1Non-bonded interactions
2-----------------------
3
4Non-bonded interactions in |Gromacs| are pair-additive:
5
6.. math:: V(\mathbf{r}_1,\ldots \mathbf{r}_N) = \sum_{i<j}V_{ij}(\mathbf{r}_{ij});
7          :label: eqnnbinteractions1
8
9.. math:: \mathbf{F}_i = -\sum_j \frac{dV_{ij}(r_{ij})}{dr_{ij}} \frac{\mathbf{r}_{ij}}{r_{ij}}
10          :label: eqnnbinteractions2
11
12Since the potential only depends on the scalar distance, interactions
13will be centro-symmetric, i.e. the vectorial partial force on particle
14:math:`i` from the pairwise interaction :math:`V_{ij}(r_{ij})` has the
15opposite direction of the partial force on particle :math:`j`. For
16efficiency reasons, interactions are calculated by loops over
17interactions and updating both partial forces rather than summing one
18complete nonbonded force at a time. The non-bonded interactions contain
19a repulsion term, a dispersion term, and a Coulomb term. The repulsion
20and dispersion term are combined in either the Lennard-Jones (or 6-12
21interaction), or the Buckingham (or exp-6 potential). In addition,
22(partially) charged atoms act through the Coulomb term.
23
24.. _lj:
25
26The Lennard-Jones interaction
27~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
28
29The Lennard-Jones potential :math:`V_{LJ}` between two atoms equals:
30
31.. math:: V_{LJ}({r_{ij}}) =  \frac{C_{ij}^{(12)}}{{r_{ij}}^{12}} -
32                              \frac{C_{ij}^{(6)}}{{r_{ij}}^6}
33          :label: eqnnblj
34
35See also :numref:`Fig. %s <fig-lj>` The parameters :math:`C^{(12)}_{ij}` and
36:math:`C^{(6)}_{ij}` depend on pairs of *atom types*; consequently they
37are taken from a matrix of LJ-parameters. In the Verlet cut-off scheme,
38the potential is shifted by a constant such that it is zero at the
39cut-off distance.
40
41.. _fig-lj:
42
43.. figure:: plots/f-lj.*
44   :width: 8.00000cm
45
46   The Lennard-Jones interaction.
47
48The force derived from this potential is:
49
50.. math:: \mathbf{F}_i(\mathbf{r}_{ij}) = -\left( 12~\frac{C_{ij}^{(12)}}{{r_{ij}}^{13}} -
51                                    6~\frac{C_{ij}^{(6)}}{{r_{ij}}^7} \right) {\frac{{\mathbf{r}_{ij}}}{{r_{ij}}}}
52          :label: eqnljforce
53
54The LJ potential may also be written in the following form:
55
56.. math:: V_{LJ}(\mathbf{r}_{ij}) = 4\epsilon_{ij}\left(\left(\frac{\sigma_{ij}} {{r_{ij}}}\right)^{12}
57          - \left(\frac{\sigma_{ij}}{{r_{ij}}}\right)^{6} \right)
58          :label: eqnsigeps
59
60In constructing the parameter matrix for the non-bonded LJ-parameters,
61two types of combination rules can be used within |Gromacs|, only
62geometric averages (type 1 in the input section of the force-field
63file):
64
65.. math:: \begin{array}{rcl}
66          C_{ij}^{(6)}    &=& \left({C_{ii}^{(6)} \, C_{jj}^{(6)}}\right)^{1/2}    \\
67          C_{ij}^{(12)}   &=& \left({C_{ii}^{(12)} \, C_{jj}^{(12)}}\right)^{1/2}
68          \end{array}
69          :label: eqncomb
70
71or, alternatively the Lorentz-Berthelot rules can be used. An
72arithmetic average is used to calculate :math:`\sigma_{ij}`, while a
73geometric average is used to calculate :math:`\epsilon_{ij}` (type 2):
74
75.. math:: \begin{array}{rcl}
76          \sigma_{ij}   &=& \frac{1}{ 2}(\sigma_{ii} + \sigma_{jj})        \\
77          \epsilon_{ij} &=& \left({\epsilon_{ii} \, \epsilon_{jj}}\right)^{1/2}
78          \end{array}
79          :label: eqnlorentzberthelot
80
81finally an geometric average for both parameters can be used (type 3):
82
83.. math:: \begin{array}{rcl}
84          \sigma_{ij}   &=& \left({\sigma_{ii} \, \sigma_{jj}}\right)^{1/2}        \\
85          \epsilon_{ij} &=& \left({\epsilon_{ii} \, \epsilon_{jj}}\right)^{1/2}
86          \end{array}
87          :label: eqnnbgeometricaverage
88
89This last rule is used by the OPLS force field.
