = RWORK( I-K+KA-M )*T -
592     $                          CONJG( WORK( I-K+KA-M ) )*AB( KA1, I-K )
593                  AB( KA1, I-K ) = WORK( I-K+KA-M )*T +
594     $                             RWORK( I-K+KA-M )*AB( KA1, I-K )
595                  RA1 = RA
596               END IF
597            END IF
598            J2 = I - K - 1 + MAX( 1, K-I0+2 )*KA1
599            NR = ( N-J2+KA ) / KA1
600            J1 = J2 + ( NR-1 )*KA1
601            IF( UPDATE ) THEN
602               J2T = MAX( J2, I+2*KA-K+1 )
603            ELSE
604               J2T = J2
605            END IF
606            NRT = ( N-J2T+KA ) / KA1
607            DO 320 J = J2T, J1, KA1
608*
609*              create nonzero element a(j+1,j-ka) outside the band
610*              and store it in WORK(j-m)
611*
612               WORK( J-M ) = WORK( J-M )*AB( KA1, J-KA+1 )
613               AB( KA1, J-KA+1 ) = RWORK( J-M )*AB( KA1, J-KA+1 )
614  320       CONTINUE
615*
616*           generate rotations in 1st set to annihilate elements which
617*           have been created outside the band
618*
619            IF( NRT.GT.0 )
620     $         CALL CLARGV( NRT, AB( KA1, J2T-KA ), INCA, WORK( J2T-M ),
621     $                      KA1, RWORK( J2T-M ), KA1 )
622            IF( NR.GT.0 ) THEN
623*
624*              apply rotations in 1st set from the left
625*
626               DO 330 L = 1, KA - 1
627                  CALL CLARTV( NR, AB( L+1, J2-L ), INCA,
628     $                         AB( L+2, J2-L ), INCA, RWORK( J2-M ),
629     $                         WORK( J2-M ), KA1 )
630  330          CONTINUE
631*
632*              apply rotations in 1st set from both sides to diagonal
633*              blocks
634*
635               CALL CLAR2V( NR, AB( 1, J2 ), AB( 1, J2+1 ), AB( 2, J2 ),
636     $                      INCA, RWORK( J2-M ), WORK( J2-M ), KA1 )
637*
638               CALL CLACGV( NR, WORK( J2-M ), KA1 )
639            END IF
640*
641*           start applying rotations in 1st set from the right
642*
643            DO 340 L = KA - 1, KB - K + 1, -1
644               NRT = ( N-J2+L ) / KA1
645               IF( NRT.GT.0 )
646     $            CALL CLARTV( NRT, AB( KA1-L+1, J2 ), INCA,
647     $                         AB( KA1-L, J2+1 ), INCA, RWORK( J2-M ),
648     $                         WORK( J2-M ), KA1 )
649  340       CONTINUE
650*
651            IF( WANTX ) THEN
652*
653*              post-multiply X by product of rotations in 1st set
654*
655               DO 350 J = J2, J1, KA1
656                  CALL CROT( N-M, X( M+1, J ), 1, X( M+1, J+1 ), 1,
657     $                       RWORK( J-M ), WORK( J-M ) )
658  350          CONTINUE
659            END IF
660  360    CONTINUE
661*
662         IF( UPDATE ) THEN
663            IF( I2.LE.N .AND. KBT.GT.0 ) THEN
664*
665*              create nonzero element a(i-kbt+ka+1,i-kbt) outside the
666*              band and store it in WORK(i-kbt)
667*
668               WORK( I-KBT ) = -BB( KBT+1, I-KBT )*RA1
669            END IF
670         END IF
671*
672         DO 400 K = KB, 1, -1
673            IF( UPDATE ) THEN
674               J2 = I - K - 1 + MAX( 2, K-I0+1 )*KA1
675            ELSE
676               J2 = I - K - 1 + MAX( 1, K-I0+1 )*KA1
677            END IF
678*
679*           finish applying rotations in 2nd set from the right
680*
681            DO 370 L = KB - K, 1, -1
682               NRT = ( N-J2+KA+L ) / KA1
683               IF( NRT.GT.0 )
684     $            CALL CLARTV( NRT, AB( KA1-L+1, J2-KA ), INCA,
685     $                         AB( KA1-L, J2-KA+1 ), INCA,
686     $                         RWORK( J2-KA ), WORK( J2-KA ), KA1 )
687  370       CONTINUE
688            NR = ( N-J2+KA ) / KA1
