1
2
3     ************************************************************************
4     *************** Dalton - An Electronic Structure Program ***************
5     ************************************************************************
6
7    This is output from DALTON (Release Dalton2013 patch 0)
8   ----------------------------------------------------------------------------
9    NOTE:
10
11    Dalton is an experimental code for the evaluation of molecular
12    properties using (MC)SCF, DFT, CI, and CC wave functions.
13    The authors accept no responsibility for the performance of
14    the code or for the correctness of the results.
15
16    The code (in whole or part) is provided under a licence and
17    is not to be reproduced for further distribution without
18    the written permission of the authors or their representatives.
19
20    See the home page "http://daltonprogram.org" for further information.
21
22    If results obtained with this code are published,
23    the appropriate citations would be both of:
24
25       K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast,
26       L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani,
27       P. Dahle, E. K. Dalskov, U. Ekstroem, T. Enevoldsen,
28       J. J. Eriksen, P. Ettenhuber, B. Fernandez, L. Ferrighi,
29       H. Fliegl, L. Frediani, K. Hald, A. Halkier, C. Haettig,
30       H. Heiberg, T. Helgaker, A. C. Hennum, H. Hettema,
31       E. Hjertenaes, S. Hoest, I.-M. Hoeyvik, M. F. Iozzi,
32       B. Jansik, H. J. Aa. Jensen, D. Jonsson, P. Joergensen,
33       J. Kauczor, S. Kirpekar, T. Kjaergaard, W. Klopper,
34       S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Krapp,
35       K. Kristensen, A. Ligabue, O. B. Lutnaes, J. I. Melo,
36       K. V. Mikkelsen, R. H. Myhre, C. Neiss, C. B. Nielsen,
37       P. Norman, J. Olsen, J. M. H. Olsen, A. Osted,
38       M. J. Packer, F. Pawlowski, T. B. Pedersen, P. F. Provasi,
39       S. Reine, Z. Rinkevicius, T. A. Ruden, K. Ruud, V. Rybkin,
40       P. Salek, C. C. M. Samson, A. Sanchez de Meras, T. Saue,
41       S. P. A. Sauer, B. Schimmelpfennig, K. Sneskov,
42       A. H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor,
43       A. M. Teale, E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen,
44       L. Thoegersen, O. Vahtras, M. A. Watson, D. J. D. Wilson,
45       M. Ziolkowski and H. Agren.
46       The Dalton quantum chemistry program system.
47       WIREs Comput. Mol. Sci. 2013. doi: 10.1002/wcms.1172
48
49    and
50
51       Dalton, a Molecular Electronic Structure Program,
52       Release DALTON2013.0 (2013), see http://daltonprogram.org
53   ----------------------------------------------------------------------------
54
55    Authors in alphabetical order (major contribution(s) in parenthesis):
56
57  Kestutis Aidas,           Vilnius University,           Lithuania   (QM/MM)
58  Celestino Angeli,         University of Ferrara,        Italy       (NEVPT2)
59  Keld L. Bak,              UNI-C,                        Denmark     (AOSOPPA, non-adiabatic coupling, magnetic properties)
60  Vebjoern Bakken,          University of Oslo,           Norway      (DALTON; geometry optimizer, symmetry detection)
61  Radovan Bast,             KTH Stockholm                 Sweden      (DALTON installation and execution frameworks)
62  Linus Boman,              NTNU,                         Norway      (Cholesky decomposition and subsystems)
63  Ove Christiansen,         Aarhus University,            Denmark     (CC module)
64  Renzo Cimiraglia,         University of Ferrara,        Italy       (NEVPT2)
65  Sonia Coriani,            University of Trieste,        Italy       (CC module, MCD in RESPONS)
66  Paal Dahle,               University of Oslo,           Norway      (Parallelization)
67  Erik K. Dalskov,          UNI-C,                        Denmark     (SOPPA)
68  Thomas Enevoldsen,        Univ. of Southern Denmark,    Denmark     (SOPPA)
69  Janus J. Eriksen,         Aarhus University,            Denmark     (PE-MP2/SOPPA, TDA)
70  Berta Fernandez,          U. of Santiago de Compostela, Spain       (doublet spin, ESR in RESPONS)
71  Lara Ferrighi,            Aarhus University,            Denmark     (PCM Cubic response)
72  Heike Fliegl,             University of Oslo,           Norway      (CCSD(R12))
73  Luca Frediani,            UiT The Arctic U. of Norway,  Norway      (PCM)
74  Bin Gao,                  UiT The Arctic U. of Norway,  Norway      (Gen1Int library)
75  Christof Haettig,         Ruhr-University Bochum,       Germany     (CC module)
76  Kasper Hald,              Aarhus University,            Denmark     (CC module)
77  Asger Halkier,            Aarhus University,            Denmark     (CC module)
78  Hanne Heiberg,            University of Oslo,           Norway      (geometry analysis, selected one-electron integrals)
79  Trygve Helgaker,          University of Oslo,           Norway      (DALTON; ABACUS, ERI, DFT modules, London, and much more)
80  Alf Christian Hennum,     University of Oslo,           Norway      (Parity violation)
81  Hinne Hettema,            University of Auckland,       New Zealand (quadratic response in RESPONS; SIRIUS supersymmetry)
82  Eirik Hjertenaes,         NTNU,                         Norway      (Cholesky decomposition)
83  Maria Francesca Iozzi,    University of Oslo,           Norway      (RPA)
84  Brano Jansik              Technical Univ. of Ostrava    Czech Rep.  (DFT cubic response)
85  Hans Joergen Aa. Jensen,  Univ. of Southern Denmark,    Denmark     (DALTON; SIRIUS, RESPONS, ABACUS modules, London, and much more)
86  Dan Jonsson,              UiT The Arctic U. of Norway,  Norway      (cubic response in RESPONS module)
87  Poul Joergensen,          Aarhus University,            Denmark     (RESPONS, ABACUS, and CC modules)
88  Joanna Kauczor,           Linkoeping University,        Sweden      (Complex polarization propagator (CPP) module)
89  Sheela Kirpekar,          Univ. of Southern Denmark,    Denmark     (Mass-velocity & Darwin integrals)
90  Wim Klopper,              KIT Karlsruhe,                Germany     (R12 code in CC, SIRIUS, and ABACUS modules)
91  Stefan Knecht,            ETH Zurich,                   Switzerland (Parallel CI and MCSCF)
92  Rika Kobayashi,           Australian National Univ.,    Australia   (DIIS in CC, London in MCSCF)
93  Henrik Koch,              NTNU,                         Norway      (CC module, Cholesky decomposition)
94  Jacob Kongsted,           Univ. of Southern Denmark,    Denmark     (Polarizable embedding, QM/MM)
95  Andrea Ligabue,           University of Modena,         Italy       (CTOCD, AOSOPPA)
96  Ola B. Lutnaes,           University of Oslo,           Norway      (DFT Hessian)
97  Juan I. Melo,             University of Buenos Aires,   Argentina   (LRESC, Relativistic Effects on NMR Shieldings)
98  Kurt V. Mikkelsen,        University of Copenhagen,     Denmark     (MC-SCRF and QM/MM)
99  Rolf H. Myhre,            NTNU,                         Norway      (Cholesky, subsystems and ECC2)
100  Christian Neiss,          Univ. Erlangen-Nuernberg,     Germany     (CCSD(R12))
101  Christian B. Nielsen,     University of Copenhagen,     Denmark     (QM/MM)
102  Patrick Norman,           Linkoeping University,        Sweden      (Cubic response and complex response in RESPONS)
103  Jeppe Olsen,              Aarhus University,            Denmark     (SIRIUS CI/density modules)
104  Jogvan Magnus H. Olsen,   Univ. of Southern Denmark,    Denmark     (Polarizable embedding, PE library, QM/MM)
105  Anders Osted,             Copenhagen University,        Denmark     (QM/MM)
106  Martin J. Packer,         University of Sheffield,      UK          (SOPPA)
107  Filip Pawlowski,          Kazimierz Wielki University   Poland      (CC3)
108  Thomas B. Pedersen,       University of Oslo,           Norway      (Cholesky decomposition)
109  Patricio F. Provasi,      University of Northeastern,   Argentina   (Analysis of coupling constants in localized orbitals)
110  Zilvinas Rinkevicius,     KTH Stockholm,                Sweden      (open-shell DFT, ESR)
111  Elias Rudberg,            KTH Stockholm,                Sweden      (DFT grid and basis info)
112  Torgeir A. Ruden,         University of Oslo,           Norway      (Numerical derivatives in ABACUS)
113  Kenneth Ruud,             UiT The Arctic U. of Norway,  Norway      (DALTON; ABACUS magnetic properties and  much more)
114  Pawel Salek,              KTH Stockholm,                Sweden      (DALTON; DFT code)
115  Claire C. M. Samson       University of Karlsruhe       Germany     (Boys localization, r12 integrals in ERI)
116  Alfredo Sanchez de Meras, University of Valencia,       Spain       (CC module, Cholesky decomposition)
117  Trond Saue,               Paul Sabatier University,     France      (direct Fock matrix construction)
118  Stephan P. A. Sauer,      University of Copenhagen,     Denmark     (SOPPA(CCSD), SOPPA prop., AOSOPPA, vibrational g-factors)
119  Bernd Schimmelpfennig,    Forschungszentrum Karlsruhe,  Germany     (AMFI module)
120  Kristian Sneskov,         Aarhus University,            Denmark     (QM/MM, PE-CC)
121  Arnfinn H. Steindal,      UiT The Arctic U. of Norway,  Norway      (parallel QM/MM)
122  K. O. Sylvester-Hvid,     University of Copenhagen,     Denmark     (MC-SCRF)
123  Peter R. Taylor,          VLSCI/Univ. of Melbourne,     Australia   (Symmetry handling ABACUS, integral transformation)
124  Andrew M. Teale,          University of Nottingham,     England     (DFT-AC, DFT-D)
125  David P. Tew,             University of Bristol,        England     (CCSD(R12))
126  Olav Vahtras,             KTH Stockholm,                Sweden      (triplet response, spin-orbit, ESR, TDDFT, open-shell DFT)
127  David J. Wilson,          La Trobe University,          Australia   (DFT Hessian and DFT magnetizabilities)
128  Hans Agren,               KTH Stockholm,                Sweden      (SIRIUS module, RESPONS, MC-SCRF solvation model)
129 --------------------------------------------------------------------------------
130
131     Date and time (Linux)  : Sun Sep  8 20:41:05 2013
132     Host name              : lpqlx131.ups-tlse.fr
133
134 * Work memory size             :    64000000 =  488.28 megabytes.
