1 2 3 ************************************************************************ 4 *************** Dalton - An Electronic Structure Program *************** 5 ************************************************************************ 6 7 This is output from DALTON (Release Dalton2013 patch 0) 8 ---------------------------------------------------------------------------- 9 NOTE: 10 11 Dalton is an experimental code for the evaluation of molecular 12 properties using (MC)SCF, DFT, CI, and CC wave functions. 13 The authors accept no responsibility for the performance of 14 the code or for the correctness of the results. 15 16 The code (in whole or part) is provided under a licence and 17 is not to be reproduced for further distribution without 18 the written permission of the authors or their representatives. 19 20 See the home page "http://daltonprogram.org" for further information. 21 22 If results obtained with this code are published, 23 the appropriate citations would be both of: 24 25 K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast, 26 L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani, 27 P. Dahle, E. K. Dalskov, U. Ekstroem, T. Enevoldsen, 28 J. J. Eriksen, P. Ettenhuber, B. Fernandez, L. Ferrighi, 29 H. Fliegl, L. Frediani, K. Hald, A. Halkier, C. Haettig, 30 H. Heiberg, T. Helgaker, A. C. Hennum, H. Hettema, 31 E. Hjertenaes, S. Hoest, I.-M. Hoeyvik, M. F. Iozzi, 32 B. Jansik, H. J. Aa. Jensen, D. Jonsson, P. Joergensen, 33 J. Kauczor, S. Kirpekar, T. Kjaergaard, W. Klopper, 34 S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Krapp, 35 K. Kristensen, A. Ligabue, O. B. Lutnaes, J. I. Melo, 36 K. V. Mikkelsen, R. H. Myhre, C. Neiss, C. B. Nielsen, 37 P. Norman, J. Olsen, J. M. H. Olsen, A. Osted, 38 M. J. Packer, F. Pawlowski, T. B. Pedersen, P. F. Provasi, 39 S. Reine, Z. Rinkevicius, T. A. Ruden, K. Ruud, V. Rybkin, 40 P. Salek, C. C. M. Samson, A. Sanchez de Meras, T. Saue, 41 S. P. A. Sauer, B. Schimmelpfennig, K. Sneskov, 42 A. H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor, 43 A. M. Teale, E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, 44 L. Thoegersen, O. Vahtras, M. A. Watson, D. J. D. Wilson, 45 M. Ziolkowski and H. Agren. 46 The Dalton quantum chemistry program system. 47 WIREs Comput. Mol. Sci. 2013. doi: 10.1002/wcms.1172 48 49 and 50 51 Dalton, a Molecular Electronic Structure Program, 52 Release DALTON2013.0 (2013), see http://daltonprogram.org 53 ---------------------------------------------------------------------------- 54 55 Authors in alphabetical order (major contribution(s) in parenthesis): 56 57 Kestutis Aidas, Vilnius University, Lithuania (QM/MM) 58 Celestino Angeli, University of Ferrara, Italy (NEVPT2) 59 Keld L. Bak, UNI-C, Denmark (AOSOPPA, non-adiabatic coupling, magnetic properties) 60 Vebjoern Bakken, University of Oslo, Norway (DALTON; geometry optimizer, symmetry detection) 61 Radovan Bast, KTH Stockholm Sweden (DALTON installation and execution frameworks) 62 Linus Boman, NTNU, Norway (Cholesky decomposition and subsystems) 63 Ove Christiansen, Aarhus University, Denmark (CC module) 64 Renzo Cimiraglia, University of Ferrara, Italy (NEVPT2) 65 Sonia Coriani, University of Trieste, Italy (CC module, MCD in RESPONS) 66 Paal Dahle, University of Oslo, Norway (Parallelization) 67 Erik K. Dalskov, UNI-C, Denmark (SOPPA) 68 Thomas Enevoldsen, Univ. of Southern Denmark, Denmark (SOPPA) 69 Janus J. Eriksen, Aarhus University, Denmark (PE-MP2/SOPPA, TDA) 70 Berta Fernandez, U. of Santiago de Compostela, Spain (doublet spin, ESR in RESPONS) 71 Lara Ferrighi, Aarhus University, Denmark (PCM Cubic response) 72 Heike Fliegl, University of Oslo, Norway (CCSD(R12)) 73 Luca Frediani, UiT The Arctic U. of Norway, Norway (PCM) 74 Bin Gao, UiT The Arctic U. of Norway, Norway (Gen1Int library) 75 Christof Haettig, Ruhr-University Bochum, Germany (CC module) 76 Kasper Hald, Aarhus University, Denmark (CC module) 77 Asger Halkier, Aarhus University, Denmark (CC module) 78 Hanne Heiberg, University of Oslo, Norway (geometry analysis, selected one-electron integrals) 79 Trygve Helgaker, University of Oslo, Norway (DALTON; ABACUS, ERI, DFT modules, London, and much more) 80 Alf Christian Hennum, University of Oslo, Norway (Parity violation) 81 Hinne Hettema, University of Auckland, New Zealand (quadratic response in RESPONS; SIRIUS supersymmetry) 82 Eirik Hjertenaes, NTNU, Norway (Cholesky decomposition) 83 Maria Francesca Iozzi, University of Oslo, Norway (RPA) 84 Brano Jansik Technical Univ. of Ostrava Czech Rep. (DFT cubic response) 85 Hans Joergen Aa. Jensen, Univ. of Southern Denmark, Denmark (DALTON; SIRIUS, RESPONS, ABACUS modules, London, and much more) 86 Dan Jonsson, UiT The Arctic U. of Norway, Norway (cubic response in RESPONS module) 87 Poul Joergensen, Aarhus University, Denmark (RESPONS, ABACUS, and CC modules) 88 Joanna Kauczor, Linkoeping University, Sweden (Complex polarization propagator (CPP) module) 89 Sheela Kirpekar, Univ. of Southern Denmark, Denmark (Mass-velocity & Darwin integrals) 90 Wim Klopper, KIT Karlsruhe, Germany (R12 code in CC, SIRIUS, and ABACUS modules) 91 Stefan Knecht, ETH Zurich, Switzerland (Parallel CI and MCSCF) 92 Rika Kobayashi, Australian National Univ., Australia (DIIS in CC, London in MCSCF) 93 Henrik Koch, NTNU, Norway (CC module, Cholesky decomposition) 94 Jacob Kongsted, Univ. of Southern Denmark, Denmark (Polarizable embedding, QM/MM) 95 Andrea Ligabue, University of Modena, Italy (CTOCD, AOSOPPA) 96 Ola B. Lutnaes, University of Oslo, Norway (DFT Hessian) 97 Juan I. Melo, University of Buenos Aires, Argentina (LRESC, Relativistic Effects on NMR Shieldings) 98 Kurt V. Mikkelsen, University of Copenhagen, Denmark (MC-SCRF and QM/MM) 99 Rolf H. Myhre, NTNU, Norway (Cholesky, subsystems and ECC2) 100 Christian Neiss, Univ. Erlangen-Nuernberg, Germany (CCSD(R12)) 101 Christian B. Nielsen, University of Copenhagen, Denmark (QM/MM) 102 Patrick Norman, Linkoeping University, Sweden (Cubic response and complex response in RESPONS) 103 Jeppe Olsen, Aarhus University, Denmark (SIRIUS CI/density modules) 104 Jogvan Magnus H. Olsen, Univ. of Southern Denmark, Denmark (Polarizable embedding, PE library, QM/MM) 105 Anders Osted, Copenhagen University, Denmark (QM/MM) 106 Martin J. Packer, University of Sheffield, UK (SOPPA) 107 Filip Pawlowski, Kazimierz Wielki University Poland (CC3) 108 Thomas B. Pedersen, University of Oslo, Norway (Cholesky decomposition) 109 Patricio F. Provasi, University of Northeastern, Argentina (Analysis of coupling constants in localized orbitals) 110 Zilvinas Rinkevicius, KTH Stockholm, Sweden (open-shell DFT, ESR) 111 Elias Rudberg, KTH Stockholm, Sweden (DFT grid and basis info) 112 Torgeir A. Ruden, University of Oslo, Norway (Numerical derivatives in ABACUS) 113 Kenneth Ruud, UiT The Arctic U. of Norway, Norway (DALTON; ABACUS magnetic properties and much more) 114 Pawel Salek, KTH Stockholm, Sweden (DALTON; DFT code) 115 Claire C. M. Samson University of Karlsruhe Germany (Boys localization, r12 integrals in ERI) 116 Alfredo Sanchez de Meras, University of Valencia, Spain (CC module, Cholesky decomposition) 117 Trond Saue, Paul Sabatier University, France (direct Fock matrix construction) 118 Stephan P. A. Sauer, University of Copenhagen, Denmark (SOPPA(CCSD), SOPPA prop., AOSOPPA, vibrational g-factors) 119 Bernd Schimmelpfennig, Forschungszentrum Karlsruhe, Germany (AMFI module) 120 Kristian Sneskov, Aarhus University, Denmark (QM/MM, PE-CC) 121 Arnfinn H. Steindal, UiT The Arctic U. of Norway, Norway (parallel QM/MM) 122 K. O. Sylvester-Hvid, University of Copenhagen, Denmark (MC-SCRF) 123 Peter R. Taylor, VLSCI/Univ. of Melbourne, Australia (Symmetry handling ABACUS, integral transformation) 124 Andrew M. Teale, University of Nottingham, England (DFT-AC, DFT-D) 125 David P. Tew, University of Bristol, England (CCSD(R12)) 126 Olav Vahtras, KTH Stockholm, Sweden (triplet response, spin-orbit, ESR, TDDFT, open-shell DFT) 127 David J. Wilson, La Trobe University, Australia (DFT Hessian and DFT magnetizabilities) 128 Hans Agren, KTH Stockholm, Sweden (SIRIUS module, RESPONS, MC-SCRF solvation model) 129 -------------------------------------------------------------------------------- 130 131 Date and time (Linux) : Sun Sep 8 20:41:05 2013 132 Host name : lpqlx131.ups-tlse.fr 133 134 * Work memory size : 64000000 = 488.28 megabytes. 