1# Benchmark 2[![Build Status](https://travis-ci.org/google/benchmark.svg?branch=master)](https://travis-ci.org/google/benchmark) 3[![Build status](https://ci.appveyor.com/api/projects/status/u0qsyp7t1tk7cpxs/branch/master?svg=true)](https://ci.appveyor.com/project/google/benchmark/branch/master) 4[![Coverage Status](https://coveralls.io/repos/google/benchmark/badge.svg)](https://coveralls.io/r/google/benchmark) 5[![slackin](https://slackin-iqtfqnpzxd.now.sh/badge.svg)](https://slackin-iqtfqnpzxd.now.sh/) 6 7 8A library to benchmark code snippets, similar to unit tests. Example: 9 10```c++ 11#include <benchmark/benchmark.h> 12 13static void BM_SomeFunction(benchmark::State& state) { 14 // Perform setup here 15 for (auto _ : state) { 16 // This code gets timed 17 SomeFunction(); 18 } 19} 20// Register the function as a benchmark 21BENCHMARK(BM_SomeFunction); 22// Run the benchmark 23BENCHMARK_MAIN(); 24``` 25 26To get started, see [Requirements](#requirements) and 27[Installation](#installation). See [Usage](#usage) for a full example and the 28[User Guide](#user-guide) for a more comprehensive feature overview. 29 30It may also help to read the [Google Test documentation](https://github.com/google/googletest/blob/master/googletest/docs/primer.md) 31as some of the structural aspects of the APIs are similar. 32 33### Resources 34 35[Discussion group](https://groups.google.com/d/forum/benchmark-discuss) 36 37IRC channel: [freenode](https://freenode.net) #googlebenchmark 38 39[Additional Tooling Documentation](docs/tools.md) 40 41[Assembly Testing Documentation](docs/AssemblyTests.md) 42 43## Requirements 44 45The library can be used with C++03. However, it requires C++11 to build, 46including compiler and standard library support. 47 48The following minimum versions are required to build the library: 49 50* GCC 4.8 51* Clang 3.4 52* Visual Studio 2013 53* Intel 2015 Update 1 54 55## Installation 56 57This describes the installation process using cmake. As pre-requisites, you'll 58need git and cmake installed. 59 60_See [dependencies.md](dependencies.md) for more details regarding supported 61versions of build tools._ 62 63```bash 64# Check out the library. 65$ git clone https://github.com/google/benchmark.git 66# Benchmark requires Google Test as a dependency. Add the source tree as a subdirectory. 67$ git clone https://github.com/google/googletest.git benchmark/googletest 68# Make a build directory to place the build output. 69$ mkdir build && cd build 70# Generate a Makefile with cmake. 71# Use cmake -G <generator> to generate a different file type. 72$ cmake ../benchmark 73# Build the library. 74$ make 75``` 76This builds the `benchmark` and `benchmark_main` libraries and tests. 77On a unix system, the build directory should now look something like this: 78 79``` 80/benchmark 81/build 82 /src 83 /libbenchmark.a 84 /libbenchmark_main.a 85 /test 86 ... 87``` 88 89Next, you can run the tests to check the build. 90 91```bash 92$ make test 93``` 94 95If you want to install the library globally, also run: 96 97``` 98sudo make install 99``` 100 101Note that Google Benchmark requires Google Test to build and run the tests. This 102dependency can be provided two ways: 103 104* Checkout the Google Test sources into `benchmark/googletest` as above. 105* Otherwise, if `-DBENCHMARK_DOWNLOAD_DEPENDENCIES=ON` is specified during 106 configuration, the library will automatically download and build any required 107 dependencies. 108 109If you do not wish to build and run the tests, add `-DBENCHMARK_ENABLE_GTEST_TESTS=OFF` 110to `CMAKE_ARGS`. 111 112### Debug vs Release 113 114By default, benchmark builds as a debug library. You will see a warning in the 115output when this is the case. To build it as a release library instead, use: 116 117``` 118cmake -DCMAKE_BUILD_TYPE=Release 119``` 120 121To enable link-time optimisation, use 122 123``` 124cmake -DCMAKE_BUILD_TYPE=Release -DBENCHMARK_ENABLE_LTO=true 125``` 126 127If you are using gcc, you might need to set `GCC_AR` and `GCC_RANLIB` cmake 128cache variables, if autodetection fails. 129 130If you are using clang, you may need to set `LLVMAR_EXECUTABLE`, 131`LLVMNM_EXECUTABLE` and `LLVMRANLIB_EXECUTABLE` cmake cache variables. 132 133 134### Stable and Experimental Library Versions 135 136The main branch contains the latest stable version of the benchmarking library; 137the API of which can be considered largely stable, with source breaking changes 138being made only upon the release of a new major version. 139 140Newer, experimental, features are implemented and tested on the 141[`v2` branch](https://github.com/google/benchmark/tree/v2). Users who wish 142to use, test, and provide feedback on the new features are encouraged to try 143this branch. However, this branch provides no stability guarantees and reserves 144the right to change and break the API at any time. 145 146## Usage 147### Basic usage 148Define a function that executes the code to measure, register it as a benchmark 149function using the `BENCHMARK` macro, and ensure an appropriate `main` function 150is available: 151 152```c++ 153#include <benchmark/benchmark.h> 154 155static void BM_StringCreation(benchmark::State& state) { 156 for (auto _ : state) 157 std::string empty_string; 158} 159// Register the function as a benchmark 160BENCHMARK(BM_StringCreation); 161 162// Define another benchmark 163static void BM_StringCopy(benchmark::State& state) { 164 std::string x = "hello"; 165 for (auto _ : state) 166 std::string copy(x); 167} 168BENCHMARK(BM_StringCopy); 169 170BENCHMARK_MAIN(); 171``` 172 173To run the benchmark, compile and link against the `benchmark` library 174(libbenchmark.a/.so). If you followed the build steps above, this 175library will be under the build directory you created. 