689            J1 = J2 + ( NR-1 )*KA1
690            DO 380 J = J1, J2, -KA1
691               WORK( J ) = WORK( J-KA )
692               RWORK( J ) = RWORK( J-KA )
693  380       CONTINUE
694            DO 390 J = J2, J1, KA1
695*
696*              create nonzero element a(j+1,j-ka) outside the band
697*              and store it in WORK(j)
698*
699               WORK( J ) = WORK( J )*AB( KA1, J-KA+1 )
700               AB( KA1, J-KA+1 ) = RWORK( J )*AB( KA1, J-KA+1 )
701  390       CONTINUE
702            IF( UPDATE ) THEN
703               IF( I-K.LT.N-KA .AND. K.LE.KBT )
704     $            WORK( I-K+KA ) = WORK( I-K )
705            END IF
706  400    CONTINUE
707*
708         DO 440 K = KB, 1, -1
709            J2 = I - K - 1 + MAX( 1, K-I0+1 )*KA1
710            NR = ( N-J2+KA ) / KA1
711            J1 = J2 + ( NR-1 )*KA1
712            IF( NR.GT.0 ) THEN
713*
714*              generate rotations in 2nd set to annihilate elements
715*              which have been created outside the band
716*
717               CALL CLARGV( NR, AB( KA1, J2-KA ), INCA, WORK( J2 ), KA1,
718     $                      RWORK( J2 ), KA1 )
719*
720*              apply rotations in 2nd set from the left
721*
722               DO 410 L = 1, KA - 1
723                  CALL CLARTV( NR, AB( L+1, J2-L ), INCA,
724     $                         AB( L+2, J2-L ), INCA, RWORK( J2 ),
725     $                         WORK( J2 ), KA1 )
726  410          CONTINUE
727*
728*              apply rotations in 2nd set from both sides to diagonal
729*              blocks
730*
731               CALL CLAR2V( NR, AB( 1, J2 ), AB( 1, J2+1 ), AB( 2, J2 ),
732     $                      INCA, RWORK( J2 ), WORK( J2 ), KA1 )
733*
734               CALL CLACGV( NR, WORK( J2 ), KA1 )
735            END IF
736*
737*           start applying rotations in 2nd set from the right
738*
739            DO 420 L = KA - 1, KB - K + 1, -1
740               NRT = ( N-J2+L ) / KA1
741               IF( NRT.GT.0 )
742     $            CALL CLARTV( NRT, AB( KA1-L+1, J2 ), INCA,
743     $                         AB( KA1-L, J2+1 ), INCA, RWORK( J2 ),
744     $                         WORK( J2 ), KA1 )
745  420       CONTINUE
746*
747            IF( WANTX ) THEN
748*
749*              post-multiply X by product of rotations in 2nd set
750*
751               DO 430 J = J2, J1, KA1
752                  CALL CROT( N-M, X( M+1, J ), 1, X( M+1, J+1 ), 1,
753     $                       RWORK( J ), WORK( J ) )
754  430          CONTINUE
755            END IF
756  440    CONTINUE
757*
758         DO 460 K = 1, KB - 1
759            J2 = I - K - 1 + MAX( 1, K-I0+2 )*KA1
760*
761*           finish applying rotations in 1st set from the right
762*
763            DO 450 L = KB - K, 1, -1
764               NRT = ( N-J2+L ) / KA1
765               IF( NRT.GT.0 )
766     $            CALL CLARTV( NRT, AB( KA1-L+1, J2 ), INCA,
767     $                         AB( KA1-L, J2+1 ), INCA, RWORK( J2-M ),
768     $                         WORK( J2-M ), KA1 )
769  450       CONTINUE
770  460    CONTINUE
771*
772         IF( KB.GT.1 ) THEN
773            DO 470 J = N - 1, I2 + KA, -1
774               RWORK( J-M ) = RWORK( J-KA-M )
775               WORK( J-M ) = WORK( J-KA-M )
776  470       CONTINUE
777         END IF
778*
779      END IF
780*
781      GO TO 10
782*
783  480 CONTINUE
784*
785*     **************************** Phase 2 *****************************
786*
787*     The logical structure of this phase is:
788*
789*     UPDATE = .TRUE.
790*     DO I = 1, M
791*        use S(i) to update A and create a new bulge
792*        apply rotations to push all bulges KA positions upward
793*     END DO
794*     UPDATE = .FALSE.
