1 /*
2  *
3  * Copyright (c) 2004
4  * John Maddock
5  *
6  * Use, modification and distribution are subject to the
7  * Boost Software License, Version 1.0. (See accompanying file
8  * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
9  *
10  */
11 
12  /*
13   *   LOCATION:    see http://www.boost.org for most recent version.
14   *   FILE         basic_regex_creator.cpp
15   *   VERSION      see <boost/version.hpp>
16   *   DESCRIPTION: Declares template class basic_regex_creator which fills in
17   *                the data members of a regex_data object.
18   */
19 
20 #ifndef BOOST_REGEX_V4_BASIC_REGEX_CREATOR_HPP
21 #define BOOST_REGEX_V4_BASIC_REGEX_CREATOR_HPP
22 
23 #include <boost/regex/v4/indexed_bit_flag.hpp>
24 
25 #ifdef BOOST_MSVC
26 #pragma warning(push)
27 #pragma warning(disable: 4103)
28 #endif
29 #ifdef BOOST_HAS_ABI_HEADERS
30 #  include BOOST_ABI_PREFIX
31 #endif
32 #ifdef BOOST_MSVC
33 #pragma warning(pop)
34 #endif
35 
36 #ifdef BOOST_MSVC
37 #  pragma warning(push)
38 #if BOOST_MSVC < 1910
39 #pragma warning(disable:4800)
40 #endif
41 #endif
42 
43 namespace boost{
44 
45 namespace BOOST_REGEX_DETAIL_NS{
46 
47 template <class charT>
48 struct digraph : public std::pair<charT, charT>
49 {
50    digraph() : std::pair<charT, charT>(charT(0), charT(0)){}
51    digraph(charT c1) : std::pair<charT, charT>(c1, charT(0)){}
52    digraph(charT c1, charT c2) : std::pair<charT, charT>(c1, c2)
53    {}
54    digraph(const digraph<charT>& d) : std::pair<charT, charT>(d.first, d.second){}
55    template <class Seq>
56    digraph(const Seq& s) : std::pair<charT, charT>()
57    {
58       BOOST_ASSERT(s.size() <= 2);
59       BOOST_ASSERT(s.size());
bubble_down_one(I first,I last)60       this->first = s[0];
61       this->second = (s.size() > 1) ? s[1] : 0;
62    }
63 };
64 
65 template <class charT, class traits>
66 class basic_char_set
67 {
68 public:
69    typedef digraph<charT>                   digraph_type;
70    typedef typename traits::string_type     string_type;
71    typedef typename traits::char_class_type m_type;
72 
73    basic_char_set()
74    {
75       m_negate = false;
hash_value_from_capture_name(Iterator i,Iterator j)76       m_has_digraphs = false;
77       m_classes = 0;
78       m_negated_classes = 0;
79       m_empty = true;
80    }
81 
82    void add_single(const digraph_type& s)
83    {
84       m_singles.insert(s);
85       if(s.second)
86          m_has_digraphs = true;
87       m_empty = false;
88    }
nameboost::BOOST_REGEX_DETAIL_NS::named_subexpressions::name89    void add_range(const digraph_type& first, const digraph_type& end)
90    {
91       m_ranges.push_back(first);
92       m_ranges.push_back(end);
93       if(first.second)
94       {
95          m_has_digraphs = true;
96          add_single(first);
97       }
98       if(end.second)
99       {
100          m_has_digraphs = true;
101          add_single(end);
102       }
103       m_empty = false;
104    }
105    void add_class(m_type m)
106    {
107       m_classes |= m;
swapboost::BOOST_REGEX_DETAIL_NS::named_subexpressions::name108       m_empty = false;
109    }
110    void add_negated_class(m_type m)
111    {
112       m_negated_classes |= m;
113       m_empty = false;
114    }
115    void add_equivalent(const digraph_type& s)
116    {
117       m_equivalents.insert(s);
named_subexpressions()118       if(s.second)
119       {
120          m_has_digraphs = true;
121          add_single(s);
122       }
123       m_empty = false;
124    }
125    void negate()
126    {
get_id(const charT * i,const charT * j) const127       m_negate = true;
128       //m_empty = false;
129    }
130 
131    //
132    // accessor functions:
133    //
134    bool has_digraphs()const
135    {
136       return m_has_digraphs;
137    }
equal_range(const charT * i,const charT * j) const138    bool is_negated()const
139    {
140       return m_negate;
141    }
142    typedef typename std::vector<digraph_type>::const_iterator  list_iterator;
get_id(int h) const143    typedef typename std::set<digraph_type>::const_iterator     set_iterator;
144    set_iterator singles_begin()const
145    {
146       return m_singles.begin();
147    }
148    set_iterator singles_end()const
149    {
150       return m_singles.end();
151    }
152    list_iterator ranges_begin()const
equal_range(int h) const153    {
154       return m_ranges.begin();
155    }
156    list_iterator ranges_end()const
157    {
158       return m_ranges.end();
159    }
160    set_iterator equivalents_begin()const
161    {
162       return m_equivalents.begin();
163    }
164    set_iterator equivalents_end()const
165    {
166       return m_equivalents.end();
167    }
168    m_type classes()const
169    {
170       return m_classes;
171    }
regex_databoost::BOOST_REGEX_DETAIL_NS::regex_data172    m_type negated_classes()const
173    {
174       return m_negated_classes;
175    }
176    bool empty()const
177    {
178       return m_empty;
179    }
regex_databoost::BOOST_REGEX_DETAIL_NS::regex_data180 private:
181    std::set<digraph_type>    m_singles;         // a list of single characters to match
182    std::vector<digraph_type> m_ranges;          // a list of end points of our ranges
183    bool                      m_negate;          // true if the set is to be negated
184    bool                      m_has_digraphs;    // true if we have digraphs present
