1{\rtf1\ansi\ansicpg1252\cocoartf102{\fonttbl\f1\fnil Droid Sans Mono;\f0\fnil FreeSans;}
2{\colortbl;\red0\green0\blue200;\red0\green0\blue0;}
3\f0\fs24\pard\tx0\tx560\tx1120\tx1680\tx2240\tx2800\tx3360\tx3920\tx4480\tx5040\tx5600\tx6160\ql \par
4\par
5\cf1\fs36\b\ulw\ul Static of particles\cf0\ulnone\fs24\b0 \par
6\cf0\cf2 \par
7\cf0\pard\ql\pard\tx0\tx560\tx1120\tx1680\tx2240\tx2800\tx3360\tx3920\tx4480\tx5040\tx5600\tx6160\qj Each system have the following conversion factors:\cf0\cf2 \par
8\par
9\par
10\cf0\b \tab SI system\b0 \par
11\par
12\b \tab Symbol\tab \tab Mean\b0 \par
13\tab cm\tab \tab \tab centimeter\par
14\tab \cf0\cf2 g\cf0 \tab \tab \cf0\cf2 \tab gram\cf0 \par
15\tab \cf0\cf2 slug\cf0 \tab \tab \tab \cf0\cf2 slug\cf0 \par
16\tab \cf0\cf2 T\cf0 \tab \tab \tab metric ton\par
17\cf0\cf2 \par
18\par
19\cf0\b \tab \cf0\cf2 English system\cf0\b0 \par
20\par
21\b \tab Symbol\tab \tab Mean\b0 \par
22\tab kg\tab \tab \tab kilogram\par
23\tab \cf0\cf2 g\cf0 \tab \tab \cf0\cf2 \tab gram\cf0 \par
24\tab in\tab \tab \tab inch\par
25\tab lb/in\tab \tab \tab pounds per inch\cf0\cf2 \par
26\par
27\par
28\cf0 In this module, the forces (elements Force, Friction or Resultant) are added to the objects (elements Block, Pulley, Spring and Point) placing the force in one of the cells around the object. Each object (if there isn\rquote t in the chalkboard\rquote s border) have 8 cells around it.\par
29\par
30This module have 30 elements. Notice that some elements have one or two equations, depending of the applied forces. If all forces are horizontal, or vertical, the object have one equation, otherwise have two. \par
31\pard\ql\pard\tx0\tx560\tx1120\tx1680\tx2240\tx2800\tx3360\tx3920\tx4480\tx5040\tx5600\tx6160\ql \par
32\cf0\cf2 __________________________________________\cf0 \par
33       \cf0\f1{{\NeXTGraphic sistema.tif \width960 \height960}\'AC}\f0\b Stationary reference system\b0 \par
34\par
35Stationary reference system, with X axis horizontal and positive to the right, and Y axis vertical an positive to upwards. \par
36\par
37\i Equations:\tab None.\par
38\par
39Data:\par
40\tab g:\tab \tab Value of the gravity (absolute value). To default FisicaLab write the gravity\par
41                           value to the selected system (9.81 m/s2 to SI, and 32.2 ft/s2 to English system).\i0 \par
42\par
43\cf0\cf2 __________________________________________\par
44\par
45\cf0        \cf0\f1{{\NeXTGraphic bloque.tif \width960 \height960}\'AC}\f0  \b Block\b0 \par
46\par
47A block, allow one friction force, vertical or horizontal. And don\rquote t allow Resultants. \par
48\par
49\i Equations:\tab 1 or 2\par
50\par
51Data:\par
52\tab m: \tab \tab Mass block.\i0 \par
53\par
54\cf0\cf2 __________________________________________\cf0 \par
55       \cf0\f1{{\NeXTGraphic bloque_i.tif \width960 \height960}\'AC}\f0  \b Block above an inclined plane to the left\b0 \par
56\par
57A block, above an inclined plane to the left in the specified angle. Allow one friction force, parallel to the plane. And don\rquote t allow Resultants.  \par
58\par
59\i Equations:\tab 2\par
60\par
61Data:\par
62\tab m:\tab \tab Mass block.\par
