• Home
  • History
  • Annotate
Name Date Size #Lines LOC

..30-Sep-2021-

Cu.nn.mliap.modelH A D30-Sep-20212.9 KiB4236

Cu.snap.mliap.descriptorH A D30-Sep-2021301 2215

InP_JCPA2020.mliapH A D30-Sep-2021762 2014

InP_JCPA2020.mliap.descriptorH A D30-Sep-2021484 2116

InP_JCPA2020.mliap.modelH A D30-Sep-202125.8 KiB486484

Ni_Mo.dataH A D30-Sep-20211 KiB2720

Ni_Mo.mliap.descriptorH A D30-Sep-2021306 1811

Ni_Mo.mliap.modelH A D30-Sep-2021943 4341

READMEH A D30-Sep-20213.6 KiB11382

Si.nn.mliap.descriptorH A D30-Sep-2021160 1511

Si.nn.mliap.modelH A D30-Sep-202116.2 KiB183177

Ta06A.mliapH A D30-Sep-2021552 1812

Ta06A.mliap.descriptorH A D30-Sep-2021343 2214

Ta06A.mliap.modelH A D30-Sep-2021499 3835

Ta06A.nn.mliapH A D30-Sep-2021553 1913

Ta06A.nn.mliap.modelH A D30-Sep-2021769 1613

Ta06A.pytorch.mliapH A D30-Sep-2021566 1913

W.quadratic.mliapH A D30-Sep-2021465 1611

W.quadratic.mliap.descriptorH A D30-Sep-2021234 2113

W.quadratic.mliap.modelH A D30-Sep-20217.9 KiB503500

WBe_Wood_PRB2019.mliapH A D30-Sep-2021725 1713

WBe_Wood_PRB2019.mliap.descriptorH A D30-Sep-2021407 2113

WBe_Wood_PRB2019.mliap.modelH A D30-Sep-20214.1 KiB118116

compute.mliap.descriptorH A D30-Sep-2021211 2014

compute.quadratic.gg0.datH A D30-Sep-20213.9 KiB1817

compute.quadratic.gg1.datH A D30-Sep-20213.9 KiB1817

compute.snap.gg0.datH A D30-Sep-20211,000 1817

compute.snap.gg1.datH A D30-Sep-20211,000 1817

convert_mliap_Ta06A.pyH A D30-Sep-2021874 2717

in.mliap.nn.CuH A D30-Sep-20211.1 KiB5436

in.mliap.nn.Ta06AH A D30-Sep-20211 KiB5435

in.mliap.pytorch.Ta06AH A D30-Sep-20211 KiB5435

in.mliap.pytorch.relu1hiddenH A D30-Sep-20211 KiB5435

in.mliap.quadratic.computeH A D30-Sep-20213.1 KiB10678

in.mliap.snap.Ta06AH A D30-Sep-20211 KiB5435

in.mliap.snap.WBe.PRB2019H A D30-Sep-20211.2 KiB5739

in.mliap.snap.chemH A D30-Sep-2021823 4730

in.mliap.snap.computeH A D30-Sep-20213 KiB10678

in.mliap.snap.quadraticH A D30-Sep-20211 KiB5636

in.mliap.so3.Ni_MoH A D30-Sep-2021552 2618

in.mliap.so3.nn.SiH A D30-Sep-20211.2 KiB5337

log.03Jul20.mliap.quadratic.compute.g++.1H A D30-Sep-202110.3 KiB282246

log.03Jul20.mliap.quadratic.compute.g++.4H A D30-Sep-202110.5 KiB284248

log.03Jul20.mliap.snap.compute.g++.1H A D30-Sep-202110.3 KiB282246

log.03Jul20.mliap.snap.compute.g++.4H A D30-Sep-202110.4 KiB284248

log.04Dec20.mliap.pytorch.Ta06A.g++.1H A D30-Sep-20215.5 KiB158130

log.04Dec20.mliap.pytorch.Ta06A.g++.4H A D30-Sep-20215.5 KiB158130

log.14Jun21.mliap.nn.Cu.g++.1H A D30-Sep-20214.6 KiB134112

log.14Jun21.mliap.nn.Cu.g++.4H A D30-Sep-20214.6 KiB134112

log.14Jun21.mliap.nn.Ta06A.g++.1H A D30-Sep-20215.5 KiB157129

log.14Jun21.mliap.nn.Ta06A.g++.4H A D30-Sep-20215.5 KiB157129

log.14Jun21.mliap.so3.Ni_Mo.g++.1H A D30-Sep-20213 KiB8977

log.14Jun21.mliap.so3.Ni_Mo.g++.4H A D30-Sep-20213 KiB8977

log.14Jun21.mliap.so3.nn.Si.g++.1H A D30-Sep-20214.4 KiB125105

log.14Jun21.mliap.so3.nn.Si.g++.4H A D30-Sep-20214.4 KiB125105

log.21Jun20.mliap.snap.Ta06A.g++.1H A D30-Sep-20215.3 KiB157129

log.21Jun20.mliap.snap.Ta06A.g++.4H A D30-Sep-20215.3 KiB157129

log.21Jun20.mliap.snap.WBe.PRB2019.g++.1H A D30-Sep-20215.9 KiB166141

log.21Jun20.mliap.snap.WBe.PRB2019.g++.4H A D30-Sep-20215.9 KiB166141

log.21Jun20.mliap.snap.chem.g++.1H A D30-Sep-20215.4 KiB159133

log.21Jun20.mliap.snap.chem.g++.4H A D30-Sep-20215.4 KiB159133

log.21Jun20.mliap.snap.quadratic.g++.1H A D30-Sep-20215.1 KiB152126

log.21Jun20.mliap.snap.quadratic.g++.4H A D30-Sep-20215 KiB152126

mliap_pytorch_Ta06A.pyH A D30-Sep-20212.5 KiB10561

relu1hidden.mliap.pytorchH A D30-Sep-2021572 1913

README

1This directory contains multiple examples of
2machine-learning potentials defined using the
3MLIAP package in LAMMPS. The input files