185    m_type                    m_classes;         // character classes to match
186    m_type                    m_negated_classes; // negated character classes to match
187    bool                      m_empty;           // whether we've added anything yet
188    std::set<digraph_type>    m_equivalents;     // a list of equivalence classes
189 };
190 
191 template <class charT, class traits>
192 class basic_regex_creator
193 {
194 public:
195    basic_regex_creator(regex_data<charT, traits>* data);
196    std::ptrdiff_t getoffset(void* addr)
197    {
198       return getoffset(addr, m_pdata->m_data.data());
199    }
200    std::ptrdiff_t getoffset(const void* addr, const void* base)
201    {
202       return static_cast<const char*>(addr) - static_cast<const char*>(base);
203    }
204    re_syntax_base* getaddress(std::ptrdiff_t off)
205    {
206       return getaddress(off, m_pdata->m_data.data());
207    }
208    re_syntax_base* getaddress(std::ptrdiff_t off, void* base)
209    {
210       return static_cast<re_syntax_base*>(static_cast<void*>(static_cast<char*>(base) + off));
211    }
212    void init(unsigned l_flags)
213    {
214       m_pdata->m_flags = l_flags;
215       m_icase = l_flags & regex_constants::icase;
216    }
217    regbase::flag_type flags()
218    {
219       return m_pdata->m_flags;
220    }
221    void flags(regbase::flag_type f)
222    {
basic_regex_implementation()223       m_pdata->m_flags = f;
basic_regex_implementation(const::boost::shared_ptr<::boost::regex_traits_wrapper<traits>> & t)224       if(m_icase != static_cast<bool>(f & regbase::icase))
225       {
226          m_icase = static_cast<bool>(f & regbase::icase);
227       }
228    }
229    re_syntax_base* append_state(syntax_element_type t, std::size_t s = sizeof(re_syntax_base));
230    re_syntax_base* insert_state(std::ptrdiff_t pos, syntax_element_type t, std::size_t s = sizeof(re_syntax_base));
231    re_literal* append_literal(charT c);
232    re_syntax_base* append_set(const basic_char_set<charT, traits>& char_set);
233    re_syntax_base* append_set(const basic_char_set<charT, traits>& char_set, mpl::false_*);
234    re_syntax_base* append_set(const basic_char_set<charT, traits>& char_set, mpl::true_*);
235    void finalize(const charT* p1, const charT* p2);
imbue(locale_type l)236 protected:
237    regex_data<charT, traits>*    m_pdata;              // pointer to the basic_regex_data struct we are filling in
238    const ::boost::regex_traits_wrapper<traits>&
239                                  m_traits;             // convenience reference to traits class
getloc() const240    re_syntax_base*               m_last_state;         // the last state we added
241    bool                          m_icase;              // true for case insensitive matches
242    unsigned                      m_repeater_id;        // the state_id of the next repeater
243    bool                          m_has_backrefs;       // true if there are actually any backrefs
str() const244    indexed_bit_flag              m_backrefs;           // bitmask of permitted backrefs
245    boost::uintmax_t              m_bad_repeats;        // bitmask of repeats we can't deduce a startmap for;
246    bool                          m_has_recursions;     // set when we have recursive expresisons to fixup
247    std::vector<unsigned char>    m_recursion_checks;   // notes which recursions we've followed while analysing this expression
248    typename traits::char_class_type m_word_mask;       // mask used to determine if a character is a word character
249    typename traits::char_class_type m_mask_space;      // mask used to determine if a character is a word character
250    typename traits::char_class_type m_lower_mask;       // mask used to determine if a character is a lowercase character
expression() const251    typename traits::char_class_type m_upper_mask;      // mask used to determine if a character is an uppercase character
252    typename traits::char_class_type m_alpha_mask;      // mask used to determine if a character is an alphabetic character
253 private:
254    basic_regex_creator& operator=(const basic_regex_creator&);
subexpression(std::size_t n) const255    basic_regex_creator(const basic_regex_creator&);
256 
257    void fixup_pointers(re_syntax_base* state);
258    void fixup_recursions(re_syntax_base* state);
259    void create_startmaps(re_syntax_base* state);
260    int calculate_backstep(re_syntax_base* state);
261    void create_startmap(re_syntax_base* state, unsigned char* l_map, unsigned int* pnull, unsigned char mask);
262    unsigned get_restart_type(re_syntax_base* state);
begin() const263    void set_all_masks(unsigned char* bits, unsigned char);
264    bool is_bad_repeat(re_syntax_base* pt);
265    void set_bad_repeat(re_syntax_base* pt);
266    syntax_element_type get_repeat_type(re_syntax_base* state);
end() const267    void probe_leading_repeat(re_syntax_base* state);
268 };
269 
270 template <class charT, class traits>
flags() const271 basic_regex_creator<charT, traits>::basic_regex_creator(regex_data<charT, traits>* data)
272    : m_pdata(data), m_traits(*(data->m_ptraits)), m_last_state(0), m_icase(false), m_repeater_id(0),
273    m_has_backrefs(false), m_bad_repeats(0), m_has_recursions(false), m_word_mask(0), m_mask_space(0), m_lower_mask(0), m_upper_mask(0), m_alpha_mask(0)
274 {
275    m_pdata->m_data.clear();
276    m_pdata->m_status = ::boost::regex_constants::error_ok;
