1#*********************************************************
2#Calculation mode, general variables.
3#*********************************************************
4
5#CalculationMode = opt_control
6#CalculationMode = td
7CalculationMode = gs
8#ExtraStates = 3
9
10fromScratch = yes
11
12TheoryLevel = independent_particles
13ExperimentalFeatures = yes
14SpinComponents = spinors
15
16
17#*********************************************************
18#Material parameters (In our case, the GaAs semiconductor)
19#
20# MISSING: Some references to justify these values
21#*********************************************************
22#Effective mass (in m_0 units)
23meff = 0.067
24#dielectric constant (in epsilon_0 units)
25epsilon = 13.1800003
26#Gyromagnetic factor (no units)
27gfactor = -0.44
28
29
30# About units, some reminders:
31#
32# In the following, [M] stands for "mass", [L] for "length",
33# [T] form "time", [E] for "energy", and "[EF]" for "electromagnetic field".
34# The relation between effective atomic units  (e.a.u.) and atomic units
35# (a.u.) is given by:
36#
37# e.a.u.[M] = meff a.u.[M]
38# e.a.u.[L] = (epsilon/meff) a.u.[L]
39# e.a.u.[T] = (epsilon^2/meff) a.u.[T]
40# e.a.u.[E] = (meff/epsilon^2) a.u.[E]
41# e.a.u.[EF] = (meff^4/epsilon^5) a.u.[EF]
42#
43# So, for example, to transform x a0 into effective atomic units of length,
44# multiply x by meff/epsilon
45#
46# To transform x Ha into effective atomic units of energy,
47# multiply x by (epsilon^2/meff)
48#
49# To transform x hbar/Ha into effectie atomic of time,
50# multiply x by (meff/epsilon^2)
51#
52# Regarding the units of electromagnetic field, it is good to remember that
53# 1 a.u.[EF] = 5.14220652e11 V/m
54#
55# Regarding the magnetic field:
56# 1Tesla corresponds to 5.8300355916580818e-4 a.u.[EF]
57# So to transform x Tesla into effective atomic units of electromagnetic
58# field, multiply x by 5.8300355916580818e-4 * sqrt(epsilon^5/meff^4)
59# However, due to the reasons explained in 02-fock-darwin.04-ground_state.inp,
60# one must divide the result by sqrt(epsilon).
61# Also, one must multiply the gyromagnetic ratio by meff.
62
63
64#*********************************************************
65#Confining potential
66#
67# MISSING: References with typical values for confining
68# potentials.
69#*********************************************************
70omega_Ha = 0.001 * ( 1e3 / 27211.384)
71omega = omega_Ha * (epsilon^2/meff)
72
73#These parameters are for the Q-ring
74#v0    = 0.2 * ( 1e3 / 27211.384) * (epsilon^2/meff)
75#d0    = 0.960634589
76
77%Species
78"potential" | species_user_defined | potential_formula | "0.5*omega^2*r^2" | valence | 1
79%
80
81%Coordinates
82"potential" | 0 | 0
83%
84
85
86#*********************************************************
87#Grid
88#*********************************************************
89
90Dimensions = 2
91BoxShape = sphere
92Radius = 20.0
93Spacing = 1.0
94
95#*********************************************************
96#External Magnetic field
97#
98# MISSING: Reference with typical magnetic fields used in
99# experiments or calculations.
100#*********************************************************
101
102# We need to multiply the true gyromagnetic factor by meff
103GyroMagneticRatio = gfactor * meff
104
105# This i the magnetic field, in teslas:
106mag_tesla = 1.0
107# Now we convert to atomic units:
108mag_au = mag_tesla * (1.0/1715.25539471980586102447)
109# Now we convert to effective atomic units:
110mag_effau = mag_au * sqrt(epsilon^5) / (meff^2)
111# And now we divide by sqrt(epsilon):
112mag = mag_effau / sqrt(epsilon)
113
114%StaticMagneticField
1150 | 0 | mag
116%
117
118
119#*********************************************************
120#Rashba SOI parameter
121#
122# MISSING: References with typical values for the Rashba
123# spin orbit coupling.
124#*********************************************************
125
126# First, we express lambda in meV*nm
127lambda_mevnm = 0.05 * ( 1.0e2 )
128# Then, we transform it into Ha * a0
129lambda_haa0 = lambda_mevnm * 0.00069446161
130# And then, to (Ha*) * (a0*)
131lambda = lambda_haa0 * (epsilon^2/meff) * (meff/epsilon)
132RashbaSpinOrbitCoupling = lambda
133
134
135#*********************************************************
136#Eigensolver parameters
137#*********************************************************
138EigenSolver = cg
139#EigenSolverTolerance = 1.0e-6
140
141
142#*********************************************************
143# Laser field parameters
144#
145# MISSING: Typical electric field amplitudes in experiments.
146# It may come from currents in the semiconductor, or it may
147# be the electric field of an incoming laser.
148#
149# MISSING: Typical frequencies of those laser fields.
150#*********************************************************
151#------------------------------------------
152# Initial guess
153#------------------------------------------
154
155# Amplitude of the lser field
156# For example, 1000 V/m = 1000 * 1.94469046723545440170e-10 a.u.[EF] =
157# 1000 * 2.785113504876579447118e-5 e.a.u.[EF]
158
159%TDExternalFields
160electric_field | 1 | 1 | 0 | 0.0 | "envelope_function"
161%
162# Defining the initial laser pulse in this way we make sure that it is
163# compatible with the representation.
164%TDFunctions
165"envelope_function" | tdf_from_expr | "ampl*sin((2*pi/stime)*1*t)"
166%
167
168
169#------------------------------------------
170# To check the optimal run
171#------------------------------------------
172
173#%TDExternalFields
174#electric_field   | 1 | 1 | 0 | 0.0 | "envelope_function"
175#%
176#%TDFunctions
177#"envelope_function" | tdf_from_file | "./opt-control/laser.bestJ1/cp"
178#%
179
180
181#*********************************************************
182# Output
183#*********************************************************
184#Output = wfs + potential
185#OutputFormat = plane_z + axis_x
186#TDOutput = laser + spin
187
188
189
190