176 177```bash 178# Example on linux after running the build steps above. Assumes the 179# `benchmark` and `build` directories are under the current directory. 180$ g++ -std=c++11 -isystem benchmark/include -Lbuild/src -lpthread \ 181 -lbenchmark mybenchmark.cc -o mybenchmark 182``` 183 184Alternatively, link against the `benchmark_main` library and remove 185`BENCHMARK_MAIN();` above to get the same behavior. 186 187The compiled executable will run all benchmarks by default. Pass the `--help` 188flag for option information or see the guide below. 189 190### Platform-specific instructions 191 192When the library is built using GCC it is necessary to link with the pthread 193library due to how GCC implements `std::thread`. Failing to link to pthread will 194lead to runtime exceptions (unless you're using libc++), not linker errors. See 195[issue #67](https://github.com/google/benchmark/issues/67) for more details. You 196can link to pthread by adding `-pthread` to your linker command. Note, you can 197also use `-lpthread`, but there are potential issues with ordering of command 198line parameters if you use that. 199 200If you're running benchmarks on Windows, the shlwapi library (`-lshlwapi`) is 201also required. 202 203If you're running benchmarks on solaris, you'll want the kstat library linked in 204too (`-lkstat`). 205 206## User Guide 207 208### Command Line 209[Output Formats](#output-formats) 210 211[Output Files](#output-files) 212 213[Running a Subset of Benchmarks](#running-a-subset-of-benchmarks) 214 215[Result Comparison](#result-comparison) 216 217### Library 218[Runtime and Reporting Considerations](#runtime-and-reporting-considerations) 219 220[Passing Arguments](#passing-arguments) 221 222[Calculating Asymptotic Complexity](#asymptotic-complexity) 223 224[Templated Benchmarks](#templated-benchmarks) 225 226[Fixtures](#fixtures) 227 228[Custom Counters](#custom-counters) 229 230[Multithreaded Benchmarks](#multithreaded-benchmarks) 231 232[CPU Timers](#cpu-timers) 233 234[Manual Timing](#manual-timing) 235 236[Setting the Time Unit](#setting-the-time-unit) 237 238[Preventing Optimization](#preventing-optimization) 239 240[Reporting Statistics](#reporting-statistics) 241 242[Custom Statistics](#custom-statistics) 243 244[Using RegisterBenchmark](#using-register-benchmark) 245 246[Exiting with an Error](#exiting-with-an-error) 247 248[A Faster KeepRunning Loop](#a-faster-keep-running-loop) 249 250[Disabling CPU Frequency Scaling](#disabling-cpu-frequency-scaling) 251 252<a name="output-formats" /> 253 254### Output Formats 255 256The library supports multiple output formats. Use the 257`--benchmark_format=<console|json|csv>` flag to set the format type. `console` 258is the default format. 259 260The Console format is intended to be a human readable format. By default 261the format generates color output. Context is output on stderr and the 262tabular data on stdout. Example tabular output looks like: 263``` 264Benchmark Time(ns) CPU(ns) Iterations 265---------------------------------------------------------------------- 266BM_SetInsert/1024/1 28928 29349 23853 133.097kB/s 33.2742k items/s 267BM_SetInsert/1024/8 32065 32913 21375 949.487kB/s 237.372k items/s 268BM_SetInsert/1024/10 33157 33648 21431 1.13369MB/s 290.225k items/s 269``` 270 271The JSON format outputs human readable json split into two top level attributes. 272The `context` attribute contains information about the run in general, including 273information about the CPU and the date. 274The `benchmarks` attribute contains a list of every benchmark run. Example json 275output looks like: 276```json 277{ 278 "context": { 279 "date": "2015/03/17-18:40:25", 280 "num_cpus": 40, 281 "mhz_per_cpu": 2801, 282 "cpu_scaling_enabled": false, 283 "build_type": "debug" 284 }, 285 "benchmarks": [ 286 { 287 "name": "BM_SetInsert/1024/1", 288 "iterations": 94877, 289 "real_time": 29275, 290 "cpu_time": 29836, 291 "bytes_per_second": 134066, 292 "items_per_second": 33516 293 }, 294 { 295 "name": "BM_SetInsert/1024/8", 296 "iterations": 21609, 297 "real_time": 32317, 298 "cpu_time": 32429, 299 "bytes_per_second": 986770, 300 "items_per_second": 246693 301 }, 302 { 303 "name": "BM_SetInsert/1024/10", 304 "iterations": 21393, 305 "real_time": 32724, 306 "cpu_time": 33355, 307 "bytes_per_second": 1199226, 308 "items_per_second": 299807 309 } 310 ] 311} 312``` 313 314The CSV format outputs comma-separated values. The `context` is output on stderr 315and the CSV itself on stdout. Example CSV output looks like: 316``` 317name,iterations,real_time,cpu_time,bytes_per_second,items_per_second,label 318"BM_SetInsert/1024/1",65465,17890.7,8407.45,475768,118942, 319"BM_SetInsert/1024/8",116606,18810.1,9766.64,3.27646e+06,819115, 320"BM_SetInsert/1024/10",106365,17238.4,8421.53,4.74973e+06,1.18743e+06, 321``` 322 323<a name="output-files" /> 324 325### Output Files 326 327Write benchmark results to a file with the `--benchmark_out=<filename>` option. 