135
136 * Directories for basis set searches:
137   1) /home/bast/DALTON-2013.0-Source/build/test_ccsdmm_ec3_fop
138   2) /home/bast/DALTON-2013.0-Source/build/basis
139
140
141Compilation information
142-----------------------
143
144 Who compiled             | bast
145 Host                     | lpqlx131.ups-tlse.fr
146 System                   | Linux-3.8.5-201.fc18.x86_64
147 CMake generator          | Unix Makefiles
148 Processor                | x86_64
149 64-bit integers          | OFF
150 MPI                      | OFF
151 Fortran compiler         | /usr/bin/gfortran
152 Fortran compiler version | GNU Fortran (GCC) 4.7.2 20121109 (Red Hat 4.7.2-8)
153 C compiler               | /usr/bin/gcc
154 C compiler version       | gcc (GCC) 4.7.2 20121109 (Red Hat 4.7.2-8)
155 C++ compiler             | /usr/bin/g++
156 C++ compiler version     | g++ (GCC) 4.7.2 20121109 (Red Hat 4.7.2-8)
157 Static linking           | OFF
158 Last Git revision        | f34203295a86316e27f9e7b44f9b6769c4a046c0
159 Configuration time       | 2013-09-08 20:31:27.952056
160
161
162   Content of the .dal input file
163 ----------------------------------
164
165**DALTON INPUT
166.RUN WAVE FUNCTION
167*QM3
168.QM3
169.THRDIP
170 1.0D-12
171.MAXDIP
172 80
173!.OLDTG
174**INTEGRALS
175.DIPLEN
176.NUCPOT
177.NELFLD
178.THETA
179.SECMOM
180**WAVE FUNCTIONS
181.CC
182*SCF INP
183.THRESH
1841.0D-11
185*CC INP
186.CCSD
187.THRLEQ
188 1.0D-12
189.THRENR
190 1.0D-12
191.MAX IT
192 90
193.MXLRV
194 180
195*CCSLV
196.CCMM
197.ETOLSL
198 1.0D-11
199.TTOLSL
200 1.0D-11
201.LTOLSL
202 1.0D-11
203.MXSLIT
204 200
205.MXINIT
206 4 5
207*CCFOP
208.DIPMOM
209.QUADRU
210.SECMOM
211.NONREL
212*END OF INPUT
213
214
215   Content of the .mol file
216 ----------------------------
217
218ATOMBASIS
219QM/MM H2O(QM)+ 5 H2O(MM)
220------------------------
221    4    0         1 1.00D-12
222        8.0   1    Bas=cc-pVDZ
223O            0.000000        0.000000        0.000000 0 1
224        1.0   2    Bas=cc-pVDZ
225H           -0.756799        0.000000        0.586007 0 2
226H            0.756799        0.000000        0.586007 0 3
227   -0.669     5    Bas=MM
228O           -6.022295       -6.249876       -2.389355 1 1
229O           -0.590747        4.825666       -1.709744 2 1
230O            2.365069       -0.266593        1.169946 3 1
231O           -8.979615       -1.935917       -5.707554 4 1
232O           -5.696915       -2.203270        0.274131 5 1
233    0.3345   10    Bas=MM
234H           -6.934736       -6.264225       -2.100595 1 2
235H           -5.562128       -6.801680       -1.756974 1 3
236H           -1.493716        5.142033       -1.683118 2 2
237H           -0.065506        5.576575       -1.433333 2 3
238H            2.261479       -1.103382        1.622925 3 2
239H            3.132239       -0.390013        0.611059 3 3
240H           -8.312439       -2.243695       -5.094117 4 2
241H           -8.719849       -2.307644       -6.550450 4 3
242H           -4.847884       -2.109424       -0.157695 5 2
243H           -6.336813       -2.008951       -0.410639 5 3
244
245
246       *******************************************************************
247       *********** Output from DALTON general input processing ***********
248       *******************************************************************
249
250 --------------------------------------------------------------------------------
251   Overall default print level:    0
252   Print level for DALTON.STAT:    1
253
254    HERMIT 1- and 2-electron integral sections will be executed
255    "Old" integral transformation used (limited to max 255 basis functions)
256    Wave function sections will be executed (SIRIUS module)
257 --------------------------------------------------------------------------------
258
259
260 Changes of defaults for *QM3   :
261 --------------------------------
262
263 +------------------+
264 |  WORD: | CHANGE: |
265 +------------------+
266 |    QM3 |       T |
267 | THDISC | 1.0D-12 |
268 |  PRINT |       0 |
269 +------------------+
270  Settings for determination of induced dipoles:
271  Iterative Method is used
272 +------------------+
273
274
275    *************************************************************************
276    *************** Output from MM potential input processing ***************
277    *************************************************************************
278
279
280
281 ------------------------------------------------------------------------
282 | QM-sys type: | Systems:    | Model:  | Electric properties:          |
283 ------------------------------------------------------------------------
284 |          0   | [   0;   0] | SPC_EC3 | Charges for classical calc.:  |
285 |              |             |         |   Q( 1)= -0.6690              |
286 |              |             |         |   Q( 2)=  0.3345              |
287 |              |             |         |   Q( 3)=  0.3345              |
288 |              |             |         | Isotropic perturb. pol.:      |
289 |              |             |         | alp( 1)=  9.7180              |
290 ------------------------------------------------------------------------
291
292
293 ------------------------------------------------------------------------
294 | MM-sys type: | Systems:    | Model:  | Electric properties:          |
295 ------------------------------------------------------------------------
296 |          1   | [   1;   5] | SPC_EC3 | Charges for classical calc.:  |
297 |              |             |         | Isotropic perturb. pol.:      |
298 |              |             |         | alp( 1)=  9.7180              |
299 ------------------------------------------------------------------------
300
301
302
303
304   ****************************************************************************
305   *************** Output of molecule and basis set information ***************
306   ****************************************************************************
307
308
309    The two title cards from your ".mol" input:
310    ------------------------------------------------------------------------
311 1: QM/MM H2O(QM)+ 5 H2O(MM)
312 2: ------------------------
313    ------------------------------------------------------------------------
314
315  Coordinates are entered in Angstrom and converted to atomic units.
316          - Conversion factor : 1 bohr = 0.52917721 A
317
318  Atomic type no.    1
319  --------------------
320  Nuclear charge:   8.00000
321  Number of symmetry independent centers:    1
322  Number of basis sets to read;    2
323  The basis set is "cc-pVDZ" from the basis set library.
324  Basis set file used for this atomic type with Z =   8 :
325     "/home/bast/DALTON-2013.0-Source/build/basis/cc-pVDZ"
326
327  Atomic type no.    2
328  --------------------
329  Nuclear charge:   1.00000
330  Number of symmetry independent centers:    2
331  Number of basis sets to read;    2
332  The basis set is "cc-pVDZ" from the basis set library.
333  Basis set file used for this atomic type with Z =   1 :
334     "/home/bast/DALTON-2013.0-Source/build/basis/cc-pVDZ"
335
336  Atomic type no.    3
337  --------------------
338  Nuclear charge:  -0.66900
339  Number of symmetry independent centers:    5
340  Number of basis sets to read;    2
341  This is an MM atom without basis functions.
342
343  Atomic type no.    4
344  --------------------
345  Nuclear charge:   0.33450
346  Number of symmetry independent centers:   10
347  Number of basis sets to read;    2
348  This is an MM atom without basis functions.
349
350
351                         SYMGRP: Point group information
352                         -------------------------------
353
354Point group: C1
355
356
357                                 Isotopic Masses
358                                 ---------------
359
360                           O          15.994915
361                           H           1.007825
362                           H           1.007825
363
364                       Total mass:    18.010565 amu
365                       Natural abundance:  99.730 %
366
367 Center-of-mass coordinates (a.u.):    0.000000    0.000000    0.123934
368
369
370  Atoms and basis sets
371  --------------------
372
373  Number of atom types :    5
374  Total number of atoms:   24
375
376  label    atoms   charge   prim   cont     basis
377  ----------------------------------------------------------------------
378  O           1    8.0000    26    14      [9s4p1d|3s2p1d]
379  H           2    1.0000     7     5      [4s1p|2s1p]
380  O           5   -0.6690     0     0      Point Charge
381  H          10    0.3345     0     0      Point Charge
382  a           6    0.0000     0     0      Point Charge
383  ----------------------------------------------------------------------
384  total:     24   10.0000    40    24
385  ----------------------------------------------------------------------
386  Spherical harmonic basis used.
387
388  Threshold for neglecting AO integrals:  1.00D-12
389
390
391  Cartesian Coordinates (a.u.)
392  ----------------------------
393
394  Total number of coordinates:   72
395  O       :     1  x   0.0000000000    2  y   0.0000000000    3  z   0.0000000000
396  H       :     4  x  -1.4301428417    5  y   0.0000000000    6  z   1.1073927373
397  H       :     7  x   1.4301428417    8  y   0.0000000000    9  z   1.1073927373
398
399  Max    interatomic separation is    1.5136 Angstrom (    2.8603 Bohr)
400  between atoms    3 and    2, "H     " and "H     ".
401
402  Min HX interatomic separation is    0.9572 Angstrom (    1.8088 Bohr)
403
404  Max QM+MM interatomic separation is   13.9799 Angstrom (   26.4181 Bohr)
405  between the QM+MM centers   16 and   14, "H     " and "H     ".