795*     DO I = M - KA - 1, 2, -1
796*        apply rotations to push all bulges KA positions upward
797*     END DO
798*
799*     To avoid duplicating code, the two loops are merged.
800*
801      UPDATE = .TRUE.
802      I = 0
803  490 CONTINUE
804      IF( UPDATE ) THEN
805         I = I + 1
806         KBT = MIN( KB, M-I )
807         I0 = I + 1
808         I1 = MAX( 1, I-KA )
809         I2 = I + KBT - KA1
810         IF( I.GT.M ) THEN
811            UPDATE = .FALSE.
812            I = I - 1
813            I0 = M + 1
814            IF( KA.EQ.0 )
815     $         RETURN
816            GO TO 490
817         END IF
818      ELSE
819         I = I - KA
820         IF( I.LT.2 )
821     $      RETURN
822      END IF
823*
824      IF( I.LT.M-KBT ) THEN
825         NX = M
826      ELSE
827         NX = N
828      END IF
829*
830      IF( UPPER ) THEN
831*
832*        Transform A, working with the upper triangle
833*
834         IF( UPDATE ) THEN
835*
836*           Form  inv(S(i))**H * A * inv(S(i))
837*
838            BII = REAL( BB( KB1, I ) )
839            AB( KA1, I ) = ( REAL( AB( KA1, I ) ) / BII ) / BII
840            DO 500 J = I1, I - 1
841               AB( J-I+KA1, I ) = AB( J-I+KA1, I ) / BII
842  500       CONTINUE
843            DO 510 J = I + 1, MIN( N, I+KA )
844               AB( I-J+KA1, J ) = AB( I-J+KA1, J ) / BII
845  510       CONTINUE
846            DO 540 K = I + 1, I + KBT
847               DO 520 J = K, I + KBT
848                  AB( K-J+KA1, J ) = AB( K-J+KA1, J ) -
849     $                               BB( I-J+KB1, J )*
850     $                               CONJG( AB( I-K+KA1, K ) ) -
851     $                               CONJG( BB( I-K+KB1, K ) )*
852     $                               AB( I-J+KA1, J ) +
853     $                               REAL( AB( KA1, I ) )*
854     $                               BB( I-J+KB1, J )*
855     $                               CONJG( BB( I-K+KB1, K ) )
856  520          CONTINUE
857               DO 530 J = I + KBT + 1, MIN( N, I+KA )
858                  AB( K-J+KA1, J ) = AB( K-J+KA1, J ) -
859     $                               CONJG( BB( I-K+KB1, K ) )*
860     $                               AB( I-J+KA1, J )
861  530          CONTINUE
862  540       CONTINUE
863            DO 560 J = I1, I
864               DO 550 K = I + 1, MIN( J+KA, I+KBT )
865                  AB( J-K+KA1, K ) = AB( J-K+KA1, K ) -
866     $                               BB( I-K+KB1, K )*AB( J-I+KA1, I )
867  550          CONTINUE
868  560       CONTINUE
869*
870            IF( WANTX ) THEN
871*
872*              post-multiply X by inv(S(i))
873*
874               CALL CSSCAL( NX, ONE / BII, X( 1, I ), 1 )
875               IF( KBT.GT.0 )
876     $            CALL CGERU( NX, KBT, -CONE, X( 1, I ), 1,
877     $                        BB( KB, I+1 ), LDBB-1, X( 1, I+1 ), LDX )
878            END IF
879*
880*           store a(i1,i) in RA1 for use in next loop over K
881*
882            RA1 = AB( I1-I+KA1, I )
883         END IF
884*
885*        Generate and apply vectors of rotations to chase all the
886*        existing bulges KA positions up toward the top of the band
887*
888         DO 610 K = 1, KB - 1
889            IF( UPDATE ) THEN
890*
891*              Determine the rotations which would annihilate the bulge
892*              which has in theory just been created
893*
894               IF( I+K-KA1.GT.0 .AND. I+K.LT.M ) THEN
895*
896*                 generate rotation to annihilate a(i+k-ka-1,i)
897*
898                  CALL CLARTG( AB( K+1, I ), RA1, RWORK( I+K-KA ),
899     $                         WORK( I+K-KA ), RA )
900*