277    static const charT w = 'w';
278    static const charT s = 's';
279    static const charT l[5] = { 'l', 'o', 'w', 'e', 'r', };
280    static const charT u[5] = { 'u', 'p', 'p', 'e', 'r', };
281    static const charT a[5] = { 'a', 'l', 'p', 'h', 'a', };
282    m_word_mask = m_traits.lookup_classname(&w, &w +1);
283    m_mask_space = m_traits.lookup_classname(&s, &s +1);
284    m_lower_mask = m_traits.lookup_classname(l, l + 5);
285    m_upper_mask = m_traits.lookup_classname(u, u + 5);
286    m_alpha_mask = m_traits.lookup_classname(a, a + 5);
287    m_pdata->m_word_mask = m_word_mask;
288    BOOST_ASSERT(m_word_mask != 0);
289    BOOST_ASSERT(m_mask_space != 0);
290    BOOST_ASSERT(m_lower_mask != 0);
291    BOOST_ASSERT(m_upper_mask != 0);
292    BOOST_ASSERT(m_alpha_mask != 0);
293 }
294 
get_map() const295 template <class charT, class traits>
296 re_syntax_base* basic_regex_creator<charT, traits>::append_state(syntax_element_type t, std::size_t s)
297 {
298    // if the state is a backref then make a note of it:
299    if(t == syntax_element_backref)
300       this->m_has_backrefs = true;
301    // append a new state, start by aligning our last one:
302    m_pdata->m_data.align();
303    // set the offset to the next state in our last one:
304    if(m_last_state)
305       m_last_state->next.i = m_pdata->m_data.size() - getoffset(m_last_state);
306    // now actually extent our data:
307    m_last_state = static_cast<re_syntax_base*>(m_pdata->m_data.extend(s));
308    // fill in boilerplate options in the new state:
309    m_last_state->next.i = 0;
310    m_last_state->type = t;
311    return m_last_state;
312 }
313 
314 template <class charT, class traits>
315 re_syntax_base* basic_regex_creator<charT, traits>::insert_state(std::ptrdiff_t pos, syntax_element_type t, std::size_t s)
316 {
317    // append a new state, start by aligning our last one:
318    m_pdata->m_data.align();
319    // set the offset to the next state in our last one:
320    if(m_last_state)
321       m_last_state->next.i = m_pdata->m_data.size() - getoffset(m_last_state);
322    // remember the last state position:
323    std::ptrdiff_t off = getoffset(m_last_state) + s;
324    // now actually insert our data:
325    re_syntax_base* new_state = static_cast<re_syntax_base*>(m_pdata->m_data.insert(pos, s));
326    // fill in boilerplate options in the new state:
327    new_state->next.i = s;
328    new_state->type = t;
329    m_last_state = getaddress(off);
330    return new_state;
331 }
332 
333 template <class charT, class traits>
334 re_literal* basic_regex_creator<charT, traits>::append_literal(charT c)
335 {
336    re_literal* result;
337    // start by seeing if we have an existing re_literal we can extend:
338    if((0 == m_last_state) || (m_last_state->type != syntax_element_literal))
339    {
340       // no existing re_literal, create a new one:
341       result = static_cast<re_literal*>(append_state(syntax_element_literal, sizeof(re_literal) + sizeof(charT)));
342       result->length = 1;
343       *static_cast<charT*>(static_cast<void*>(result+1)) = m_traits.translate(c, m_icase);
344    }
345    else
346    {
347       // we have an existing re_literal, extend it:
348       std::ptrdiff_t off = getoffset(m_last_state);
basic_regex()349       m_pdata->m_data.extend(sizeof(charT));
basic_regex(const charT * p,flag_type f=regex_constants::normal)350       m_last_state = result = static_cast<re_literal*>(getaddress(off));
351       charT* characters = static_cast<charT*>(static_cast<void*>(result+1));
352       characters[result->length] = m_traits.translate(c, m_icase);
353       result->length += 1;
basic_regex(const charT * p1,const charT * p2,flag_type f=regex_constants::normal)354    }
355    return result;
356 }
357 
basic_regex(const charT * p,size_type len,flag_type f)358 template <class charT, class traits>
359 inline re_syntax_base* basic_regex_creator<charT, traits>::append_set(
360    const basic_char_set<charT, traits>& char_set)
361 {
362    typedef mpl::bool_< (sizeof(charT) == 1) > truth_type;
363    return char_set.has_digraphs()
364       ? append_set(char_set, static_cast<mpl::false_*>(0))
365       : append_set(char_set, static_cast<truth_type*>(0));
366 }
367 
368 template <class charT, class traits>
operator =(const charT * ptr)369 re_syntax_base* basic_regex_creator<charT, traits>::append_set(
370    const basic_char_set<charT, traits>& char_set, mpl::false_*)
371 {
372    typedef typename traits::string_type string_type;
373    typedef typename basic_char_set<charT, traits>::list_iterator item_iterator;
374    typedef typename basic_char_set<charT, traits>::set_iterator  set_iterator;
375    typedef typename traits::char_class_type m_type;
376 
377    re_set_long<m_type>* result = static_cast<re_set_long<m_type>*>(append_state(syntax_element_long_set, sizeof(re_set_long<m_type>)));
378    //
379    // fill in the basics:
380    //
381    result->csingles = static_cast<unsigned int>(::boost::BOOST_REGEX_DETAIL_NS::distance(char_set.singles_begin(), char_set.singles_end()));
382    result->cranges = static_cast<unsigned int>(::boost::BOOST_REGEX_DETAIL_NS::distance(char_set.ranges_begin(), char_set.ranges_end())) / 2;
383    result->cequivalents = static_cast<unsigned int>(::boost::BOOST_REGEX_DETAIL_NS::distance(char_set.equivalents_begin(), char_set.equivalents_end()));
384    result->cclasses = char_set.classes();
