1 // clang-format off
2 /* ----------------------------------------------------------------------
3    LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
4    https://www.lammps.org/, Sandia National Laboratories
5    Steve Plimpton, sjplimp@sandia.gov
6 
7    Copyright (2003) Sandia Corporation.  Under the terms of Contract
8    DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
9    certain rights in this software.  This software is distributed under
10    the GNU General Public License.
11 
12    See the README file in the top-level LAMMPS directory.
13 ------------------------------------------------------------------------- */
14 
15 /* ----------------------------------------------------------------------
16    Contributing author: Axel Kohlmeyer (Temple U)
17 
18    Variant of the harmonic angle potential for use with the
19    lj/sdk potential for coarse grained MD simulations.
20 ------------------------------------------------------------------------- */
21 
22 #include "angle_sdk.h"
23 
24 #include <cmath>
25 #include "atom.h"
26 #include "neighbor.h"
27 #include "pair.h"
28 #include "domain.h"
29 #include "comm.h"
30 #include "force.h"
31 #include "math_const.h"
32 #include "memory.h"
33 #include "error.h"
34 
35 
36 #include "lj_sdk_common.h"
37 
38 using namespace LAMMPS_NS;
39 using namespace MathConst;
40 using namespace LJSDKParms;
41 
42 #define SMALL 0.001
43 
44 /* ---------------------------------------------------------------------- */
45 
AngleSDK(LAMMPS * lmp)46 AngleSDK::AngleSDK(LAMMPS *lmp) : Angle(lmp) { repflag = 0;}
47 
48 /* ---------------------------------------------------------------------- */
49 
~AngleSDK()50 AngleSDK::~AngleSDK()
51 {
52   if (allocated) {
53     memory->destroy(setflag);
54     memory->destroy(k);
55     memory->destroy(theta0);
56     memory->destroy(repscale);
57 
58     allocated = 0;
59   }
60 }
61 
62 /* ---------------------------------------------------------------------- */
63 
compute(int eflag,int vflag)64 void AngleSDK::compute(int eflag, int vflag)
65 {
66   int i1,i2,i3,n,type;
67   double delx1,dely1,delz1,delx2,dely2,delz2,delx3,dely3,delz3;
68   double eangle,f1[3],f3[3],e13,f13;
69   double dtheta,tk;
70   double rsq1,rsq2,rsq3,r1,r2,c,s,a,a11,a12,a22;
71 
72   eangle = 0.0;
73   ev_init(eflag,vflag);
74 
75   double **x = atom->x;
76   double **f = atom->f;
77   int **anglelist = neighbor->anglelist;
78   int nanglelist = neighbor->nanglelist;
79   int nlocal = atom->nlocal;
80   int newton_bond = force->newton_bond;
81 
82   for (n = 0; n < nanglelist; n++) {
83     i1 = anglelist[n][0];
84     i2 = anglelist[n][1];
85     i3 = anglelist[n][2];
86     type = anglelist[n][3];
87 
88     // 1st bond
89 
90     delx1 = x[i1][0] - x[i2][0];
91     dely1 = x[i1][1] - x[i2][1];
92     delz1 = x[i1][2] - x[i2][2];
93 
94     rsq1 = delx1*delx1 + dely1*dely1 + delz1*delz1;
95     r1 = sqrt(rsq1);
96 
97     // 2nd bond
98 
99     delx2 = x[i3][0] - x[i2][0];
100     dely2 = x[i3][1] - x[i2][1];
101     delz2 = x[i3][2] - x[i2][2];
102 
103     rsq2 = delx2*delx2 + dely2*dely2 + delz2*delz2;
104     r2 = sqrt(rsq2);
105 
106     // angle (cos and sin)
107 
108     c = delx1*delx2 + dely1*dely2 + delz1*delz2;
109     c /= r1*r2;
110 
111     if (c > 1.0) c = 1.0;
112     if (c < -1.0) c = -1.0;
113 
114     s = sqrt(1.0 - c*c);
115     if (s < SMALL) s = SMALL;
116     s = 1.0/s;
117 
118     // 1-3 LJ interaction.