901*                 create nonzero element a(i+k-ka-1,i+k) outside the
902*                 band and store it in WORK(m-kb+i+k)
903*
904                  T = -BB( KB1-K, I+K )*RA1
905                  WORK( M-KB+I+K ) = RWORK( I+K-KA )*T -
906     $                               CONJG( WORK( I+K-KA ) )*
907     $                               AB( 1, I+K )
908                  AB( 1, I+K ) = WORK( I+K-KA )*T +
909     $                           RWORK( I+K-KA )*AB( 1, I+K )
910                  RA1 = RA
911               END IF
912            END IF
913            J2 = I + K + 1 - MAX( 1, K+I0-M+1 )*KA1
914            NR = ( J2+KA-1 ) / KA1
915            J1 = J2 - ( NR-1 )*KA1
916            IF( UPDATE ) THEN
917               J2T = MIN( J2, I-2*KA+K-1 )
918            ELSE
919               J2T = J2
920            END IF
921            NRT = ( J2T+KA-1 ) / KA1
922            DO 570 J = J1, J2T, KA1
923*
924*              create nonzero element a(j-1,j+ka) outside the band
925*              and store it in WORK(j)
926*
927               WORK( J ) = WORK( J )*AB( 1, J+KA-1 )
928               AB( 1, J+KA-1 ) = RWORK( J )*AB( 1, J+KA-1 )
929  570       CONTINUE
930*
931*           generate rotations in 1st set to annihilate elements which
932*           have been created outside the band
933*
934            IF( NRT.GT.0 )
935     $         CALL CLARGV( NRT, AB( 1, J1+KA ), INCA, WORK( J1 ), KA1,
936     $                      RWORK( J1 ), KA1 )
937            IF( NR.GT.0 ) THEN
938*
939*              apply rotations in 1st set from the left
940*
941               DO 580 L = 1, KA - 1
942                  CALL CLARTV( NR, AB( KA1-L, J1+L ), INCA,
943     $                         AB( KA-L, J1+L ), INCA, RWORK( J1 ),
944     $                         WORK( J1 ), KA1 )
945  580          CONTINUE
946*
947*              apply rotations in 1st set from both sides to diagonal
948*              blocks
949*
950               CALL CLAR2V( NR, AB( KA1, J1 ), AB( KA1, J1-1 ),
951     $                      AB( KA, J1 ), INCA, RWORK( J1 ), WORK( J1 ),
952     $                      KA1 )
953*
954               CALL CLACGV( NR, WORK( J1 ), KA1 )
955            END IF
956*
957*           start applying rotations in 1st set from the right
958*
959            DO 590 L = KA - 1, KB - K + 1, -1
960               NRT = ( J2+L-1 ) / KA1
961               J1T = J2 - ( NRT-1 )*KA1
962               IF( NRT.GT.0 )
963     $            CALL CLARTV( NRT, AB( L, J1T ), INCA,
964     $                         AB( L+1, J1T-1 ), INCA, RWORK( J1T ),
965     $                         WORK( J1T ), KA1 )
966  590       CONTINUE
967*
968            IF( WANTX ) THEN
969*
970*              post-multiply X by product of rotations in 1st set
971*
972               DO 600 J = J1, J2, KA1
973                  CALL CROT( NX, X( 1, J ), 1, X( 1, J-1 ), 1,
974     $                       RWORK( J ), WORK( J ) )
975  600          CONTINUE
976            END IF
977  610    CONTINUE
978*
979         IF( UPDATE ) THEN
980            IF( I2.GT.0 .AND. KBT.GT.0 ) THEN
981*
982*              create nonzero element a(i+kbt-ka-1,i+kbt) outside the
983*              band and store it in WORK(m-kb+i+kbt)
984*
985               WORK( M-KB+I+KBT ) = -BB( KB1-KBT, I+KBT )*RA1
986            END IF
987         END IF
988*
989         DO 650 K = KB, 1, -1
990            IF( UPDATE ) THEN
991               J2 = I + K + 1 - MAX( 2, K+I0-M )*KA1
992            ELSE
993               J2 = I + K + 1 - MAX( 1, K+I0-M )*KA1
994            END IF
995*
996*           finish applying rotations in 2nd set from the right
997*
998            DO 620 L = KB - K, 1, -1
999               NRT = ( J2+KA+L-1 ) / KA1