385    result->cnclasses = char_set.negated_classes();
386    if(flags() & regbase::icase)
387    {
388       // adjust classes as needed:
389       if(((result->cclasses & m_lower_mask) == m_lower_mask) || ((result->cclasses & m_upper_mask) == m_upper_mask))
390          result->cclasses |= m_alpha_mask;
391       if(((result->cnclasses & m_lower_mask) == m_lower_mask) || ((result->cnclasses & m_upper_mask) == m_upper_mask))
392          result->cnclasses |= m_alpha_mask;
393    }
394 
395    result->isnot = char_set.is_negated();
396    result->singleton = !char_set.has_digraphs();
397    //
398    // remember where the state is for later:
399    //
400    std::ptrdiff_t offset = getoffset(result);
401    //
402    // now extend with all the singles:
403    //
404    item_iterator first, last;
405    set_iterator sfirst, slast;
406    sfirst = char_set.singles_begin();
407    slast = char_set.singles_end();
408    while(sfirst != slast)
409    {
410       charT* p = static_cast<charT*>(this->m_pdata->m_data.extend(sizeof(charT) * (sfirst->first == static_cast<charT>(0) ? 1 : sfirst->second ? 3 : 2)));
411       p[0] = m_traits.translate(sfirst->first, m_icase);
412       if(sfirst->first == static_cast<charT>(0))
413       {
414          p[0] = 0;
415       }
416       else if(sfirst->second)
417       {
418          p[1] = m_traits.translate(sfirst->second, m_icase);
419          p[2] = 0;
420       }
421       else
422          p[1] = 0;
423       ++sfirst;
424    }
425    //
426    // now extend with all the ranges:
427    //
428    first = char_set.ranges_begin();
429    last = char_set.ranges_end();
430    while(first != last)
431    {
432       // first grab the endpoints of the range:
433       digraph<charT> c1 = *first;
434       c1.first = this->m_traits.translate(c1.first, this->m_icase);
435       c1.second = this->m_traits.translate(c1.second, this->m_icase);
436       ++first;
437       digraph<charT> c2 = *first;
438       c2.first = this->m_traits.translate(c2.first, this->m_icase);
439       c2.second = this->m_traits.translate(c2.second, this->m_icase);
440       ++first;
441       string_type s1, s2;
442       // different actions now depending upon whether collation is turned on:
443       if(flags() & regex_constants::collate)
444       {
445          // we need to transform our range into sort keys:
446          charT a1[3] = { c1.first, c1.second, charT(0), };
447          charT a2[3] = { c2.first, c2.second, charT(0), };
448          s1 = this->m_traits.transform(a1, (a1[1] ? a1+2 : a1+1));
449          s2 = this->m_traits.transform(a2, (a2[1] ? a2+2 : a2+1));
450          if(s1.size() == 0)
451             s1 = string_type(1, charT(0));
452          if(s2.size() == 0)
453             s2 = string_type(1, charT(0));
454       }
455       else
456       {
457          if(c1.second)
458          {
459             s1.insert(s1.end(), c1.first);
460             s1.insert(s1.end(), c1.second);
461          }
462          else
463             s1 = string_type(1, c1.first);
464          if(c2.second)
465          {
466             s2.insert(s2.end(), c2.first);
467             s2.insert(s2.end(), c2.second);
468          }
469          else
470             s2.insert(s2.end(), c2.first);
471       }
472       if(s1 > s2)
473       {
474          // Oops error:
475          return 0;
476       }
477       charT* p = static_cast<charT*>(this->m_pdata->m_data.extend(sizeof(charT) * (s1.size() + s2.size() + 2) ) );
478       BOOST_REGEX_DETAIL_NS::copy(s1.begin(), s1.end(), p);
479       p[s1.size()] = charT(0);
480       p += s1.size() + 1;
481       BOOST_REGEX_DETAIL_NS::copy(s2.begin(), s2.end(), p);
482       p[s2.size()] = charT(0);
483    }
484    //
485    // now process the equivalence classes:
486    //
487    sfirst = char_set.equivalents_begin();
488    slast = char_set.equivalents_end();
489    while(sfirst != slast)
490    {
491       string_type s;
492       if(sfirst->second)
493       {
494          charT cs[3] = { sfirst->first, sfirst->second, charT(0), };
495          s = m_traits.transform_primary(cs, cs+2);
496       }
497       else
498          s = m_traits.transform_primary(&sfirst->first, &sfirst->first+1);
499       if(s.empty())
500          return 0;  // invalid or unsupported equivalence class
501       charT* p = static_cast<charT*>(this->m_pdata->m_data.extend(sizeof(charT) * (s.size()+1) ) );
502       BOOST_REGEX_DETAIL_NS::copy(s.begin(), s.end(), p);
503       p[s.size()] = charT(0);
504       ++sfirst;
505    }
506    //
507    // finally reset the address of our last state:
508    //
509    m_last_state = result = static_cast<re_set_long<m_type>*>(getaddress(offset));
510    return result;
511 }
begin() const512 
513 template<class T>
514 inline bool char_less(T t1, T t2)
515 {
516    return t1 < t2;
517 }
518 inline bool char_less(char t1, char t2)
519 {
520    return static_cast<unsigned char>(t1) < static_cast<unsigned char>(t2);
521 }
swap(basic_regex & that)522 inline bool char_less(signed char t1, signed char t2)
523 {
524    return static_cast<unsigned char>(t1) < static_cast<unsigned char>(t2);
525 }
526 
527 template <class charT, class traits>
size() const528 re_syntax_base* basic_regex_creator<charT, traits>::append_set(
529    const basic_char_set<charT, traits>& char_set, mpl::true_*)
530 {
531    typedef typename traits::string_type string_type;