135 136 * Directories for basis set searches: 137 1) /home/bast/DALTON-2013.0-Source/build/test_ccsdmm_ec3_fop 138 2) /home/bast/DALTON-2013.0-Source/build/basis 139 140 141Compilation information 142----------------------- 143 144 Who compiled | bast 145 Host | lpqlx131.ups-tlse.fr 146 System | Linux-3.8.5-201.fc18.x86_64 147 CMake generator | Unix Makefiles 148 Processor | x86_64 149 64-bit integers | OFF 150 MPI | OFF 151 Fortran compiler | /usr/bin/gfortran 152 Fortran compiler version | GNU Fortran (GCC) 4.7.2 20121109 (Red Hat 4.7.2-8) 153 C compiler | /usr/bin/gcc 154 C compiler version | gcc (GCC) 4.7.2 20121109 (Red Hat 4.7.2-8) 155 C++ compiler | /usr/bin/g++ 156 C++ compiler version | g++ (GCC) 4.7.2 20121109 (Red Hat 4.7.2-8) 157 Static linking | OFF 158 Last Git revision | f34203295a86316e27f9e7b44f9b6769c4a046c0 159 Configuration time | 2013-09-08 20:31:27.952056 160 161 162 Content of the .dal input file 163 ---------------------------------- 164 165**DALTON INPUT 166.RUN WAVE FUNCTION 167*QM3 168.QM3 169.THRDIP 170 1.0D-12 171.MAXDIP 172 80 173!.OLDTG 174**INTEGRALS 175.DIPLEN 176.NUCPOT 177.NELFLD 178.THETA 179.SECMOM 180**WAVE FUNCTIONS 181.CC 182*SCF INP 183.THRESH 1841.0D-11 185*CC INP 186.CCSD 187.THRLEQ 188 1.0D-12 189.THRENR 190 1.0D-12 191.MAX IT 192 90 193.MXLRV 194 180 195*CCSLV 196.CCMM 197.ETOLSL 198 1.0D-11 199.TTOLSL 200 1.0D-11 201.LTOLSL 202 1.0D-11 203.MXSLIT 204 200 205.MXINIT 206 4 5 207*CCFOP 208.DIPMOM 209.QUADRU 210.SECMOM 211.NONREL 212*END OF INPUT 213 214 215 Content of the .mol file 216 ---------------------------- 217 218ATOMBASIS 219QM/MM H2O(QM)+ 5 H2O(MM) 220------------------------ 221 4 0 1 1.00D-12 222 8.0 1 Bas=cc-pVDZ 223O 0.000000 0.000000 0.000000 0 1 224 1.0 2 Bas=cc-pVDZ 225H -0.756799 0.000000 0.586007 0 2 226H 0.756799 0.000000 0.586007 0 3 227 -0.669 5 Bas=MM 228O -6.022295 -6.249876 -2.389355 1 1 229O -0.590747 4.825666 -1.709744 2 1 230O 2.365069 -0.266593 1.169946 3 1 231O -8.979615 -1.935917 -5.707554 4 1 232O -5.696915 -2.203270 0.274131 5 1 233 0.3345 10 Bas=MM 234H -6.934736 -6.264225 -2.100595 1 2 235H -5.562128 -6.801680 -1.756974 1 3 236H -1.493716 5.142033 -1.683118 2 2 237H -0.065506 5.576575 -1.433333 2 3 238H 2.261479 -1.103382 1.622925 3 2 239H 3.132239 -0.390013 0.611059 3 3 240H -8.312439 -2.243695 -5.094117 4 2 241H -8.719849 -2.307644 -6.550450 4 3 242H -4.847884 -2.109424 -0.157695 5 2 243H -6.336813 -2.008951 -0.410639 5 3 244 245 246 ******************************************************************* 247 *********** Output from DALTON general input processing *********** 248 ******************************************************************* 249 250 -------------------------------------------------------------------------------- 251 Overall default print level: 0 252 Print level for DALTON.STAT: 1 253 254 HERMIT 1- and 2-electron integral sections will be executed 255 "Old" integral transformation used (limited to max 255 basis functions) 256 Wave function sections will be executed (SIRIUS module) 257 -------------------------------------------------------------------------------- 258 259 260 Changes of defaults for *QM3 : 261 -------------------------------- 262 263 +------------------+ 264 | WORD: | CHANGE: | 265 +------------------+ 266 | QM3 | T | 267 | THDISC | 1.0D-12 | 268 | PRINT | 0 | 269 +------------------+ 270 Settings for determination of induced dipoles: 271 Iterative Method is used 272 +------------------+ 273 274 275 ************************************************************************* 276 *************** Output from MM potential input processing *************** 277 ************************************************************************* 278 279 280 281 ------------------------------------------------------------------------ 282 | QM-sys type: | Systems: | Model: | Electric properties: | 283 ------------------------------------------------------------------------ 284 | 0 | [ 0; 0] | SPC_EC3 | Charges for classical calc.: | 285 | | | | Q( 1)= -0.6690 | 286 | | | | Q( 2)= 0.3345 | 287 | | | | Q( 3)= 0.3345 | 288 | | | | Isotropic perturb. pol.: | 289 | | | | alp( 1)= 9.7180 | 290 ------------------------------------------------------------------------ 291 292 293 ------------------------------------------------------------------------ 294 | MM-sys type: | Systems: | Model: | Electric properties: | 295 ------------------------------------------------------------------------ 296 | 1 | [ 1; 5] | SPC_EC3 | Charges for classical calc.: | 297 | | | | Isotropic perturb. pol.: | 298 | | | | alp( 1)= 9.7180 | 299 ------------------------------------------------------------------------ 300 301 302 303 304 **************************************************************************** 305 *************** Output of molecule and basis set information *************** 306 **************************************************************************** 307 308 309 The two title cards from your ".mol" input: 310 ------------------------------------------------------------------------ 311 1: QM/MM H2O(QM)+ 5 H2O(MM) 312 2: ------------------------ 313 ------------------------------------------------------------------------ 314 315 Coordinates are entered in Angstrom and converted to atomic units. 316 - Conversion factor : 1 bohr = 0.52917721 A 317 318 Atomic type no. 1 319 -------------------- 320 Nuclear charge: 8.00000 321 Number of symmetry independent centers: 1 322 Number of basis sets to read; 2 323 The basis set is "cc-pVDZ" from the basis set library. 324 Basis set file used for this atomic type with Z = 8 : 325 "/home/bast/DALTON-2013.0-Source/build/basis/cc-pVDZ" 326 327 Atomic type no. 2 328 -------------------- 329 Nuclear charge: 1.00000 330 Number of symmetry independent centers: 2 331 Number of basis sets to read; 2 332 The basis set is "cc-pVDZ" from the basis set library. 333 Basis set file used for this atomic type with Z = 1 : 334 "/home/bast/DALTON-2013.0-Source/build/basis/cc-pVDZ" 335 336 Atomic type no. 3 337 -------------------- 338 Nuclear charge: -0.66900 339 Number of symmetry independent centers: 5 340 Number of basis sets to read; 2 341 This is an MM atom without basis functions. 342 343 Atomic type no. 4 344 -------------------- 345 Nuclear charge: 0.33450 346 Number of symmetry independent centers: 10 347 Number of basis sets to read; 2 348 This is an MM atom without basis functions. 349 350 351 SYMGRP: Point group information 352 ------------------------------- 353 354Point group: C1 355 356 357 Isotopic Masses 358 --------------- 359 360 O 15.994915 361 H 1.007825 362 H 1.007825 363 364 Total mass: 18.010565 amu 365 Natural abundance: 99.730 % 366 367 Center-of-mass coordinates (a.u.): 0.000000 0.000000 0.123934 368 369 370 Atoms and basis sets 371 -------------------- 372 373 Number of atom types : 5 374 Total number of atoms: 24 375 376 label atoms charge prim cont basis 377 ---------------------------------------------------------------------- 378 O 1 8.0000 26 14 [9s4p1d|3s2p1d] 379 H 2 1.0000 7 5 [4s1p|2s1p] 380 O 5 -0.6690 0 0 Point Charge 381 H 10 0.3345 0 0 Point Charge 382 a 6 0.0000 0 0 Point Charge 383 ---------------------------------------------------------------------- 384 total: 24 10.0000 40 24 385 ---------------------------------------------------------------------- 386 Spherical harmonic basis used. 387 388 Threshold for neglecting AO integrals: 1.00D-12 389 390 391 Cartesian Coordinates (a.u.) 392 ---------------------------- 393 394 Total number of coordinates: 72 395 O : 1 x 0.0000000000 2 y 0.0000000000 3 z 0.0000000000 396 H : 4 x -1.4301428417 5 y 0.0000000000 6 z 1.1073927373 397 H : 7 x 1.4301428417 8 y 0.0000000000 9 z 1.1073927373 398 399 Max interatomic separation is 1.5136 Angstrom ( 2.8603 Bohr) 400 between atoms 3 and 2, "H " and "H ". 401 402 Min HX interatomic separation is 0.9572 Angstrom ( 1.8088 Bohr) 403 404 Max QM+MM interatomic separation is 13.9799 Angstrom ( 26.4181 Bohr) 405 between the QM+MM centers 16 and 14, "H " and "H ". 406 407 408 409 410 Principal moments of inertia (u*A**2) and principal axes 411 -------------------------------------------------------- 412 413 IA 0.614717 1.000000 0.000000 0.000000 414 IB 1.154453 0.000000 0.000000 1.000000 415 IC 1.769170 0.000000 1.000000 0.000000 416 417 418 Rotational constants 419 -------------------- 420 421 The molecule is planar. 422 423 A B C 424 425 822132.5951 437764.9384 285658.8058 MHz 426 27.423392 14.602267 9.528552 cm-1 427 428 429@ Nuclear repulsion energy : 9.195434983361 Hartree 430 QM3 induced dipole vector converged in 1 iterations. 431 Final norm2 of QM3 induced dipole moment vector: 0.000000000000000 432 433 QM3 Epol is calculated according to scheme C3 434 435 QM3 induced dipole vector converged in 15 iterations. 