1      SUBROUTINE ZSTEGR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
2     $                   M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
3     $                   LIWORK, INFO )
4*
5*  -- LAPACK computational routine (version 3.0) --
6*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
7*     Courant Institute, Argonne National Lab, and Rice University
8*     October 31, 1999
9*
10*     .. Scalar Arguments ..
11      CHARACTER          JOBZ, RANGE
12      INTEGER            IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
13      DOUBLE PRECISION   ABSTOL, VL, VU
14*     ..
15*     .. Array Arguments ..
16      INTEGER            ISUPPZ( * ), IWORK( * )
17      DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * )
18      COMPLEX*16         Z( LDZ, * )
19*     ..
20*
21*  Purpose
22*  =======
23*
24* ZSTEGR computes selected eigenvalues and, optionally, eigenvectors
25* of a real symmetric tridiagonal matrix T.  Eigenvalues and
26* eigenvectors can be selected by specifying either a range of values
27* or a range of indices for the desired eigenvalues. The eigenvalues
28* are computed by the dqds algorithm, while orthogonal eigenvectors are
29* computed from various ``good'' L D L^T representations (also known as
30* Relatively Robust Representations). Gram-Schmidt orthogonalization is
31* avoided as far as possible. More specifically, the various steps of
32* the algorithm are as follows. For the i-th unreduced block of T,
33*     (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T
34*         is a relatively robust representation,
35*     (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high
36*         relative accuracy by the dqds algorithm,
37*     (c) If there is a cluster of close eigenvalues, "choose" sigma_i
38*         close to the cluster, and go to step (a),
39*     (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T,
40*         compute the corresponding eigenvector by forming a
41*         rank-revealing twisted factorization.
42*  The desired accuracy of the output can be specified by the input
43*  parameter ABSTOL.
44*
45*  For more details, see "A new O(n^2) algorithm for the symmetric
46*  tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon,
47*  Computer Science Division Technical Report No. UCB/CSD-97-971,
48*  UC Berkeley, May 1997.
49*
50*  Note 1 : Currently ZSTEGR is only set up to find ALL the n
51*  eigenvalues and eigenvectors of T in O(n^2) time
52*  Note 2 : Currently the routine ZSTEIN is called when an appropriate
53*  sigma_i cannot be chosen in step (c) above. ZSTEIN invokes modified
54*  Gram-Schmidt when eigenvalues are close.
55*  Note 3 : ZSTEGR works only on machines which follow ieee-754
56*  floating-point standard in their handling of infinities and NaNs.
57*  Normal execution of ZSTEGR may create NaNs and infinities and hence
58*  may abort due to a floating point exception in environments which
59*  do not conform to the ieee standard.
60*
61*  Arguments
62*  =========
63*
64*  JOBZ    (input) CHARACTER*1
65*          = 'N':  Compute eigenvalues only;
66*          = 'V':  Compute eigenvalues and eigenvectors.
67*
68*  RANGE   (input) CHARACTER*1
69*          = 'A': all eigenvalues will be found.
70*          = 'V': all eigenvalues in the half-open interval (VL,VU]
71*                 will be found.
72*          = 'I': the IL-th through IU-th eigenvalues will be found.
73********** Only RANGE = 'A' is currently supported *********************
74*
75*  N       (input) INTEGER
76*          The order of the matrix.  N >= 0.
77*
78*  D       (input/output) DOUBLE PRECISION array, dimension (N)
79*          On entry, the n diagonal elements of the tridiagonal matrix
80*          T. On exit, D is overwritten.
81*
82*  E       (input/output) DOUBLE PRECISION array, dimension (N)
83*          On entry, the (n-1) subdiagonal elements of the tridiagonal
84*          matrix T in elements 1 to N-1 of E; E(N) need not be set.
85*          On exit, E is overwritten.
86*
87*  VL      (input) DOUBLE PRECISION
88*  VU      (input) DOUBLE PRECISION
89*          If RANGE='V', the lower and upper bounds of the interval to
90*          be searched for eigenvalues. VL < VU.
91*          Not referenced if RANGE = 'A' or 'I'.
92*
93*  IL      (input) INTEGER
94*  IU      (input) INTEGER
95*          If RANGE='I', the indices (in ascending order) of the
96*          smallest and largest eigenvalues to be returned.