119     // we only want to use the repulsive part,
120     // and it can be scaled (or off).
121     // so this has to be done here and not in the
122     // general non-bonded code.
123 
124     f13 = e13 = delx3 = dely3 = delz3 = 0.0;
125 
126     if (repflag) {
127 
128       delx3 = x[i1][0] - x[i3][0];
129       dely3 = x[i1][1] - x[i3][1];
130       delz3 = x[i1][2] - x[i3][2];
131       rsq3 = delx3*delx3 + dely3*dely3 + delz3*delz3;
132 
133       const int type1 = atom->type[i1];
134       const int type3 = atom->type[i3];
135 
136       f13=0.0;
137       e13=0.0;
138 
139       if (rsq3 < rminsq[type1][type3]) {
140         const int ljt = lj_type[type1][type3];
141         const double r2inv = 1.0/rsq3;
142 
143         if (ljt == LJ12_4) {
144           const double r4inv=r2inv*r2inv;
145 
146           f13 = r4inv*(lj1[type1][type3]*r4inv*r4inv - lj2[type1][type3]);
147           if (eflag) e13 = r4inv*(lj3[type1][type3]*r4inv*r4inv - lj4[type1][type3]);
148 
149         } else if (ljt == LJ9_6) {
150           const double r3inv = r2inv*sqrt(r2inv);
151           const double r6inv = r3inv*r3inv;
152 
153           f13 = r6inv*(lj1[type1][type3]*r3inv - lj2[type1][type3]);
154           if (eflag) e13 = r6inv*(lj3[type1][type3]*r3inv - lj4[type1][type3]);
155 
156         } else if (ljt == LJ12_6) {
157           const double r6inv = r2inv*r2inv*r2inv;
158 
159           f13 = r6inv*(lj1[type1][type3]*r6inv - lj2[type1][type3]);
160           if (eflag) e13 = r6inv*(lj3[type1][type3]*r6inv - lj4[type1][type3]);
161         }
162 
163         // make sure energy is 0.0 at the cutoff.
164         if (eflag) e13 -= emin[type1][type3];
165 
166         f13 *= r2inv;
167       }
168     }
169 
170     // force & energy
171 
172     dtheta = acos(c) - theta0[type];
173     tk = k[type] * dtheta;
174 
175     if (eflag) eangle = tk*dtheta;
176 
177     a = -2.0 * tk * s;
178     a11 = a*c / rsq1;
179     a12 = -a / (r1*r2);
180     a22 = a*c / rsq2;
181 
182     f1[0] = a11*delx1 + a12*delx2;
183     f1[1] = a11*dely1 + a12*dely2;
184     f1[2] = a11*delz1 + a12*delz2;
185     f3[0] = a22*delx2 + a12*delx1;
186     f3[1] = a22*dely2 + a12*dely1;
187     f3[2] = a22*delz2 + a12*delz1;
188 
189     // apply force to each of the 3 atoms
190 
191     if (newton_bond || i1 < nlocal) {
192       f[i1][0] += f1[0] + f13*delx3;
193       f[i1][1] += f1[1] + f13*dely3;
194       f[i1][2] += f1[2] + f13*delz3;
195     }
196 
197     if (newton_bond || i2 < nlocal) {
198       f[i2][0] -= f1[0] + f3[0];
199       f[i2][1] -= f1[1] + f3[1];
200       f[i2][2] -= f1[2] + f3[2];
201     }
202 
203     if (newton_bond || i3 < nlocal) {
204       f[i3][0] += f3[0] - f13*delx3;
205       f[i3][1] += f3[1] - f13*dely3;
206       f[i3][2] += f3[2] - f13*delz3;
207     }
208 
209     if (evflag) {
210       ev_tally(i1,i2,i3,nlocal,newton_bond,eangle,f1,f3,
211                          delx1,dely1,delz1,delx2,dely2,delz2);
212       if (repflag)
213         ev_tally13(i1,i3,nlocal,newton_bond,e13,f13,delx3,dely3,delz3);
214     }
215   }
216 }
217 
218 /* ---------------------------------------------------------------------- */
219 
allocate()220 void AngleSDK::allocate()
221 {
222   allocated = 1;
223   int n = atom->nangletypes;
224 
225   memory->create(k,n+1,"angle:k");