436 Final norm2 of QM3 induced dipole moment vector: 0.033716379189391 437 438 439 ************************************************************************** 440 ***************** The MM/MM classical interaction energy ***************** 441 ************************************************************************** 442 443 444 ------------------------------------------------------------------------ 445 | Eelec = Sum_n,s[ (Q_n*Q_s)/|R_n - R_s| ] | -0.00070616 | 446 | Epol = - 1/2*Sum_a[ Pind_a*E^site_a ] | 0.00000097 | 447 | Evdw = Sum_a[ A_ma/|R_ma|^12 - B_ma/|R_ma|^6 ] | -0.00011662 | 448 ------------------------------------------------------------------------ 449 | E(MM/MM) = Eelec + Epol + Evdw | -0.00082181 | 450 ------------------------------------------------------------------------ 451 452 453 454 455 ************************************************************************ 456 *************** The "QM"/MM classical interaction energy *************** 457 ************************************************************************ 458 459 460 ------------------------------------------------------------------------ 461 | Eelec = Sum_n,s[ (Q_n*Q_s)/|R_n - R_s| ] | -0.00717456 | 462 | Epol = - 1/2*Sum_a[ Pind_a*E^(QMclassic)_a ] | -0.00099428 | 463 | Evdw = Sum_a[ A_ma/|R_ma|^12 - B_ma/|R_ma|^6 ] | 0.00511097 | 464 ------------------------------------------------------------------------ 465 | E("QM"/MM) = Eelec + Epol + Evdw | -0.00305786 | 466 ------------------------------------------------------------------------ 467 468 469 470 471 .---------------------------------------. 472 | Starting in Integral Section (HERMIT) | 473 `---------------------------------------' 474 475 476 477 ************************************************************************* 478 ****************** Output from HERMIT input processing ****************** 479 ************************************************************************* 480 481 482 Default print level: 1 483 484 * Nuclear model: Point charge 485 486 Calculation of one- and two-electron Hamiltonian integrals. 487 488 The following one-electron property integrals are calculated as requested: 489 - overlap integrals 490 - dipole length integrals 491 - traceless quadrupole moment integrals 492 - second moment integrals 493 - Electric field at the nuclei 494 - Potential energy at the nuclei 495 496 Center of mass (bohr): 0.000000000000 0.000000000000 0.123933711741 497 Operator center (bohr): 0.000000000000 0.000000000000 0.000000000000 498 Gauge origin (bohr): 0.000000000000 0.000000000000 0.000000000000 499 Dipole origin (bohr): 0.000000000000 0.000000000000 0.000000000000 500 501 502 ************************************************************************ 503 ************************** Output from HERINT ************************** 504 ************************************************************************ 505 506 507 Threshold for neglecting two-electron integrals: 1.00D-12 508 Number of two-electron integrals written: 21643 ( 47.9% ) 509 Megabytes written: 0.254 510 511 >>>> Total CPU time used in HERMIT: 0.04 seconds 512 >>>> Total wall time used in HERMIT: 0.04 seconds 513 514 515 .----------------------------------. 516 | End of Integral Section (HERMIT) | 517 `----------------------------------' 518 519 520 521 .--------------------------------------------. 522 | Starting in Wave Function Section (SIRIUS) | 523 `--------------------------------------------' 524 525 526 *** Output from Huckel module : 527 528 Using EWMO model: F 529 Using EHT model: T 530 Number of Huckel orbitals each symmetry: 7 531 532 Huckel EHT eigenvalues for symmetry : 1 533 -20.705641 -1.506569 -0.731292 -0.670540 -0.616200 534 -0.292149 -0.257509 535 536 ********************************************************************** 537 *SIRIUS* a direct, restricted step, second order MCSCF program * 538 ********************************************************************** 539 540 541 Date and time (Linux) : Sun Sep 8 20:41:05 2013 542 Host name : lpqlx131.ups-tlse.fr 543 544 Title lines from ".mol" input file: 545 QM/MM H2O(QM)+ 5 H2O(MM) 546 ------------------------ 547 548 Print level on unit LUPRI = 2 is 0 549 Print level on unit LUW4 = 2 is 5 550 551@ (Integral direct) CC calculation. 552 553@ This is a combination run starting with 554@ a restricted, closed shell Hartree-Fock calculation 555 556 557 Initial molecular orbitals are obtained according to 558 ".MOSTART EHT " input option 559 560@ QM part is embedded in an environment : 561 562@ Model: QM3 563 564 Wave function specification 565 ============================ 566 567 For the specification of the Coupled Cluster: see later. 568 569@ For the wave function of type : >>> CC <<< 570@ Number of closed shell electrons 10 571@ Number of electrons in active shells 0 572@ Total charge of the molecule 0 573 574@ Spin multiplicity and 2 M_S 1 0 575 Total number of symmetries 1 576@ Reference state symmetry 1 577 578 Orbital specifications 579 ====================== 580 Abelian symmetry species All | 1 581 --- | --- 582@ Occupied SCF orbitals 5 | 5 583 Secondary orbitals 19 | 19 584 Total number of orbitals 24 | 24 585 Number of basis functions 24 | 24 586 587 Optimization information 588 ======================== 589@ Number of configurations 1 590@ Number of orbital rotations 95 591 ------------------------------------------ 592@ Total number of variables 96 593 594 Maximum number of Fock iterations 0 595 Maximum number of DIIS iterations 60 596 Maximum number of QC-SCF iterations 60 597 Threshold for SCF convergence 1.00D-11 598 599 600 Changes of defaults for CC: 601 --------------------------- 602 603 -Dipole moment calculated 604 -Traceless quadrupole moment calculated 605 -Electronic second moment of charge calculated 606 607 608 609 >>>>> DIIS optimization of Hartree-Fock <<<<< 610 611 C1-DIIS algorithm; max error vectors = 10 612 613 Iter Total energy Solvation energy Error norm Delta(E) 614 ----------------------------------------------------------------------------- 615 (Precalculated two-electron integrals are transformed to P-supermatrix elements. 616 Threshold for discarding integrals : 1.00D-12 ) 617@ 1 -75.5505884600 0.00000000000 2.30071D+00 -7.56D+01 618 Virial theorem: -V/T = 1.996129 619@ MULPOP O -0.43; H 0.22; H 0.22; 620 ----------------------------------------------------------------------------- 621@ 2 -75.7687127667 0.00000000000 3.64253D-01 -2.18D-01 622 Virial theorem: -V/T = 1.995926 623@ MULPOP O -0.29; H 0.13; H 0.16; 624 ----------------------------------------------------------------------------- 625@ 3 -75.7763874280 0.00000000000 9.33223D-02 -7.67D-03 626 Virial theorem: -V/T = 1.998471 627@ MULPOP O -0.31; H 0.13; H 0.18; 628 ----------------------------------------------------------------------------- 629@ 4 -75.7770066289 0.00000000000 3.63795D-02 -6.19D-04 630 Virial theorem: -V/T = 1.996657 631@ MULPOP O -0.33; H 0.14; H 0.19; 632 ----------------------------------------------------------------------------- 633@ 5 -75.7770797118 0.00000000000 7.25033D-03 -7.31D-05 634 Virial theorem: -V/T = 1.997354 635@ MULPOP O -0.33; H 0.14; H 0.19; 636 ----------------------------------------------------------------------------- 637@ 6 -75.7770828578 0.00000000000 9.16121D-04 -3.15D-06 638 Virial theorem: -V/T = 1.997244 639@ MULPOP O -0.33; H 0.14; H 0.19; 640 ----------------------------------------------------------------------------- 641@ 7 -75.7770829566 0.00000000000 1.57614D-04 -9.88D-08 642 Virial theorem: -V/T = 1.997252 643@ MULPOP O -0.33; H 0.14; H 0.19; 644 ----------------------------------------------------------------------------- 645@ 8 -75.7770829602 0.00000000000 2.08220D-05 -3.54D-09 646 Virial theorem: -V/T = 1.997253 647@ MULPOP O -0.33; H 0.14; H 0.19; 648 ----------------------------------------------------------------------------- 649@ 9 -75.7770829602 0.00000000000 6.23251D-06 -8.10D-11 650 Virial theorem: -V/T = 1.997253 651@ MULPOP O -0.33; H 0.14; H 0.19; 652 ----------------------------------------------------------------------------- 653@ 10 -75.7770829602 0.00000000000 1.53877D-06 -8.70D-12 654 Virial theorem: -V/T = 1.997253 655@ MULPOP O -0.33; H 0.14; H 0.19; 656 ----------------------------------------------------------------------------- 657@ 11 -75.7770829602 0.00000000000 2.46119D-07 -5.26D-13 658 Virial theorem: -V/T = 1.997253 659@ MULPOP O -0.33; H 0.14; H 0.19; 660 ----------------------------------------------------------------------------- 661@ 12 -75.7770829602 0.00000000000 6.73515D-08 5.68D-14 662 Virial theorem: -V/T = 1.997253 663@ MULPOP O -0.33; H 0.14; H 0.19; 664 ----------------------------------------------------------------------------- 665@ 13 -75.7770829602 0.00000000000 1.09104D-08 -1.42D-14 666 Virial theorem: -V/T = 1.997253 667@ MULPOP O -0.33; H 0.14; H 0.19; 668 ----------------------------------------------------------------------------- 669@ 14 -75.7770829602 0.00000000000 1.64579D-09 0.00D+00 670 Virial theorem: -V/T = 1.997253 671@ MULPOP O -0.33; H 0.14; H 0.19; 672 ----------------------------------------------------------------------------- 673@ 15 -75.7770829602 0.00000000000 4.06247D-10 -2.84D-14 674 Virial theorem: -V/T = 1.997253 675@ MULPOP O -0.33; H 0.14; H 0.19; 676 ----------------------------------------------------------------------------- 677@ 16 -75.7770829602 0.00000000000 9.00469D-11 2.84D-14 678 Virial theorem: -V/T = 1.997253 679@ MULPOP O -0.33; H 0.14; H 0.19; 680 ----------------------------------------------------------------------------- 681@ 17 -75.7770829602 0.00000000000 2.42821D-11 -4.26D-14 682 Virial theorem: -V/T = 1.997253 683@ MULPOP O -0.33; H 0.14; H 0.19; 684 ----------------------------------------------------------------------------- 685@ 18 -75.7770829602 0.00000000000 4.96853D-12 -4.26D-14 686 687@ *** DIIS converged in 18 iterations ! 