1000               J1T = J2 - ( NRT-1 )*KA1
1001               IF( NRT.GT.0 )
1002     $            CALL CLARTV( NRT, AB( L, J1T+KA ), INCA,
1003     $                         AB( L+1, J1T+KA-1 ), INCA,
1004     $                         RWORK( M-KB+J1T+KA ),
1005     $                         WORK( M-KB+J1T+KA ), KA1 )
1006  620       CONTINUE
1007            NR = ( J2+KA-1 ) / KA1
1008            J1 = J2 - ( NR-1 )*KA1
1009            DO 630 J = J1, J2, KA1
1010               WORK( M-KB+J ) = WORK( M-KB+J+KA )
1011               RWORK( M-KB+J ) = RWORK( M-KB+J+KA )
1012  630       CONTINUE
1013            DO 640 J = J1, J2, KA1
1014*
1015*              create nonzero element a(j-1,j+ka) outside the band
1016*              and store it in WORK(m-kb+j)
1017*
1018               WORK( M-KB+J ) = WORK( M-KB+J )*AB( 1, J+KA-1 )
1019               AB( 1, J+KA-1 ) = RWORK( M-KB+J )*AB( 1, J+KA-1 )
1020  640       CONTINUE
1021            IF( UPDATE ) THEN
1022               IF( I+K.GT.KA1 .AND. K.LE.KBT )
1023     $            WORK( M-KB+I+K-KA ) = WORK( M-KB+I+K )
1024            END IF
1025  650    CONTINUE
1026*
1027         DO 690 K = KB, 1, -1
1028            J2 = I + K + 1 - MAX( 1, K+I0-M )*KA1
1029            NR = ( J2+KA-1 ) / KA1
1030            J1 = J2 - ( NR-1 )*KA1
1031            IF( NR.GT.0 ) THEN
1032*
1033*              generate rotations in 2nd set to annihilate elements
1034*              which have been created outside the band
1035*
1036               CALL CLARGV( NR, AB( 1, J1+KA ), INCA, WORK( M-KB+J1 ),
1037     $                      KA1, RWORK( M-KB+J1 ), KA1 )
1038*
1039*              apply rotations in 2nd set from the left
1040*
1041               DO 660 L = 1, KA - 1
1042                  CALL CLARTV( NR, AB( KA1-L, J1+L ), INCA,
1043     $                         AB( KA-L, J1+L ), INCA, RWORK( M-KB+J1 ),
1044     $                         WORK( M-KB+J1 ), KA1 )
1045  660          CONTINUE
1046*
1047*              apply rotations in 2nd set from both sides to diagonal
1048*              blocks
1049*
1050               CALL CLAR2V( NR, AB( KA1, J1 ), AB( KA1, J1-1 ),
1051     $                      AB( KA, J1 ), INCA, RWORK( M-KB+J1 ),
1052     $                      WORK( M-KB+J1 ), KA1 )
1053*
1054               CALL CLACGV( NR, WORK( M-KB+J1 ), KA1 )
1055            END IF
1056*
1057*           start applying rotations in 2nd set from the right
1058*
1059            DO 670 L = KA - 1, KB - K + 1, -1
1060               NRT = ( J2+L-1 ) / KA1
1061               J1T = J2 - ( NRT-1 )*KA1
1062               IF( NRT.GT.0 )
1063     $            CALL CLARTV( NRT, AB( L, J1T ), INCA,
1064     $                         AB( L+1, J1T-1 ), INCA,
1065     $                         RWORK( M-KB+J1T ), WORK( M-KB+J1T ),
1066     $                         KA1 )
1067  670       CONTINUE
1068*
1069            IF( WANTX ) THEN
1070*
1071*              post-multiply X by product of rotations in 2nd set
1072*
1073               DO 680 J = J1, J2, KA1
1074                  CALL CROT( NX, X( 1, J ), 1, X( 1, J-1 ), 1,
1075     $                       RWORK( M-KB+J ), WORK( M-KB+J ) )
1076  680          CONTINUE
1077            END IF
1078  690    CONTINUE
1079*
1080         DO 710 K = 1, KB - 1
1081            J2 = I + K + 1 - MAX( 1, K+I0-M+1 )*KA1
1082*
1083*           finish applying rotations in 1st set from the right
1084*
1085            DO 700 L = KB - K, 1, -1
1086               NRT = ( J2+L-1 ) / KA1
1087               J1T = J2 - ( NRT-1 )*KA1
1088               IF( NRT.GT.0 )
1089     $            CALL CLARTV( NRT, AB( L, J1T ), INCA,
1090     $                         AB( L+1, J1T-1 ), INCA, RWORK( J1T ),