90
91Buckingham potential
92~~~~~~~~~~~~~~~~~~~~
93
94The Buckingham potential has a more flexible and realistic repulsion
95term than the Lennard-Jones interaction, but is also more expensive to
96compute. The potential form is:
97
98.. math:: V_{bh}({r_{ij}}) = A_{ij} \exp(-B_{ij} {r_{ij}}) -
99                             \frac{C_{ij}}{{r_{ij}}^6}
100          :label: eqnnbbuckingham
101
102.. _fig-bham:
103
104.. figure:: plots/f-bham.*
105   :width: 8.00000cm
106
107   The Buckingham interaction.
108
109See also :numref:`Fig. %s <fig-bham>`. The force derived from this is:
110
111.. math:: \mathbf{F}_i({r_{ij}}) = \left[ A_{ij}B_{ij}\exp(-B_{ij} {r_{ij}}) -
112                                   6\frac{C_{ij}}{{r_{ij}}^7} \right] {\frac{{\mathbf{r}_{ij}}}{{r_{ij}}}}
113          :label: eqnnbbuckinghamforce
114
115.. _coul:
116
117Coulomb interaction
118~~~~~~~~~~~~~~~~~~~
119
120The Coulomb interaction between two charge particles is given by:
121
122.. math:: V_c({r_{ij}}) = f \frac{q_i q_j}{{\varepsilon_r}{r_{ij}}}
123          :label: eqnvcoul
124
125See also :numref:`Fig. %s <fig-coul>`, where
126:math:`f = \frac{1}{4\pi \varepsilon_0} = {138.935\,458}` (see chapter :ref:`defunits`)
127
128.. _fig-coul:
129
130.. figure:: plots/vcrf.*
131   :width: 8.00000cm
132
133   The Coulomb interaction (for particles with equal signed charge) with
134   and without reaction field. In the latter case
135   :math:`{\varepsilon_r}` was 1, :math:`{\varepsilon_{rf}}` was 78, and
136   :math:`r_c` was 0.9 nm. The dot-dashed line is the same as the dashed
137   line, except for a constant.
138
139The force derived from this potential is:
140
141.. math:: \mathbf{F}_i(\mathbf{r}_{ij}) = -f \frac{q_i q_j}{{\varepsilon_r}{r_{ij}}^2}{\frac{{\mathbf{r}_{ij}}}{{r_{ij}}}}
142          :label: eqnfcoul
143
144A plain Coulomb interaction should only be used without cut-off or when
145all pairs fall within the cut-off, since there is an abrupt, large
146change in the force at the cut-off. In case you do want to use a
147cut-off, the potential can be shifted by a constant to make the
148potential the integral of the force. With the group cut-off scheme, this
149shift is only applied to non-excluded pairs. With the Verlet cut-off
150scheme, the shift is also applied to excluded pairs and self
151interactions, which makes the potential equivalent to a reaction field
152with :math:`{\varepsilon_{rf}}=1` (see below).
153
154In |Gromacs| the relative dielectric constant :math:`{\varepsilon_r}` may
155be set in the in the input for :ref:`grompp <gmx grompp>`.
156
157.. _coulrf:
158
159Coulomb interaction with reaction field
160~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
161
162The Coulomb interaction can be modified for homogeneous systems by
163assuming a constant dielectric environment beyond the cut-off
164:math:`r_c` with a dielectric constant of :math:`{\varepsilon_{rf}}`.