688@ Converged SCF energy, gradient: -75.777082960242 4.97D-12 689 - total time used in SIRFCK : 0.00 seconds 690 691 692 *** SCF orbital energy analysis *** 693 (incl. solvent contribution) 694 695 Only the five lowest virtual orbital energies printed in each symmetry. 696 697 Number of electrons : 10 698 Orbital occupations : 5 699 700 Sym Hartree-Fock orbital energies 701 702 1 -20.52165198 -1.30882635 -0.67008740 -0.54007399 -0.46633168 703 0.21405110 0.30526910 0.81958076 0.89006498 1.18901106 704 705 E(LUMO) : 0.21405110 au (symmetry 1) 706 - E(HOMO) : -0.46633168 au (symmetry 1) 707 ------------------------------------------ 708 gap : 0.68038278 au 709 710 >>> Writing SIRIFC interface file <<< 711 712 >>>> CPU and wall time for SCF : 0.020 0.021 713 714 715 .-----------------------------------. 716 | >>> Final results from SIRIUS <<< | 717 `-----------------------------------' 718 719 720@ Spin multiplicity: 1 721@ Spatial symmetry: 1 722@ Total charge of molecule: 0 723 724 QM/MM "QM3" calculation converged : 725 726 Electrostatic energy: 0.000000000000 727 Polarization energy: 0.000000000000 728 van der Waals energy: 0.005110972486 729 Total QM/MM energy: 0.000000000000 730 731@ Final HF energy: -75.777082960242 732@ Nuclear repulsion: 9.195434983361 733@ Electronic energy: -84.972517943603 734 735@ Final gradient norm: 0.000000000005 736 737 738 Date and time (Linux) : Sun Sep 8 20:41:05 2013 739 Host name : lpqlx131.ups-tlse.fr 740 741 (Only coefficients >0.0100 are printed.) 742 743 Molecular orbitals for symmetry species 1 744 ------------------------------------------ 745 746 Orbital 1 2 3 4 5 6 7 747 1 O :1s 1.0004 -0.0088 -0.0007 0.0022 0.0006 0.0499 -0.0071 748 2 O :1s 0.0023 0.8689 0.0100 -0.2908 0.0067 -0.1413 0.0592 749 3 O :1s -0.0014 -0.1194 0.0098 -0.1778 -0.0015 -0.8945 0.1927 750 4 O :2px -0.0001 -0.0015 0.7169 0.0115 0.0009 0.1010 0.4040 751 5 O :2py -0.0000 -0.0010 -0.0006 0.0055 0.9167 0.0052 -0.0022 752 6 O :2pz 0.0025 0.1141 0.0001 0.7953 -0.0040 -0.2643 0.0624 753 7 O :2px 0.0000 0.0006 -0.1020 0.0031 -0.0004 0.1214 0.4530 754 8 O :2py 0.0000 -0.0009 -0.0003 0.0008 0.0763 -0.0031 0.0015 755 9 O :2pz -0.0016 -0.0662 0.0006 0.0033 -0.0007 -0.2054 0.0444 756 11 O :3d1- 0.0000 -0.0001 -0.0000 -0.0002 0.0179 0.0001 -0.0000 757 12 O :3d0 0.0000 0.0012 -0.0000 0.0176 0.0001 -0.0073 0.0019 758 13 O :3d1+ 0.0000 -0.0001 0.0264 -0.0003 0.0000 0.0060 0.0193 759 14 O :3d2+ 0.0001 0.0029 -0.0005 0.0045 0.0004 -0.0102 0.0017 760 15 H :1s -0.0004 0.3318 -0.5625 0.3495 0.0001 0.0938 0.0257 761 16 H :1s 0.0006 -0.1541 0.1915 -0.1297 -0.0022 1.1117 1.1863 762 17 H :2px -0.0006 0.0373 -0.0223 0.0314 0.0001 0.0243 0.0150 763 18 H :2py -0.0000 -0.0001 0.0005 -0.0002 0.0313 0.0002 -0.0006 764 19 H :2pz 0.0005 -0.0205 0.0327 0.0079 -0.0001 -0.0213 -0.0123 765 20 H :1s -0.0004 0.3215 0.5421 0.3445 0.0015 0.0902 -0.0730 766 21 H :1s 0.0006 -0.1536 -0.1956 -0.1440 -0.0034 0.4123 -1.5572 767 22 H :2px 0.0006 -0.0384 -0.0269 -0.0333 -0.0000 -0.0159 0.0277 768 23 H :2py -0.0000 -0.0003 -0.0007 -0.0004 0.0293 -0.0000 0.0006 769 24 H :2pz 0.0005 -0.0206 -0.0328 0.0058 -0.0002 -0.0117 0.0177 770 771 772 773 >>>> Total CPU time used in SIRIUS : 0.02 seconds 774 >>>> Total wall time used in SIRIUS : 0.03 seconds 775 776 777 Date and time (Linux) : Sun Sep 8 20:41:05 2013 778 Host name : lpqlx131.ups-tlse.fr 779 780 NOTE: 1 warnings have been issued. 781 Check output, result, and error files for "WARNING". 782 783 784 .---------------------------------------. 785 | End of Wave Function Section (SIRIUS) | 786 `---------------------------------------' 787 788 789 790 .------------------------------------------. 791 | Starting in Coupled Cluster Section (CC) | 792 `------------------------------------------' 793 794 795 796 ******************************************************************************* 797 ******************************************************************************* 798 * * 799 * * 800 * START OF COUPLED CLUSTER CALCULATION * 801 * * 802 * * 803 ******************************************************************************* 804 ******************************************************************************* 805 806 807 808 CCR12 ANSATZ = 0 809 810 CCR12 APPROX = 0 811 812 813 814 ******************************************************************* 815 * * 816 *<<<<<<<<<< >>>>>>>>>>* 817 *<<<<<<<<<< OUTPUT FROM COUPLED CLUSTER ENERGY PROGRAM >>>>>>>>>>* 818 *<<<<<<<<<< >>>>>>>>>>* 819 * * 820 ******************************************************************* 821 822 823 The Direct Coupled Cluster Energy Program 824 ----------------------------------------- 825 826 827 Number of t1 amplitudes : 95 828 Number of t2 amplitudes : 4560 829 Total number of amplitudes in ccsd : 4655 830 831 Iter. 1: Coupled cluster MP2 energy : -75.9806011323794053 832 Iter. 1: Coupled cluster CCSD energy : -75.9855428052762250 833 Iter. 2: Coupled cluster CCSD energy : -75.9893776468532707 834 Iter. 3: Coupled cluster CCSD energy : -75.9898180105477508 835 Iter. 4: Coupled cluster CCSD energy : -75.9898257512391950 836 837 CCSD energy will not be converged further 838 839 right now in CCSLV calc. 840 Accumulated inner iterations at this point are 4 841 842 CCSD energy converged to within 0.10D-11 is -75.989825751239 843 Final 2-norm of the CC vector function: 1.19668860D-03 844 Change in norm^2 of T-amplitudes in this solvent it.: 2.9629233429034976E-002 845 846 847 848 849 +--------------------------------------------+ 850 ! Calculating singlet intermediates for CCLR ! 851 +--------------------------------------------+ 852 853 854 855 E-intermediates calculated 856 Fock-intermediate calculated 857 Gamma-intermediate calculated 858 BF-intermediate calculated 859 C-intermediate calculated 860 D-intermediate calculated 861 862 863 864 865 ******************************************************************* 866 * * 867 *<<<<<<<<<<<<< OUTPUT FROM COUPLED CLUSTER RESPONSE >>>>>>>>>>>>>* 868 * * 869 *<<<<<<<<<< CALCULATION OF FIRST ORDER PROPERTIES >>>>>>>>>>* 870 * * 871 ******************************************************************* 872 873 874 875 +--------------------------------+ 876 ! Coupled Cluster model is: CCSD ! 877 +--------------------------------+ 878 879 RPA: call cceq_str 880 RPA: exit cceq_str 881 CCSLV: We stop for now though not fully converged yet 882 Accumulated inner iterations are: 9 883 Change in norm^2 of L-amplitudes in this ccmm it.: 0.19035670727021922 884 Total <Lambda|H|CC> energy: -75.989850294268138 885 The singles contribution is: -0.0000020047 886 The doubles contribution is: -0.0000225383 887 CCFOP: call CC_D1AO to recalc the 1e Density 888 889 890 +--------------------------+ 891 ! CCSD Natural Occupations ! 892 +--------------------------+ 893 894 895 Symmetry block number: 1 896 --------------------- 897 898 1.99991651 1.98464730 1.97308353 1.96754721 1.96475468 899 0.02630792 0.02386011 0.01698363 0.01157810 0.00589506 900 0.00562007 0.00509342 0.00451035 0.00439959 0.00115102 901 0.00111324 0.00072427 0.00065919 0.00055873 0.00053421 902 0.00049323 0.00047407 0.00005685 0.00003771 903 904 Sum in this symmetry class: 10.000000 905 906 907 Total Sum of natural occupation numbers: 10.000000 908 909 Dynamical correlation move: 0.110051 electrons 910 911 912 ***************************************************************** 913 **** Output from Coupled Cluster/Molecular Mechanics program **** 914 ***************************************************************** 915 916 917 +--------------------------------+ 918 ! Coupled Cluster model is: CCSD ! 