1091     $                         WORK( J1T ), KA1 )
1092  700       CONTINUE
1093  710    CONTINUE
1094*
1095         IF( KB.GT.1 ) THEN
1096            DO 720 J = 2, I2 - KA
1097               RWORK( J ) = RWORK( J+KA )
1098               WORK( J ) = WORK( J+KA )
1099  720       CONTINUE
1100         END IF
1101*
1102      ELSE
1103*
1104*        Transform A, working with the lower triangle
1105*
1106         IF( UPDATE ) THEN
1107*
1108*           Form  inv(S(i))**H * A * inv(S(i))
1109*
1110            BII = REAL( BB( 1, I ) )
1111            AB( 1, I ) = ( REAL( AB( 1, I ) ) / BII ) / BII
1112            DO 730 J = I1, I - 1
1113               AB( I-J+1, J ) = AB( I-J+1, J ) / BII
1114  730       CONTINUE
1115            DO 740 J = I + 1, MIN( N, I+KA )
1116               AB( J-I+1, I ) = AB( J-I+1, I ) / BII
1117  740       CONTINUE
1118            DO 770 K = I + 1, I + KBT
1119               DO 750 J = K, I + KBT
1120                  AB( J-K+1, K ) = AB( J-K+1, K ) -
1121     $                             BB( J-I+1, I )*CONJG( AB( K-I+1,
1122     $                             I ) ) - CONJG( BB( K-I+1, I ) )*
1123     $                             AB( J-I+1, I ) + REAL( AB( 1, I ) )*
1124     $                             BB( J-I+1, I )*CONJG( BB( K-I+1,
1125     $                             I ) )
1126  750          CONTINUE
1127               DO 760 J = I + KBT + 1, MIN( N, I+KA )
1128                  AB( J-K+1, K ) = AB( J-K+1, K ) -
1129     $                             CONJG( BB( K-I+1, I ) )*
1130     $                             AB( J-I+1, I )
1131  760          CONTINUE
1132  770       CONTINUE
1133            DO 790 J = I1, I
1134               DO 780 K = I + 1, MIN( J+KA, I+KBT )
1135                  AB( K-J+1, J ) = AB( K-J+1, J ) -
1136     $                             BB( K-I+1, I )*AB( I-J+1, J )
1137  780          CONTINUE
1138  790       CONTINUE
1139*
1140            IF( WANTX ) THEN
1141*
1142*              post-multiply X by inv(S(i))
1143*
1144               CALL CSSCAL( NX, ONE / BII, X( 1, I ), 1 )
1145               IF( KBT.GT.0 )
1146     $            CALL CGERC( NX, KBT, -CONE, X( 1, I ), 1, BB( 2, I ),
1147     $                        1, X( 1, I+1 ), LDX )
1148            END IF
1149*
1150*           store a(i,i1) in RA1 for use in next loop over K
1151*
1152            RA1 = AB( I-I1+1, I1 )
1153         END IF
1154*
1155*        Generate and apply vectors of rotations to chase all the
1156*        existing bulges KA positions up toward the top of the band
1157*
1158         DO 840 K = 1, KB - 1
1159            IF( UPDATE ) THEN
1160*
1161*              Determine the rotations which would annihilate the bulge
1162*              which has in theory just been created
1163*
1164               IF( I+K-KA1.GT.0 .AND. I+K.LT.M ) THEN
1165*
1166*                 generate rotation to annihilate a(i,i+k-ka-1)
1167*
1168                  CALL CLARTG( AB( KA1-K, I+K-KA ), RA1,
1169     $                         RWORK( I+K-KA ), WORK( I+K-KA ), RA )
1170*
1171*                 create nonzero element a(i+k,i+k-ka-1) outside the
1172*                 band and store it in WORK(m-kb+i+k)
1173*
1174                  T = -BB( K+1, I )*RA1
1175                  WORK( M-KB+I+K ) = RWORK( I+K-KA )*T -
1176     $                               CONJG( WORK( I+K-KA ) )*
1177     $                               AB( KA1, I+K-KA )
1178                  AB( KA1, I+K-KA ) = WORK( I+K-KA )*T +
1179     $                                RWORK( I+K-KA )*AB( KA1, I+K-KA )
1180                  RA1 = RA
1181               END IF
1182            END IF