63\tab ang:\tab \tab Angle of the plane, measured from the horizontal.\i0 \par
64\par
65\cf0\cf2 __________________________________________\cf0 \par
66       \cf0\f1{{\NeXTGraphic bloque_d.tif \width960 \height960}\'AC}\f0  \b Block above an inclined plane to the right\b0 \par
67\par
68A block, above an inclined plane to the \cf0\cf2 right\cf0  in the specified angle. Allow one friction force, parallel to the plane. And don\rquote t allow Resultants.  \par
69\par
70\i Equations:\tab 2\par
71\par
72Data:\par
73\tab m:\tab \tab Mass block.\par
74\tab ang:\tab \tab Angle of the plane, measured from the horizontal.\i0 \par
75\par
76\cf0\cf2 __________________________________________\par
77\cf0        \cf0\f1{{\NeXTGraphic r_id.tif \width960 \height960}\'AC}\f0   \cf0\f1{{\NeXTGraphic r_ii.tif \width960 \height960}\'AC}\f0   \cf0\f1{{\NeXTGraphic r_h.tif \width960 \height960}\'AC}\f0   \cf0\f1{{\NeXTGraphic r_v.tif \width960 \height960}\'AC}\f0\b\cf2 Springs\b0 \par
78\par
79Springs without mass, that satisfies the Hooke\rquote s law. \b d\b0  is the length that the spring is stretched or compressed. If the spring is stretched \b d\b0  is positive, if is compressed is negative. Allow one or two forces. If have two forces these must have different sense (stretching or compressing the spring), and the same values or unknown data. Don\rquote t allow frictions or resultants.\par
80\par
81\cf0\i Equations:\tab 1\cf0\cf2 \par
82\par
83Data:\par
84\tab k:\tab \tab Spring constant.\par
85\tab d: \tab \tab Length that the spring is stretched or compressed.\i0 \par
86\par
87__________________________________________\cf0 \par
88       \cf0\f1{{\NeXTGraphic polea.tif \width960 \height960}\'AC}\f0  \b Pulley\b0 \par
89\par
90A pulley without mass. Don\rquote t allow frictions or resultants.\par
91\par
92\i Equations:\tab 1 or 2\par
93\par
94Data:\par
95\tab Name:\tab Name of the pulley (this data is irrelevant).\i0 \par
96\par
97\cf0\cf2 __________________________________________\cf0 \par
98       \cf0\f1{{\NeXTGraphic p_estatica.tif \width960 \height960}\'AC}\f0\b Static point\b0 \par
99\par
100A static point without mass. Don\rquote t allow frictions.\par
101\par
102\i Equations:\tab 1 or 2\par
103\par
104Data:\par
105\tab Name:\tab Name of the point (this data is irrelevant).\i0 \par
106\par
107\cf0\cf2 __________________________________________\par
108\cf0 \par
109       \cf0\f1{{\NeXTGraphic angcomp.tif \width960 \height960}\'AC}\f0  \b Angles\b0 \par
110\par
111To relate two angles that must be complementary. Both angles must be unknowns.\par
112\par
113\i Equations:\tab 1\par
114\par
115Data:\par
116\tab ang1:\tab One angle.\par
117\tab ang2:\tab Other angle.\i0 \par
118\par
119\cf0\cf2 __________________________________________\cf0 \par
120\par
121       \cf0\f1{{\NeXTGraphic f_arriba.tif \width960 \height960}\'AC}\f0   \cf0\f1{{\NeXTGraphic f_abajo.tif \width960 \height960}\'AC}\f0   \cf0\f1{{\NeXTGraphic f_izquierda.tif \width960 \height960}\'AC}\f0   \cf0\f1{{\NeXTGraphic f_derecha.tif \width960 \height960}\'AC}\f0  \b Vertical or horizontal forces\b0 \par
122\par
123Forces with the direction and sense of the arrow.\par
124\par
125\i Equations:\tab None.\par
126\par
127Data:\par