919 +--------------------------------+ 920 921 QM3 induced Dipole vector converged in 1 iterations. 922 Final norm2 of QM3 induced dipole moment vector: 0.000000000000000 923 924 925 E(QM/MM) contribution in iteration 0: -0.0070803185 926 CC energy in the current CCMM iteration: -76.2465288054 927 CC energy in the previous CCMM iteration: 0.0000000000 928 Change in Total energy in this CCMM it.: -0.762465E+02 929 930 931 ***************************************************************** 932 ******* End of Coupled Cluster/Molecular Mechanics program ****** 933 ***************************************************************** 934 935 936 937 +--------------------------------------------------------+ 938 ! Unrelaxed CCSD First-order one-electron properties: ! 939 +--------------------------------------------------------+ 940 941 942 943 +-------------------------+ 944 ! Electric Dipole Moment ! 945 +-------------------------+ 946 947 948 949 Total Molecular Dipole Moment 950 ----------------------------- 951 952 au Debye C m (/(10**-30) 953 954 x 0.07701788 0.19575991 0.65298478 955 y 0.01145500 0.02911572 0.09711957 956 z 0.79936823 2.03179126 6.77732612 957 958 959 960 961 +-----------------------------+ 962 ! Electric Quadrupole Moment ! 963 +-----------------------------+ 964 965 966 967 Total Molecular quadrupole moment 968 --------------------------------- 969 970 X Y Z 971 972 Column 1 Column 2 Column 3 973 1 1.54246105 0.00246093 0.12053374 974 2 0.00246093 -1.66217700 0.00669717 975 3 0.12053374 0.00669717 0.11971594 976 ==== End of matrix output ==== 977 978 979 +-------------------------------------+ 980 ! Electronic second moment of charge ! 981 +-------------------------------------+ 982 983 X Y Z 984 985 Column 1 Column 2 Column 3 986 1 7.21233652 -0.00164062 -0.08035582 987 2 -0.00164062 5.25814479 -0.00446478 988 3 -0.08035582 -0.00446478 6.52285352 989 ==== End of matrix output ==== 990 991 Alfa**2 Invariant: 40.082974 992 Beta**2 Invariant: 2.966309 993 994 Isotropic Property: 6.331112 a.u. 995 Property anisotropy invariant: 1.722298 a.u. 996 997 998 ******************************************************************* 999 * * 1000 *<<<<<<<<<< >>>>>>>>>>* 1001 *<<<<<<<<<< OUTPUT FROM COUPLED CLUSTER ENERGY PROGRAM >>>>>>>>>>* 1002 *<<<<<<<<<< >>>>>>>>>>* 1003 * * 1004 ******************************************************************* 1005 1006 1007 The Direct Coupled Cluster Energy Program 1008 ----------------------------------------- 1009 1010 1011 Number of t1 amplitudes : 95 1012 Number of t2 amplitudes : 4560 1013 Total number of amplitudes in ccsd : 4655 1014 1015 Iter. 1: Coupled cluster RSTAR energy : -75.9898257512391950 1016 Iter. 1: Coupled cluster CCSD energy : -75.9898319334650978 1017 Iter. 2: Coupled cluster CCSD energy : -75.9898324213187948 1018 Iter. 3: Coupled cluster CCSD energy : -75.9898333205351690 1019 Iter. 4: Coupled cluster CCSD energy : -75.9898338927212365 1020 1021 CCSD energy will not be converged further 1022 1023 right now in CCSLV calc. 1024 Accumulated inner iterations at this point are 13 1025 1026 CCSD energy converged to within 0.10D-11 is -75.989833892721 1027 Final 2-norm of the CC vector function: 1.08931746D-05 1028 Change in norm^2 of T-amplitudes in this solvent it.: 9.9608927015479298E-006 1029 1030 1031 1032 1033 +--------------------------------------------+ 1034 ! Calculating singlet intermediates for CCLR ! 1035 +--------------------------------------------+ 1036 1037 1038 1039 E-intermediates calculated 1040 Fock-intermediate calculated 1041 Gamma-intermediate calculated 1042 BF-intermediate calculated 1043 C-intermediate calculated 1044 D-intermediate calculated 1045 1046 1047 1048 1049 ******************************************************************* 1050 * * 1051 *<<<<<<<<<<<<< OUTPUT FROM COUPLED CLUSTER RESPONSE >>>>>>>>>>>>>* 1052 * * 1053 *<<<<<<<<<< CALCULATION OF FIRST ORDER PROPERTIES >>>>>>>>>>* 1054 * * 1055 ******************************************************************* 1056 1057 1058 1059 +--------------------------------+ 1060 ! Coupled Cluster model is: CCSD ! 1061 +--------------------------------+ 1062 1063 RPA: call cceq_str 1064 Vector nr. 1 of symmetry 1 found on file - RESTART SUCCESS 1065 Start vector is a CCSD L0 vector 1066 RPA: exit cceq_str 1067 CCSLV: We stop for now though not fully converged yet 1068 Accumulated inner iterations are: 18 1069 Change in norm^2 of L-amplitudes in this ccmm it.: 3.5175599842895977E-006 1070 Total <Lambda|H|CC> energy: -75.989834391793948 1071 The singles contribution is: -0.0000000318 1072 The doubles contribution is: -0.0000004672 1073 CCFOP: call CC_D1AO to recalc the 1e Density 1074 1075 1076 +--------------------------+ 1077 ! CCSD Natural Occupations ! 1078 +--------------------------+ 1079 1080 1081 Symmetry block number: 1 1082 --------------------- 1083 1084 1.99991651 1.98464980 1.97308540 1.96753449 1.96474961 1085 0.02631847 0.02386861 0.01698393 0.01157195 0.00589428 1086 0.00562070 0.00509354 0.00451041 0.00439960 0.00115102 1087 0.00111324 0.00072425 0.00065917 0.00055882 0.00053428 1088 0.00049339 0.00047415 0.00005674 0.00003766 1089 1090 Sum in this symmetry class: 10.000000 1091 1092 1093 Total Sum of natural occupation numbers: 10.000000 1094 1095 Dynamical correlation move: 0.110064 electrons 1096 1097 1098 ***************************************************************** 1099 **** Output from Coupled Cluster/Molecular Mechanics program **** 1100 ***************************************************************** 1101 1102 1103 +--------------------------------+ 1104 ! Coupled Cluster model is: CCSD ! 1105 +--------------------------------+ 1106 1107 QM3 induced Dipole vector converged in 1 iterations. 1108 Final norm2 of QM3 induced dipole moment vector: 0.000000000000000 1109 1110 1111 E(QM/MM) contribution in iteration 1: -0.0070784206 1112 CC energy in the current CCMM iteration: -76.2465123482 1113 CC energy in the previous CCMM iteration: -76.2465288054 1114 Change in Total energy in this CCMM it.: 0.164572E-04 1115 1116 1117 ***************************************************************** 1118 ******* End of Coupled Cluster/Molecular Mechanics program ****** 1119 ***************************************************************** 1120 1121 1122 1123 +--------------------------------------------------------+ 1124 ! Unrelaxed CCSD First-order one-electron properties: ! 1125 +--------------------------------------------------------+ 1126 1127 1128 1129 +-------------------------+ 1130 ! Electric Dipole Moment ! 1131 +-------------------------+ 1132 1133 1134 1135 Total Molecular Dipole Moment 1136 ----------------------------- 1137 1138 au Debye C m (/(10**-30) 1139 1140 x 0.07705686 0.19585899 0.65331526 1141 y 0.01147219 0.02915940 0.09726528 1142 z 0.79906684 2.03102519 6.77477081 1143 1144 1145 1146 1147 +-----------------------------+ 1148 ! Electric Quadrupole Moment ! 1149 +-----------------------------+ 1150 1151 1152 1153 Total Molecular quadrupole moment 1154 --------------------------------- 1155 1156 X Y Z 1157 1158 Column 1 Column 2 Column 3 1159 1 1.54238548 0.00245707 0.12061456 1160 2 0.00245707 -1.66196729 0.00670677 1161 3 0.12061456 0.00670677 0.11958181 1162 ==== End of matrix output ==== 1163 1164 1165 +-------------------------------------+ 1166 ! Electronic second moment of charge ! 1167 +-------------------------------------+ 1168 1169 X Y Z 1170 1171 Column 1 Column 2 Column 3 1172 1 7.21261230 -0.00163805 -0.08040971 1173 2 -0.00163805 5.25823038 -0.00447118 1174 3 -0.08040971 -0.00447118 6.52316833 1175 ==== End of matrix output ==== 1176 1177 Alfa**2 Invariant: 40.085828 1178 Beta**2 Invariant: 2.966970 1179 1180 Isotropic Property: 6.331337 a.u. 1181 Property anisotropy invariant: 1.722489 a.u. 1182 1183 1184 ******************************************************************* 1185 * * 1186 *<<<<<<<<<< >>>>>>>>>>* 1187 *<<<<<<<<<< OUTPUT FROM COUPLED CLUSTER ENERGY PROGRAM >>>>>>>>>>* 1188 *<<<<<<<<<< >>>>>>>>>>* 1189 * * 1190 ******************************************************************* 1191 1192 1193 The Direct Coupled Cluster Energy Program 1194 ----------------------------------------- 1195 1196 1197 Number of t1 amplitudes : 95 1198 Number of t2 amplitudes : 4560 1199 Total number of amplitudes in ccsd : 4655 1200 1201 Iter. 1: Coupled cluster RSTAR energy : -75.9898338927212365 1202 Iter. 1: Coupled cluster CCSD energy : -75.9898337361652239 1203 Iter. 2: Coupled cluster CCSD energy : -75.9898336853127319 1204 Iter. 3: Coupled cluster CCSD energy : -75.9898336738731501 1205 Iter. 4: Coupled cluster CCSD energy : -75.9898336794875178 1206 1207 CCSD energy will not be converged further 1208 1209 right now in CCSLV calc. 1210 Accumulated inner iterations at this point are 22 1211 1212 CCSD energy converged to within 0.10D-11 is -75.989833679488 1213 Final 2-norm of the CC vector function: 6.83019213D-08 1214 Change in norm^2 of T-amplitudes in this solvent it.: -1.4802057433926930E-007 1215 1216 1217 1218 1219 +--------------------------------------------+ 1220 ! Calculating singlet intermediates for CCLR ! 