226   memory->create(theta0,n+1,"angle:theta0");
227   memory->create(repscale,n+1,"angle:repscale");
228 
229   memory->create(setflag,n+1,"angle:setflag");
230   for (int i = 1; i <= n; i++) setflag[i] = 0;
231 }
232 
233 /* ----------------------------------------------------------------------
234    set coeffs for one or more types
235 ------------------------------------------------------------------------- */
236 
coeff(int narg,char ** arg)237 void AngleSDK::coeff(int narg, char **arg)
238 {
239   if ((narg < 3) || (narg > 6))
240     error->all(FLERR,"Incorrect args for angle coefficients");
241 
242   if (!allocated) allocate();
243 
244   int ilo,ihi;
245   utils::bounds(FLERR,arg[0],1,atom->nangletypes,ilo,ihi,error);
246 
247   double k_one = utils::numeric(FLERR,arg[1],false,lmp);
248   double theta0_one = utils::numeric(FLERR,arg[2],false,lmp);
249   double repscale_one=1.0;
250 
251   // backward compatibility with old cg/cmm style input:
252   // this had <lj_type> <epsilon> <sigma>
253   // if epsilon is set to 0.0 we accept it as repscale 0.0
254   // otherwise assume repscale 1.0, since we were using
255   // epsilon to turn repulsion on or off.
256   if (narg == 6) {
257     repscale_one = utils::numeric(FLERR,arg[4],false,lmp);
258     if (repscale_one > 0.0) repscale_one = 1.0;
259   } else if (narg == 4) repscale_one = utils::numeric(FLERR,arg[3],false,lmp);
260   else if (narg == 3) repscale_one = 1.0;
261   else error->all(FLERR,"Incorrect args for angle coefficients");
262 
263   // convert theta0 from degrees to radians and store coefficients
264 
265   int count = 0;
266   for (int i = ilo; i <= ihi; i++) {
267     k[i] = k_one;
268     theta0[i] = theta0_one/180.0 * MY_PI;
269     repscale[i] = repscale_one;
270     setflag[i] = 1;
271     count++;
272   }
273 
274   if (count == 0) error->all(FLERR,"Incorrect args for angle coefficients");
275 }
276 
277 /* ----------------------------------------------------------------------
278    error check and initialize all values needed for force computation
279 ------------------------------------------------------------------------- */
280 
init_style()281 void AngleSDK::init_style()
282 {
283 
284   // make sure we use an SDK pair_style and that we need the 1-3 repulsion
285 
286   repflag = 0;
287   for (int i = 1; i <= atom->nangletypes; i++)
288     if (repscale[i] > 0.0) repflag = 1;
289 
290   // set up pointers to access SDK LJ parameters for 1-3 interactions
291 
292   if (repflag) {
293     int itmp;
294     if (force->pair == nullptr)
295       error->all(FLERR,"Angle style SDK requires use of a compatible with Pair style");
296 
297     lj1 = (double **) force->pair->extract("lj1",itmp);
298     lj2 = (double **) force->pair->extract("lj2",itmp);
299     lj3 = (double **) force->pair->extract("lj3",itmp);
300     lj4 = (double **) force->pair->extract("lj4",itmp);
301     lj_type = (int **) force->pair->extract("lj_type",itmp);
302     rminsq = (double **) force->pair->extract("rminsq",itmp);
303     emin = (double **) force->pair->extract("emin",itmp);
304 
305     if (!lj1 || !lj2 || !lj3 || !lj4 || !lj_type || !rminsq || !emin)
306       error->all(FLERR,"Angle style SDK is incompatible with Pair style");
307   }
308 }
309 
310 /* ---------------------------------------------------------------------- */