97*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
98*          Not referenced if RANGE = 'A' or 'V'.
99*
100*  ABSTOL  (input) DOUBLE PRECISION
101*          The absolute error tolerance for the
102*          eigenvalues/eigenvectors. IF JOBZ = 'V', the eigenvalues and
103*          eigenvectors output have residual norms bounded by ABSTOL,
104*          and the dot products between different eigenvectors are
105*          bounded by ABSTOL. If ABSTOL is less than N*EPS*|T|, then
106*          N*EPS*|T| will be used in its place, where EPS is the
107*          machine precision and |T| is the 1-norm of the tridiagonal
108*          matrix. The eigenvalues are computed to an accuracy of
109*          EPS*|T| irrespective of ABSTOL. If high relative accuracy
110*          is important, set ABSTOL to DLAMCH( 'Safe minimum' ).
111*          See Barlow and Demmel "Computing Accurate Eigensystems of
112*          Scaled Diagonally Dominant Matrices", LAPACK Working Note #7
113*          for a discussion of which matrices define their eigenvalues
114*          to high relative accuracy.
115*
116*  M       (output) INTEGER
117*          The total number of eigenvalues found.  0 <= M <= N.
118*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
119*
120*  W       (output) DOUBLE PRECISION array, dimension (N)
121*          The first M elements contain the selected eigenvalues in
122*          ascending order.
123*
124*  Z       (output) COMPLEX*16 array, dimension (LDZ, max(1,M) )
125*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
126*          contain the orthonormal eigenvectors of the matrix T
127*          corresponding to the selected eigenvalues, with the i-th
128*          column of Z holding the eigenvector associated with W(i).
129*          If JOBZ = 'N', then Z is not referenced.
130*          Note: the user must ensure that at least max(1,M) columns are
131*          supplied in the array Z; if RANGE = 'V', the exact value of M
132*          is not known in advance and an upper bound must be used.
133*
134*  LDZ     (input) INTEGER
135*          The leading dimension of the array Z.  LDZ >= 1, and if
136*          JOBZ = 'V', LDZ >= max(1,N).
137*
138*  ISUPPZ  (output) INTEGER ARRAY, dimension ( 2*max(1,M) )
139*          The support of the eigenvectors in Z, i.e., the indices
140*          indicating the nonzero elements in Z. The i-th eigenvector
141*          is nonzero only in elements ISUPPZ( 2*i-1 ) through
142*          ISUPPZ( 2*i ).
143*
144*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
145*          On exit, if INFO = 0, WORK(1) returns the optimal
146*          (and minimal) LWORK.
147*
148*  LWORK   (input) INTEGER
149*          The dimension of the array WORK.  LWORK >= max(1,18*N)
150*
151*          If LWORK = -1, then a workspace query is assumed; the routine
152*          only calculates the optimal size of the WORK array, returns
153*          this value as the first entry of the WORK array, and no error
154*          message related to LWORK is issued by XERBLA.
155*
156*  IWORK   (workspace/output) INTEGER array, dimension (LIWORK)
157*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
158*
159*  LIWORK  (input) INTEGER
160*          The dimension of the array IWORK.  LIWORK >= max(1,10*N)
161*
162*          If LIWORK = -1, then a workspace query is assumed; the
163*          routine only calculates the optimal size of the IWORK array,
164*          returns this value as the first entry of the IWORK array, and
165*          no error message related to LIWORK is issued by XERBLA.
166*
167*  INFO    (output) INTEGER
168*          = 0:  successful exit
169*          < 0:  if INFO = -i, the i-th argument had an illegal value
170*          > 0:  if INFO = 1, internal error in DLARRE,
171*                if INFO = 2, internal error in ZLARRV.
172*
173*  Further Details
174*  ===============
175*
176*  Based on contributions by
177*     Inderjit Dhillon, IBM Almaden, USA
178*     Osni Marques, LBNL/NERSC, USA
179*     Ken Stanley, Computer Science Division, University of
180*       California at Berkeley, USA
181*
182*  =====================================================================
183*
184*     .. Parameters ..