1221 +--------------------------------------------+ 1222 1223 1224 1225 E-intermediates calculated 1226 Fock-intermediate calculated 1227 Gamma-intermediate calculated 1228 BF-intermediate calculated 1229 C-intermediate calculated 1230 D-intermediate calculated 1231 1232 1233 1234 1235 ******************************************************************* 1236 * * 1237 *<<<<<<<<<<<<< OUTPUT FROM COUPLED CLUSTER RESPONSE >>>>>>>>>>>>>* 1238 * * 1239 *<<<<<<<<<< CALCULATION OF FIRST ORDER PROPERTIES >>>>>>>>>>* 1240 * * 1241 ******************************************************************* 1242 1243 1244 1245 +--------------------------------+ 1246 ! Coupled Cluster model is: CCSD ! 1247 +--------------------------------+ 1248 1249 RPA: call cceq_str 1250 Vector nr. 1 of symmetry 1 found on file - RESTART SUCCESS 1251 Start vector is a CCSD L0 vector 1252 RPA: exit cceq_str 1253 CCSLV: We stop for now though not fully converged yet 1254 Accumulated inner iterations are: 27 1255 Change in norm^2 of L-amplitudes in this ccmm it.: 5.3069631522628669E-008 1256 Total <Lambda|H|CC> energy: -75.989833687146955 1257 The singles contribution is: -0.0000000003 1258 The doubles contribution is: -0.0000000074 1259 CCFOP: call CC_D1AO to recalc the 1e Density 1260 1261 1262 +--------------------------+ 1263 ! CCSD Natural Occupations ! 1264 +--------------------------+ 1265 1266 1267 Symmetry block number: 1 1268 --------------------- 1269 1270 1.99991651 1.98464982 1.97308542 1.96753454 1.96474968 1271 0.02631838 0.02386855 0.01698390 0.01157193 0.00589429 1272 0.00562070 0.00509354 0.00451042 0.00439960 0.00115102 1273 0.00111324 0.00072425 0.00065917 0.00055882 0.00053428 1274 0.00049339 0.00047415 0.00005674 0.00003766 1275 1276 Sum in this symmetry class: 10.000000 1277 1278 1279 Total Sum of natural occupation numbers: 10.000000 1280 1281 Dynamical correlation move: 0.110064 electrons 1282 1283 1284 ***************************************************************** 1285 **** Output from Coupled Cluster/Molecular Mechanics program **** 1286 ***************************************************************** 1287 1288 1289 +--------------------------------+ 1290 ! Coupled Cluster model is: CCSD ! 1291 +--------------------------------+ 1292 1293 QM3 induced Dipole vector converged in 1 iterations. 1294 Final norm2 of QM3 induced dipole moment vector: 0.000000000000000 1295 1296 1297 E(QM/MM) contribution in iteration 2: -0.0070784203 1298 CC energy in the current CCMM iteration: -76.2465116427 1299 CC energy in the previous CCMM iteration: -76.2465123482 1300 Change in Total energy in this CCMM it.: 0.705440E-06 1301 1302 1303 ***************************************************************** 1304 ******* End of Coupled Cluster/Molecular Mechanics program ****** 1305 ***************************************************************** 1306 1307 1308 1309 +--------------------------------------------------------+ 1310 ! Unrelaxed CCSD First-order one-electron properties: ! 1311 +--------------------------------------------------------+ 1312 1313 1314 1315 +-------------------------+ 1316 ! Electric Dipole Moment ! 1317 +-------------------------+ 1318 1319 1320 1321 Total Molecular Dipole Moment 1322 ----------------------------- 1323 1324 au Debye C m (/(10**-30) 1325 1326 x 0.07705705 0.19585946 0.65331684 1327 y 0.01147274 0.02916078 0.09726990 1328 z 0.79906605 2.03102319 6.77476413 1329 1330 1331 1332 1333 +-----------------------------+ 1334 ! Electric Quadrupole Moment ! 1335 +-----------------------------+ 1336 1337 1338 1339 Total Molecular quadrupole moment 1340 --------------------------------- 1341 1342 X Y Z 1343 1344 Column 1 Column 2 Column 3 1345 1 1.54238534 0.00245692 0.12061511 1346 2 0.00245692 -1.66196665 0.00670710 1347 3 0.12061511 0.00670710 0.11958131 1348 ==== End of matrix output ==== 1349 1350 1351 +-------------------------------------+ 1352 ! Electronic second moment of charge ! 1353 +-------------------------------------+ 1354 1355 X Y Z 1356 1357 Column 1 Column 2 Column 3 1358 1 7.21261286 -0.00163795 -0.08041007 1359 2 -0.00163795 5.25823042 -0.00447140 1360 3 -0.08041007 -0.00447140 6.52316913 1361 ==== End of matrix output ==== 1362 1363 Alfa**2 Invariant: 40.085834 1364 Beta**2 Invariant: 2.966972 1365 1366 Isotropic Property: 6.331337 a.u. 1367 Property anisotropy invariant: 1.722490 a.u. 1368 1369 1370 ******************************************************************* 1371 * * 1372 *<<<<<<<<<< >>>>>>>>>>* 1373 *<<<<<<<<<< OUTPUT FROM COUPLED CLUSTER ENERGY PROGRAM >>>>>>>>>>* 1374 *<<<<<<<<<< >>>>>>>>>>* 1375 * * 1376 ******************************************************************* 1377 1378 1379 The Direct Coupled Cluster Energy Program 1380 ----------------------------------------- 1381 1382 1383 Number of t1 amplitudes : 95 1384 Number of t2 amplitudes : 4560 1385 Total number of amplitudes in ccsd : 4655 1386 1387 Iter. 1: Coupled cluster RSTAR energy : -75.9898336794875178 1388 Iter. 1: Coupled cluster CCSD energy : -75.9898336798422207 1389 Iter. 2: Coupled cluster CCSD energy : -75.9898336798451055 1390 Iter. 3: Coupled cluster CCSD energy : -75.9898336799777638 1391 Iter. 4: Coupled cluster CCSD energy : -75.9898336799807623 1392 1393 CCSD energy will not be converged further 1394 1395 right now in CCSLV calc. 1396 Accumulated inner iterations at this point are 31 1397 1398 CCSD energy converged to within 0.10D-11 is -75.989833679981 1399 Final 2-norm of the CC vector function: 9.74339964D-10 1400 Change in norm^2 of T-amplitudes in this solvent it.: 5.6497749534312192E-010 1401 1402 1403 1404 1405 +--------------------------------------------+ 1406 ! Calculating singlet intermediates for CCLR ! 1407 +--------------------------------------------+ 1408 1409 1410 1411 E-intermediates calculated 1412 Fock-intermediate calculated 1413 Gamma-intermediate calculated 1414 BF-intermediate calculated 1415 C-intermediate calculated 1416 D-intermediate calculated 1417 1418 1419 1420 1421 ******************************************************************* 1422 * * 1423 *<<<<<<<<<<<<< OUTPUT FROM COUPLED CLUSTER RESPONSE >>>>>>>>>>>>>* 1424 * * 1425 *<<<<<<<<<< CALCULATION OF FIRST ORDER PROPERTIES >>>>>>>>>>* 1426 * * 1427 ******************************************************************* 1428 1429 1430 1431 +--------------------------------+ 1432 ! Coupled Cluster model is: CCSD ! 1433 +--------------------------------+ 1434 1435 RPA: call cceq_str 1436 Vector nr. 1 of symmetry 1 found on file - RESTART SUCCESS 1437 Start vector is a CCSD L0 vector 1438 RPA: exit cceq_str 1439 CCSLV: We stop for now though not fully converged yet 1440 Accumulated inner iterations are: 36 1441 Change in norm^2 of L-amplitudes in this ccmm it.: -3.9836633991541248E-011 1442 Total <Lambda|H|CC> energy: -75.989833679957229 1443 The singles contribution is: 0.0000000000 1444 The doubles contribution is: 0.0000000000 1445 CCFOP: call CC_D1AO to recalc the 1e Density 1446 1447 1448 +--------------------------+ 1449 ! CCSD Natural Occupations ! 1450 +--------------------------+ 1451 1452 1453 Symmetry block number: 1 1454 --------------------- 1455 1456 1.99991651 1.98464982 1.97308542 1.96753454 1.96474968 1457 0.02631838 0.02386855 0.01698390 0.01157193 0.00589428 1458 0.00562070 0.00509354 0.00451042 0.00439960 0.00115102 1459 0.00111324 0.00072425 0.00065917 0.00055882 0.00053428 1460 0.00049339 0.00047415 0.00005674 0.00003766 1461 1462 Sum in this symmetry class: 10.000000 1463 1464 1465 Total Sum of natural occupation numbers: 10.000000 1466 1467 Dynamical correlation move: 0.110064 electrons 1468 1469 1470 ***************************************************************** 1471 **** Output from Coupled Cluster/Molecular Mechanics program **** 1472 ***************************************************************** 1473 1474 1475 +--------------------------------+ 1476 ! Coupled Cluster model is: CCSD ! 