4are described below.
5
6in.mliap.snap.Ta06A
7-------------------
8Run linear SNAP, equivalent to examples/snap/in.snap.Ta06A
9
10in.mliap.snap.WBe.PRB2019
11-------------------------
12Run linear SNAP, equivalent to examples/snap/in.snap.WBe.PRB2019
13
14in.mliap.snap.quadratic
15-----------------------
16Run quadratic SNAP
17
18in.mliap.snap.chem
19------------------
20Run EME-SNAP, equivalent to examples/snap/in.snap.InP.JCPA2020
21
22in.mliap.snap.compute
23---------------------
24Generate the A matrix, the gradients (w.r.t. coefficients)
25of total potential energy, forces, and stress tensor for
26linear SNAP, equivalent to in.snap.compute
27
28in.mliap.quadratic.compute
29--------------------------
30Generate the A matrix, the gradients (w.r.t. coefficients)
31of total potential energy, forces, and stress tensor for
32for quadratic SNAP, equivalent to in.snap.compute.quadratic
33
34in.mliap.pytorch.Ta06A
35-----------------------
36This reproduces the output of in.mliap.snap.Ta06A above,
37but using the Python coupling to PyTorch.
38
39This example can be run in two different ways:
40
411: Running a LAMMPS executable: in.mliap.pytorch.Ta06A
42
43First run ``python convert_mliap_Ta06A.py``. It creates
44a PyTorch energy model that replicates the
45SNAP Ta06A potential and saves it in the file
46"Ta06A.mliap.pytorch.model.pt".
47
48You can then run the example as follows
49
50`lmp -in in.mliap.pytorch.Ta06A -echo both`
51
52The resultant log.lammps output should be identical to that generated
53by in.mliap.snap.Ta06A.
54
55If this fails, see the instructions for building the MLIAP package
56with Python support enabled. Also, confirm that the
57LAMMPS Python embedded Python interpreter is
58working by running ../examples/in.python.
59
602: Running a Python script: mliap_pytorch_Ta06A.py
61
62Before testing this, ensure that the previous method
63(running a LAMMPS executable) works.
64
65You can run the example in serial:
66
67`python mliap_pytorch_Ta06A.py`
68
69or in parallel:
70
71`mpirun -np 4 python mliap_pytorch_Ta06A.py`
72
73The resultant log.lammps output should be identical to that generated
74by in.mliap.snap.Ta06A and in.mliap.pytorch.Ta06A.
75
76Not all Python installations support this mode of operation.
77It requires that the Python interpreter be initialized. If not,
78the script will exit with an error message.
79
80in.mliap.pytorch.relu1hidden
81----------------------------
82This example demonstrates a simple neural network potential
83using PyTorch and SNAP descriptors.
84
85`lmp -in in.mliap.pytorch.relu1hidden -echo both`
86
87It was trained on just the energy component (no forces) of
88the data used in the original SNAP Ta06A potential for
89tantalum (Thompson, Swiler, Trott, Foiles, Tucker,
90J Comp Phys, 285, 316 (2015).). Because of the very small amount
91of energy training data, it uses just 1 hidden layer with
92a ReLU activation function. It is not expected to be
93very accurate for forces.
94
95NOTE: Unlike the previous example, this example uses
96a pre-built PyTorch file `Ta06A.mliap.pytorch.model.pt`.
97It is read using `torch.load`,
98which implicitly uses the Python `pickle` module.
99This is known to be insecure. It is possible to construct malicious
100pickle data that will execute arbitrary code during unpickling. Never
101load data that could have come from an untrusted source, or that
102could have been tampered with. Only load data you trust.
103
104in.mliap.nn.Ta06A
105-------------------
106Run linear SNAP using the "nn" model style, equivalent to examples/snap/in.snap.Ta06A
107
108in.mliap.nn.cu
109-------------------------
110Run a neural network potential for Cu, a combination of SNAP descriptors and the "nn" model style
111
112
113