1      SUBROUTINE DLASD6( ICOMPQ, NL, NR, SQRE, D, VF, VL, ALPHA, BETA,
2     $                   IDXQ, PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM,
3     $                   LDGNUM, POLES, DIFL, DIFR, Z, K, C, S, WORK,
4     $                   IWORK, INFO )
5*
6*  -- LAPACK auxiliary routine (version 3.0) --
7*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
8*     Courant Institute, Argonne National Lab, and Rice University
9*     June 30, 1999
10*
11*     .. Scalar Arguments ..
12      INTEGER            GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL,
13     $                   NR, SQRE
14      DOUBLE PRECISION   ALPHA, BETA, C, S
15*     ..
16*     .. Array Arguments ..
17      INTEGER            GIVCOL( LDGCOL, * ), IDXQ( * ), IWORK( * ),
18     $                   PERM( * )
19      DOUBLE PRECISION   D( * ), DIFL( * ), DIFR( * ),
20     $                   GIVNUM( LDGNUM, * ), POLES( LDGNUM, * ),
21     $                   VF( * ), VL( * ), WORK( * ), Z( * )
22*     ..
23*
24*  Purpose
25*  =======
26*
27*  DLASD6 computes the SVD of an updated upper bidiagonal matrix B
28*  obtained by merging two smaller ones by appending a row. This
29*  routine is used only for the problem which requires all singular
30*  values and optionally singular vector matrices in factored form.
31*  B is an N-by-M matrix with N = NL + NR + 1 and M = N + SQRE.
32*  A related subroutine, DLASD1, handles the case in which all singular
33*  values and singular vectors of the bidiagonal matrix are desired.
34*
35*  DLASD6 computes the SVD as follows:
36*
37*                ( D1(in)  0    0     0 )
38*    B = U(in) * (   Z1'   a   Z2'    b ) * VT(in)
39*                (   0     0   D2(in) 0 )
40*
41*      = U(out) * ( D(out) 0) * VT(out)
42*
43*  where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension M
44*  with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros
45*  elsewhere; and the entry b is empty if SQRE = 0.
46*
47*  The singular values of B can be computed using D1, D2, the first
48*  components of all the right singular vectors of the lower block, and
49*  the last components of all the right singular vectors of the upper
50*  block. These components are stored and updated in VF and VL,
51*  respectively, in DLASD6. Hence U and VT are not explicitly
52*  referenced.
53*
54*  The singular values are stored in D. The algorithm consists of two
55*  stages:
56*
57*        The first stage consists of deflating the size of the problem
58*        when there are multiple singular values or if there is a zero
59*        in the Z vector. For each such occurence the dimension of the
60*        secular equation problem is reduced by one. This stage is
61*        performed by the routine DLASD7.
62*
63*        The second stage consists of calculating the updated
64*        singular values. This is done by finding the roots of the
65*        secular equation via the routine DLASD4 (as called by DLASD8).
66*        This routine also updates VF and VL and computes the distances
67*        between the updated singular values and the old singular
68*        values.
69*
70*  DLASD6 is called from DLASDA.
71*
72*  Arguments
73*  =========
74*
75*  ICOMPQ (input) INTEGER
76*         Specifies whether singular vectors are to be computed in
77*         factored form:
78*         = 0: Compute singular values only.
79*         = 1: Compute singular vectors in factored form as well.
80*
81*  NL     (input) INTEGER
82*         The row dimension of the upper block.  NL >= 1.
83*
84*  NR     (input) INTEGER
85*         The row dimension of the lower block.  NR >= 1.
86*
87*  SQRE   (input) INTEGER
88*         = 0: the lower block is an NR-by-NR square matrix.
89*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
90*
91*         The bidiagonal matrix has row dimension N = NL + NR + 1,
92*         and column dimension M = N + SQRE.
93*
94*  D      (input/output) DOUBLE PRECISION array, dimension ( NL+NR+1 ).
95*         On entry D(1:NL,1:NL) contains the singular values of the
96*         upper block, and D(NL+2:N) contains the singular values
97*         of the lower block. On exit D(1:N) contains the singular
98*         values of the modified matrix.