185      DOUBLE PRECISION   ZERO, ONE
186      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
187      COMPLEX*16         CZERO
188      PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ) )
189*     ..
190*     .. Local Scalars ..
191      LOGICAL            ALLEIG, INDEIG, LQUERY, VALEIG, WANTZ
192      INTEGER            I, IBEGIN, IEND, IINDBL, IINDWK, IINFO, IINSPL,
193     $                   INDGRS, INDWOF, INDWRK, ITMP, J, JJ, LIWMIN,
194     $                   LWMIN, NSPLIT
195      DOUBLE PRECISION   BIGNUM, EPS, RMAX, RMIN, SAFMIN, SCALE, SMLNUM,
196     $                   THRESH, TMP, TNRM, TOL
197*     ..
198*     .. External Functions ..
199      LOGICAL            LSAME
200      DOUBLE PRECISION   DLAMCH, DLANST
201      EXTERNAL           LSAME, DLAMCH, DLANST
202*     ..
203*     .. External Subroutines ..
204      EXTERNAL           DLARRE, DSCAL, XERBLA, ZLARRV, ZLASET, ZSWAP
205*     ..
206*     .. Intrinsic Functions ..
207      INTRINSIC          DBLE, MAX, MIN, SQRT
208*     ..
209*     .. Executable Statements ..
210*
211*     Test the input parameters.
212*
213      WANTZ = LSAME( JOBZ, 'V' )
214      ALLEIG = LSAME( RANGE, 'A' )
215      VALEIG = LSAME( RANGE, 'V' )
216      INDEIG = LSAME( RANGE, 'I' )
217*
218      LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LIWORK.EQ.-1 ) )
219      LWMIN = 18*N
220      LIWMIN = 10*N
221*
222      INFO = 0
223      IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
224         INFO = -1
225      ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
226         INFO = -2
227*
228*     The following two lines need to be removed once the
229*     RANGE = 'V' and RANGE = 'I' options are provided.
230*
231      ELSE IF( VALEIG .OR. INDEIG ) THEN
232         INFO = -2
233      ELSE IF( N.LT.0 ) THEN
234         INFO = -3
235      ELSE IF( VALEIG .AND. N.GT.0 .AND. VU.LE.VL ) THEN
236         INFO = -7
237      ELSE IF( INDEIG .AND. IL.LT.1 ) THEN
238         INFO = -8
239*     The following change should be made in DSTEVX also, otherwise
240*     IL can be specified as N+1 and IU as N.
241*     ELSE IF( INDEIG .AND. ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) ) THEN
242      ELSE IF( INDEIG .AND. ( IU.LT.IL .OR. IU.GT.N ) ) THEN
243         INFO = -9
244      ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
245         INFO = -14
246      ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
247         INFO = -17
248      ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
249         INFO = -19
250      END IF
251      IF( INFO.EQ.0 ) THEN
252         WORK( 1 ) = LWMIN
253         IWORK( 1 ) = LIWMIN
254      END IF
255*
256      IF( INFO.NE.0 ) THEN
257         CALL XERBLA( 'ZSTEGR', -INFO )
258         RETURN
259      ELSE IF( LQUERY ) THEN
260         RETURN
261      END IF
262*
263*     Quick return if possible
264*
265      M = 0
266      IF( N.EQ.0 )
267     $   RETURN
268*
269      IF( N.EQ.1 ) THEN
270         IF( ALLEIG .OR. INDEIG ) THEN
271            M = 1
272            W( 1 ) = D( 1 )
273         ELSE
274            IF( VL.LT.D( 1 ) .AND. VU.GE.D( 1 ) ) THEN
275               M = 1
276               W( 1 ) = D( 1 )
277            END IF
278         END IF
279         IF( WANTZ )
280     $      Z( 1, 1 ) = ONE
281         RETURN
282      END IF
283*
284*     Get machine constants.
285*
286      SAFMIN = DLAMCH( 'Safe minimum' )
287      EPS = DLAMCH( 'Precision' )
288      SMLNUM = SAFMIN / EPS
289      BIGNUM = ONE / SMLNUM
290      RMIN = SQRT( SMLNUM )
291      RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
292*
293*     Scale matrix to allowable range, if necessary.