311 
equilibrium_angle(int i)312 double AngleSDK::equilibrium_angle(int i)
313 {
314   return theta0[i];
315 }
316 
317 /* ----------------------------------------------------------------------
318    proc 0 writes out coeffs to restart file
319 ------------------------------------------------------------------------- */
320 
write_restart(FILE * fp)321 void AngleSDK::write_restart(FILE *fp)
322 {
323   fwrite(&k[1],sizeof(double),atom->nangletypes,fp);
324   fwrite(&theta0[1],sizeof(double),atom->nangletypes,fp);
325   fwrite(&repscale[1],sizeof(double),atom->nangletypes,fp);
326 }
327 
328 /* ----------------------------------------------------------------------
329    proc 0 reads coeffs from restart file, bcasts them
330 ------------------------------------------------------------------------- */
331 
read_restart(FILE * fp)332 void AngleSDK::read_restart(FILE *fp)
333 {
334   allocate();
335 
336   if (comm->me == 0) {
337     utils::sfread(FLERR,&k[1],sizeof(double),atom->nangletypes,fp,nullptr,error);
338     utils::sfread(FLERR,&theta0[1],sizeof(double),atom->nangletypes,fp,nullptr,error);
339     utils::sfread(FLERR,&repscale[1],sizeof(double),atom->nangletypes,fp,nullptr,error);
340   }
341   MPI_Bcast(&k[1],atom->nangletypes,MPI_DOUBLE,0,world);
342   MPI_Bcast(&theta0[1],atom->nangletypes,MPI_DOUBLE,0,world);
343   MPI_Bcast(&repscale[1],atom->nangletypes,MPI_DOUBLE,0,world);
344 
345   for (int i = 1; i <= atom->nangletypes; i++) setflag[i] = 1;
346 }
347 
348 /* ----------------------------------------------------------------------
349    proc 0 writes to data file
350 ------------------------------------------------------------------------- */
351 
write_data(FILE * fp)352 void AngleSDK::write_data(FILE *fp)
353 {
354   for (int i = 1; i <= atom->nangletypes; i++)
355     fprintf(fp,"%d %g %g\n",i,k[i],theta0[i]/MY_PI*180.0);
356 }
357 
358 /* ---------------------------------------------------------------------- */
359 
ev_tally13(int i,int j,int nlocal,int newton_bond,double evdwl,double fpair,double delx,double dely,double delz)360 void AngleSDK::ev_tally13(int i, int j, int nlocal, int newton_bond,
361                           double evdwl, double fpair,
362                           double delx, double dely, double delz)
363 {
364   double v[6];
365 
366   if (eflag_either) {
367     if (eflag_global) {
368       if (newton_bond) {
369         energy += evdwl;
370       } else {
371         if (i < nlocal)
372           energy += 0.5*evdwl;
373         if (j < nlocal)
374           energy += 0.5*evdwl;
375       }
376     }
377     if (eflag_atom) {
378       if (newton_bond || i < nlocal) eatom[i] += 0.5*evdwl;
379       if (newton_bond || j < nlocal) eatom[j] += 0.5*evdwl;
380     }
381   }
382 
383   if (vflag_either) {
384     v[0] = delx*delx*fpair;
385     v[1] = dely*dely*fpair;
386     v[2] = delz*delz*fpair;
387     v[3] = delx*dely*fpair;
388     v[4] = delx*delz*fpair;
389     v[5] = dely*delz*fpair;
390 
391     if (vflag_global) {
392       if (newton_bond) {
393         virial[0] += v[0];
394         virial[1] += v[1];
395         virial[2] += v[2];
396         virial[3] += v[3];
397         virial[4] += v[4];
398         virial[5] += v[5];
399       } else {
400         if (i < nlocal) {
401           virial[0] += 0.5*v[0];