406
407
408
409
410 Principal moments of inertia (u*A**2) and principal axes
411 --------------------------------------------------------
412
413   IA       0.614717          1.000000    0.000000    0.000000
414   IB       1.154453          0.000000    0.000000    1.000000
415   IC       1.769170          0.000000    1.000000    0.000000
416
417
418 Rotational constants
419 --------------------
420
421 The molecule is planar.
422
423               A                   B                   C
424
425         822132.5951         437764.9384         285658.8058 MHz
426           27.423392           14.602267            9.528552 cm-1
427
428
429@  Nuclear repulsion energy :    9.195434983361 Hartree
430      QM3 induced dipole vector converged in   1 iterations.
431      Final norm2 of QM3 induced dipole moment vector:    0.000000000000000
432
433      QM3 Epol is calculated according to scheme C3
434
435      QM3 induced dipole vector converged in  15 iterations.
436      Final norm2 of QM3 induced dipole moment vector:    0.033716379189391
437
438
439    **************************************************************************
440    ***************** The MM/MM classical interaction energy *****************
441    **************************************************************************
442
443
444 ------------------------------------------------------------------------
445 |  Eelec = Sum_n,s[ (Q_n*Q_s)/|R_n - R_s| ]        |       -0.00070616 |
446 |  Epol  = - 1/2*Sum_a[ Pind_a*E^site_a ]          |        0.00000097 |
447 |  Evdw  = Sum_a[ A_ma/|R_ma|^12 - B_ma/|R_ma|^6 ] |       -0.00011662 |
448 ------------------------------------------------------------------------
449 |  E(MM/MM) = Eelec + Epol + Evdw                  |       -0.00082181 |
450 ------------------------------------------------------------------------
451
452
453
454
455     ************************************************************************
456     *************** The "QM"/MM classical interaction energy ***************
457     ************************************************************************
458
459
460 ------------------------------------------------------------------------
461 |  Eelec = Sum_n,s[ (Q_n*Q_s)/|R_n - R_s| ]        |       -0.00717456 |
462 |  Epol  = - 1/2*Sum_a[ Pind_a*E^(QMclassic)_a ]   |       -0.00099428 |
463 |  Evdw  = Sum_a[ A_ma/|R_ma|^12 - B_ma/|R_ma|^6 ] |        0.00511097 |
464 ------------------------------------------------------------------------
465 |  E("QM"/MM) = Eelec + Epol + Evdw                |       -0.00305786 |
466 ------------------------------------------------------------------------
467
468
469
470
471                     .---------------------------------------.
472                     | Starting in Integral Section (HERMIT) |
473                     `---------------------------------------'
474
475
476
477    *************************************************************************
478    ****************** Output from HERMIT input processing ******************
479    *************************************************************************
480
481
482 Default print level:        1
483
484 * Nuclear model: Point charge
485
486 Calculation of one- and two-electron Hamiltonian integrals.
487
488 The following one-electron property integrals are calculated as requested:
489          - overlap integrals
490          - dipole length integrals
491          - traceless quadrupole moment integrals
492          - second moment integrals
493          - Electric field at the nuclei
494          - Potential energy at the nuclei
495
496 Center of mass  (bohr):      0.000000000000      0.000000000000      0.123933711741
497 Operator center (bohr):      0.000000000000      0.000000000000      0.000000000000
498 Gauge origin    (bohr):      0.000000000000      0.000000000000      0.000000000000
499 Dipole origin   (bohr):      0.000000000000      0.000000000000      0.000000000000
500
501
502     ************************************************************************
503     ************************** Output from HERINT **************************
504     ************************************************************************
505
506
507 Threshold for neglecting two-electron integrals:  1.00D-12
508 Number of two-electron integrals written:       21643 ( 47.9% )
509 Megabytes written:                              0.254
510
511 >>>> Total CPU  time used in HERMIT:   0.04 seconds
512 >>>> Total wall time used in HERMIT:   0.04 seconds
513
514
515                        .----------------------------------.
516                        | End of Integral Section (HERMIT) |
517                        `----------------------------------'
518
519
520
521                   .--------------------------------------------.
522                   | Starting in Wave Function Section (SIRIUS) |
523                   `--------------------------------------------'
524
525
526 *** Output from Huckel module :
527
528     Using EWMO model:          F
529     Using EHT  model:          T
530     Number of Huckel orbitals each symmetry:    7
531
532 Huckel EHT eigenvalues for symmetry :  1
533          -20.705641      -1.506569      -0.731292      -0.670540      -0.616200
534           -0.292149      -0.257509
535
536 **********************************************************************
537 *SIRIUS* a direct, restricted step, second order MCSCF program       *
538 **********************************************************************
539
540
541     Date and time (Linux)  : Sun Sep  8 20:41:05 2013
542     Host name              : lpqlx131.ups-tlse.fr
543
544 Title lines from ".mol" input file:
545     QM/MM H2O(QM)+ 5 H2O(MM)
546     ------------------------
547
548 Print level on unit LUPRI =   2 is   0
549 Print level on unit LUW4  =   2 is   5
550
551@    (Integral direct) CC calculation.
552
553@    This is a combination run starting with
554@              a restricted, closed shell Hartree-Fock calculation
555
556
557 Initial molecular orbitals are obtained according to
558 ".MOSTART EHT   " input option
559
560@    QM part is embedded in an environment :
561
562@         Model: QM3
563
564     Wave function specification
565     ============================
566
567     For the specification of the Coupled Cluster: see later.
568
569@    For the wave function of type :      >>> CC <<<
570@    Number of closed shell electrons          10
571@    Number of electrons in active shells       0
572@    Total charge of the molecule               0
573
574@    Spin multiplicity and 2 M_S                1         0
575     Total number of symmetries                 1
576@    Reference state symmetry                   1
577
578     Orbital specifications
579     ======================
580     Abelian symmetry species          All |    1
581                                       --- |  ---
582@    Occupied SCF orbitals               5 |    5
583     Secondary orbitals                 19 |   19
584     Total number of orbitals           24 |   24
585     Number of basis functions          24 |   24
586
587     Optimization information
588     ========================
589@    Number of configurations                 1
590@    Number of orbital rotations             95
591     ------------------------------------------
592@    Total number of variables               96
593
594     Maximum number of Fock   iterations      0
595     Maximum number of DIIS   iterations     60
596     Maximum number of QC-SCF iterations     60
597     Threshold for SCF convergence     1.00D-11
598
599
600 Changes of defaults for CC:
601 ---------------------------
602
603 -Dipole moment calculated
604 -Traceless quadrupole moment calculated
605 -Electronic second moment of charge calculated
606
607
608
609 >>>>> DIIS optimization of Hartree-Fock <<<<<
610
611 C1-DIIS algorithm; max error vectors =   10
612
613 Iter      Total energy       Solvation energy    Error norm    Delta(E)
614 -----------------------------------------------------------------------------
615     (Precalculated two-electron integrals are transformed to P-supermatrix elements.
616      Threshold for discarding integrals :  1.00D-12 )
617@  1  -75.5505884600       0.00000000000        2.30071D+00   -7.56D+01
618      Virial theorem: -V/T =      1.996129
619@      MULPOP O      -0.43; H       0.22; H       0.22;
620 -----------------------------------------------------------------------------
621@  2  -75.7687127667       0.00000000000        3.64253D-01   -2.18D-01
622      Virial theorem: -V/T =      1.995926
623@      MULPOP O      -0.29; H       0.13; H       0.16;
624 -----------------------------------------------------------------------------
625@  3  -75.7763874280       0.00000000000        9.33223D-02   -7.67D-03
626      Virial theorem: -V/T =      1.998471
627@      MULPOP O      -0.31; H       0.13; H       0.18;
628 -----------------------------------------------------------------------------
629@  4  -75.7770066289       0.00000000000        3.63795D-02   -6.19D-04
630      Virial theorem: -V/T =      1.996657
631@      MULPOP O      -0.33; H       0.14; H       0.19;
632 -----------------------------------------------------------------------------
633@  5  -75.7770797118       0.00000000000        7.25033D-03   -7.31D-05
634      Virial theorem: -V/T =      1.997354
635@      MULPOP O      -0.33; H       0.14; H       0.19;
636 -----------------------------------------------------------------------------
637@  6  -75.7770828578       0.00000000000        9.16121D-04   -3.15D-06
638      Virial theorem: -V/T =      1.997244
639@      MULPOP O      -0.33; H       0.14; H       0.19;
640 -----------------------------------------------------------------------------
641@  7  -75.7770829566       0.00000000000        1.57614D-04   -9.88D-08
642      Virial theorem: -V/T =      1.997252
643@      MULPOP O      -0.33; H       0.14; H       0.19;
644 -----------------------------------------------------------------------------
645@  8  -75.7770829602       0.00000000000        2.08220D-05   -3.54D-09
646      Virial theorem: -V/T =      1.997253
647@      MULPOP O      -0.33; H       0.14; H       0.19;
648 -----------------------------------------------------------------------------
649@  9  -75.7770829602       0.00000000000        6.23251D-06   -8.10D-11
650      Virial theorem: -V/T =      1.997253
651@      MULPOP O      -0.33; H       0.14; H       0.19;
652 -----------------------------------------------------------------------------
653@ 10  -75.7770829602       0.00000000000        1.53877D-06   -8.70D-12
654      Virial theorem: -V/T =      1.997253
655@      MULPOP O      -0.33; H       0.14; H       0.19;
656 -----------------------------------------------------------------------------
657@ 11  -75.7770829602       0.00000000000        2.46119D-07   -5.26D-13
658      Virial theorem: -V/T =      1.997253
659@      MULPOP O      -0.33; H       0.14; H       0.19;
660 -----------------------------------------------------------------------------
661@ 12  -75.7770829602       0.00000000000        6.73515D-08    5.68D-14
662      Virial theorem: -V/T =      1.997253
663@      MULPOP O      -0.33; H       0.14; H       0.19;
664 -----------------------------------------------------------------------------
665@ 13  -75.7770829602       0.00000000000        1.09104D-08   -1.42D-14
666      Virial theorem: -V/T =      1.997253
667@      MULPOP O      -0.33; H       0.14; H       0.19;
668 -----------------------------------------------------------------------------
669@ 14  -75.7770829602       0.00000000000        1.64579D-09    0.00D+00
670      Virial theorem: -V/T =      1.997253
671@      MULPOP O      -0.33; H       0.14; H       0.19;
672 -----------------------------------------------------------------------------
673@ 15  -75.7770829602       0.00000000000        4.06247D-10   -2.84D-14
674      Virial theorem: -V/T =      1.997253
675@      MULPOP O      -0.33; H       0.14; H       0.19;
676 -----------------------------------------------------------------------------
677@ 16  -75.7770829602       0.00000000000        9.00469D-11    2.84D-14
678      Virial theorem: -V/T =      1.997253
679@      MULPOP O      -0.33; H       0.14; H       0.19;
680 -----------------------------------------------------------------------------
681@ 17  -75.7770829602       0.00000000000        2.42821D-11   -4.26D-14
682      Virial theorem: -V/T =      1.997253
683@      MULPOP O      -0.33; H       0.14; H       0.19;
684 -----------------------------------------------------------------------------
685@ 18  -75.7770829602       0.00000000000        4.96853D-12   -4.26D-14
686
687@ *** DIIS converged in  18 iterations !