1183            J2 = I + K + 1 - MAX( 1, K+I0-M+1 )*KA1
1184            NR = ( J2+KA-1 ) / KA1
1185            J1 = J2 - ( NR-1 )*KA1
1186            IF( UPDATE ) THEN
1187               J2T = MIN( J2, I-2*KA+K-1 )
1188            ELSE
1189               J2T = J2
1190            END IF
1191            NRT = ( J2T+KA-1 ) / KA1
1192            DO 800 J = J1, J2T, KA1
1193*
1194*              create nonzero element a(j+ka,j-1) outside the band
1195*              and store it in WORK(j)
1196*
1197               WORK( J ) = WORK( J )*AB( KA1, J-1 )
1198               AB( KA1, J-1 ) = RWORK( J )*AB( KA1, J-1 )
1199  800       CONTINUE
1200*
1201*           generate rotations in 1st set to annihilate elements which
1202*           have been created outside the band
1203*
1204            IF( NRT.GT.0 )
1205     $         CALL CLARGV( NRT, AB( KA1, J1 ), INCA, WORK( J1 ), KA1,
1206     $                      RWORK( J1 ), KA1 )
1207            IF( NR.GT.0 ) THEN
1208*
1209*              apply rotations in 1st set from the right
1210*
1211               DO 810 L = 1, KA - 1
1212                  CALL CLARTV( NR, AB( L+1, J1 ), INCA, AB( L+2, J1-1 ),
1213     $                         INCA, RWORK( J1 ), WORK( J1 ), KA1 )
1214  810          CONTINUE
1215*
1216*              apply rotations in 1st set from both sides to diagonal
1217*              blocks
1218*
1219               CALL CLAR2V( NR, AB( 1, J1 ), AB( 1, J1-1 ),
1220     $                      AB( 2, J1-1 ), INCA, RWORK( J1 ),
1221     $                      WORK( J1 ), KA1 )
1222*
1223               CALL CLACGV( NR, WORK( J1 ), KA1 )
1224            END IF
1225*
1226*           start applying rotations in 1st set from the left
1227*
1228            DO 820 L = KA - 1, KB - K + 1, -1
1229               NRT = ( J2+L-1 ) / KA1
1230               J1T = J2 - ( NRT-1 )*KA1
1231               IF( NRT.GT.0 )
1232     $            CALL CLARTV( NRT, AB( KA1-L+1, J1T-KA1+L ), INCA,
1233     $                         AB( KA1-L, J1T-KA1+L ), INCA,
1234     $                         RWORK( J1T ), WORK( J1T ), KA1 )
1235  820       CONTINUE
1236*
1237            IF( WANTX ) THEN
1238*
1239*              post-multiply X by product of rotations in 1st set
1240*
1241               DO 830 J = J1, J2, KA1
1242                  CALL CROT( NX, X( 1, J ), 1, X( 1, J-1 ), 1,
1243     $                       RWORK( J ), CONJG( WORK( J ) ) )
1244  830          CONTINUE
1245            END IF
1246  840    CONTINUE
1247*
1248         IF( UPDATE ) THEN
1249            IF( I2.GT.0 .AND. KBT.GT.0 ) THEN
1250*
1251*              create nonzero element a(i+kbt,i+kbt-ka-1) outside the
1252*              band and store it in WORK(m-kb+i+kbt)
1253*
1254               WORK( M-KB+I+KBT ) = -BB( KBT+1, I )*RA1
1255            END IF
1256         END IF
1257*
1258         DO 880 K = KB, 1, -1
1259            IF( UPDATE ) THEN
1260               J2 = I + K + 1 - MAX( 2, K+I0-M )*KA1
1261            ELSE
1262               J2 = I + K + 1 - MAX( 1, K+I0-M )*KA1
1263            END IF
1264*
1265*           finish applying rotations in 2nd set from the left
1266*
1267            DO 850 L = KB - K, 1, -1
1268               NRT = ( J2+KA+L-1 ) / KA1
1269               J1T = J2 - ( NRT-1 )*KA1
1270               IF( NRT.GT.0 )
1271     $            CALL CLARTV( NRT, AB( KA1-L+1, J1T+L-1 ), INCA,
1272     $                         AB( KA1-L, J1T+L-1 ), INCA,
1273     $                         RWORK( M-KB+J1T+KA ),
1274     $                         WORK( M-KB+J1T+KA ), KA1 )
1275  850       CONTINUE
1276            NR = ( J2+KA-1 ) / KA1
1277            J1 = J2 - ( NR-1 )*KA1
1278            DO 860 J = J1, J2, KA1