402           virial[1] += 0.5*v[1];
403           virial[2] += 0.5*v[2];
404           virial[3] += 0.5*v[3];
405           virial[4] += 0.5*v[4];
406           virial[5] += 0.5*v[5];
407         }
408         if (j < nlocal) {
409           virial[0] += 0.5*v[0];
410           virial[1] += 0.5*v[1];
411           virial[2] += 0.5*v[2];
412           virial[3] += 0.5*v[3];
413           virial[4] += 0.5*v[4];
414           virial[5] += 0.5*v[5];
415         }
416       }
417     }
418 
419     if (vflag_atom) {
420       if (newton_bond || i < nlocal) {
421         vatom[i][0] += 0.5*v[0];
422         vatom[i][1] += 0.5*v[1];
423         vatom[i][2] += 0.5*v[2];
424         vatom[i][3] += 0.5*v[3];
425         vatom[i][4] += 0.5*v[4];
426         vatom[i][5] += 0.5*v[5];
427       }
428       if (newton_bond || j < nlocal) {
429         vatom[j][0] += 0.5*v[0];
430         vatom[j][1] += 0.5*v[1];
431         vatom[j][2] += 0.5*v[2];
432         vatom[j][3] += 0.5*v[3];
433         vatom[j][4] += 0.5*v[4];
434         vatom[j][5] += 0.5*v[5];
435       }
436     }
437   }
438 }
439 
440 /* ---------------------------------------------------------------------- */
441 
single(int type,int i1,int i2,int i3)442 double AngleSDK::single(int type, int i1, int i2, int i3)
443 {
444   double **x = atom->x;
445 
446   double delx1 = x[i1][0] - x[i2][0];
447   double dely1 = x[i1][1] - x[i2][1];
448   double delz1 = x[i1][2] - x[i2][2];
449   domain->minimum_image(delx1,dely1,delz1);
450   double r1 = sqrt(delx1*delx1 + dely1*dely1 + delz1*delz1);
451 
452   double delx2 = x[i3][0] - x[i2][0];
453   double dely2 = x[i3][1] - x[i2][1];
454   double delz2 = x[i3][2] - x[i2][2];
455   domain->minimum_image(delx2,dely2,delz2);
456   double r2 = sqrt(delx2*delx2 + dely2*dely2 + delz2*delz2);
457 
458   double c = delx1*delx2 + dely1*dely2 + delz1*delz2;
459   c /= r1*r2;
460   if (c > 1.0) c = 1.0;
461   if (c < -1.0) c = -1.0;
462 
463   double e13=0.0;
464   if (repflag) {
465 
466     // 1-3 LJ interaction.
467     double delx3 = x[i1][0] - x[i3][0];
468     double dely3 = x[i1][1] - x[i3][1];
469     double delz3 = x[i1][2] - x[i3][2];
470     domain->minimum_image(delx3,dely3,delz3);
471 
472     const int type1 = atom->type[i1];
473     const int type3 = atom->type[i3];
474 
475     const double rsq3 = delx3*delx3 + dely3*dely3 + delz3*delz3;
476 
477     if (rsq3 < rminsq[type1][type3]) {
478       const int ljt = lj_type[type1][type3];
479       const double r2inv = 1.0/rsq3;
480 
481       if (ljt == LJ12_4) {
482         const double r4inv=r2inv*r2inv;
483 
484         e13 = r4inv*(lj3[type1][type3]*r4inv*r4inv - lj4[type1][type3]);
485 
486       } else if (ljt == LJ9_6) {
487         const double r3inv = r2inv*sqrt(r2inv);
488         const double r6inv = r3inv*r3inv;
489 
490         e13 = r6inv*(lj3[type1][type3]*r3inv - lj4[type1][type3]);
491 
492       } else if (ljt == LJ12_6) {
493         const double r6inv = r2inv*r2inv*r2inv;
494 
495         e13 = r6inv*(lj3[type1][type3]*r6inv - lj4[type1][type3]);
496       }
497 
498       // make sure energy is 0.0 at the cutoff.
499       e13 -= emin[type1][type3];
500     }
501   }
502 
503   double dtheta = acos(c) - theta0[type];
504   double tk = k[type] * dtheta;
505   return tk*dtheta + e13;
506 }
507