688@     Converged SCF energy, gradient:    -75.777082960242    4.97D-12
689    - total time used in SIRFCK :              0.00 seconds
690
691
692 *** SCF orbital energy analysis ***
693    (incl. solvent contribution)
694
695 Only the five lowest virtual orbital energies printed in each symmetry.
696
697 Number of electrons :   10
698 Orbital occupations :    5
699
700 Sym       Hartree-Fock orbital energies
701
702  1    -20.52165198    -1.30882635    -0.67008740    -0.54007399    -0.46633168
703         0.21405110     0.30526910     0.81958076     0.89006498     1.18901106
704
705    E(LUMO) :     0.21405110 au (symmetry 1)
706  - E(HOMO) :    -0.46633168 au (symmetry 1)
707  ------------------------------------------
708    gap     :     0.68038278 au
709
710 >>> Writing SIRIFC interface file <<<
711
712 >>>> CPU and wall time for SCF :       0.020       0.021
713
714
715                       .-----------------------------------.
716                       | >>> Final results from SIRIUS <<< |
717                       `-----------------------------------'
718
719
720@    Spin multiplicity:           1
721@    Spatial symmetry:            1
722@    Total charge of molecule:    0
723
724     QM/MM "QM3" calculation converged :
725
726        Electrostatic energy:       0.000000000000
727        Polarization energy:        0.000000000000
728        van der Waals energy:       0.005110972486
729        Total QM/MM energy:         0.000000000000
730
731@    Final HF energy:             -75.777082960242
732@    Nuclear repulsion:             9.195434983361
733@    Electronic energy:           -84.972517943603
734
735@    Final gradient norm:           0.000000000005
736
737
738     Date and time (Linux)  : Sun Sep  8 20:41:05 2013
739     Host name              : lpqlx131.ups-tlse.fr
740
741 (Only coefficients >0.0100 are printed.)
742
743 Molecular orbitals for symmetry species  1
744 ------------------------------------------
745
746    Orbital         1        2        3        4        5        6        7
747   1 O   :1s     1.0004  -0.0088  -0.0007   0.0022   0.0006   0.0499  -0.0071
748   2 O   :1s     0.0023   0.8689   0.0100  -0.2908   0.0067  -0.1413   0.0592
749   3 O   :1s    -0.0014  -0.1194   0.0098  -0.1778  -0.0015  -0.8945   0.1927
750   4 O   :2px   -0.0001  -0.0015   0.7169   0.0115   0.0009   0.1010   0.4040
751   5 O   :2py   -0.0000  -0.0010  -0.0006   0.0055   0.9167   0.0052  -0.0022
752   6 O   :2pz    0.0025   0.1141   0.0001   0.7953  -0.0040  -0.2643   0.0624
753   7 O   :2px    0.0000   0.0006  -0.1020   0.0031  -0.0004   0.1214   0.4530
754   8 O   :2py    0.0000  -0.0009  -0.0003   0.0008   0.0763  -0.0031   0.0015
755   9 O   :2pz   -0.0016  -0.0662   0.0006   0.0033  -0.0007  -0.2054   0.0444
756  11 O   :3d1-   0.0000  -0.0001  -0.0000  -0.0002   0.0179   0.0001  -0.0000
757  12 O   :3d0    0.0000   0.0012  -0.0000   0.0176   0.0001  -0.0073   0.0019
758  13 O   :3d1+   0.0000  -0.0001   0.0264  -0.0003   0.0000   0.0060   0.0193
759  14 O   :3d2+   0.0001   0.0029  -0.0005   0.0045   0.0004  -0.0102   0.0017
760  15 H   :1s    -0.0004   0.3318  -0.5625   0.3495   0.0001   0.0938   0.0257
761  16 H   :1s     0.0006  -0.1541   0.1915  -0.1297  -0.0022   1.1117   1.1863
762  17 H   :2px   -0.0006   0.0373  -0.0223   0.0314   0.0001   0.0243   0.0150
763  18 H   :2py   -0.0000  -0.0001   0.0005  -0.0002   0.0313   0.0002  -0.0006
764  19 H   :2pz    0.0005  -0.0205   0.0327   0.0079  -0.0001  -0.0213  -0.0123
765  20 H   :1s    -0.0004   0.3215   0.5421   0.3445   0.0015   0.0902  -0.0730
766  21 H   :1s     0.0006  -0.1536  -0.1956  -0.1440  -0.0034   0.4123  -1.5572
767  22 H   :2px    0.0006  -0.0384  -0.0269  -0.0333  -0.0000  -0.0159   0.0277
768  23 H   :2py   -0.0000  -0.0003  -0.0007  -0.0004   0.0293  -0.0000   0.0006
769  24 H   :2pz    0.0005  -0.0206  -0.0328   0.0058  -0.0002  -0.0117   0.0177
770
771
772
773 >>>> Total CPU  time used in SIRIUS :      0.02 seconds
774 >>>> Total wall time used in SIRIUS :      0.03 seconds
775
776
777     Date and time (Linux)  : Sun Sep  8 20:41:05 2013
778     Host name              : lpqlx131.ups-tlse.fr
779
780 NOTE:    1 warnings have been issued.
781 Check output, result, and error files for "WARNING".
782
783
784                     .---------------------------------------.
785                     | End of Wave Function Section (SIRIUS) |
786                     `---------------------------------------'
787
788
789
790                    .------------------------------------------.
791                    | Starting in Coupled Cluster Section (CC) |
792                    `------------------------------------------'
793
794
795
796 *******************************************************************************
797 *******************************************************************************
798 *                                                                             *
799 *                                                                             *
800 *                    START OF COUPLED CLUSTER CALCULATION                     *
801 *                                                                             *
802 *                                                                             *
803 *******************************************************************************
804 *******************************************************************************
805
806
807
808 CCR12 ANSATZ =   0
809
810 CCR12 APPROX =   0
811
812
813
814 *******************************************************************
815 *                                                                 *
816 *<<<<<<<<<<                                             >>>>>>>>>>*
817 *<<<<<<<<<< OUTPUT FROM COUPLED CLUSTER ENERGY PROGRAM  >>>>>>>>>>*
818 *<<<<<<<<<<                                             >>>>>>>>>>*
819 *                                                                 *
820 *******************************************************************
821
822
823             The Direct Coupled Cluster Energy Program
824             -----------------------------------------
825
826
827          Number of t1 amplitudes                 :        95
828          Number of t2 amplitudes                 :      4560
829          Total number of amplitudes in ccsd      :      4655
830
831 Iter.  1: Coupled cluster MP2   energy :     -75.9806011323794053
832 Iter.  1: Coupled cluster CCSD  energy :     -75.9855428052762250
833 Iter.  2: Coupled cluster CCSD  energy :     -75.9893776468532707
834 Iter.  3: Coupled cluster CCSD  energy :     -75.9898180105477508
835 Iter.  4: Coupled cluster CCSD  energy :     -75.9898257512391950
836
837 CCSD energy will not be converged further
838
839 right now in CCSLV calc.
840 Accumulated inner iterations at this point are     4
841
842 CCSD  energy converged to within   0.10D-11 is          -75.989825751239
843 Final 2-norm of the CC vector function:  1.19668860D-03
844  Change in norm^2 of T-amplitudes in this solvent it.:   2.9629233429034976E-002
845
846
847
848
849                   +--------------------------------------------+
850                   ! Calculating singlet intermediates for CCLR !
851                   +--------------------------------------------+
852
853
854
855            E-intermediates calculated
856            Fock-intermediate calculated
857            Gamma-intermediate calculated
858            BF-intermediate calculated
859            C-intermediate calculated
860            D-intermediate calculated
861
862
863
864
865 *******************************************************************
866 *                                                                 *
867 *<<<<<<<<<<<<< OUTPUT FROM COUPLED CLUSTER RESPONSE  >>>>>>>>>>>>>*
868 *                                                                 *
869 *<<<<<<<<<<    CALCULATION OF FIRST ORDER PROPERTIES    >>>>>>>>>>*
870 *                                                                 *
871 *******************************************************************
872
873
874
875                         +--------------------------------+
876                         ! Coupled Cluster model is: CCSD !
877                         +--------------------------------+
878
879 RPA: call cceq_str
880 RPA: exit cceq_str
881  CCSLV: We stop for now though not fully converged yet
882  Accumulated inner iterations are:           9
883  Change in norm^2 of L-amplitudes in this ccmm it.:  0.19035670727021922
884 Total <Lambda|H|CC> energy:   -75.989850294268138
885            The singles contribution is:            -0.0000020047
886            The doubles contribution is:            -0.0000225383
887 CCFOP: call CC_D1AO to recalc the 1e Density
888
889
890                            +--------------------------+
891                            ! CCSD Natural Occupations !