328Specify the output format with `--benchmark_out_format={json|console|csv}`. Note that Specifying 329`--benchmark_out` does not suppress the console output. 330 331<a name="running-a-subset-of-benchmarks" /> 332 333### Running a Subset of Benchmarks 334 335The `--benchmark_filter=<regex>` option can be used to only run the benchmarks 336which match the specified `<regex>`. For example: 337 338```bash 339$ ./run_benchmarks.x --benchmark_filter=BM_memcpy/32 340Run on (1 X 2300 MHz CPU ) 3412016-06-25 19:34:24 342Benchmark Time CPU Iterations 343---------------------------------------------------- 344BM_memcpy/32 11 ns 11 ns 79545455 345BM_memcpy/32k 2181 ns 2185 ns 324074 346BM_memcpy/32 12 ns 12 ns 54687500 347BM_memcpy/32k 1834 ns 1837 ns 357143 348``` 349 350<a name="result-comparison" /> 351 352### Result comparison 353 354It is possible to compare the benchmarking results. See [Additional Tooling Documentation](docs/tools.md) 355 356<a name="runtime-and-reporting-considerations" /> 357 358### Runtime and Reporting Considerations 359 360When the benchmark binary is executed, each benchmark function is run serially. 361The number of iterations to run is determined dynamically by running the 362benchmark a few times and measuring the time taken and ensuring that the 363ultimate result will be statistically stable. As such, faster benchmark 364functions will be run for more iterations than slower benchmark functions, and 365the number of iterations is thus reported. 366 367In all cases, the number of iterations for which the benchmark is run is 368governed by the amount of time the benchmark takes. Concretely, the number of 369iterations is at least one, not more than 1e9, until CPU time is greater than 370the minimum time, or the wallclock time is 5x minimum time. The minimum time is 371set per benchmark by calling `MinTime` on the registered benchmark object. 372 373Average timings are then reported over the iterations run. If multiple 374repetitions are requested using the `--benchmark_repetitions` command-line 375option, or at registration time, the benchmark function will be run several 376times and statistical results across these repetitions will also be reported. 377 378As well as the per-benchmark entries, a preamble in the report will include 379information about the machine on which the benchmarks are run. 380 381<a name="passing-arguments" /> 382 383### Passing Arguments 384 385Sometimes a family of benchmarks can be implemented with just one routine that 386takes an extra argument to specify which one of the family of benchmarks to 387run. For example, the following code defines a family of benchmarks for 388measuring the speed of `memcpy()` calls of different lengths: 389 390```c++ 391static void BM_memcpy(benchmark::State& state) { 392 char* src = new char[state.range(0)]; 393 char* dst = new char[state.range(0)]; 394 memset(src, 'x', state.range(0)); 395 for (auto _ : state) 396 memcpy(dst, src, state.range(0)); 397 state.SetBytesProcessed(int64_t(state.iterations()) * 398 int64_t(state.range(0))); 399 delete[] src; 400 delete[] dst; 401} 402BENCHMARK(BM_memcpy)->Arg(8)->Arg(64)->Arg(512)->Arg(1<<10)->Arg(8<<10); 403``` 404 405The preceding code is quite repetitive, and can be replaced with the following 406short-hand. The following invocation will pick a few appropriate arguments in 407the specified range and will generate a benchmark for each such argument. 408 409```c++ 410BENCHMARK(BM_memcpy)->Range(8, 8<<10); 411``` 412 413By default the arguments in the range are generated in multiples of eight and 414the command above selects [ 8, 64, 512, 4k, 8k ]. In the following code the 415range multiplier is changed to multiples of two. 416 417```c++ 418BENCHMARK(BM_memcpy)->RangeMultiplier(2)->Range(8, 8<<10); 419``` 420Now arguments generated are [ 8, 16, 32, 64, 128, 256, 512, 1024, 2k, 4k, 8k ]. 421 422You might have a benchmark that depends on two or more inputs. For example, the 423following code defines a family of benchmarks for measuring the speed of set 424insertion. 425 426```c++ 427static void BM_SetInsert(benchmark::State& state) { 428 std::set<int> data; 429 for (auto _ : state) { 430 state.PauseTiming(); 431 data = ConstructRandomSet(state.range(0)); 432 state.ResumeTiming(); 433 for (int j = 0; j < state.range(1); ++j) 434 data.insert(RandomNumber()); 435 } 436} 437BENCHMARK(BM_SetInsert) 438 ->Args({1<<10, 128}) 439 ->Args({2<<10, 128}) 440 ->Args({4<<10, 128}) 441 ->Args({8<<10, 128}) 442 ->Args({1<<10, 512}) 443 ->Args({2<<10, 512}) 444 ->Args({4<<10, 512}) 445 ->Args({8<<10, 512}); 446``` 447 448The preceding code is quite repetitive, and can be replaced with the following 449short-hand. The following macro will pick a few appropriate arguments in the 450product of the two specified ranges and will generate a benchmark for each such 451pair. 452 453```c++ 454BENCHMARK(BM_SetInsert)->Ranges({{1<<10, 8<<10}, {128, 512}}); 455``` 456 457For more complex patterns of inputs, passing a custom function to `Apply` allows 458programmatic specification of an arbitrary set of arguments on which to run the 459benchmark. The following example enumerates a dense range on one parameter, 460and a sparse range on the second. 