1477 +--------------------------------+ 1478 1479 QM3 induced Dipole vector converged in 1 iterations. 1480 Final norm2 of QM3 induced dipole moment vector: 0.000000000000000 1481 1482 1483 E(QM/MM) contribution in iteration 3: -0.0070784203 1484 CC energy in the current CCMM iteration: -76.2465116355 1485 CC energy in the previous CCMM iteration: -76.2465116427 1486 Change in Total energy in this CCMM it.: 0.719895E-08 1487 1488 1489 ***************************************************************** 1490 ******* End of Coupled Cluster/Molecular Mechanics program ****** 1491 ***************************************************************** 1492 1493 1494 1495 +--------------------------------------------------------+ 1496 ! Unrelaxed CCSD First-order one-electron properties: ! 1497 +--------------------------------------------------------+ 1498 1499 1500 1501 +-------------------------+ 1502 ! Electric Dipole Moment ! 1503 +-------------------------+ 1504 1505 1506 1507 Total Molecular Dipole Moment 1508 ----------------------------- 1509 1510 au Debye C m (/(10**-30) 1511 1512 x 0.07705705 0.19585946 0.65331684 1513 y 0.01147275 0.02916082 0.09727004 1514 z 0.79906605 2.03102319 6.77476412 1515 1516 1517 1518 1519 +-----------------------------+ 1520 ! Electric Quadrupole Moment ! 1521 +-----------------------------+ 1522 1523 1524 1525 Total Molecular quadrupole moment 1526 --------------------------------- 1527 1528 X Y Z 1529 1530 Column 1 Column 2 Column 3 1531 1 1.54238534 0.00245691 0.12061511 1532 2 0.00245691 -1.66196665 0.00670711 1533 3 0.12061511 0.00670711 0.11958131 1534 ==== End of matrix output ==== 1535 1536 1537 +-------------------------------------+ 1538 ! Electronic second moment of charge ! 1539 +-------------------------------------+ 1540 1541 X Y Z 1542 1543 Column 1 Column 2 Column 3 1544 1 7.21261287 -0.00163794 -0.08041007 1545 2 -0.00163794 5.25823043 -0.00447140 1546 3 -0.08041007 -0.00447140 6.52316914 1547 ==== End of matrix output ==== 1548 1549 Alfa**2 Invariant: 40.085834 1550 Beta**2 Invariant: 2.966972 1551 1552 Isotropic Property: 6.331337 a.u. 1553 Property anisotropy invariant: 1.722490 a.u. 1554 1555 1556 ******************************************************************* 1557 * * 1558 *<<<<<<<<<< >>>>>>>>>>* 1559 *<<<<<<<<<< OUTPUT FROM COUPLED CLUSTER ENERGY PROGRAM >>>>>>>>>>* 1560 *<<<<<<<<<< >>>>>>>>>>* 1561 * * 1562 ******************************************************************* 1563 1564 1565 The Direct Coupled Cluster Energy Program 1566 ----------------------------------------- 1567 1568 1569 Number of t1 amplitudes : 95 1570 Number of t2 amplitudes : 4560 1571 Total number of amplitudes in ccsd : 4655 1572 1573 Iter. 1: Coupled cluster RSTAR energy : -75.9898336799807623 1574 Iter. 1: Coupled cluster CCSD energy : -75.9898336799616487 1575 Iter. 2: Coupled cluster CCSD energy : -75.9898336799528238 1576 Iter. 3: Coupled cluster CCSD energy : -75.9898336799513601 1577 Iter. 4: Coupled cluster CCSD energy : -75.9898336799520706 1578 1579 CCSD energy will not be converged further 1580 1581 right now in CCSLV calc. 1582 Accumulated inner iterations at this point are 40 1583 1584 CCSD energy converged to within 0.10D-11 is -75.989833679952 1585 Final 2-norm of the CC vector function: 8.49559910D-12 1586 Change in norm^2 of T-amplitudes in this solvent it.: -2.2792458892473277E-011 1587 1588 1589 1590 1591 +--------------------------------------------+ 1592 ! Calculating singlet intermediates for CCLR ! 1593 +--------------------------------------------+ 1594 1595 1596 1597 E-intermediates calculated 1598 Fock-intermediate calculated 1599 Gamma-intermediate calculated 1600 BF-intermediate calculated 1601 C-intermediate calculated 1602 D-intermediate calculated 1603 1604 1605 1606 1607 ******************************************************************* 1608 * * 1609 *<<<<<<<<<<<<< OUTPUT FROM COUPLED CLUSTER RESPONSE >>>>>>>>>>>>>* 1610 * * 1611 *<<<<<<<<<< CALCULATION OF FIRST ORDER PROPERTIES >>>>>>>>>>* 1612 * * 1613 ******************************************************************* 1614 1615 1616 1617 +--------------------------------+ 1618 ! Coupled Cluster model is: CCSD ! 1619 +--------------------------------+ 1620 1621 RPA: call cceq_str 1622 Vector nr. 1 of symmetry 1 found on file - RESTART SUCCESS 1623 Start vector is a CCSD L0 vector 1624 RPA: exit cceq_str 1625 CCSLV: We stop for now though not fully converged yet 1626 Accumulated inner iterations are: 45 1627 Change in norm^2 of L-amplitudes in this ccmm it.: 5.8535121194580597E-012 1628 Total <Lambda|H|CC> energy: -75.989833679952952 1629 The singles contribution is: -0.0000000000 1630 The doubles contribution is: -0.0000000000 1631 CCFOP: call CC_D1AO to recalc the 1e Density 1632 1633 1634 +--------------------------+ 1635 ! CCSD Natural Occupations ! 1636 +--------------------------+ 1637 1638 1639 Symmetry block number: 1 1640 --------------------- 1641 1642 1.99991651 1.98464982 1.97308542 1.96753454 1.96474968 1643 0.02631838 0.02386855 0.01698390 0.01157193 0.00589428 1644 0.00562070 0.00509354 0.00451042 0.00439960 0.00115102 1645 0.00111324 0.00072425 0.00065917 0.00055882 0.00053428 1646 0.00049339 0.00047415 0.00005674 0.00003766 1647 1648 Sum in this symmetry class: 10.000000 1649 1650 1651 Total Sum of natural occupation numbers: 10.000000 1652 1653 Dynamical correlation move: 0.110064 electrons 1654 1655 1656 ***************************************************************** 1657 **** Output from Coupled Cluster/Molecular Mechanics program **** 1658 ***************************************************************** 1659 1660 1661 +--------------------------------+ 1662 ! Coupled Cluster model is: CCSD ! 1663 +--------------------------------+ 1664 1665 QM3 induced Dipole vector converged in 1 iterations. 1666 Final norm2 of QM3 induced dipole moment vector: 0.000000000000000 1667 1668 1669 E(QM/MM) contribution in iteration 4: -0.0070784203 1670 CC energy in the current CCMM iteration: -76.2465116355 1671 CC energy in the previous CCMM iteration: -76.2465116355 1672 Change in Total energy in this CCMM it.: 0.420641E-11 1673 1674 1675 ***************************************************************** 1676 ******* End of Coupled Cluster/Molecular Mechanics program ****** 1677 ***************************************************************** 1678 1679 1680 1681 +--------------------------------------------------------+ 1682 ! Unrelaxed CCSD First-order one-electron properties: ! 1683 +--------------------------------------------------------+ 1684 1685 1686 1687 +-------------------------+ 1688 ! Electric Dipole Moment ! 1689 +-------------------------+ 1690 1691 1692 1693 Total Molecular Dipole Moment 1694 ----------------------------- 1695 1696 au Debye C m (/(10**-30) 1697 1698 x 0.07705705 0.19585946 0.65331684 1699 y 0.01147275 0.02916082 0.09727004 1700 z 0.79906605 2.03102319 6.77476412 1701 1702 1703 1704 1705 +-----------------------------+ 1706 ! Electric Quadrupole Moment ! 1707 +-----------------------------+ 1708 1709 1710 1711 Total Molecular quadrupole moment 1712 --------------------------------- 1713 1714 X Y Z 1715 1716 Column 1 Column 2 Column 3 1717 1 1.54238534 0.00245691 0.12061511 1718 2 0.00245691 -1.66196665 0.00670711 1719 3 0.12061511 0.00670711 0.11958131 1720 ==== End of matrix output ==== 1721 1722 1723 +-------------------------------------+ 1724 ! Electronic second moment of charge ! 1725 +-------------------------------------+ 1726 1727 X Y Z 1728 1729 Column 1 Column 2 Column 3 1730 1 7.21261287 -0.00163794 -0.08041007 1731 2 -0.00163794 5.25823043 -0.00447140 1732 3 -0.08041007 -0.00447140 6.52316914 1733 ==== End of matrix output ==== 1734 1735 Alfa**2 Invariant: 40.085834 1736 Beta**2 Invariant: 2.966972 1737 1738 Isotropic Property: 6.331337 a.u. 1739 Property anisotropy invariant: 1.722490 a.u. 1740 1741 1742 ******************************************************************* 1743 * * 1744 *<<<<<<<<<< >>>>>>>>>>* 1745 *<<<<<<<<<< OUTPUT FROM COUPLED CLUSTER ENERGY PROGRAM >>>>>>>>>>* 1746 *<<<<<<<<<< >>>>>>>>>>* 1747 * * 1748 ******************************************************************* 1749 1750 1751 The Direct Coupled Cluster Energy Program 1752 ----------------------------------------- 1753 1754 1755 Number of t1 amplitudes : 95 1756 Number of t2 amplitudes : 4560 1757 Total number of amplitudes in ccsd : 4655 1758 1759 Iter. 1: Coupled cluster RSTAR energy : -75.9898336799520706 1760 Iter. 1: Coupled cluster CCSD energy : -75.9898336799519001 1761 1762 CCSD energy converged to within 0.10D-11 is -75.989833679952 1763 Final 2-norm of the CC vector function: 3.32563467D-12 1764 Change in norm^2 of T-amplitudes in this solvent it.: 2.2211399386407038E-014 1765 1766 1767 1768 1769 +--------------------------------------------+ 1770 ! Calculating singlet intermediates for CCLR ! 