532    typedef typename basic_char_set<charT, traits>::list_iterator item_iterator;
533    typedef typename basic_char_set<charT, traits>::set_iterator set_iterator;
534 
535    re_set* result = static_cast<re_set*>(append_state(syntax_element_set, sizeof(re_set)));
536    bool negate = char_set.is_negated();
537    std::memset(result->_map, 0, sizeof(result->_map));
538    //
539    // handle singles first:
540    //
541    item_iterator first, last;
542    set_iterator sfirst, slast;
543    sfirst = char_set.singles_begin();
544    slast = char_set.singles_end();
545    while(sfirst != slast)
546    {
547       for(unsigned int i = 0; i < (1 << CHAR_BIT); ++i)
548       {
549          if(this->m_traits.translate(static_cast<charT>(i), this->m_icase)
550             == this->m_traits.translate(sfirst->first, this->m_icase))
551             result->_map[i] = true;
552       }
553       ++sfirst;
554    }
555    //
556    // OK now handle ranges:
557    //
558    first = char_set.ranges_begin();
559    last = char_set.ranges_end();
560    while(first != last)
561    {
562       // first grab the endpoints of the range:
563       charT c1 = this->m_traits.translate(first->first, this->m_icase);
564       ++first;
565       charT c2 = this->m_traits.translate(first->first, this->m_icase);
566       ++first;
567       // different actions now depending upon whether collation is turned on:
568       if(flags() & regex_constants::collate)
569       {
570          // we need to transform our range into sort keys:
571          charT c3[2] = { c1, charT(0), };
572          string_type s1 = this->m_traits.transform(c3, c3+1);
573          c3[0] = c2;
574          string_type s2 = this->m_traits.transform(c3, c3+1);
575          if(s1 > s2)
576          {
577             // Oops error:
578             return 0;
579          }
580          BOOST_ASSERT(c3[1] == charT(0));
581          for(unsigned i = 0; i < (1u << CHAR_BIT); ++i)
582          {
583             c3[0] = static_cast<charT>(i);
584             string_type s3 = this->m_traits.transform(c3, c3 +1);
585             if((s1 <= s3) && (s3 <= s2))
586                result->_map[i] = true;
587          }
588       }
589       else
590       {
591          if(char_less(c2, c1))
592          {
593             // Oops error:
594             return 0;
595          }
596          // everything in range matches:
597          std::memset(result->_map + static_cast<unsigned char>(c1), true, static_cast<unsigned char>(1u) + static_cast<unsigned char>(static_cast<unsigned char>(c2) - static_cast<unsigned char>(c1)));
598       }
599    }
600    //
601    // and now the classes:
602    //
603    typedef typename traits::char_class_type m_type;
604    m_type m = char_set.classes();
605    if(flags() & regbase::icase)
606    {
607       // adjust m as needed:
608       if(((m & m_lower_mask) == m_lower_mask) || ((m & m_upper_mask) == m_upper_mask))
609          m |= m_alpha_mask;
610    }
611    if(m != 0)
612    {
613       for(unsigned i = 0; i < (1u << CHAR_BIT); ++i)
614       {
615          if(this->m_traits.isctype(static_cast<charT>(i), m))
616             result->_map[i] = true;
617       }
618    }
619    //
620    // and now the negated classes:
621    //
622    m = char_set.negated_classes();
623    if(flags() & regbase::icase)
624    {
625       // adjust m as needed:
626       if(((m & m_lower_mask) == m_lower_mask) || ((m & m_upper_mask) == m_upper_mask))
627          m |= m_alpha_mask;
628    }
629    if(m != 0)
630    {
631       for(unsigned i = 0; i < (1u << CHAR_BIT); ++i)
632       {
633          if(0 == this->m_traits.isctype(static_cast<charT>(i), m))
634             result->_map[i] = true;
635       }
636    }
637    //
638    // now process the equivalence classes:
639    //
640    sfirst = char_set.equivalents_begin();
641    slast = char_set.equivalents_end();
642    while(sfirst != slast)
643    {
644       string_type s;
645       BOOST_ASSERT(static_cast<charT>(0) == sfirst->second);
646       s = m_traits.transform_primary(&sfirst->first, &sfirst->first+1);
647       if(s.empty())
648          return 0;  // invalid or unsupported equivalence class
649       for(unsigned i = 0; i < (1u << CHAR_BIT); ++i)
650       {
651          charT c[2] = { (static_cast<charT>(i)), charT(0), };
652          string_type s2 = this->m_traits.transform_primary(c, c+1);
653          if(s == s2)
654             result->_map[i] = true;
655       }
656       ++sfirst;
657    }
658    if(negate)
659    {
660       for(unsigned i = 0; i < (1u << CHAR_BIT); ++i)
661       {
662          result->_map[i] = !(result->_map[i]);
663       }
664    }
665    return result;
666 }
667 
668 template <class charT, class traits>
669 void basic_regex_creator<charT, traits>::finalize(const charT* p1, const charT* p2)
670 {
671    if(this->m_pdata->m_status)
672       return;
673    // we've added all the states we need, now finish things off.
674    // start by adding a terminating state:
675    append_state(syntax_element_match);
676    // extend storage to store original expression:
677    std::ptrdiff_t len = p2 - p1;
678    m_pdata->m_expression_len = len;
679    charT* ps = static_cast<charT*>(m_pdata->m_data.extend(sizeof(charT) * (1 + (p2 - p1))));
680    m_pdata->m_expression = ps;
681    BOOST_REGEX_DETAIL_NS::copy(p1, p2, ps);
682    ps[p2 - p1] = 0;
imbue(locale_type l)683    // fill in our other data...