461 462```c++ 463static void CustomArguments(benchmark::internal::Benchmark* b) { 464 for (int i = 0; i <= 10; ++i) 465 for (int j = 32; j <= 1024*1024; j *= 8) 466 b->Args({i, j}); 467} 468BENCHMARK(BM_SetInsert)->Apply(CustomArguments); 469``` 470 471#### Passing Arbitrary Arguments to a Benchmark 472 473In C++11 it is possible to define a benchmark that takes an arbitrary number 474of extra arguments. The `BENCHMARK_CAPTURE(func, test_case_name, ...args)` 475macro creates a benchmark that invokes `func` with the `benchmark::State` as 476the first argument followed by the specified `args...`. 477The `test_case_name` is appended to the name of the benchmark and 478should describe the values passed. 479 480```c++ 481template <class ...ExtraArgs> 482void BM_takes_args(benchmark::State& state, ExtraArgs&&... extra_args) { 483 [...] 484} 485// Registers a benchmark named "BM_takes_args/int_string_test" that passes 486// the specified values to `extra_args`. 487BENCHMARK_CAPTURE(BM_takes_args, int_string_test, 42, std::string("abc")); 488``` 489Note that elements of `...args` may refer to global variables. Users should 490avoid modifying global state inside of a benchmark. 491 492<a name="asymptotic-complexity" /> 493 494### Calculating Asymptotic Complexity (Big O) 495 496Asymptotic complexity might be calculated for a family of benchmarks. The 497following code will calculate the coefficient for the high-order term in the 498running time and the normalized root-mean square error of string comparison. 499 500```c++ 501static void BM_StringCompare(benchmark::State& state) { 502 std::string s1(state.range(0), '-'); 503 std::string s2(state.range(0), '-'); 504 for (auto _ : state) { 505 benchmark::DoNotOptimize(s1.compare(s2)); 506 } 507 state.SetComplexityN(state.range(0)); 508} 509BENCHMARK(BM_StringCompare) 510 ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity(benchmark::oN); 511``` 512 513As shown in the following invocation, asymptotic complexity might also be 514calculated automatically. 515 516```c++ 517BENCHMARK(BM_StringCompare) 518 ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity(); 519``` 520 521The following code will specify asymptotic complexity with a lambda function, 522that might be used to customize high-order term calculation. 523 524```c++ 525BENCHMARK(BM_StringCompare)->RangeMultiplier(2) 526 ->Range(1<<10, 1<<18)->Complexity([](int64_t n)->double{return n; }); 527``` 528 529<a name="templated-benchmarks" /> 530 531### Templated Benchmarks 532 533This example produces and consumes messages of size `sizeof(v)` `range_x` 534times. It also outputs throughput in the absence of multiprogramming. 535 536```c++ 537template <class Q> void BM_Sequential(benchmark::State& state) { 538 Q q; 539 typename Q::value_type v; 540 for (auto _ : state) { 541 for (int i = state.range(0); i--; ) 542 q.push(v); 543 for (int e = state.range(0); e--; ) 544 q.Wait(&v); 545 } 546 // actually messages, not bytes: 547 state.SetBytesProcessed( 548 static_cast<int64_t>(state.iterations())*state.range(0)); 549} 550BENCHMARK_TEMPLATE(BM_Sequential, WaitQueue<int>)->Range(1<<0, 1<<10); 551``` 552 553Three macros are provided for adding benchmark templates. 554 555```c++ 556#ifdef BENCHMARK_HAS_CXX11 557#define BENCHMARK_TEMPLATE(func, ...) // Takes any number of parameters. 558#else // C++ < C++11 559#define BENCHMARK_TEMPLATE(func, arg1) 560#endif 561#define BENCHMARK_TEMPLATE1(func, arg1) 562#define BENCHMARK_TEMPLATE2(func, arg1, arg2) 563``` 564 565<a name="fixtures" /> 566 567### Fixtures 568 569Fixture tests are created by first defining a type that derives from 570`::benchmark::Fixture` and then creating/registering the tests using the 571following macros: 572 573* `BENCHMARK_F(ClassName, Method)` 574* `BENCHMARK_DEFINE_F(ClassName, Method)` 575* `BENCHMARK_REGISTER_F(ClassName, Method)` 576 577For Example: 578 579```c++ 580class MyFixture : public benchmark::Fixture { 581public: 582 void SetUp(const ::benchmark::State& state) { 583 } 584 585 void TearDown(const ::benchmark::State& state) { 586 } 587}; 588 589BENCHMARK_F(MyFixture, FooTest)(benchmark::State& st) { 590 for (auto _ : st) { 591 ... 592 } 593} 594 595BENCHMARK_DEFINE_F(MyFixture, BarTest)(benchmark::State& st) { 596 for (auto _ : st) { 597 ... 598 } 599} 600/* BarTest is NOT registered */ 601BENCHMARK_REGISTER_F(MyFixture, BarTest)->Threads(2); 602/* BarTest is now registered */ 603``` 604 605#### Templated Fixtures 606 607Also you can create templated fixture by using the following macros: 608 609* `BENCHMARK_TEMPLATE_F(ClassName, Method, ...)` 610* `BENCHMARK_TEMPLATE_DEFINE_F(ClassName, Method, ...)` 611 612For example: 613```c++ 614template<typename T> 615class MyFixture : public benchmark::Fixture {}; 616 617BENCHMARK_TEMPLATE_F(MyFixture, IntTest, int)(benchmark::State& st) { 618 for (auto _ : st) { 619 ... 620 } 621} 622 623BENCHMARK_TEMPLATE_DEFINE_F(MyFixture, DoubleTest, double)(benchmark::State& st) { 624 for (auto _ : st) { 625 ... 626 } 627} 628 629BENCHMARK_REGISTER_F(MyFixture, DoubleTest)->Threads(2); 630``` 631 632<a name="custom-counters" /> 633 634### Custom Counters 635 636You can add your own counters with user-defined names. The example below 637will add columns "Foo", "Bar" and "Baz" in its output: 638 639```c++ 640static void UserCountersExample1(benchmark::State& state) { 641 double numFoos = 0, numBars = 0, numBazs = 0; 642 for (auto _ : state) { 643 // ... count Foo,Bar,Baz events 644 } 645 state.counters["Foo"] = numFoos; 646 state.counters["Bar"] = numBars; 647 state.counters["Baz"] = numBazs; 648} 649``` 650 651The `state.counters` object is a `std::map` with `std::string` keys 652and `Counter` values. The latter is a `double`-like class, via an implicit 653conversion to `double&`. Thus you can use all of the standard arithmetic 654assignment operators (`=,+=,-=,*=,/=`) to change the value of each counter. 