892                            +--------------------------+
893
894
895   Symmetry block number:  1
896   ---------------------
897
898   1.99991651   1.98464730   1.97308353   1.96754721   1.96475468
899   0.02630792   0.02386011   0.01698363   0.01157810   0.00589506
900   0.00562007   0.00509342   0.00451035   0.00439959   0.00115102
901   0.00111324   0.00072427   0.00065919   0.00055873   0.00053421
902   0.00049323   0.00047407   0.00005685   0.00003771
903
904   Sum in this symmetry class:  10.000000
905
906
907   Total Sum of natural occupation numbers:  10.000000
908
909   Dynamical correlation move: 0.110051 electrons
910
911
912 *****************************************************************
913 **** Output from Coupled Cluster/Molecular Mechanics program ****
914 *****************************************************************
915
916
917                         +--------------------------------+
918                         ! Coupled Cluster model is: CCSD !
919                         +--------------------------------+
920
921      QM3 induced Dipole vector converged in   1 iterations.
922      Final norm2 of QM3 induced dipole moment vector:    0.000000000000000
923
924
925 E(QM/MM) contribution in iteration  0:           -0.0070803185
926 CC energy in the  current CCMM iteration:       -76.2465288054
927 CC energy in the previous CCMM iteration:         0.0000000000
928 Change in Total energy in this CCMM it.:         -0.762465E+02
929
930
931 *****************************************************************
932 ******* End of Coupled Cluster/Molecular Mechanics program ******
933 *****************************************************************
934
935
936
937             +--------------------------------------------------------+
938             ! Unrelaxed CCSD    First-order one-electron properties: !
939             +--------------------------------------------------------+
940
941
942
943                            +-------------------------+
944                            !  Electric Dipole Moment !
945                            +-------------------------+
946
947
948
949                          Total Molecular Dipole Moment
950                          -----------------------------
951
952                 au               Debye          C m (/(10**-30)
953
954      x      0.07701788         0.19575991         0.65298478
955      y      0.01145500         0.02911572         0.09711957
956      z      0.79936823         2.03179126         6.77732612
957
958
959
960
961                          +-----------------------------+
962                          !  Electric Quadrupole Moment !
963                          +-----------------------------+
964
965
966
967                        Total Molecular quadrupole moment
968                        ---------------------------------
969
970                    X              Y              Z
971
972               Column   1     Column   2     Column   3
973       1       1.54246105     0.00246093     0.12053374
974       2       0.00246093    -1.66217700     0.00669717
975       3       0.12053374     0.00669717     0.11971594
976    ==== End of matrix output ====
977
978
979                      +-------------------------------------+
980                      !  Electronic second moment of charge !
981                      +-------------------------------------+
982
983                    X              Y              Z
984
985               Column   1     Column   2     Column   3
986       1       7.21233652    -0.00164062    -0.08035582
987       2      -0.00164062     5.25814479    -0.00446478
988       3      -0.08035582    -0.00446478     6.52285352
989    ==== End of matrix output ====
990
991 Alfa**2 Invariant:                         40.082974
992 Beta**2 Invariant:                          2.966309
993
994 Isotropic Property:                         6.331112 a.u.
995 Property anisotropy invariant:              1.722298 a.u.
996
997
998 *******************************************************************
999 *                                                                 *
1000 *<<<<<<<<<<                                             >>>>>>>>>>*
1001 *<<<<<<<<<< OUTPUT FROM COUPLED CLUSTER ENERGY PROGRAM  >>>>>>>>>>*
1002 *<<<<<<<<<<                                             >>>>>>>>>>*
1003 *                                                                 *
1004 *******************************************************************
1005
1006
1007             The Direct Coupled Cluster Energy Program
1008             -----------------------------------------
1009
1010
1011          Number of t1 amplitudes                 :        95
1012          Number of t2 amplitudes                 :      4560
1013          Total number of amplitudes in ccsd      :      4655
1014
1015 Iter.  1: Coupled cluster RSTAR energy :     -75.9898257512391950
1016 Iter.  1: Coupled cluster CCSD  energy :     -75.9898319334650978
1017 Iter.  2: Coupled cluster CCSD  energy :     -75.9898324213187948
1018 Iter.  3: Coupled cluster CCSD  energy :     -75.9898333205351690
1019 Iter.  4: Coupled cluster CCSD  energy :     -75.9898338927212365
1020
1021 CCSD energy will not be converged further
1022
1023 right now in CCSLV calc.
1024 Accumulated inner iterations at this point are    13
1025
1026 CCSD  energy converged to within   0.10D-11 is          -75.989833892721
1027 Final 2-norm of the CC vector function:  1.08931746D-05
1028  Change in norm^2 of T-amplitudes in this solvent it.:   9.9608927015479298E-006
1029
1030
1031
1032
1033                   +--------------------------------------------+
1034                   ! Calculating singlet intermediates for CCLR !
1035                   +--------------------------------------------+
1036
1037
1038
1039            E-intermediates calculated
1040            Fock-intermediate calculated
1041            Gamma-intermediate calculated
1042            BF-intermediate calculated
1043            C-intermediate calculated
1044            D-intermediate calculated
1045
1046
1047
1048
1049 *******************************************************************
1050 *                                                                 *
1051 *<<<<<<<<<<<<< OUTPUT FROM COUPLED CLUSTER RESPONSE  >>>>>>>>>>>>>*
1052 *                                                                 *
1053 *<<<<<<<<<<    CALCULATION OF FIRST ORDER PROPERTIES    >>>>>>>>>>*
1054 *                                                                 *
1055 *******************************************************************
1056
1057
1058
1059                         +--------------------------------+
1060                         ! Coupled Cluster model is: CCSD !
1061                         +--------------------------------+
1062
1063 RPA: call cceq_str
1064 Vector nr.  1 of symmetry  1 found on file - RESTART SUCCESS
1065 Start vector is a CCSD      L0  vector
1066 RPA: exit cceq_str
1067  CCSLV: We stop for now though not fully converged yet
1068  Accumulated inner iterations are:          18
1069  Change in norm^2 of L-amplitudes in this ccmm it.:   3.5175599842895977E-006
1070 Total <Lambda|H|CC> energy:   -75.989834391793948
1071            The singles contribution is:            -0.0000000318
1072            The doubles contribution is:            -0.0000004672
1073 CCFOP: call CC_D1AO to recalc the 1e Density
1074
1075
1076                            +--------------------------+
1077                            ! CCSD Natural Occupations !
1078                            +--------------------------+
1079
1080
1081   Symmetry block number:  1
1082   ---------------------
1083
1084   1.99991651   1.98464980   1.97308540   1.96753449   1.96474961
1085   0.02631847   0.02386861   0.01698393   0.01157195   0.00589428
1086   0.00562070   0.00509354   0.00451041   0.00439960   0.00115102
1087   0.00111324   0.00072425   0.00065917   0.00055882   0.00053428
1088   0.00049339   0.00047415   0.00005674   0.00003766
1089
1090   Sum in this symmetry class:  10.000000
1091
1092
1093   Total Sum of natural occupation numbers:  10.000000
1094
1095   Dynamical correlation move: 0.110064 electrons
1096
1097
1098 *****************************************************************
1099 **** Output from Coupled Cluster/Molecular Mechanics program ****
1100 *****************************************************************
1101
1102
1103                         +--------------------------------+
1104                         ! Coupled Cluster model is: CCSD !
1105                         +--------------------------------+
1106
1107      QM3 induced Dipole vector converged in   1 iterations.
1108      Final norm2 of QM3 induced dipole moment vector:    0.000000000000000
1109
1110
1111 E(QM/MM) contribution in iteration  1:           -0.0070784206
1112 CC energy in the  current CCMM iteration:       -76.2465123482
1113 CC energy in the previous CCMM iteration:       -76.2465288054
1114 Change in Total energy in this CCMM it.:          0.164572E-04
1115
1116
1117 *****************************************************************
1118 ******* End of Coupled Cluster/Molecular Mechanics program ******
1119 *****************************************************************
1120
1121
1122
1123             +--------------------------------------------------------+
1124             ! Unrelaxed CCSD    First-order one-electron properties: !
1125             +--------------------------------------------------------+
1126
1127
1128
1129                            +-------------------------+
1130                            !  Electric Dipole Moment !
1131                            +-------------------------+
1132
1133
1134
1135                          Total Molecular Dipole Moment
1136                          -----------------------------
1137
1138                 au               Debye          C m (/(10**-30)
1139
1140      x      0.07705686         0.19585899         0.65331526
1141      y      0.01147219         0.02915940         0.09726528
1142      z      0.79906684         2.03102519         6.77477081
1143
1144
1145
1146
1147                          +-----------------------------+
1148                          !  Electric Quadrupole Moment !
1149                          +-----------------------------+
1150
1151
1152
1153                        Total Molecular quadrupole moment
1154                        ---------------------------------
1155
1156                    X              Y              Z
1157
1158               Column   1     Column   2     Column   3
1159       1       1.54238548     0.00245707     0.12061456
1160       2       0.00245707    -1.66196729     0.00670677
1161       3       0.12061456     0.00670677     0.11958181
1162    ==== End of matrix output ====
1163
1164
1165                      +-------------------------------------+
1166                      !  Electronic second moment of charge !