99*
100*  VF     (input/output) DOUBLE PRECISION array, dimension ( M )
101*         On entry, VF(1:NL+1) contains the first components of all
102*         right singular vectors of the upper block; and VF(NL+2:M)
103*         contains the first components of all right singular vectors
104*         of the lower block. On exit, VF contains the first components
105*         of all right singular vectors of the bidiagonal matrix.
106*
107*  VL     (input/output) DOUBLE PRECISION array, dimension ( M )
108*         On entry, VL(1:NL+1) contains the  last components of all
109*         right singular vectors of the upper block; and VL(NL+2:M)
110*         contains the last components of all right singular vectors of
111*         the lower block. On exit, VL contains the last components of
112*         all right singular vectors of the bidiagonal matrix.
113*
114*  ALPHA  (input) DOUBLE PRECISION
115*         Contains the diagonal element associated with the added row.
116*
117*  BETA   (input) DOUBLE PRECISION
118*         Contains the off-diagonal element associated with the added
119*         row.
120*
121*  IDXQ   (output) INTEGER array, dimension ( N )
122*         This contains the permutation which will reintegrate the
123*         subproblem just solved back into sorted order, i.e.
124*         D( IDXQ( I = 1, N ) ) will be in ascending order.
125*
126*  PERM   (output) INTEGER array, dimension ( N )
127*         The permutations (from deflation and sorting) to be applied
128*         to each block. Not referenced if ICOMPQ = 0.
129*
130*  GIVPTR (output) INTEGER
131*         The number of Givens rotations which took place in this
132*         subproblem. Not referenced if ICOMPQ = 0.
133*
134*  GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 )
135*         Each pair of numbers indicates a pair of columns to take place
136*         in a Givens rotation. Not referenced if ICOMPQ = 0.
137*
138*  LDGCOL (input) INTEGER
139*         leading dimension of GIVCOL, must be at least N.
140*
141*  GIVNUM (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
142*         Each number indicates the C or S value to be used in the
143*         corresponding Givens rotation. Not referenced if ICOMPQ = 0.
144*
145*  LDGNUM (input) INTEGER
146*         The leading dimension of GIVNUM and POLES, must be at least N.
147*
148*  POLES  (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
149*         On exit, POLES(1,*) is an array containing the new singular
150*         values obtained from solving the secular equation, and
151*         POLES(2,*) is an array containing the poles in the secular
152*         equation. Not referenced if ICOMPQ = 0.
153*
154*  DIFL   (output) DOUBLE PRECISION array, dimension ( N )
155*         On exit, DIFL(I) is the distance between I-th updated
156*         (undeflated) singular value and the I-th (undeflated) old
157*         singular value.
158*
159*  DIFR   (output) DOUBLE PRECISION array,
160*                  dimension ( LDGNUM, 2 ) if ICOMPQ = 1 and
161*                  dimension ( N ) if ICOMPQ = 0.
162*         On exit, DIFR(I, 1) is the distance between I-th updated
163*         (undeflated) singular value and the I+1-th (undeflated) old
164*         singular value.
165*
166*         If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
167*         normalizing factors for the right singular vector matrix.
168*
169*         See DLASD8 for details on DIFL and DIFR.
170*
171*  Z      (output) DOUBLE PRECISION array, dimension ( M )
172*         The first elements of this array contain the components
173*         of the deflation-adjusted updating row vector.
174*
175*  K      (output) INTEGER
176*         Contains the dimension of the non-deflated matrix,
177*         This is the order of the related secular equation. 1 <= K <=N.
178*
179*  C      (output) DOUBLE PRECISION
180*         C contains garbage if SQRE =0 and the C-value of a Givens
181*         rotation related to the right null space if SQRE = 1.
182*
183*  S      (output) DOUBLE PRECISION
184*         S contains garbage if SQRE =0 and the S-value of a Givens
185*         rotation related to the right null space if SQRE = 1.
186*
187*  WORK   (workspace) DOUBLE PRECISION array, dimension ( 4 * M )
188*
189*  IWORK  (workspace) INTEGER array, dimension ( 3 * N )
190*
191*  INFO   (output) INTEGER
192*          = 0:  successful exit.