655 656In multithreaded benchmarks, each counter is set on the calling thread only. 657When the benchmark finishes, the counters from each thread will be summed; 658the resulting sum is the value which will be shown for the benchmark. 659 660The `Counter` constructor accepts three parameters: the value as a `double` 661; a bit flag which allows you to show counters as rates, and/or as per-thread 662iteration, and/or as per-thread averages, and/or iteration invariants; 663and a flag specifying the 'unit' - i.e. is 1k a 1000 (default, 664`benchmark::Counter::OneK::kIs1000`), or 1024 665(`benchmark::Counter::OneK::kIs1024`)? 666 667```c++ 668 // sets a simple counter 669 state.counters["Foo"] = numFoos; 670 671 // Set the counter as a rate. It will be presented divided 672 // by the duration of the benchmark. 673 state.counters["FooRate"] = Counter(numFoos, benchmark::Counter::kIsRate); 674 675 // Set the counter as a thread-average quantity. It will 676 // be presented divided by the number of threads. 677 state.counters["FooAvg"] = Counter(numFoos, benchmark::Counter::kAvgThreads); 678 679 // There's also a combined flag: 680 state.counters["FooAvgRate"] = Counter(numFoos,benchmark::Counter::kAvgThreadsRate); 681 682 // This says that we process with the rate of state.range(0) bytes every iteration: 683 state.counters["BytesProcessed"] = Counter(state.range(0), benchmark::Counter::kIsIterationInvariantRate, benchmark::Counter::OneK::kIs1024); 684``` 685 686When you're compiling in C++11 mode or later you can use `insert()` with 687`std::initializer_list`: 688 689```c++ 690 // With C++11, this can be done: 691 state.counters.insert({{"Foo", numFoos}, {"Bar", numBars}, {"Baz", numBazs}}); 692 // ... instead of: 693 state.counters["Foo"] = numFoos; 694 state.counters["Bar"] = numBars; 695 state.counters["Baz"] = numBazs; 696``` 697 698#### Counter Reporting 699 700When using the console reporter, by default, user counters are are printed at 701the end after the table, the same way as ``bytes_processed`` and 702``items_processed``. This is best for cases in which there are few counters, 703or where there are only a couple of lines per benchmark. Here's an example of 704the default output: 705 706``` 707------------------------------------------------------------------------------ 708Benchmark Time CPU Iterations UserCounters... 709------------------------------------------------------------------------------ 710BM_UserCounter/threads:8 2248 ns 10277 ns 68808 Bar=16 Bat=40 Baz=24 Foo=8 711BM_UserCounter/threads:1 9797 ns 9788 ns 71523 Bar=2 Bat=5 Baz=3 Foo=1024m 712BM_UserCounter/threads:2 4924 ns 9842 ns 71036 Bar=4 Bat=10 Baz=6 Foo=2 713BM_UserCounter/threads:4 2589 ns 10284 ns 68012 Bar=8 Bat=20 Baz=12 Foo=4 714BM_UserCounter/threads:8 2212 ns 10287 ns 68040 Bar=16 Bat=40 Baz=24 Foo=8 715BM_UserCounter/threads:16 1782 ns 10278 ns 68144 Bar=32 Bat=80 Baz=48 Foo=16 716BM_UserCounter/threads:32 1291 ns 10296 ns 68256 Bar=64 Bat=160 Baz=96 Foo=32 717BM_UserCounter/threads:4 2615 ns 10307 ns 68040 Bar=8 Bat=20 Baz=12 Foo=4 718BM_Factorial 26 ns 26 ns 26608979 40320 719BM_Factorial/real_time 26 ns 26 ns 26587936 40320 720BM_CalculatePiRange/1 16 ns 16 ns 45704255 0 721BM_CalculatePiRange/8 73 ns 73 ns 9520927 3.28374 722BM_CalculatePiRange/64 609 ns 609 ns 1140647 3.15746 723BM_CalculatePiRange/512 4900 ns 4901 ns 142696 3.14355 724``` 725 726If this doesn't suit you, you can print each counter as a table column by 727passing the flag `--benchmark_counters_tabular=true` to the benchmark 728application. This is best for cases in which there are a lot of counters, or 729a lot of lines per individual benchmark. Note that this will trigger a 730reprinting of the table header any time the counter set changes between 731individual benchmarks. Here's an example of corresponding output when 732`--benchmark_counters_tabular=true` is passed: 733 734``` 735--------------------------------------------------------------------------------------- 736Benchmark Time CPU Iterations Bar Bat Baz Foo 737--------------------------------------------------------------------------------------- 738BM_UserCounter/threads:8 2198 ns 9953 ns 70688 16 40 24 8 739BM_UserCounter/threads:1 9504 ns 9504 ns 73787 2 5 3 1 740BM_UserCounter/threads:2 4775 ns 9550 ns 72606 4 10 6 2 741BM_UserCounter/threads:4 2508 ns 9951 ns 70332 8 20 12 4 742BM_UserCounter/threads:8 2055 ns 9933 ns 70344 16 40 24 8 743BM_UserCounter/threads:16 1610 ns 9946 ns 70720 32 80 48 16 744BM_UserCounter/threads:32 1192 ns 9948 ns 70496 64 160 96 32 745BM_UserCounter/threads:4 2506 ns 9949 ns 70332 8 20 12 4 746-------------------------------------------------------------- 747Benchmark Time CPU Iterations 748-------------------------------------------------------------- 749BM_Factorial 26 ns 26 ns 26392245 40320 750BM_Factorial/real_time 26 ns 26 ns 26494107 40320 751BM_CalculatePiRange/1 15 ns 15 ns 45571597 0 752BM_CalculatePiRange/8 74 ns 74 ns 9450212 3.28374 753BM_CalculatePiRange/64 595 ns 595 ns 1173901 3.15746 754BM_CalculatePiRange/512 4752 ns 4752 ns 147380 3.14355 755BM_CalculatePiRange/4k 37970 ns 37972 ns 18453 3.14184 756BM_CalculatePiRange/32k 303733 ns 303744 ns 2305 3.14162 757BM_CalculatePiRange/256k 2434095 ns 2434186 ns 288 3.1416 758BM_CalculatePiRange/1024k 9721140 ns 9721413 ns 71 3.14159 759BM_CalculatePi/threads:8 2255 ns 9943 ns 70936 760``` 761Note above the additional header printed when the benchmark changes from 762``BM_UserCounter`` to ``BM_Factorial``. This is because ``BM_Factorial`` does 763not have the same counter set as ``BM_UserCounter``. 