1167                      +-------------------------------------+
1168
1169                    X              Y              Z
1170
1171               Column   1     Column   2     Column   3
1172       1       7.21261230    -0.00163805    -0.08040971
1173       2      -0.00163805     5.25823038    -0.00447118
1174       3      -0.08040971    -0.00447118     6.52316833
1175    ==== End of matrix output ====
1176
1177 Alfa**2 Invariant:                         40.085828
1178 Beta**2 Invariant:                          2.966970
1179
1180 Isotropic Property:                         6.331337 a.u.
1181 Property anisotropy invariant:              1.722489 a.u.
1182
1183
1184 *******************************************************************
1185 *                                                                 *
1186 *<<<<<<<<<<                                             >>>>>>>>>>*
1187 *<<<<<<<<<< OUTPUT FROM COUPLED CLUSTER ENERGY PROGRAM  >>>>>>>>>>*
1188 *<<<<<<<<<<                                             >>>>>>>>>>*
1189 *                                                                 *
1190 *******************************************************************
1191
1192
1193             The Direct Coupled Cluster Energy Program
1194             -----------------------------------------
1195
1196
1197          Number of t1 amplitudes                 :        95
1198          Number of t2 amplitudes                 :      4560
1199          Total number of amplitudes in ccsd      :      4655
1200
1201 Iter.  1: Coupled cluster RSTAR energy :     -75.9898338927212365
1202 Iter.  1: Coupled cluster CCSD  energy :     -75.9898337361652239
1203 Iter.  2: Coupled cluster CCSD  energy :     -75.9898336853127319
1204 Iter.  3: Coupled cluster CCSD  energy :     -75.9898336738731501
1205 Iter.  4: Coupled cluster CCSD  energy :     -75.9898336794875178
1206
1207 CCSD energy will not be converged further
1208
1209 right now in CCSLV calc.
1210 Accumulated inner iterations at this point are    22
1211
1212 CCSD  energy converged to within   0.10D-11 is          -75.989833679488
1213 Final 2-norm of the CC vector function:  6.83019213D-08
1214  Change in norm^2 of T-amplitudes in this solvent it.:  -1.4802057433926930E-007
1215
1216
1217
1218
1219                   +--------------------------------------------+
1220                   ! Calculating singlet intermediates for CCLR !
1221                   +--------------------------------------------+
1222
1223
1224
1225            E-intermediates calculated
1226            Fock-intermediate calculated
1227            Gamma-intermediate calculated
1228            BF-intermediate calculated
1229            C-intermediate calculated
1230            D-intermediate calculated
1231
1232
1233
1234
1235 *******************************************************************
1236 *                                                                 *
1237 *<<<<<<<<<<<<< OUTPUT FROM COUPLED CLUSTER RESPONSE  >>>>>>>>>>>>>*
1238 *                                                                 *
1239 *<<<<<<<<<<    CALCULATION OF FIRST ORDER PROPERTIES    >>>>>>>>>>*
1240 *                                                                 *
1241 *******************************************************************
1242
1243
1244
1245                         +--------------------------------+
1246                         ! Coupled Cluster model is: CCSD !
1247                         +--------------------------------+
1248
1249 RPA: call cceq_str
1250 Vector nr.  1 of symmetry  1 found on file - RESTART SUCCESS
1251 Start vector is a CCSD      L0  vector
1252 RPA: exit cceq_str
1253  CCSLV: We stop for now though not fully converged yet
1254  Accumulated inner iterations are:          27
1255  Change in norm^2 of L-amplitudes in this ccmm it.:   5.3069631522628669E-008
1256 Total <Lambda|H|CC> energy:   -75.989833687146955
1257            The singles contribution is:            -0.0000000003
1258            The doubles contribution is:            -0.0000000074
1259 CCFOP: call CC_D1AO to recalc the 1e Density
1260
1261
1262                            +--------------------------+
1263                            ! CCSD Natural Occupations !
1264                            +--------------------------+
1265
1266
1267   Symmetry block number:  1
1268   ---------------------
1269
1270   1.99991651   1.98464982   1.97308542   1.96753454   1.96474968
1271   0.02631838   0.02386855   0.01698390   0.01157193   0.00589429
1272   0.00562070   0.00509354   0.00451042   0.00439960   0.00115102
1273   0.00111324   0.00072425   0.00065917   0.00055882   0.00053428
1274   0.00049339   0.00047415   0.00005674   0.00003766
1275
1276   Sum in this symmetry class:  10.000000
1277
1278
1279   Total Sum of natural occupation numbers:  10.000000
1280
1281   Dynamical correlation move: 0.110064 electrons
1282
1283
1284 *****************************************************************
1285 **** Output from Coupled Cluster/Molecular Mechanics program ****
1286 *****************************************************************
1287
1288
1289                         +--------------------------------+
1290                         ! Coupled Cluster model is: CCSD !
1291                         +--------------------------------+
1292
1293      QM3 induced Dipole vector converged in   1 iterations.
1294      Final norm2 of QM3 induced dipole moment vector:    0.000000000000000
1295
1296
1297 E(QM/MM) contribution in iteration  2:           -0.0070784203
1298 CC energy in the  current CCMM iteration:       -76.2465116427
1299 CC energy in the previous CCMM iteration:       -76.2465123482
1300 Change in Total energy in this CCMM it.:          0.705440E-06
1301
1302
1303 *****************************************************************
1304 ******* End of Coupled Cluster/Molecular Mechanics program ******
1305 *****************************************************************
1306
1307
1308
1309             +--------------------------------------------------------+
1310             ! Unrelaxed CCSD    First-order one-electron properties: !
1311             +--------------------------------------------------------+
1312
1313
1314
1315                            +-------------------------+
1316                            !  Electric Dipole Moment !
1317                            +-------------------------+
1318
1319
1320
1321                          Total Molecular Dipole Moment
1322                          -----------------------------
1323
1324                 au               Debye          C m (/(10**-30)
1325
1326      x      0.07705705         0.19585946         0.65331684
1327      y      0.01147274         0.02916078         0.09726990
1328      z      0.79906605         2.03102319         6.77476413
1329
1330
1331
1332
1333                          +-----------------------------+
1334                          !  Electric Quadrupole Moment !
1335                          +-----------------------------+
1336
1337
1338
1339                        Total Molecular quadrupole moment
1340                        ---------------------------------
1341
1342                    X              Y              Z
1343
1344               Column   1     Column   2     Column   3
1345       1       1.54238534     0.00245692     0.12061511
1346       2       0.00245692    -1.66196665     0.00670710
1347       3       0.12061511     0.00670710     0.11958131
1348    ==== End of matrix output ====
1349
1350
1351                      +-------------------------------------+
1352                      !  Electronic second moment of charge !
1353                      +-------------------------------------+
1354
1355                    X              Y              Z
1356
1357               Column   1     Column   2     Column   3
1358       1       7.21261286    -0.00163795    -0.08041007
1359       2      -0.00163795     5.25823042    -0.00447140
1360       3      -0.08041007    -0.00447140     6.52316913
1361    ==== End of matrix output ====
1362
1363 Alfa**2 Invariant:                         40.085834
1364 Beta**2 Invariant:                          2.966972
1365
1366 Isotropic Property:                         6.331337 a.u.
1367 Property anisotropy invariant:              1.722490 a.u.
1368
1369
1370 *******************************************************************
1371 *                                                                 *
1372 *<<<<<<<<<<                                             >>>>>>>>>>*
1373 *<<<<<<<<<< OUTPUT FROM COUPLED CLUSTER ENERGY PROGRAM  >>>>>>>>>>*
1374 *<<<<<<<<<<                                             >>>>>>>>>>*
1375 *                                                                 *
1376 *******************************************************************
1377
1378
1379             The Direct Coupled Cluster Energy Program
1380             -----------------------------------------
1381
1382
1383          Number of t1 amplitudes                 :        95
1384          Number of t2 amplitudes                 :      4560
1385          Total number of amplitudes in ccsd      :      4655
1386
1387 Iter.  1: Coupled cluster RSTAR energy :     -75.9898336794875178
1388 Iter.  1: Coupled cluster CCSD  energy :     -75.9898336798422207
1389 Iter.  2: Coupled cluster CCSD  energy :     -75.9898336798451055
1390 Iter.  3: Coupled cluster CCSD  energy :     -75.9898336799777638
1391 Iter.  4: Coupled cluster CCSD  energy :     -75.9898336799807623
1392
1393 CCSD energy will not be converged further
1394
1395 right now in CCSLV calc.
1396 Accumulated inner iterations at this point are    31
1397
1398 CCSD  energy converged to within   0.10D-11 is          -75.989833679981
1399 Final 2-norm of the CC vector function:  9.74339964D-10
1400  Change in norm^2 of T-amplitudes in this solvent it.:   5.6497749534312192E-010
1401
1402
1403
1404
1405                   +--------------------------------------------+
1406                   ! Calculating singlet intermediates for CCLR !
1407                   +--------------------------------------------+
1408
1409
1410
1411            E-intermediates calculated
1412            Fock-intermediate calculated
1413            Gamma-intermediate calculated
1414            BF-intermediate calculated
1415            C-intermediate calculated
1416            D-intermediate calculated
1417
1418
1419
1420
1421 *******************************************************************
1422 *                                                                 *
1423 *<<<<<<<<<<<<< OUTPUT FROM COUPLED CLUSTER RESPONSE  >>>>>>>>>>>>>*
1424 *                                                                 *
1425 *<<<<<<<<<<    CALCULATION OF FIRST ORDER PROPERTIES    >>>>>>>>>>*
1426 *                                                                 *
1427 *******************************************************************
1428
1429
1430
1431                         +--------------------------------+
1432                         ! Coupled Cluster model is: CCSD !
1433                         +--------------------------------+
1434
1435 RPA: call cceq_str
1436 Vector nr.  1 of symmetry  1 found on file - RESTART SUCCESS
1437 Start vector is a CCSD      L0  vector
1438 RPA: exit cceq_str
1439  CCSLV: We stop for now though not fully converged yet
1440  Accumulated inner iterations are:          36
1441  Change in norm^2 of L-amplitudes in this ccmm it.:  -3.9836633991541248E-011
1442 Total <Lambda|H|CC> energy:   -75.989833679957229
1443            The singles contribution is:             0.0000000000
1444            The doubles contribution is:             0.0000000000
1445 CCFOP: call CC_D1AO to recalc the 1e Density
1446
1447
1448                            +--------------------------+
1449                            ! CCSD Natural Occupations !