1771 +--------------------------------------------+ 1772 1773 1774 1775 E-intermediates calculated 1776 Fock-intermediate calculated 1777 Gamma-intermediate calculated 1778 BF-intermediate calculated 1779 C-intermediate calculated 1780 D-intermediate calculated 1781 1782 1783 1784 1785 ******************************************************************* 1786 * * 1787 *<<<<<<<<<<<<< OUTPUT FROM COUPLED CLUSTER RESPONSE >>>>>>>>>>>>>* 1788 * * 1789 *<<<<<<<<<< CALCULATION OF FIRST ORDER PROPERTIES >>>>>>>>>>* 1790 * * 1791 ******************************************************************* 1792 1793 1794 1795 +--------------------------------+ 1796 ! Coupled Cluster model is: CCSD ! 1797 +--------------------------------+ 1798 1799 RPA: call cceq_str 1800 Vector nr. 1 of symmetry 1 found on file - RESTART SUCCESS 1801 Start vector is a CCSD L0 vector 1802 RPA: exit cceq_str 1803 Change in norm^2 of L-amplitudes in this ccmm it.: 6.9111383282915995E-015 1804 Total <Lambda|H|CC> energy: -75.989833679951886 1805 The singles contribution is: 0.0000000000 1806 The doubles contribution is: 0.0000000000 1807 CCFOP: call CC_D1AO to recalc the 1e Density 1808 1809 1810 +--------------------------+ 1811 ! CCSD Natural Occupations ! 1812 +--------------------------+ 1813 1814 1815 Symmetry block number: 1 1816 --------------------- 1817 1818 1.99991651 1.98464982 1.97308542 1.96753454 1.96474968 1819 0.02631838 0.02386855 0.01698390 0.01157193 0.00589428 1820 0.00562070 0.00509354 0.00451042 0.00439960 0.00115102 1821 0.00111324 0.00072425 0.00065917 0.00055882 0.00053428 1822 0.00049339 0.00047415 0.00005674 0.00003766 1823 1824 Sum in this symmetry class: 10.000000 1825 1826 1827 Total Sum of natural occupation numbers: 10.000000 1828 1829 Dynamical correlation move: 0.110064 electrons 1830 1831 1832 ***************************************************************** 1833 **** Output from Coupled Cluster/Molecular Mechanics program **** 1834 ***************************************************************** 1835 1836 1837 +--------------------------------+ 1838 ! Coupled Cluster model is: CCSD ! 1839 +--------------------------------+ 1840 1841 QM3 induced Dipole vector converged in 1 iterations. 1842 Final norm2 of QM3 induced dipole moment vector: 0.000000000000000 1843 1844 1845 E(QM/MM) contribution in iteration 5: -0.0070784203 1846 CC energy in the current CCMM iteration: -76.2465116355 1847 CC energy in the previous CCMM iteration: -76.2465116355 1848 Change in Total energy in this CCMM it.: 0.105160E-11 1849 1850 1851 Perturbative correction to polarization energy is calculated 1852 (Model SPC_EC3) 1853 QM3 induced Dipole vector converged in 7 iterations. 1854 Final norm2 of QM3 induced dipole moment vector: 0.033915977176272 1855 1856 1857 ------------------------------------------------------------------------ 1858 |<<<<<<<<<<<<<<< The MM/MM classical interaction energy >>>>>>>>>>>>>>>| 1859 ------------------------------------------------------------------------ 1860 | Eelec = Sum_n,s[ (Q_n*Q_s)/|R_n - R_s| ] | -0.00070616 | 1861 ------------------------------------------------------------------------ 1862 | Epol = - 1/2*Sum_a[ MYind_a*E^site_a ] | 0.00000890 | 1863 ------------------------------------------------------------------------ 1864 | Evdw = Sum_a[ A_ma/|R_ma|^12 - B_ma/|R_ma|^6 ] | -0.00011662 | 1865 ------------------------------------------------------------------------ 1866 |**************************************************|*******************| 1867 ------------------------------------------------------------------------ 1868 | E(MM/MM) = Eelec + Epol + Evdw | -0.00081388 | 1869 ------------------------------------------------------------------------ 1870 1871 1872 +======================================================================+ 1873 |<<<<<<<<<<<<<< Final output from CCSD/MM energy program >>>>>>>>>>>>>>| 1874 +======================================================================+ 1875 | Eelec | Epol | Evdw | E(QM/MM) | 1876 +----------------------------------------------------------------------+ 1877 | -0.0102935015 | -0.0017514318 | 0.0051109725 | -0.0070784203 | 1878 +----------------------------------------------------------------------+ 1879 +======================================================================+ 1880 +----------------------------------------------------------------------+ 1881 | <L|H(vac)|CC> | <H(qm)+H(qmmm)> | Delta E(mm/mm) | E_rep | 1882 +----------------------------------------------------------------------+ 1883 | -76.2394332152 | -76.2465116355 | 0.0000079260 | 0.0000000000 | 1884 +======================================================================+ 1885 1886 1887 Maximum inner iterations for t set to 4 in each outer iteration 1888 Maximum inner iterations for t-bar set to 5 in each outer iteration 1889 1890 1891 CCMM equations are converged in 5 outer iterations 1892 CCMM equations are converged in 50 inner iterations 1893 ***************************************************************** 1894 ******* End of Coupled Cluster/Molecular Mechanics program ****** 1895 ***************************************************************** 1896 1897 1898 1899 +--------------------------------------------------------+ 1900 ! Unrelaxed CCSD First-order one-electron properties: ! 1901 +--------------------------------------------------------+ 1902 1903 1904 1905 +-------------------------+ 1906 ! Electric Dipole Moment ! 1907 +-------------------------+ 1908 1909 1910 1911 Total Molecular Dipole Moment 1912 ----------------------------- 1913 1914 au Debye C m (/(10**-30) 1915 1916 x 0.07705705 0.19585946 0.65331684 1917 y 0.01147275 0.02916082 0.09727004 1918 z 0.79906605 2.03102319 6.77476412 1919 1920 1921 1922 1923 +-----------------------------+ 1924 ! Electric Quadrupole Moment ! 1925 +-----------------------------+ 1926 1927 1928 1929 Total Molecular quadrupole moment 1930 --------------------------------- 1931 1932 X Y Z 1933 1934 Column 1 Column 2 Column 3 1935 1 1.54238534 0.00245691 0.12061511 1936 2 0.00245691 -1.66196665 0.00670711 1937 3 0.12061511 0.00670711 0.11958131 1938 ==== End of matrix output ==== 1939 1940 1941 +-------------------------------------+ 1942 ! Electronic second moment of charge ! 1943 +-------------------------------------+ 1944 1945 X Y Z 1946 1947 Column 1 Column 2 Column 3 1948 1 7.21261287 -0.00163794 -0.08041007 1949 2 -0.00163794 5.25823043 -0.00447140 1950 3 -0.08041007 -0.00447140 6.52316914 1951 ==== End of matrix output ==== 1952 1953 Alfa**2 Invariant: 40.085834 1954 Beta**2 Invariant: 2.966972 1955 1956 Isotropic Property: 6.331337 a.u. 1957 Property anisotropy invariant: 1.722490 a.u. 1958 1959 1960 ******************************************************************************* 1961 ******************************************************************************* 1962 * * 1963 * * 1964 * SUMMARY OF COUPLED CLUSTER CALCULATION * 1965 * * 1966 * * 1967 ******************************************************************************* 1968 ******************************************************************************* 1969 1970 CCSD Total energy: -76.2465116355 1971 CCSD E(QM/MM) : -0.0070784203 1972 1973 1974 1975 ******************************************************************************* 1976 ******************************************************************************* 1977 * * 1978 * * 1979 * END OF COUPLED CLUSTER CALCULATION * 1980 * * 1981 * * 1982 ******************************************************************************* 1983 ******************************************************************************* 1984 1985 1986 >>>> CPU and wall time for CC : 2.126 2.456 1987 1988 1989 Date and time (Linux) : Sun Sep 8 20:41:08 2013 1990 Host name : lpqlx131.ups-tlse.fr 1991 1992 1993 .-------------------------------------. 1994 | End of Coupled Cluster Section (CC) | 1995 `-------------------------------------' 1996 1997 >>>> Total CPU time used in DALTON: 2.20 seconds 1998 >>>> Total wall time used in DALTON: 2.53 seconds 1999 2000 2001 Date and time (Linux) : Sun Sep 8 20:41:08 2013 2002 Host name : lpqlx131.ups-tlse.fr 2003