764 765<a name="multithreaded-benchmarks"/> 766 767### Multithreaded Benchmarks 768 769In a multithreaded test (benchmark invoked by multiple threads simultaneously), 770it is guaranteed that none of the threads will start until all have reached 771the start of the benchmark loop, and all will have finished before any thread 772exits the benchmark loop. (This behavior is also provided by the `KeepRunning()` 773API) As such, any global setup or teardown can be wrapped in a check against the thread 774index: 775 776```c++ 777static void BM_MultiThreaded(benchmark::State& state) { 778 if (state.thread_index == 0) { 779 // Setup code here. 780 } 781 for (auto _ : state) { 782 // Run the test as normal. 783 } 784 if (state.thread_index == 0) { 785 // Teardown code here. 786 } 787} 788BENCHMARK(BM_MultiThreaded)->Threads(2); 789``` 790 791If the benchmarked code itself uses threads and you want to compare it to 792single-threaded code, you may want to use real-time ("wallclock") measurements 793for latency comparisons: 794 795```c++ 796BENCHMARK(BM_test)->Range(8, 8<<10)->UseRealTime(); 797``` 798 799Without `UseRealTime`, CPU time is used by default. 800 801<a name="cpu-timers" /> 802 803### CPU Timers 804 805By default, the CPU timer only measures the time spent by the main thread. 806If the benchmark itself uses threads internally, this measurement may not 807be what you are looking for. Instead, there is a way to measure the total 808CPU usage of the process, by all the threads. 809 810```c++ 811void callee(int i); 812 813static void MyMain(int size) { 814#pragma omp parallel for 815 for(int i = 0; i < size; i++) 816 callee(i); 817} 818 819static void BM_OpenMP(benchmark::State& state) { 820 for (auto _ : state) 821 MyMain(state.range(0); 822} 823 824// Measure the time spent by the main thread, use it to decide for how long to 825// run the benchmark loop. Depending on the internal implementation detail may 826// measure to anywhere from near-zero (the overhead spent before/after work 827// handoff to worker thread[s]) to the whole single-thread time. 828BENCHMARK(BM_OpenMP)->Range(8, 8<<10); 829 830// Measure the user-visible time, the wall clock (literally, the time that 831// has passed on the clock on the wall), use it to decide for how long to 832// run the benchmark loop. This will always be meaningful, an will match the 833// time spent by the main thread in single-threaded case, in general decreasing 834// with the number of internal threads doing the work. 835BENCHMARK(BM_OpenMP)->Range(8, 8<<10)->UseRealTime(); 836 837// Measure the total CPU consumption, use it to decide for how long to 838// run the benchmark loop. This will always measure to no less than the 839// time spent by the main thread in single-threaded case. 840BENCHMARK(BM_OpenMP)->Range(8, 8<<10)->MeasureProcessCPUTime(); 841 842// A mixture of the last two. Measure the total CPU consumption, but use the 843// wall clock to decide for how long to run the benchmark loop. 844BENCHMARK(BM_OpenMP)->Range(8, 8<<10)->MeasureProcessCPUTime()->UseRealTime(); 845``` 846 847#### Controlling Timers 848 849Normally, the entire duration of the work loop (`for (auto _ : state) {}`) 850is measured. But sometimes, it is necessary to do some work inside of 851that loop, every iteration, but without counting that time to the benchmark time. 852That is possible, althought it is not recommended, since it has high overhead. 853 854```c++ 855static void BM_SetInsert_With_Timer_Control(benchmark::State& state) { 856 std::set<int> data; 857 for (auto _ : state) { 858 state.PauseTiming(); // Stop timers. They will not count until they are resumed. 859 data = ConstructRandomSet(state.range(0)); // Do something that should not be measured 860 state.ResumeTiming(); // And resume timers. They are now counting again. 861 // The rest will be measured. 862 for (int j = 0; j < state.range(1); ++j) 863 data.insert(RandomNumber()); 864 } 865} 866BENCHMARK(BM_SetInsert_With_Timer_Control)->Ranges({{1<<10, 8<<10}, {128, 512}}); 867``` 868 869<a name="manual-timing" /> 870 871### Manual Timing 872 873For benchmarking something for which neither CPU time nor real-time are 874correct or accurate enough, completely manual timing is supported using 875the `UseManualTime` function. 876 877When `UseManualTime` is used, the benchmarked code must call 878`SetIterationTime` once per iteration of the benchmark loop to 879report the manually measured time. 880 881An example use case for this is benchmarking GPU execution (e.g. OpenCL 882or CUDA kernels, OpenGL or Vulkan or Direct3D draw calls), which cannot 883be accurately measured using CPU time or real-time. Instead, they can be 884measured accurately using a dedicated API, and these measurement results 885can be reported back with `SetIterationTime`. 