1 //
2 // obwfn.h
3 //
4 // Copyright (C) 1996 Limit Point Systems, Inc.
5 //
6 // Author: Curtis Janssen <cljanss@limitpt.com>
7 // Maintainer: LPS
8 //
9 // This file is part of the SC Toolkit.
10 //
11 // The SC Toolkit is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU Library General Public License as published by
13 // the Free Software Foundation; either version 2, or (at your option)
14 // any later version.
15 //
16 // The SC Toolkit is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19 // GNU Library General Public License for more details.
20 //
21 // You should have received a copy of the GNU Library General Public License
22 // along with the SC Toolkit; see the file COPYING.LIB.  If not, write to
23 // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24 //
25 // The U.S. Government is granted a limited license as per AL 91-7.
26 //
27 
28 #ifndef _chemistry_qc_wfn_obwfn_h
29 #define _chemistry_qc_wfn_obwfn_h
30 
31 #ifdef __GNUC__
32 #pragma interface
33 #endif
34 
35 #include <chemistry/qc/wfn/wfn.h>
36 
37 namespace sc {
38 
39 /**A OneBodyWavefunction is a MolecularEnergy that solves an effective
40 one-body problem. */
41 class OneBodyWavefunction: public Wavefunction {
42  protected:
43     ResultRefSymmSCMatrix density_;
44     AccResultRefSCMatrix oso_eigenvectors_;
45     AccResultRefDiagSCMatrix eigenvalues_;
46     int nirrep_;
47     int *nvecperirrep_;
48     double *occupations_;
49     double *alpha_occupations_;
50     double *beta_occupations_;
51 
52     void init_sym_info();
53 
54     // oldocc is converted to newocc using the correlation
55     // table between initial_pg_ and the current point group
56     // returns 1 if successful and 0 otherwise.  newocc is
57     // delete[]'ed and new'ed.
58     int form_occupations(int *&newocc, const int *oldocc);
59 
60  public:
61     OneBodyWavefunction(StateIn&);
62     /** The KeyVal constructor.
63         <dl>
64 
65         <dt><tt>eigenvector_accuracy</tt><dd> Gives the accuracy to which
66         eigenvectors are initially computed.  The default 1.0e-7.
67         Accuracies are usually adjusted as needed anyway, so it should not
68         be necessary to change this.
69 
70         </dl>
71     */
72     OneBodyWavefunction(const Ref<KeyVal>&);
73     ~OneBodyWavefunction();
74 
75     void save_data_state(StateOut&);
76 
77     int nelectron();
78 
79     /** Overload of Function::set_desired_value_accuracy(). Must update
80         accuracy of the eigenvectors and the eigenvalues */
81     void set_desired_value_accuracy(double eps);
82 
83     // Following is a proposed interface to make the meaning of
84     // the various transformation matrices less confusing.
85 //     /** These members give metrics and basis transformations
86 //         using the covariant/contravariant tensor notation. */
87 //     //@{
88 //     /** Returns the transformation matrix that converts
89 //         a contravariant SO tensor index to a contravariant
90 //         MO tensor index.
91 //      */
92 //     RefSCMatrix t_mo_so_I_J();
93 //     /** Returns the transformation matrix that converts a covariant SO
94 //         tensor index to a covariant MO tensor index.
95 //      */
96 //     RefSCMatrix t_mo_so_i_j();
97 //     /** Returns the transformation matrix that converts
98 //         a contravariant MO tensor index to a contravariant
99 //         SO tensor index.
100 //      */
101 //     RefSCMatrix t_mo_so_I_J();
102 //     /** Returns the transformation matrix that converts a covariant MO
103 //         tensor index to a covariant SO tensor index.
104 //      */
105 //     RefSCMatrix t_mo_so_i_j();
106 //     /** Returns the metric for converting a covariant SO index into
107 //         a contravariant one. */
108 //     RefSCMatrix g_so_I_j();
109 //     /** Returns the metric for converting a contravariant SO index into
110 //         a covariant one. */
111 //     RefSCMatrix g_so_i_J();
112 //     //@}
113 
114     /// Returns the SO to MO transformation matrix.
115     RefSCMatrix so_to_mo();
116     /// Returns the orthogonal-SO to MO transformation matrix.
117     RefSCMatrix orthog_so_to_mo();
118     /// Returns the MO to SO transformation matrix.