684    // successful parsing implies a zero status:
685    m_pdata->m_status = 0;
686    // get the first state of the machine:
687    m_pdata->m_first_state = static_cast<re_syntax_base*>(m_pdata->m_data.data());
688    // fixup pointers in the machine:
689    fixup_pointers(m_pdata->m_first_state);
690    if(m_has_recursions)
691    {
692       m_pdata->m_has_recursions = true;
693       fixup_recursions(m_pdata->m_first_state);
694       if(this->m_pdata->m_status)
swap(basic_regex<charT,traits> & e1,basic_regex<charT,traits> & e2)695          return;
696    }
697    else
698       m_pdata->m_has_recursions = false;
699    // create nested startmaps:
700    create_startmaps(m_pdata->m_first_state);
701    // create main startmap:
702    std::memset(m_pdata->m_startmap, 0, sizeof(m_pdata->m_startmap));
operator <<(std::basic_ostream<charT,traits> & os,const basic_regex<charT,traits2> & e)703    m_pdata->m_can_be_null = 0;
704 
705    m_bad_repeats = 0;
706    if(m_has_recursions)
707       m_recursion_checks.assign(1 + m_pdata->m_mark_count, 0u);
708    create_startmap(m_pdata->m_first_state, m_pdata->m_startmap, &(m_pdata->m_can_be_null), mask_all);
709    // get the restart type:
operator <<(std::ostream & os,const basic_regex<char,traits> & e)710    m_pdata->m_restart_type = get_restart_type(m_pdata->m_first_state);
711    // optimise a leading repeat if there is one:
712    probe_leading_repeat(m_pdata->m_first_state);
713 }
714 
715 template <class charT, class traits>
716 void basic_regex_creator<charT, traits>::fixup_pointers(re_syntax_base* state)
717 {
718    while(state)
719    {
720       switch(state->type)
721       {
722       case syntax_element_recurse:
723          m_has_recursions = true;
724          if(state->next.i)
725             state->next.p = getaddress(state->next.i, state);
726          else
727             state->next.p = 0;
728          break;
729       case syntax_element_rep:
730       case syntax_element_dot_rep:
reg_expression()731       case syntax_element_char_rep:
732       case syntax_element_short_set_rep:
733       case syntax_element_long_set_rep:
734          // set the state_id of this repeat:
735          static_cast<re_repeat*>(state)->state_id = m_repeater_id++;
reg_expression(const charT * p,size_type len,flag_type f)736          BOOST_FALLTHROUGH;
737       case syntax_element_alt:
reg_expression(const reg_expression & that)738          std::memset(static_cast<re_alt*>(state)->_map, 0, sizeof(static_cast<re_alt*>(state)->_map));
739          static_cast<re_alt*>(state)->can_be_null = 0;
~reg_expression()740          BOOST_FALLTHROUGH;
operator =(const reg_expression & that)741       case syntax_element_jump:
742          static_cast<re_jump*>(state)->alt.p = getaddress(static_cast<re_jump*>(state)->alt.i, state);
743          BOOST_FALLTHROUGH;
744       default:
745          if(state->next.i)
746             state->next.p = getaddress(state->next.i, state);
747          else
reg_expression(const std::basic_string<charT,ST,SA> & p,flag_type f=regex_constants::normal)748             state->next.p = 0;
749       }
750       state = state->next.p;
751    }
752 }
753 
reg_expression(InputIterator arg_first,InputIterator arg_last,flag_type f=regex_constants::normal)754 template <class charT, class traits>
755 void basic_regex_creator<charT, traits>::fixup_recursions(re_syntax_base* state)
756 {
757    re_syntax_base* base = state;
758    while(state)
759    {
760       switch(state->type)
761       {
762       case syntax_element_assert_backref:
763          {
764             // just check that the index is valid:
765             int idx = static_cast<const re_brace*>(state)->index;
766             if(idx < 0)
767             {
768                idx = -idx-1;
769                if(idx >= hash_value_mask)
770                {
771                   idx = m_pdata->get_id(idx);
772                   if(idx <= 0)
773                   {
774                      // check of sub-expression that doesn't exist:
775                      if(0 == this->m_pdata->m_status) // update the error code if not already set
776                         this->m_pdata->m_status = boost::regex_constants::error_bad_pattern;
777                      //
778                      // clear the expression, we should be empty:
779                      //
780                      this->m_pdata->m_expression = 0;
781                      this->m_pdata->m_expression_len = 0;
782                      //
783                      // and throw if required:
784                      //
785                      if(0 == (this->flags() & regex_constants::no_except))
786                      {
787                         std::string message = "Encountered a forward reference to a marked sub-expression that does not exist.";
788                         boost::regex_error e(message, boost::regex_constants::error_bad_pattern, 0);
789                         e.raise();
790                      }
791                   }
792                }
793             }
794          }
795          break;
796       case syntax_element_recurse:
797          {
798             bool ok = false;
799             re_syntax_base* p = base;
800             std::ptrdiff_t idx = static_cast<re_jump*>(state)->alt.i;
801             if(idx >= hash_value_mask)
802             {
803                //
804                // There may be more than one capture group with this hash, just do what Perl
805                // does and recurse to the leftmost:
806                //
807                idx = m_pdata->get_id(static_cast<int>(idx));
808             }
809             if(idx < 0)
810             {
811                ok = false;
812             }
813             else
814             {
815                while(p)
816                {
817                   if((p->type == syntax_element_startmark) && (static_cast<re_brace*>(p)->index == idx))
818                   {
819                      //
820                      // We've found the target of the recursion, set the jump target:
821                      //
822                      static_cast<re_jump*>(state)->alt.p = p;
823                      ok = true;
824                      //
825                      // Now scan the target for nested repeats:
826                      //
827                      p = p->next.p;
828                      int next_rep_id = 0;
829                      while(p)
830                      {
831                         switch(p->type)
832                         {
833                         case syntax_element_rep:
834                         case syntax_element_dot_rep:
835                         case syntax_element_char_rep:
836                         case syntax_element_short_set_rep:
837                         case syntax_element_long_set_rep:
838                            next_rep_id = static_cast<re_repeat*>(p)->state_id;
839                            break;
840                         case syntax_element_endmark:
841                            if(static_cast<const re_brace*>(p)->index == idx)
842                               next_rep_id = -1;
843                            break;
844                         default:
845                            break;
846                         }
847                         if(next_rep_id)
848                            break;
849                         p = p->next.p;
850                      }
851                      if(next_rep_id > 0)
852                      {
853                         static_cast<re_recurse*>(state)->state_id = next_rep_id - 1;
854                      }
855 
856                      break;
857                   }
858                   p = p->next.p;
859                }
860             }
861             if(!ok)
862             {
863                // recursion to sub-expression that doesn't exist:
864                if(0 == this->m_pdata->m_status) // update the error code if not already set
865                   this->m_pdata->m_status = boost::regex_constants::error_bad_pattern;
866                //
867                // clear the expression, we should be empty:
868                //
869                this->m_pdata->m_expression = 0;
870                this->m_pdata->m_expression_len = 0;
871                //
872                // and throw if required:
873                //
874                if(0 == (this->flags() & regex_constants::no_except))
875                {
876                   std::string message = "Encountered a forward reference to a recursive sub-expression that does not exist.";
877                   boost::regex_error e(message, boost::regex_constants::error_bad_pattern, 0);
878                   e.raise();
879                }
880             }
881          }
882          break;
883       default:
884          break;
885       }
886       state = state->next.p;
887    }
888 }
889 
890 template <class charT, class traits>
891 void basic_regex_creator<charT, traits>::create_startmaps(re_syntax_base* state)
892 {
893    // non-recursive implementation:
894    // create the last map in the machine first, so that earlier maps
895    // can make use of the result...