1450                            +--------------------------+
1451
1452
1453   Symmetry block number:  1
1454   ---------------------
1455
1456   1.99991651   1.98464982   1.97308542   1.96753454   1.96474968
1457   0.02631838   0.02386855   0.01698390   0.01157193   0.00589428
1458   0.00562070   0.00509354   0.00451042   0.00439960   0.00115102
1459   0.00111324   0.00072425   0.00065917   0.00055882   0.00053428
1460   0.00049339   0.00047415   0.00005674   0.00003766
1461
1462   Sum in this symmetry class:  10.000000
1463
1464
1465   Total Sum of natural occupation numbers:  10.000000
1466
1467   Dynamical correlation move: 0.110064 electrons
1468
1469
1470 *****************************************************************
1471 **** Output from Coupled Cluster/Molecular Mechanics program ****
1472 *****************************************************************
1473
1474
1475                         +--------------------------------+
1476                         ! Coupled Cluster model is: CCSD !
1477                         +--------------------------------+
1478
1479      QM3 induced Dipole vector converged in   1 iterations.
1480      Final norm2 of QM3 induced dipole moment vector:    0.000000000000000
1481
1482
1483 E(QM/MM) contribution in iteration  3:           -0.0070784203
1484 CC energy in the  current CCMM iteration:       -76.2465116355
1485 CC energy in the previous CCMM iteration:       -76.2465116427
1486 Change in Total energy in this CCMM it.:          0.719895E-08
1487
1488
1489 *****************************************************************
1490 ******* End of Coupled Cluster/Molecular Mechanics program ******
1491 *****************************************************************
1492
1493
1494
1495             +--------------------------------------------------------+
1496             ! Unrelaxed CCSD    First-order one-electron properties: !
1497             +--------------------------------------------------------+
1498
1499
1500
1501                            +-------------------------+
1502                            !  Electric Dipole Moment !
1503                            +-------------------------+
1504
1505
1506
1507                          Total Molecular Dipole Moment
1508                          -----------------------------
1509
1510                 au               Debye          C m (/(10**-30)
1511
1512      x      0.07705705         0.19585946         0.65331684
1513      y      0.01147275         0.02916082         0.09727004
1514      z      0.79906605         2.03102319         6.77476412
1515
1516
1517
1518
1519                          +-----------------------------+
1520                          !  Electric Quadrupole Moment !
1521                          +-----------------------------+
1522
1523
1524
1525                        Total Molecular quadrupole moment
1526                        ---------------------------------
1527
1528                    X              Y              Z
1529
1530               Column   1     Column   2     Column   3
1531       1       1.54238534     0.00245691     0.12061511
1532       2       0.00245691    -1.66196665     0.00670711
1533       3       0.12061511     0.00670711     0.11958131
1534    ==== End of matrix output ====
1535
1536
1537                      +-------------------------------------+
1538                      !  Electronic second moment of charge !
1539                      +-------------------------------------+
1540
1541                    X              Y              Z
1542
1543               Column   1     Column   2     Column   3
1544       1       7.21261287    -0.00163794    -0.08041007
1545       2      -0.00163794     5.25823043    -0.00447140
1546       3      -0.08041007    -0.00447140     6.52316914
1547    ==== End of matrix output ====
1548
1549 Alfa**2 Invariant:                         40.085834
1550 Beta**2 Invariant:                          2.966972
1551
1552 Isotropic Property:                         6.331337 a.u.
1553 Property anisotropy invariant:              1.722490 a.u.
1554
1555
1556 *******************************************************************
1557 *                                                                 *
1558 *<<<<<<<<<<                                             >>>>>>>>>>*
1559 *<<<<<<<<<< OUTPUT FROM COUPLED CLUSTER ENERGY PROGRAM  >>>>>>>>>>*
1560 *<<<<<<<<<<                                             >>>>>>>>>>*
1561 *                                                                 *
1562 *******************************************************************
1563
1564
1565             The Direct Coupled Cluster Energy Program
1566             -----------------------------------------
1567
1568
1569          Number of t1 amplitudes                 :        95
1570          Number of t2 amplitudes                 :      4560
1571          Total number of amplitudes in ccsd      :      4655
1572
1573 Iter.  1: Coupled cluster RSTAR energy :     -75.9898336799807623
1574 Iter.  1: Coupled cluster CCSD  energy :     -75.9898336799616487
1575 Iter.  2: Coupled cluster CCSD  energy :     -75.9898336799528238
1576 Iter.  3: Coupled cluster CCSD  energy :     -75.9898336799513601
1577 Iter.  4: Coupled cluster CCSD  energy :     -75.9898336799520706
1578
1579 CCSD energy will not be converged further
1580
1581 right now in CCSLV calc.
1582 Accumulated inner iterations at this point are    40
1583
1584 CCSD  energy converged to within   0.10D-11 is          -75.989833679952
1585 Final 2-norm of the CC vector function:  8.49559910D-12
1586  Change in norm^2 of T-amplitudes in this solvent it.:  -2.2792458892473277E-011
1587
1588
1589
1590
1591                   +--------------------------------------------+
1592                   ! Calculating singlet intermediates for CCLR !
1593                   +--------------------------------------------+
1594
1595
1596
1597            E-intermediates calculated
1598            Fock-intermediate calculated
1599            Gamma-intermediate calculated
1600            BF-intermediate calculated
1601            C-intermediate calculated
1602            D-intermediate calculated
1603
1604
1605
1606
1607 *******************************************************************
1608 *                                                                 *
1609 *<<<<<<<<<<<<< OUTPUT FROM COUPLED CLUSTER RESPONSE  >>>>>>>>>>>>>*
1610 *                                                                 *
1611 *<<<<<<<<<<    CALCULATION OF FIRST ORDER PROPERTIES    >>>>>>>>>>*
1612 *                                                                 *
1613 *******************************************************************
1614
1615
1616
1617                         +--------------------------------+
1618                         ! Coupled Cluster model is: CCSD !
1619                         +--------------------------------+
1620
1621 RPA: call cceq_str
1622 Vector nr.  1 of symmetry  1 found on file - RESTART SUCCESS
1623 Start vector is a CCSD      L0  vector
1624 RPA: exit cceq_str
1625  CCSLV: We stop for now though not fully converged yet
1626  Accumulated inner iterations are:          45
1627  Change in norm^2 of L-amplitudes in this ccmm it.:   5.8535121194580597E-012
1628 Total <Lambda|H|CC> energy:   -75.989833679952952
1629            The singles contribution is:            -0.0000000000
1630            The doubles contribution is:            -0.0000000000
1631 CCFOP: call CC_D1AO to recalc the 1e Density
1632
1633
1634                            +--------------------------+
1635                            ! CCSD Natural Occupations !
1636                            +--------------------------+
1637
1638
1639   Symmetry block number:  1
1640   ---------------------
1641
1642   1.99991651   1.98464982   1.97308542   1.96753454   1.96474968
1643   0.02631838   0.02386855   0.01698390   0.01157193   0.00589428
1644   0.00562070   0.00509354   0.00451042   0.00439960   0.00115102
1645   0.00111324   0.00072425   0.00065917   0.00055882   0.00053428
1646   0.00049339   0.00047415   0.00005674   0.00003766
1647
1648   Sum in this symmetry class:  10.000000
1649
1650
1651   Total Sum of natural occupation numbers:  10.000000
1652
1653   Dynamical correlation move: 0.110064 electrons
1654
1655
1656 *****************************************************************
1657 **** Output from Coupled Cluster/Molecular Mechanics program ****
1658 *****************************************************************
1659
1660
1661                         +--------------------------------+
1662                         ! Coupled Cluster model is: CCSD !
1663                         +--------------------------------+
1664
1665      QM3 induced Dipole vector converged in   1 iterations.
1666      Final norm2 of QM3 induced dipole moment vector:    0.000000000000000
1667
1668
1669 E(QM/MM) contribution in iteration  4:           -0.0070784203
1670 CC energy in the  current CCMM iteration:       -76.2465116355
1671 CC energy in the previous CCMM iteration:       -76.2465116355
1672 Change in Total energy in this CCMM it.:          0.420641E-11
1673
1674
1675 *****************************************************************
1676 ******* End of Coupled Cluster/Molecular Mechanics program ******
1677 *****************************************************************
1678
1679
1680
1681             +--------------------------------------------------------+
1682             ! Unrelaxed CCSD    First-order one-electron properties: !
1683             +--------------------------------------------------------+
1684
1685
1686
1687                            +-------------------------+
1688                            !  Electric Dipole Moment !
1689                            +-------------------------+
1690
1691
1692
1693                          Total Molecular Dipole Moment
1694                          -----------------------------
1695
1696                 au               Debye          C m (/(10**-30)
1697
1698      x      0.07705705         0.19585946         0.65331684
1699      y      0.01147275         0.02916082         0.09727004
1700      z      0.79906605         2.03102319         6.77476412
1701
1702
1703
1704
1705                          +-----------------------------+
1706                          !  Electric Quadrupole Moment !
1707                          +-----------------------------+
1708
1709
1710
1711                        Total Molecular quadrupole moment
1712                        ---------------------------------
1713
1714                    X              Y              Z
1715
1716               Column   1     Column   2     Column   3
1717       1       1.54238534     0.00245691     0.12061511
1718       2       0.00245691    -1.66196665     0.00670711
1719       3       0.12061511     0.00670711     0.11958131
1720    ==== End of matrix output ====
1721
1722
1723                      +-------------------------------------+
1724                      !  Electronic second moment of charge !