165The interaction then reads:
166
167.. math:: V_{crf} ~=~
168          f \frac{q_i q_j}{{\varepsilon_r}{r_{ij}}}\left[1+\frac{{\varepsilon_{rf}}-{\varepsilon_r}}{2{\varepsilon_{rf}}+{\varepsilon_r}}
169          \,\frac{{r_{ij}}^3}{r_c^3}\right]
170          - f\frac{q_i q_j}{{\varepsilon_r}r_c}\,\frac{3{\varepsilon_{rf}}}{2{\varepsilon_{rf}}+{\varepsilon_r}}
171          :label: eqnvcrf
172
173in which the constant expression on the right makes the potential zero
174at the cut-off :math:`r_c`. For charged cut-off spheres this corresponds
175to neutralization with a homogeneous background charge. We can rewrite
176:eq:`eqn. %s <eqnvcrf>` for simplicity as
177
178.. math:: V_{crf} ~=~     f \frac{q_i q_j}{{\varepsilon_r}}\left[\frac{1}{{r_{ij}}} + k_{rf}~ {r_{ij}}^2 -c_{rf}\right]
179          :label: eqnvcrfrewrite
180
181with
182
183.. math:: \begin{aligned}
184          k_{rf}  &=&     \frac{1}{r_c^3}\,\frac{{\varepsilon_{rf}}-{\varepsilon_r}}{(2{\varepsilon_{rf}}+{\varepsilon_r})}
185          \end{aligned}
186          :label: eqnkrf
187
188.. math:: \begin{aligned}
189          c_{rf}  &=&     \frac{1}{r_c}+k_{rf}\,r_c^2 ~=~ \frac{1}{r_c}\,\frac{3{\varepsilon_{rf}}}{(2{\varepsilon_{rf}}+{\varepsilon_r})}
190          \end{aligned}
191          :label: eqncrf
192
193For large :math:`{\varepsilon_{rf}}` the :math:`k_{rf}` goes to
194:math:`r_c^{-3}/2`, while for :math:`{\varepsilon_{rf}}` =
195:math:`{\varepsilon_r}` the correction vanishes. In :numref:`Fig. %s <fig-coul>` the
196modified interaction is plotted, and it is clear that the derivative
197with respect to :math:`{r_{ij}}` (= -force) goes to zero at the cut-off
198distance. The force derived from this potential reads:
199
200.. math:: \mathbf{F}_i(\mathbf{r}_{ij}) = -f \frac{q_i q_j}{{\varepsilon_r}}\left[\frac{1}{{r_{ij}}^2} - 2 k_{rf}{r_{ij}}\right]{\frac{{\mathbf{r}_{ij}}}{{r_{ij}}}}
201          :label: eqnfcrf
202
203The reaction-field correction should also be applied to all excluded
204atoms pairs, including self pairs, in which case the normal Coulomb term
205in :eq:`eqns. %s <eqnvcrf>` and :eq:`%s <eqnfcrf>` is absent.
206
207.. _modnbint:
208
209Modified non-bonded interactions
210~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
211
212In |Gromacs|, the non-bonded potentials can be modified by a shift
213function, also called a force-switch function, since it switches the
214force to zero at the cut-off. The purpose of this is to replace the
215truncated forces by forces that are continuous and have continuous
216derivatives at the cut-off radius. With such forces the time integration
217produces smaller errors. But note that for Lennard-Jones interactions
218these errors are usually smaller than other errors, such as integration
219errors at the repulsive part of the potential. For Coulomb interactions
220we advise against using a shifted potential and for use of a reaction
221field or a proper long-range method such as PME.
222
223There is *no* fundamental difference between a switch function (which
224multiplies the potential with a function) and a shift function (which
225adds a function to the force or potential) \ :ref:`72 <refSpoel2006a>`. The
226switch function is a special case of the shift function, which we apply
227to the *force function* :math:`F(r)`, related to the electrostatic or
228van der Waals force acting on particle :math:`i` by particle :math:`j`
229as:
230
231.. math:: \mathbf{F}_i = c \, F(r_{ij}) \frac{\mathbf{r}_{ij}}{r_{ij}}
232          :label: eqnswitch
233
234For pure Coulomb or Lennard-Jones interactions
235:math:`F(r) = F_\alpha(r) = \alpha \, r^{-(\alpha+1)}`. The switched
236force :math:`F_s(r)` can generally be written as:
237
238.. math::  \begin{array}{rcl}
239           F_s(r)~=&~F_\alpha(r)   & r < r_1               \\
240           F_s(r)~=&~F_\alpha(r)+S(r)      & r_1 \le r < r_c       \\
241           F_s(r)~=&~0             & r_c \le r
242           \end{array}
243           :label: eqnswitchforce