886 887```c++ 888static void BM_ManualTiming(benchmark::State& state) { 889 int microseconds = state.range(0); 890 std::chrono::duration<double, std::micro> sleep_duration { 891 static_cast<double>(microseconds) 892 }; 893 894 for (auto _ : state) { 895 auto start = std::chrono::high_resolution_clock::now(); 896 // Simulate some useful workload with a sleep 897 std::this_thread::sleep_for(sleep_duration); 898 auto end = std::chrono::high_resolution_clock::now(); 899 900 auto elapsed_seconds = 901 std::chrono::duration_cast<std::chrono::duration<double>>( 902 end - start); 903 904 state.SetIterationTime(elapsed_seconds.count()); 905 } 906} 907BENCHMARK(BM_ManualTiming)->Range(1, 1<<17)->UseManualTime(); 908``` 909 910<a name="setting-the-time-unit" /> 911 912### Setting the Time Unit 913 914If a benchmark runs a few milliseconds it may be hard to visually compare the 915measured times, since the output data is given in nanoseconds per default. In 916order to manually set the time unit, you can specify it manually: 917 918```c++ 919BENCHMARK(BM_test)->Unit(benchmark::kMillisecond); 920``` 921 922<a name="preventing-optimization" /> 923 924### Preventing Optimization 925 926To prevent a value or expression from being optimized away by the compiler 927the `benchmark::DoNotOptimize(...)` and `benchmark::ClobberMemory()` 928functions can be used. 929 930```c++ 931static void BM_test(benchmark::State& state) { 932 for (auto _ : state) { 933 int x = 0; 934 for (int i=0; i < 64; ++i) { 935 benchmark::DoNotOptimize(x += i); 936 } 937 } 938} 939``` 940 941`DoNotOptimize(<expr>)` forces the *result* of `<expr>` to be stored in either 942memory or a register. For GNU based compilers it acts as read/write barrier 943for global memory. More specifically it forces the compiler to flush pending 944writes to memory and reload any other values as necessary. 945 946Note that `DoNotOptimize(<expr>)` does not prevent optimizations on `<expr>` 947in any way. `<expr>` may even be removed entirely when the result is already 948known. For example: 949 950```c++ 951 /* Example 1: `<expr>` is removed entirely. */ 952 int foo(int x) { return x + 42; } 953 while (...) DoNotOptimize(foo(0)); // Optimized to DoNotOptimize(42); 954 955 /* Example 2: Result of '<expr>' is only reused */ 956 int bar(int) __attribute__((const)); 957 while (...) DoNotOptimize(bar(0)); // Optimized to: 958 // int __result__ = bar(0); 959 // while (...) DoNotOptimize(__result__); 960``` 961 962The second tool for preventing optimizations is `ClobberMemory()`. In essence 963`ClobberMemory()` forces the compiler to perform all pending writes to global 964memory. Memory managed by block scope objects must be "escaped" using 965`DoNotOptimize(...)` before it can be clobbered. In the below example 966`ClobberMemory()` prevents the call to `v.push_back(42)` from being optimized 967away. 968 969```c++ 970static void BM_vector_push_back(benchmark::State& state) { 971 for (auto _ : state) { 972 std::vector<int> v; 973 v.reserve(1); 974 benchmark::DoNotOptimize(v.data()); // Allow v.data() to be clobbered. 975 v.push_back(42); 976 benchmark::ClobberMemory(); // Force 42 to be written to memory. 977 } 978} 979``` 980 981Note that `ClobberMemory()` is only available for GNU or MSVC based compilers. 982 983<a name="reporting-statistics" /> 984 985### Statistics: Reporting the Mean, Median and Standard Deviation of Repeated Benchmarks 986 987By default each benchmark is run once and that single result is reported. 988However benchmarks are often noisy and a single result may not be representative 989of the overall behavior. For this reason it's possible to repeatedly rerun the 990benchmark. 991 992The number of runs of each benchmark is specified globally by the 993`--benchmark_repetitions` flag or on a per benchmark basis by calling 994`Repetitions` on the registered benchmark object. When a benchmark is run more 995than once the mean, median and standard deviation of the runs will be reported. 996 997Additionally the `--benchmark_report_aggregates_only={true|false}`, 998`--benchmark_display_aggregates_only={true|false}` flags or 999`ReportAggregatesOnly(bool)`, `DisplayAggregatesOnly(bool)` functions can be 1000used to change how repeated tests are reported. By default the result of each 1001repeated run is reported. When `report aggregates only` option is `true`, 1002only the aggregates (i.e. mean, median and standard deviation, maybe complexity 1003measurements if they were requested) of the runs is reported, to both the 1004reporters - standard output (console), and the file. 1005However when only the `display aggregates only` option is `true`, 1006only the aggregates are displayed in the standard output, while the file 1007output still contains everything. 1008Calling `ReportAggregatesOnly(bool)` / `DisplayAggregatesOnly(bool)` on a 1009registered benchmark object overrides the value of the appropriate flag for that 1010benchmark. 1011 1012<a name="custom-statistics" /> 1013 1014### Custom Statistics 1015 1016While having mean, median and standard deviation is nice, this may not be 1017enough for everyone. For example you may want to know what the largest 1018observation is, e.g. because you have some real-time constraints. This is easy. 1019The following code will specify a custom statistic to be calculated, defined 1020by a lambda function. 