896    //
897    // This was originally a recursive implementation, but that caused stack
898    // overflows with complex expressions on small stacks (think COM+).
899 
900    // start by saving the case setting:
901    bool l_icase = m_icase;
902    std::vector<std::pair<bool, re_syntax_base*> > v;
903 
904    while(state)
905    {
906       switch(state->type)
907       {
908       case syntax_element_toggle_case:
909          // we need to track case changes here:
910          m_icase = static_cast<re_case*>(state)->icase;
911          state = state->next.p;
912          continue;
913       case syntax_element_alt:
914       case syntax_element_rep:
915       case syntax_element_dot_rep:
916       case syntax_element_char_rep:
917       case syntax_element_short_set_rep:
918       case syntax_element_long_set_rep:
919          // just push the state onto our stack for now:
920          v.push_back(std::pair<bool, re_syntax_base*>(m_icase, state));
921          state = state->next.p;
922          break;
923       case syntax_element_backstep:
924          // we need to calculate how big the backstep is:
925          static_cast<re_brace*>(state)->index
926             = this->calculate_backstep(state->next.p);
927          if(static_cast<re_brace*>(state)->index < 0)
928          {
929             // Oops error:
930             if(0 == this->m_pdata->m_status) // update the error code if not already set
931                this->m_pdata->m_status = boost::regex_constants::error_bad_pattern;
932             //
933             // clear the expression, we should be empty:
934             //
935             this->m_pdata->m_expression = 0;
936             this->m_pdata->m_expression_len = 0;
937             //
938             // and throw if required:
939             //
940             if(0 == (this->flags() & regex_constants::no_except))
941             {
942                std::string message = "Invalid lookbehind assertion encountered in the regular expression.";
943                boost::regex_error e(message, boost::regex_constants::error_bad_pattern, 0);
944                e.raise();
945             }
946          }
947          BOOST_FALLTHROUGH;
948       default:
949          state = state->next.p;
950       }
951    }
952 
953    // now work through our list, building all the maps as we go:
954    while(v.size())
955    {
956       // Initialize m_recursion_checks if we need it:
957       if(m_has_recursions)
958          m_recursion_checks.assign(1 + m_pdata->m_mark_count, 0u);
959 
960       const std::pair<bool, re_syntax_base*>& p = v.back();
961       m_icase = p.first;
962       state = p.second;
963       v.pop_back();
964 
965       // Build maps:
966       m_bad_repeats = 0;
967       create_startmap(state->next.p, static_cast<re_alt*>(state)->_map, &static_cast<re_alt*>(state)->can_be_null, mask_take);
968       m_bad_repeats = 0;
969 
970       if(m_has_recursions)
971          m_recursion_checks.assign(1 + m_pdata->m_mark_count, 0u);
972       create_startmap(static_cast<re_alt*>(state)->alt.p, static_cast<re_alt*>(state)->_map, &static_cast<re_alt*>(state)->can_be_null, mask_skip);
973       // adjust the type of the state to allow for faster matching:
974       state->type = this->get_repeat_type(state);
975    }
976    // restore case sensitivity:
977    m_icase = l_icase;
978 }
979 
980 template <class charT, class traits>
981 int basic_regex_creator<charT, traits>::calculate_backstep(re_syntax_base* state)
982 {
983    typedef typename traits::char_class_type m_type;
984    int result = 0;
985    while(state)
986    {
987       switch(state->type)
988       {
989       case syntax_element_startmark:
990          if((static_cast<re_brace*>(state)->index == -1)
991             || (static_cast<re_brace*>(state)->index == -2))
992          {
993             state = static_cast<re_jump*>(state->next.p)->alt.p->next.p;
994             continue;
995          }
996          else if(static_cast<re_brace*>(state)->index == -3)
997          {
998             state = state->next.p->next.p;
999             continue;
1000          }
1001          break;
1002       case syntax_element_endmark:
1003          if((static_cast<re_brace*>(state)->index == -1)
1004             || (static_cast<re_brace*>(state)->index == -2))
1005             return result;
1006          break;
1007       case syntax_element_literal:
1008          result += static_cast<re_literal*>(state)->length;
1009          break;
1010       case syntax_element_wild:
1011       case syntax_element_set:
1012          result += 1;
1013          break;
1014       case syntax_element_dot_rep:
1015       case syntax_element_char_rep:
1016       case syntax_element_short_set_rep:
1017       case syntax_element_backref:
1018       case syntax_element_rep:
1019       case syntax_element_combining:
1020       case syntax_element_long_set_rep:
1021       case syntax_element_backstep:
1022          {
1023             re_repeat* rep = static_cast<re_repeat *>(state);
1024             // adjust the type of the state to allow for faster matching:
1025             state->type = this->get_repeat_type(state);
1026             if((state->type == syntax_element_dot_rep)
1027                || (state->type == syntax_element_char_rep)
1028                || (state->type == syntax_element_short_set_rep))
1029             {
1030                if(rep->max != rep->min)
1031                   return -1;
1032                result += static_cast<int>(rep->min);
1033                state = rep->alt.p;
1034                continue;
1035             }
1036             else if(state->type == syntax_element_long_set_rep)
1037             {
1038                BOOST_ASSERT(rep->next.p->type == syntax_element_long_set);
1039                if(static_cast<re_set_long<m_type>*>(rep->next.p)->singleton == 0)
1040                   return -1;
1041                if(rep->max != rep->min)
1042                   return -1;
1043                result += static_cast<int>(rep->min);
1044                state = rep->alt.p;