119     RefSCMatrix mo_to_so();
120     /** Returns the MO to orthogonal-SO transformation matrix.
121         This returns the same matrix as oso_eigenvectors(). */
122     RefSCMatrix mo_to_orthog_so();
123 
124     /** Deprecated.  Use so_to_mo().t() instead. */
125     RefSCMatrix eigenvectors();
126     /** Returns the orthogonal MO (columns) to orthogonal-SO (rows) transformation
127         matrix. */
128     virtual RefSCMatrix oso_eigenvectors() = 0;
129     /** Returns the MO basis eigenvalues. */
130     virtual RefDiagSCMatrix eigenvalues() = 0;
131     /** Returns the occupation.  The irreducible representation and the
132         vector number within that representation are given as arguments. */
133     virtual double occupation(int irrep, int vectornum) = 0;
134     /** Returns the occupation. The vector number in the MO basis is given
135         as an argument. */
136     double occupation(int vectornum);
137 
138     /// Return 1 if the alpha orbitals are not equal to the beta orbitals.
139     virtual int spin_unrestricted() = 0;
140 
141     /** Returns the alpha occupation.  The irreducible representation and the
142         vector number within that representation are given as arguments. */
143     virtual double alpha_occupation(int irrep, int vectornum);
144     /** Returns the beta occupation.  The irreducible representation and the
145         vector number within that representation are given as arguments. */
146     virtual double beta_occupation(int irrep, int vectornum);
147     /** Returns the alpha occupation. The vector number in the MO basis is
148         given as an argument. */
149     double alpha_occupation(int vectornum);
150     /** Returns the beta occupation. The vector number in the MO basis is
151         given as an argument. */
152     double beta_occupation(int vectornum);
153 
154     // Return alpha and beta electron densities
155     virtual RefSCMatrix oso_alpha_eigenvectors();
156     virtual RefSCMatrix oso_beta_eigenvectors();
157     virtual RefSCMatrix alpha_eigenvectors();
158     virtual RefSCMatrix beta_eigenvectors();
159     virtual RefDiagSCMatrix alpha_eigenvalues();
160     virtual RefDiagSCMatrix beta_eigenvalues();
161 
162     virtual RefDiagSCMatrix
163       projected_eigenvalues(const Ref<OneBodyWavefunction>&, int alp=1);
164     /** Projects the density into the current basis set.  Returns an
165         orthogonalized SO to MO transformation with the orbitals. */
166     virtual RefSCMatrix projected_eigenvectors(const Ref<OneBodyWavefunction>&,
167                                                int alp=1);
168     /** Return a guess vector.  The guess transforms the orthogonal SO
169         basis to the MO basis. */
170     virtual RefSCMatrix hcore_guess();
171     /** Return a guess vector and the eigenvalues.  The guess ransforms the
172         orthogonal SO basis to the MO basis. Storage for the eigenvalues
173         will be allocated. */
174     virtual RefSCMatrix hcore_guess(RefDiagSCMatrix &val);
175 
176     void symmetry_changed();
177 
178     double orbital(const SCVector3& r, int iorb);
179     double orbital_density(const SCVector3& r, int iorb, double* orbval = 0);
180 
181     void print(std::ostream&o=ExEnv::out0()) const;
182 };
183 
184 
185 // This is useful as an initial guess for other one body wavefunctions
186 class HCoreWfn: public OneBodyWavefunction {
187   private:
188     int nirrep_;
189     int *docc_;
190     int *socc_;
191     int total_charge_;
192     int user_occ_;
193 
194     void fill_occ(const RefDiagSCMatrix &evals,
195                   int ndocc, int *docc, int nsocc = 0, int *socc = 0);
196 
197     void compute();
198 
199   public:
200     HCoreWfn(StateIn&);
201     HCoreWfn(const Ref<KeyVal>&);
202     ~HCoreWfn();
203 
204     void save_data_state(StateOut&);
205 
206     double occupation(int irrep, int vectornum);
207 
208     RefSCMatrix oso_eigenvectors();
209     RefDiagSCMatrix eigenvalues();
210     RefSymmSCMatrix density();
211     int spin_polarized();
212     int spin_unrestricted();
213 
214     int value_implemented() const;
215 };
216 
217 }
218 
219 #endif
220 
221 // Local Variables:
222 // mode: c++
223 // c-file-style: "ETS"
224 // End:
225