294*
295      SCALE = ONE
296      TNRM = DLANST( 'M', N, D, E )
297      IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
298         SCALE = RMIN / TNRM
299      ELSE IF( TNRM.GT.RMAX ) THEN
300         SCALE = RMAX / TNRM
301      END IF
302      IF( SCALE.NE.ONE ) THEN
303         CALL DSCAL( N, SCALE, D, 1 )
304         CALL DSCAL( N-1, SCALE, E, 1 )
305         TNRM = TNRM*SCALE
306      END IF
307      INDGRS = 1
308      INDWOF = 2*N + 1
309      INDWRK = 3*N + 1
310*
311      IINSPL = 1
312      IINDBL = N + 1
313      IINDWK = 2*N + 1
314*
315      CALL ZLASET( 'Full', N, N, CZERO, CZERO, Z, LDZ )
316*
317*     Compute the desired eigenvalues of the tridiagonal after splitting
318*     into smaller subblocks if the corresponding of-diagonal elements
319*     are small
320*
321      THRESH = EPS*TNRM
322      CALL DLARRE( N, D, E, THRESH, NSPLIT, IWORK( IINSPL ), M, W,
323     $             WORK( INDWOF ), WORK( INDGRS ), WORK( INDWRK ),
324     $             IINFO )
325      IF( IINFO.NE.0 ) THEN
326         INFO = 1
327         RETURN
328      END IF
329*
330      IF( WANTZ ) THEN
331*
332*        Compute the desired eigenvectors corresponding to the computed
333*        eigenvalues
334*
335         TOL = MAX( ABSTOL, DBLE( N )*THRESH )
336         IBEGIN = 1
337         DO 20 I = 1, NSPLIT
338            IEND = IWORK( IINSPL+I-1 )
339            DO 10 J = IBEGIN, IEND
340               IWORK( IINDBL+J-1 ) = I
341   10       CONTINUE
342            IBEGIN = IEND + 1
343   20    CONTINUE
344*
345         CALL ZLARRV( N, D, E, IWORK( IINSPL ), M, W, IWORK( IINDBL ),
346     $                WORK( INDGRS ), TOL, Z, LDZ, ISUPPZ,
347     $                WORK( INDWRK ), IWORK( IINDWK ), IINFO )
348         IF( IINFO.NE.0 ) THEN
349            INFO = 2
350            RETURN
351         END IF
352*
353      END IF
354*
355      IBEGIN = 1
356      DO 40 I = 1, NSPLIT
357         IEND = IWORK( IINSPL+I-1 )
358         DO 30 J = IBEGIN, IEND
359            W( J ) = W( J ) + WORK( INDWOF+I-1 )
360   30    CONTINUE
361         IBEGIN = IEND + 1
362   40 CONTINUE
363*
364*     If matrix was scaled, then rescale eigenvalues appropriately.
365*
366      IF( SCALE.NE.ONE ) THEN
367         CALL DSCAL( M, ONE / SCALE, W, 1 )
368      END IF
369*
370*     If eigenvalues are not in order, then sort them, along with
371*     eigenvectors.
372*
373      IF( NSPLIT.GT.1 ) THEN
374         DO 60 J = 1, M - 1
375            I = 0
376            TMP = W( J )
377            DO 50 JJ = J + 1, M
378               IF( W( JJ ).LT.TMP ) THEN
379                  I = JJ
380                  TMP = W( JJ )
381               END IF
382   50       CONTINUE
383            IF( I.NE.0 ) THEN
384               W( I ) = W( J )
385               W( J ) = TMP
386               IF( WANTZ ) THEN
387                  CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
388                  ITMP = ISUPPZ( 2*I-1 )
389                  ISUPPZ( 2*I-1 ) = ISUPPZ( 2*J-1 )
390                  ISUPPZ( 2*J-1 ) = ITMP
391                  ITMP = ISUPPZ( 2*I )
392                  ISUPPZ( 2*I ) = ISUPPZ( 2*J )
393                  ISUPPZ( 2*J ) = ITMP
394               END IF
395            END IF
396   60    CONTINUE
397      END IF
398*
399      WORK( 1 ) = LWMIN
400      IWORK( 1 ) = LIWMIN
401      RETURN
402*
403*     End of ZSTEGR
404*
405      END
406