193*          < 0:  if INFO = -i, the i-th argument had an illegal value.
194*          > 0:  if INFO = 1, an singular value did not converge
195*
196*  Further Details
197*  ===============
198*
199*  Based on contributions by
200*     Ming Gu and Huan Ren, Computer Science Division, University of
201*     California at Berkeley, USA
202*
203*  =====================================================================
204*
205*     .. Parameters ..
206      DOUBLE PRECISION   ONE, ZERO
207      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
208*     ..
209*     .. Local Scalars ..
210      INTEGER            I, IDX, IDXC, IDXP, ISIGMA, IVFW, IVLW, IW, M,
211     $                   N, N1, N2
212      DOUBLE PRECISION   ORGNRM
213*     ..
214*     .. External Subroutines ..
215      EXTERNAL           DCOPY, DLAMRG, DLASCL, DLASD7, DLASD8, XERBLA
216*     ..
217*     .. Intrinsic Functions ..
218      INTRINSIC          ABS, MAX
219*     ..
220*     .. Executable Statements ..
221*
222*     Test the input parameters.
223*
224      INFO = 0
225      N = NL + NR + 1
226      M = N + SQRE
227*
228      IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
229         INFO = -1
230      ELSE IF( NL.LT.1 ) THEN
231         INFO = -2
232      ELSE IF( NR.LT.1 ) THEN
233         INFO = -3
234      ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
235         INFO = -4
236      ELSE IF( LDGCOL.LT.N ) THEN
237         INFO = -14
238      ELSE IF( LDGNUM.LT.N ) THEN
239         INFO = -16
240      END IF
241      IF( INFO.NE.0 ) THEN
242         CALL XERBLA( 'DLASD6', -INFO )
243         RETURN
244      END IF
245*
246*     The following values are for bookkeeping purposes only.  They are
247*     integer pointers which indicate the portion of the workspace
248*     used by a particular array in DLASD7 and DLASD8.
249*
250      ISIGMA = 1
251      IW = ISIGMA + N
252      IVFW = IW + M
253      IVLW = IVFW + M
254*
255      IDX = 1
256      IDXC = IDX + N
257      IDXP = IDXC + N
258*
259*     Scale.
260*
261      ORGNRM = MAX( ABS( ALPHA ), ABS( BETA ) )
262      D( NL+1 ) = ZERO
263      DO 10 I = 1, N
264         IF( ABS( D( I ) ).GT.ORGNRM ) THEN
265            ORGNRM = ABS( D( I ) )
266         END IF
267   10 CONTINUE
268      CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )
269      ALPHA = ALPHA / ORGNRM
270      BETA = BETA / ORGNRM
271*
272*     Sort and Deflate singular values.
273*
274      CALL DLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, WORK( IW ), VF,
275     $             WORK( IVFW ), VL, WORK( IVLW ), ALPHA, BETA,
276     $             WORK( ISIGMA ), IWORK( IDX ), IWORK( IDXP ), IDXQ,
277     $             PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, C, S,
278     $             INFO )
279*
280*     Solve Secular Equation, compute DIFL, DIFR, and update VF, VL.
281*
282      CALL DLASD8( ICOMPQ, K, D, Z, VF, VL, DIFL, DIFR, LDGNUM,
283     $             WORK( ISIGMA ), WORK( IW ), INFO )
284*
285*     Save the poles if ICOMPQ = 1.
286*
287      IF( ICOMPQ.EQ.1 ) THEN
288         CALL DCOPY( K, D, 1, POLES( 1, 1 ), 1 )
289         CALL DCOPY( K, WORK( ISIGMA ), 1, POLES( 1, 2 ), 1 )
290      END IF
291*
292*     Unscale.
293*
294      CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
295*
296*     Prepare the IDXQ sorting permutation.
297*
298      N1 = K
299      N2 = N - K
300      CALL DLAMRG( N1, N2, D, 1, -1, IDXQ )
301*
302      RETURN
303*
304*     End of DLASD6
305*
306      END
307