1 /* Ergo, version 3.8, a program for linear scaling electronic structure
2  * calculations.
3  * Copyright (C) 2019 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
4  * and Anastasia Kruchinina.
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  *
19  * Primary academic reference:
20  * Ergo: An open-source program for linear-scaling electronic structure
21  * calculations,
22  * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
23  * Kruchinina,
24  * SoftwareX 7, 107 (2018),
25  * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
26  *
27  * For further information about Ergo, see <http://www.ergoscf.org>.
28  */
29 
30 /** @file matrix_algebra.cc
31 
32     @brief A few matrix algebra routines for dense matrices.
33 
34     @author: Elias Rudberg <em>responsible</em>
35 */
36 
37 #include <stdlib.h>
38 
39 #include "matrix_algebra.h"
40 #include "memorymanag.h"
41 #include "output.h"
42 
43 #include "../matrix/mat_gblas.h"
44 
45 
46 #define USE_BLAS_MM
47 
48 
49 #if 0
50 #ifdef USE_BLAS_MM
51 #ifdef __cplusplus
52 extern "C"
53 #endif
54 void dgemm_(const char *ta,const char *tb,
55 	    const int *n, const int *k, const int *l,
56 	    const double *alpha,const double *A,const int *lda,
57 	    const double *B, const int *ldb,
58 	    const double *beta,const double *C, const int *ldc);
59 #endif
60 #endif
61 
62 
63 /*
64   Standard matrix multiplication.
65 */
66 void
multiply_matrices_general(int An1,int An2,int Bn1,int Bn2,const ergo_real * A,const ergo_real * B,ergo_real * AB)67 multiply_matrices_general(int An1, int An2, int Bn1, int Bn2, const ergo_real* A, const ergo_real* B, ergo_real* AB)
68 {
69   int i, j;
70   if(An2 != Bn1)
71     {
72       do_output(LOG_CAT_ERROR, LOG_AREA_LOWLEVEL,
73 		"error in multiply_matrices_general: (An2 != Bn1)");
74       exit(0);
75     }
76 #ifdef USE_BLAS_MM
77   if(An1 == 0 || An2 == 0 || Bn1 == 0 || Bn2 == 0)
78     return;
79   /*  call gemm */
80   ergo_real alpha = 1;
81   ergo_real beta = 0;
82   ergo_real* ABtemp = (ergo_real*)ergo_malloc(An1*Bn2*sizeof(ergo_real));
83   memset(ABtemp, 0, An1*Bn2*sizeof(ergo_real));
84   mat::gemm("T", "T", &An1, &Bn2, &An2, &alpha,
85 	    A, &An2,
86 	    B, &Bn2,
87 	    &beta,
88 	    ABtemp, &An1);
89   /*  do transpose of result */
90   for(i = 0; i < An1; i++)
91     for(j = 0; j < Bn2; j++)
92       {
93 	AB[i*Bn2+j] = ABtemp[j*An1+i];
94       }
95   ergo_free(ABtemp);
96 #else
97   for(i = 0; i < An1; i++)
98     for(j = 0; j < Bn2; j++)
99       {
100 	ergo_real sum = 0;
101 	for(int k = 0; k < An2; k++)
102 	  sum += A[i*An2+k] * B[k*Bn2+j];
103 	AB[i*Bn2+j] = sum;
104       }
105 #endif
106 }
107 
108 
109 /*
110   Matrix multiplication when the first matrix is transposed.
111 */
112 void
multiply_matrices_general_T_1(int An1,int An2,int Bn1,int Bn2,const ergo_real * A,const ergo_real * B,ergo_real * AB)113 multiply_matrices_general_T_1(int An1, int An2, int Bn1, int Bn2, const ergo_real* A, const ergo_real* B, ergo_real* AB)
114 {
115   int i, j;
116   if(An1 != Bn1)
117     {
118       do_output(LOG_CAT_ERROR, LOG_AREA_LOWLEVEL, "error in multiply_matrices_general_T_1: (An1 != Bn1)");
119       exit(0);
120     }
121   ergo_real* At = (ergo_real*)ergo_malloc(An1*An2*sizeof(ergo_real));
122   for(i = 0; i < An1; i++)
123     for(j = 0; j < An2; j++)
124       At[j*An1+i] = A[i*An2+j];
125   multiply_matrices_general(An2, An1, Bn1, Bn2, At, B, AB);
126   ergo_free(At);
127 }
128