128\tab f:\tab \tab Magnitude of the force.\i0 \par
129\par
130\cf0\cf2 __________________________________________\cf0 \par
131\par
132       \cf0\f1{{\NeXTGraphic f_ne.tif \width960 \height960}\'AC}\f0   \cf0\f1{{\NeXTGraphic f_no.tif \width960 \height960}\'AC}\f0   \cf0\f1{{\NeXTGraphic f_se.tif \width960 \height960}\'AC}\f0   \cf0\f1{{\NeXTGraphic f_so.tif \width960 \height960}\'AC}\f0  \b Oblique forces\b0 \par
133\par
134Oblique forces with the sense of the arrow.\par
135\par
136\i Equations:\tab None.\par
137\par
138Data:\par
139\tab f:\tab \tab Magnitude of the force.\par
140\tab ang:\tab \tab Positive angle of the force, measured from the horizontal.\i0 \par
141\par
142\cf0\cf2 __________________________________________\cf0 \par
143\par
144       \cf0\f1{{\NeXTGraphic friccion_ar.tif \width960 \height960}\'AC}\f0   \cf0\f1{{\NeXTGraphic friccion_ab.tif \width960 \height960}\'AC}\f0   \cf0\f1{{\NeXTGraphic friccion_i.tif \width960 \height960}\'AC}\f0   \cf0\f1{{\NeXTGraphic friccion_d.tif \width960 \height960}\'AC}\f0  \b Vertical or horizontal friction forces\b0 \par
145  \par
146Friction forces with the direction and sense of the arrow.\par
147\par
148\i Equations:\tab None.\par
149\par
150Data:\par
151\tab Normal:\tab Normal to calculate the friction force.\par
152\tab u:\tab \tab Friction coefficient, static or dynamic.\i0 \par
153\par
154\cf0\cf2 __________________________________________\cf0 \par
155\par
156       \cf0\f1{{\NeXTGraphic friccion_ne.tif \width960 \height960}\'AC}\f0   \cf0\f1{{\NeXTGraphic friccion_no.tif \width960 \height960}\'AC}\f0   \cf0\f1{{\NeXTGraphic friccion_se.tif \width960 \height960}\'AC}\f0   \cf0\f1{{\NeXTGraphic friccion_so.tif \width960 \height960}\'AC}\f0  \b Oblique friction forces\b0 \par
157\par
158Oblique \cf0\cf2 frictions \cf0 forces with the sense of the arrow. To be applied to a block on an inclined plane. The angle of force is the same as of the plane.\cf0\cf2 \par
159\par
160\cf0\i Equations:\tab None.\cf0\cf2 \par
161\par
162Data:\par
163\cf0 \tab Normal:\tab Normal to calculate the friction force.\cf0\cf2 \par
164\tab u:\tab \tab \cf0 Friction coefficient, static or dynamic.\i0 \par
165\par
166\cf0\cf2 __________________________________________\par
167\cf0        \cf0\f1{{\NeXTGraphic resultante_v.tif \width960 \height960}\'AC}\f0\b\cf2 Vertical resultant\cf0\b0     \cf0\f1{{\NeXTGraphic resultante_h.tif \width960 \height960}\'AC}\f0\b\cf2 Horizontal resultant\b0 \par
168\par
169Resultants\cf0  with the direction and sense of the arrow.\cf0\cf2 \par
170\par
171\cf0\i Equations:\tab \cf0 None.\cf2 \par
172\par
173Data:\par
174\tab f:\tab \tab Magnitude of the resultant.\i0 \par
175\par
176__________________________________________\par
177\cf0        \cf0\f1{{\NeXTGraphic resultante.tif \width960 \height960}\'AC}\f0\b\cf2 Resultant\b0 \par
178\par
179Oblique resultant.\par
180\par
181\cf0\i Equations:\tab \cf0 None.\cf2 \par
182\par
183Data:\par
184\tab f:\tab \tab Magnitude of the resultant.\par
185\tab ang:\tab \tab Angle of the resultant, measured from the positive X axis. The positive\par
186                          sense is the opposite of clockwise.\i0 \par
187\par
188}