1279               WORK( M-KB+J ) = WORK( M-KB+J+KA )
1280               RWORK( M-KB+J ) = RWORK( M-KB+J+KA )
1281  860       CONTINUE
1282            DO 870 J = J1, J2, KA1
1283*
1284*              create nonzero element a(j+ka,j-1) outside the band
1285*              and store it in WORK(m-kb+j)
1286*
1287               WORK( M-KB+J ) = WORK( M-KB+J )*AB( KA1, J-1 )
1288               AB( KA1, J-1 ) = RWORK( M-KB+J )*AB( KA1, J-1 )
1289  870       CONTINUE
1290            IF( UPDATE ) THEN
1291               IF( I+K.GT.KA1 .AND. K.LE.KBT )
1292     $            WORK( M-KB+I+K-KA ) = WORK( M-KB+I+K )
1293            END IF
1294  880    CONTINUE
1295*
1296         DO 920 K = KB, 1, -1
1297            J2 = I + K + 1 - MAX( 1, K+I0-M )*KA1
1298            NR = ( J2+KA-1 ) / KA1
1299            J1 = J2 - ( NR-1 )*KA1
1300            IF( NR.GT.0 ) THEN
1301*
1302*              generate rotations in 2nd set to annihilate elements
1303*              which have been created outside the band
1304*
1305               CALL CLARGV( NR, AB( KA1, J1 ), INCA, WORK( M-KB+J1 ),
1306     $                      KA1, RWORK( M-KB+J1 ), KA1 )
1307*
1308*              apply rotations in 2nd set from the right
1309*
1310               DO 890 L = 1, KA - 1
1311                  CALL CLARTV( NR, AB( L+1, J1 ), INCA, AB( L+2, J1-1 ),
1312     $                         INCA, RWORK( M-KB+J1 ), WORK( M-KB+J1 ),
1313     $                         KA1 )
1314  890          CONTINUE
1315*
1316*              apply rotations in 2nd set from both sides to diagonal
1317*              blocks
1318*
1319               CALL CLAR2V( NR, AB( 1, J1 ), AB( 1, J1-1 ),
1320     $                      AB( 2, J1-1 ), INCA, RWORK( M-KB+J1 ),
1321     $                      WORK( M-KB+J1 ), KA1 )
1322*
1323               CALL CLACGV( NR, WORK( M-KB+J1 ), KA1 )
1324            END IF
1325*
1326*           start applying rotations in 2nd set from the left
1327*
1328            DO 900 L = KA - 1, KB - K + 1, -1
1329               NRT = ( J2+L-1 ) / KA1
1330               J1T = J2 - ( NRT-1 )*KA1
1331               IF( NRT.GT.0 )
1332     $            CALL CLARTV( NRT, AB( KA1-L+1, J1T-KA1+L ), INCA,
1333     $                         AB( KA1-L, J1T-KA1+L ), INCA,
1334     $                         RWORK( M-KB+J1T ), WORK( M-KB+J1T ),
1335     $                         KA1 )
1336  900       CONTINUE
1337*
1338            IF( WANTX ) THEN
1339*
1340*              post-multiply X by product of rotations in 2nd set
1341*
1342               DO 910 J = J1, J2, KA1
1343                  CALL CROT( NX, X( 1, J ), 1, X( 1, J-1 ), 1,
1344     $                       RWORK( M-KB+J ), CONJG( WORK( M-KB+J ) ) )
1345  910          CONTINUE
1346            END IF
1347  920    CONTINUE
1348*
1349         DO 940 K = 1, KB - 1
1350            J2 = I + K + 1 - MAX( 1, K+I0-M+1 )*KA1
1351*
1352*           finish applying rotations in 1st set from the left
1353*
1354            DO 930 L = KB - K, 1, -1
1355               NRT = ( J2+L-1 ) / KA1
1356               J1T = J2 - ( NRT-1 )*KA1
1357               IF( NRT.GT.0 )
1358     $            CALL CLARTV( NRT, AB( KA1-L+1, J1T-KA1+L ), INCA,
1359     $                         AB( KA1-L, J1T-KA1+L ), INCA,
1360     $                         RWORK( J1T ), WORK( J1T ), KA1 )
1361  930       CONTINUE
1362  940    CONTINUE
1363*
1364         IF( KB.GT.1 ) THEN
1365            DO 950 J = 2, I2 - KA
1366               RWORK( J ) = RWORK( J+KA )
1367               WORK( J ) = WORK( J+KA )
1368  950       CONTINUE
1369         END IF
1370*
1371      END IF
1372*
1373      GO TO 490
1374*
1375*     End of CHBGST
1376*
1377      END
1378