1725                      +-------------------------------------+
1726
1727                    X              Y              Z
1728
1729               Column   1     Column   2     Column   3
1730       1       7.21261287    -0.00163794    -0.08041007
1731       2      -0.00163794     5.25823043    -0.00447140
1732       3      -0.08041007    -0.00447140     6.52316914
1733    ==== End of matrix output ====
1734
1735 Alfa**2 Invariant:                         40.085834
1736 Beta**2 Invariant:                          2.966972
1737
1738 Isotropic Property:                         6.331337 a.u.
1739 Property anisotropy invariant:              1.722490 a.u.
1740
1741
1742 *******************************************************************
1743 *                                                                 *
1744 *<<<<<<<<<<                                             >>>>>>>>>>*
1745 *<<<<<<<<<< OUTPUT FROM COUPLED CLUSTER ENERGY PROGRAM  >>>>>>>>>>*
1746 *<<<<<<<<<<                                             >>>>>>>>>>*
1747 *                                                                 *
1748 *******************************************************************
1749
1750
1751             The Direct Coupled Cluster Energy Program
1752             -----------------------------------------
1753
1754
1755          Number of t1 amplitudes                 :        95
1756          Number of t2 amplitudes                 :      4560
1757          Total number of amplitudes in ccsd      :      4655
1758
1759 Iter.  1: Coupled cluster RSTAR energy :     -75.9898336799520706
1760 Iter.  1: Coupled cluster CCSD  energy :     -75.9898336799519001
1761
1762 CCSD  energy converged to within   0.10D-11 is          -75.989833679952
1763 Final 2-norm of the CC vector function:  3.32563467D-12
1764  Change in norm^2 of T-amplitudes in this solvent it.:   2.2211399386407038E-014
1765
1766
1767
1768
1769                   +--------------------------------------------+
1770                   ! Calculating singlet intermediates for CCLR !
1771                   +--------------------------------------------+
1772
1773
1774
1775            E-intermediates calculated
1776            Fock-intermediate calculated
1777            Gamma-intermediate calculated
1778            BF-intermediate calculated
1779            C-intermediate calculated
1780            D-intermediate calculated
1781
1782
1783
1784
1785 *******************************************************************
1786 *                                                                 *
1787 *<<<<<<<<<<<<< OUTPUT FROM COUPLED CLUSTER RESPONSE  >>>>>>>>>>>>>*
1788 *                                                                 *
1789 *<<<<<<<<<<    CALCULATION OF FIRST ORDER PROPERTIES    >>>>>>>>>>*
1790 *                                                                 *
1791 *******************************************************************
1792
1793
1794
1795                         +--------------------------------+
1796                         ! Coupled Cluster model is: CCSD !
1797                         +--------------------------------+
1798
1799 RPA: call cceq_str
1800 Vector nr.  1 of symmetry  1 found on file - RESTART SUCCESS
1801 Start vector is a CCSD      L0  vector
1802 RPA: exit cceq_str
1803  Change in norm^2 of L-amplitudes in this ccmm it.:   6.9111383282915995E-015
1804 Total <Lambda|H|CC> energy:   -75.989833679951886
1805            The singles contribution is:             0.0000000000
1806            The doubles contribution is:             0.0000000000
1807 CCFOP: call CC_D1AO to recalc the 1e Density
1808
1809
1810                            +--------------------------+
1811                            ! CCSD Natural Occupations !
1812                            +--------------------------+
1813
1814
1815   Symmetry block number:  1
1816   ---------------------
1817
1818   1.99991651   1.98464982   1.97308542   1.96753454   1.96474968
1819   0.02631838   0.02386855   0.01698390   0.01157193   0.00589428
1820   0.00562070   0.00509354   0.00451042   0.00439960   0.00115102
1821   0.00111324   0.00072425   0.00065917   0.00055882   0.00053428
1822   0.00049339   0.00047415   0.00005674   0.00003766
1823
1824   Sum in this symmetry class:  10.000000
1825
1826
1827   Total Sum of natural occupation numbers:  10.000000
1828
1829   Dynamical correlation move: 0.110064 electrons
1830
1831
1832 *****************************************************************
1833 **** Output from Coupled Cluster/Molecular Mechanics program ****
1834 *****************************************************************
1835
1836
1837                         +--------------------------------+
1838                         ! Coupled Cluster model is: CCSD !
1839                         +--------------------------------+
1840
1841      QM3 induced Dipole vector converged in   1 iterations.
1842      Final norm2 of QM3 induced dipole moment vector:    0.000000000000000
1843
1844
1845 E(QM/MM) contribution in iteration  5:           -0.0070784203
1846 CC energy in the  current CCMM iteration:       -76.2465116355
1847 CC energy in the previous CCMM iteration:       -76.2465116355
1848 Change in Total energy in this CCMM it.:          0.105160E-11
1849
1850
1851 Perturbative correction to polarization energy is calculated
1852 (Model SPC_EC3)
1853      QM3 induced Dipole vector converged in   7 iterations.
1854      Final norm2 of QM3 induced dipole moment vector:    0.033915977176272
1855
1856
1857 ------------------------------------------------------------------------
1858 |<<<<<<<<<<<<<<< The MM/MM classical interaction energy >>>>>>>>>>>>>>>|
1859 ------------------------------------------------------------------------
1860 |  Eelec = Sum_n,s[ (Q_n*Q_s)/|R_n - R_s| ]        |       -0.00070616 |
1861 ------------------------------------------------------------------------
1862 |  Epol  = - 1/2*Sum_a[ MYind_a*E^site_a ]         |        0.00000890 |
1863 ------------------------------------------------------------------------
1864 |  Evdw  = Sum_a[ A_ma/|R_ma|^12 - B_ma/|R_ma|^6 ] |       -0.00011662 |
1865 ------------------------------------------------------------------------
1866 |**************************************************|*******************|
1867 ------------------------------------------------------------------------
1868 |  E(MM/MM) = Eelec + Epol + Evdw                  |       -0.00081388 |
1869 ------------------------------------------------------------------------
1870
1871
1872 +======================================================================+
1873 |<<<<<<<<<<<<<< Final output from CCSD/MM energy program >>>>>>>>>>>>>>|
1874 +======================================================================+
1875 |      Eelec      |      Epol       |      Evdw       |    E(QM/MM)    |
1876 +----------------------------------------------------------------------+
1877 |   -0.0102935015 |   -0.0017514318 |    0.0051109725 |  -0.0070784203 |
1878 +----------------------------------------------------------------------+
1879 +======================================================================+
1880 +----------------------------------------------------------------------+
1881 |  <L|H(vac)|CC>  | <H(qm)+H(qmmm)> | Delta E(mm/mm)  | E_rep          |
1882 +----------------------------------------------------------------------+
1883 |  -76.2394332152 |  -76.2465116355 |    0.0000079260 |   0.0000000000 |
1884 +======================================================================+
1885
1886
1887 Maximum inner iterations for t set to   4 in each outer iteration
1888 Maximum inner iterations for t-bar set to   5 in each outer iteration
1889
1890
1891  CCMM equations are converged in   5 outer iterations
1892  CCMM equations are converged in  50 inner iterations
1893 *****************************************************************
1894 ******* End of Coupled Cluster/Molecular Mechanics program ******
1895 *****************************************************************
1896
1897
1898
1899             +--------------------------------------------------------+
1900             ! Unrelaxed CCSD    First-order one-electron properties: !
1901             +--------------------------------------------------------+
1902
1903
1904
1905                            +-------------------------+
1906                            !  Electric Dipole Moment !
1907                            +-------------------------+
1908
1909
1910
1911                          Total Molecular Dipole Moment
1912                          -----------------------------
1913
1914                 au               Debye          C m (/(10**-30)
1915
1916      x      0.07705705         0.19585946         0.65331684
1917      y      0.01147275         0.02916082         0.09727004
1918      z      0.79906605         2.03102319         6.77476412
1919
1920
1921
1922
1923                          +-----------------------------+
1924                          !  Electric Quadrupole Moment !
1925                          +-----------------------------+
1926
1927
1928
1929                        Total Molecular quadrupole moment
1930                        ---------------------------------
1931
1932                    X              Y              Z
1933
1934               Column   1     Column   2     Column   3
1935       1       1.54238534     0.00245691     0.12061511
1936       2       0.00245691    -1.66196665     0.00670711
1937       3       0.12061511     0.00670711     0.11958131
1938    ==== End of matrix output ====
1939
1940
1941                      +-------------------------------------+
1942                      !  Electronic second moment of charge !
1943                      +-------------------------------------+
1944
1945                    X              Y              Z
1946
1947               Column   1     Column   2     Column   3
1948       1       7.21261287    -0.00163794    -0.08041007
1949       2      -0.00163794     5.25823043    -0.00447140
1950       3      -0.08041007    -0.00447140     6.52316914
1951    ==== End of matrix output ====
1952
1953 Alfa**2 Invariant:                         40.085834
1954 Beta**2 Invariant:                          2.966972
1955
1956 Isotropic Property:                         6.331337 a.u.
1957 Property anisotropy invariant:              1.722490 a.u.
1958
1959
1960 *******************************************************************************
1961 *******************************************************************************
1962 *                                                                             *
1963 *                                                                             *
1964 *                   SUMMARY OF COUPLED CLUSTER CALCULATION                    *
1965 *                                                                             *
1966 *                                                                             *
1967 *******************************************************************************
1968 *******************************************************************************
1969
1970            CCSD Total  energy:                   -76.2465116355
1971            CCSD E(QM/MM)     :                    -0.0070784203
1972
1973
1974
1975 *******************************************************************************
1976 *******************************************************************************
1977 *                                                                             *
1978 *                                                                             *
1979 *                      END OF COUPLED CLUSTER CALCULATION                     *
1980 *                                                                             *
1981 *                                                                             *
1982 *******************************************************************************
1983 *******************************************************************************
1984
1985
1986 >>>> CPU and wall time for CC :       2.126       2.456
1987
1988
1989     Date and time (Linux)  : Sun Sep  8 20:41:08 2013
1990     Host name              : lpqlx131.ups-tlse.fr
1991
1992
1993                      .-------------------------------------.
1994                      | End of Coupled Cluster Section (CC) |
1995                      `-------------------------------------'
1996
1997 >>>> Total CPU  time used in DALTON:   2.20 seconds
1998 >>>> Total wall time used in DALTON:   2.53 seconds
1999
2000
2001     Date and time (Linux)  : Sun Sep  8 20:41:08 2013
2002     Host name              : lpqlx131.ups-tlse.fr
2003