244
245When :math:`r_1=0` this is a traditional shift function, otherwise it
246acts as a switch function. The corresponding shifted potential function
247then reads:
248
249.. math:: V_s(r) =  \int^{\infty}_r~F_s(x)\, dx
250          :label: eqnswitchpotential
251
252The |Gromacs| **force switch** function :math:`S_F(r)` should be smooth at
253the boundaries, therefore the following boundary conditions are imposed
254on the switch function:
255
256.. math:: \begin{array}{rcl}
257          S_F(r_1)          &=&0            \\
258          S_F'(r_1)         &=&0            \\
259          S_F(r_c)          &=&-F_\alpha(r_c)       \\
260          S_F'(r_c)         &=&-F_\alpha'(r_c)
261          \end{array}
262          :label: eqnswitchforcefunction
263
264A 3\ :math:`^{rd}` degree polynomial of the form
265
266.. math:: S_F(r) = A(r-r_1)^2 + B(r-r_1)^3
267          :label: eqnswitchforcepoly
268
269fulfills these requirements. The constants A and B are given by the
270boundary condition at :math:`r_c`:
271
272.. math:: \begin{array}{rcl}
273          A &~=~& -\alpha \, \displaystyle
274                  \frac{(\alpha+4)r_c~-~(\alpha+1)r_1} {r_c^{\alpha+2}~(r_c-r_1)^2} \\
275          B &~=~& \alpha \, \displaystyle
276                  \frac{(\alpha+3)r_c~-~(\alpha+1)r_1}{r_c^{\alpha+2}~(r_c-r_1)^3}
277          \end{array}
278          :label: eqnforceswitchboundary
279
280Thus the total force function is:
281
282.. math:: F_s(r) = \frac{\alpha}{r^{\alpha+1}} + A(r-r_1)^2 + B(r-r_1)^3
283          :label: eqnswitchfinalforce
284
285and the potential function reads:
286
287.. math:: V_s(r) = \frac{1}{r^\alpha} - \frac{A}{3} (r-r_1)^3 - \frac{B}{4} (r-r_1)^4 - C
288          :label: eqnswitchfinalpotential
289
290where
291
292.. math:: C =  \frac{1}{r_c^\alpha} - \frac{A}{3} (r_c-r_1)^3 - \frac{B}{4} (r_c-r_1)^4
293          :label: eqnswitchpotentialexp
294
295The |Gromacs| **potential-switch** function :math:`S_V(r)` scales the
296potential between :math:`r_1` and :math:`r_c`, and has similar boundary
297conditions, intended to produce smoothly-varying potential and forces:
298
299.. math:: \begin{array}{rcl}
300          S_V(r_1)          &=&1 \\
301          S_V'(r_1)         &=&0 \\
302          S_V''(r_1)        &=&0 \\
303          S_V(r_c)          &=&0 \\
304          S_V'(r_c)         &=&0 \\
305          S_V''(r_c)        &=&0
306          \end{array}
307          :label: eqnpotentialswitch
308
309The fifth-degree polynomial that has these properties is
310
311.. math:: S_V(r; r_1, r_c) = \frac{1 - 10(r-r_1)^3(r_c-r_1)^2 + 15(r-r_1)^4(r_c-r_1) - 6(r-r_1)}{(r_c-r_1)^5}
312          :label: eqn5polynomal
313
314This implementation is found in several other simulation
315packages,\ :ref:`73 <refOhmine1988>`\ :ref:`75 <refGuenot1993>` but
316differs from that in CHARMM.\ :ref:`76 <refSteinbach1994>` Switching the
317potential leads to artificially large forces in the switching region,
318therefore it is not recommended to switch Coulomb interactions using
319this function,\ :ref:`72 <refSpoel2006a>` but switching Lennard-Jones
320interactions using this function produces acceptable results.
321
322Modified short-range interactions with Ewald summation
323~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
324
325When Ewald summation or particle-mesh Ewald is used to calculate the
326long-range interactions, the short-range Coulomb potential must also be
327modified. Here the potential is switched to (nearly) zero at the
328cut-off, instead of the force. In this case the short range potential is
329given by:
330
331.. math:: V(r) = f \frac{\mbox{erfc}(\beta r_{ij})}{r_{ij}} q_i q_j,
332          :label: eqnewaldsrmod
333
334where :math:`\beta` is a parameter that determines the relative weight
335between the direct space sum and the reciprocal space sum and
336erfc\ :math:`(x)` is the complementary error function. For further
337details on long-range electrostatics, see sec. :ref:`lrelstat`.
338