1021 1022```c++ 1023void BM_spin_empty(benchmark::State& state) { 1024 for (auto _ : state) { 1025 for (int x = 0; x < state.range(0); ++x) { 1026 benchmark::DoNotOptimize(x); 1027 } 1028 } 1029} 1030 1031BENCHMARK(BM_spin_empty) 1032 ->ComputeStatistics("max", [](const std::vector<double>& v) -> double { 1033 return *(std::max_element(std::begin(v), std::end(v))); 1034 }) 1035 ->Arg(512); 1036``` 1037 1038<a name="using-register-benchmark" /> 1039 1040### Using RegisterBenchmark(name, fn, args...) 1041 1042The `RegisterBenchmark(name, func, args...)` function provides an alternative 1043way to create and register benchmarks. 1044`RegisterBenchmark(name, func, args...)` creates, registers, and returns a 1045pointer to a new benchmark with the specified `name` that invokes 1046`func(st, args...)` where `st` is a `benchmark::State` object. 1047 1048Unlike the `BENCHMARK` registration macros, which can only be used at the global 1049scope, the `RegisterBenchmark` can be called anywhere. This allows for 1050benchmark tests to be registered programmatically. 1051 1052Additionally `RegisterBenchmark` allows any callable object to be registered 1053as a benchmark. Including capturing lambdas and function objects. 1054 1055For Example: 1056```c++ 1057auto BM_test = [](benchmark::State& st, auto Inputs) { /* ... */ }; 1058 1059int main(int argc, char** argv) { 1060 for (auto& test_input : { /* ... */ }) 1061 benchmark::RegisterBenchmark(test_input.name(), BM_test, test_input); 1062 benchmark::Initialize(&argc, argv); 1063 benchmark::RunSpecifiedBenchmarks(); 1064} 1065``` 1066 1067<a name="exiting-with-an-error" /> 1068 1069### Exiting with an Error 1070 1071When errors caused by external influences, such as file I/O and network 1072communication, occur within a benchmark the 1073`State::SkipWithError(const char* msg)` function can be used to skip that run 1074of benchmark and report the error. Note that only future iterations of the 1075`KeepRunning()` are skipped. For the ranged-for version of the benchmark loop 1076Users must explicitly exit the loop, otherwise all iterations will be performed. 1077Users may explicitly return to exit the benchmark immediately. 1078 1079The `SkipWithError(...)` function may be used at any point within the benchmark, 1080including before and after the benchmark loop. 1081 1082For example: 1083 1084```c++ 1085static void BM_test(benchmark::State& state) { 1086 auto resource = GetResource(); 1087 if (!resource.good()) { 1088 state.SkipWithError("Resource is not good!"); 1089 // KeepRunning() loop will not be entered. 1090 } 1091 for (state.KeepRunning()) { 1092 auto data = resource.read_data(); 1093 if (!resource.good()) { 1094 state.SkipWithError("Failed to read data!"); 1095 break; // Needed to skip the rest of the iteration. 1096 } 1097 do_stuff(data); 1098 } 1099} 1100 1101static void BM_test_ranged_fo(benchmark::State & state) { 1102 state.SkipWithError("test will not be entered"); 1103 for (auto _ : state) { 1104 state.SkipWithError("Failed!"); 1105 break; // REQUIRED to prevent all further iterations. 1106 } 1107} 1108``` 1109<a name="a-faster-keep-running-loop" /> 1110 1111### A Faster KeepRunning Loop 1112 1113In C++11 mode, a ranged-based for loop should be used in preference to 1114the `KeepRunning` loop for running the benchmarks. For example: 1115 1116```c++ 1117static void BM_Fast(benchmark::State &state) { 1118 for (auto _ : state) { 1119 FastOperation(); 1120 } 1121} 1122BENCHMARK(BM_Fast); 1123``` 1124 1125The reason the ranged-for loop is faster than using `KeepRunning`, is 1126because `KeepRunning` requires a memory load and store of the iteration count 1127ever iteration, whereas the ranged-for variant is able to keep the iteration count 1128in a register. 1129 1130For example, an empty inner loop of using the ranged-based for method looks like: 1131 1132```asm 1133# Loop Init 1134 mov rbx, qword ptr [r14 + 104] 1135 call benchmark::State::StartKeepRunning() 1136 test rbx, rbx 1137 je .LoopEnd 1138.LoopHeader: # =>This Inner Loop Header: Depth=1 1139 add rbx, -1 1140 jne .LoopHeader 1141.LoopEnd: 1142``` 1143 1144Compared to an empty `KeepRunning` loop, which looks like: 1145 1146```asm 1147.LoopHeader: # in Loop: Header=BB0_3 Depth=1 1148 cmp byte ptr [rbx], 1 1149 jne .LoopInit 1150.LoopBody: # =>This Inner Loop Header: Depth=1 1151 mov rax, qword ptr [rbx + 8] 1152 lea rcx, [rax + 1] 1153 mov qword ptr [rbx + 8], rcx 1154 cmp rax, qword ptr [rbx + 104] 1155 jb .LoopHeader 1156 jmp .LoopEnd 1157.LoopInit: 1158 mov rdi, rbx 1159 call benchmark::State::StartKeepRunning() 1160 jmp .LoopBody 1161.LoopEnd: 1162``` 1163 1164Unless C++03 compatibility is required, the ranged-for variant of writing 1165the benchmark loop should be preferred. 1166 1167<a name="disabling-cpu-frequency-scaling" /> 1168 1169### Disabling CPU Frequency Scaling 1170If you see this error: 1171``` 1172***WARNING*** CPU scaling is enabled, the benchmark real time measurements may be noisy and will incur extra overhead. 1173``` 1174you might want to disable the CPU frequency scaling while running the benchmark: 1175```bash 1176sudo cpupower frequency-set --governor performance 1177./mybench 1178sudo cpupower frequency-set --governor powersave 1179``` 1180