1045                continue;
1046             }
1047          }
1048          return -1;
1049       case syntax_element_long_set:
1050          if(static_cast<re_set_long<m_type>*>(state)->singleton == 0)
1051             return -1;
1052          result += 1;
1053          break;
1054       case syntax_element_jump:
1055          state = static_cast<re_jump*>(state)->alt.p;
1056          continue;
1057       case syntax_element_alt:
1058          {
1059             int r1 = calculate_backstep(state->next.p);
1060             int r2 = calculate_backstep(static_cast<re_alt*>(state)->alt.p);
1061             if((r1 < 0) || (r1 != r2))
1062                return -1;
1063             return result + r1;
1064          }
1065       default:
1066          break;
1067       }
1068       state = state->next.p;
1069    }
1070    return -1;
1071 }
1072 
1073 struct recursion_saver
1074 {
1075    std::vector<unsigned char> saved_state;
1076    std::vector<unsigned char>* state;
1077    recursion_saver(std::vector<unsigned char>* p) : saved_state(*p), state(p) {}
1078    ~recursion_saver()
1079    {
1080       state->swap(saved_state);
1081    }
1082 };
1083 
1084 template <class charT, class traits>
1085 void basic_regex_creator<charT, traits>::create_startmap(re_syntax_base* state, unsigned char* l_map, unsigned int* pnull, unsigned char mask)
1086 {
1087    recursion_saver saved_recursions(&m_recursion_checks);
1088    int not_last_jump = 1;
1089    re_syntax_base* recursion_start = 0;
1090    int recursion_sub = 0;
1091    re_syntax_base* recursion_restart = 0;
1092 
1093    // track case sensitivity:
1094    bool l_icase = m_icase;
1095 
1096    while(state)
1097    {
1098       switch(state->type)
1099       {
1100       case syntax_element_toggle_case:
1101          l_icase = static_cast<re_case*>(state)->icase;
1102          state = state->next.p;
1103          break;
1104       case syntax_element_literal:
1105       {
1106          // don't set anything in *pnull, set each element in l_map
1107          // that could match the first character in the literal:
1108          if(l_map)
1109          {
1110             l_map[0] |= mask_init;
1111             charT first_char = *static_cast<charT*>(static_cast<void*>(static_cast<re_literal*>(state) + 1));
1112             for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i)
1113             {
1114                if(m_traits.translate(static_cast<charT>(i), l_icase) == first_char)
1115                   l_map[i] |= mask;
1116             }
1117          }
1118          return;
1119       }
1120       case syntax_element_end_line:
1121       {
1122          // next character must be a line separator (if there is one):
1123          if(l_map)
1124          {
1125             l_map[0] |= mask_init;
1126             l_map[static_cast<unsigned>('\n')] |= mask;
1127             l_map[static_cast<unsigned>('\r')] |= mask;
1128             l_map[static_cast<unsigned>('\f')] |= mask;
1129             l_map[0x85] |= mask;
1130          }
1131          // now figure out if we can match a NULL string at this point:
1132          if(pnull)
1133             create_startmap(state->next.p, 0, pnull, mask);
1134          return;
1135       }
1136       case syntax_element_recurse:
1137          {
1138             BOOST_ASSERT(static_cast<const re_jump*>(state)->alt.p->type == syntax_element_startmark);
1139             recursion_sub = static_cast<re_brace*>(static_cast<const re_jump*>(state)->alt.p)->index;
1140             if(m_recursion_checks[recursion_sub] & 1u)
1141             {
1142                // Infinite recursion!!
1143                if(0 == this->m_pdata->m_status) // update the error code if not already set
1144                   this->m_pdata->m_status = boost::regex_constants::error_bad_pattern;
1145                //
1146                // clear the expression, we should be empty:
1147                //
1148                this->m_pdata->m_expression = 0;
1149                this->m_pdata->m_expression_len = 0;
1150                //
1151                // and throw if required:
1152                //
1153                if(0 == (this->flags() & regex_constants::no_except))
1154                {
1155                   std::string message = "Encountered an infinite recursion.";
1156                   boost::regex_error e(message, boost::regex_constants::error_bad_pattern, 0);
1157                   e.raise();
1158                }
1159             }
1160             else if(recursion_start == 0)
1161             {
1162                recursion_start = state;
1163                recursion_restart = state->next.p;
1164                state = static_cast<re_jump*>(state)->alt.p;
1165                m_recursion_checks[recursion_sub] |= 1u;
1166                break;
1167             }
1168             m_recursion_checks[recursion_sub] |= 1u;
1169             // can't handle nested recursion here...
1170             BOOST_FALLTHROUGH;
1171          }
1172       case syntax_element_backref:
1173          // can be null, and any character can match:
1174          if(pnull)
1175             *pnull |= mask;
1176          BOOST_FALLTHROUGH;
1177       case syntax_element_wild:
1178       {
1179          // can't be null, any character can match:
1180          set_all_masks(l_map, mask);
1181          return;
1182       }
1183       case syntax_element_accept:
1184       case syntax_element_match:
1185       {
1186          // must be null, any character can match:
1187          set_all_masks(l_map, mask);
1188          if(pnull)
1189             *pnull |= mask;
1190          return;
1191       }
1192       case syntax_element_word_start:
1193       {
1194          // recurse, then AND with all the word characters:
1195          create_startmap(state->next.p, l_map, pnull, mask);
1196          if(l_map)
1197          {
1198             l_map[0] |= mask_init;
1199             for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i)
1200             {
1201                if(!m_traits.isctype(static_cast<charT>(i), m_word_mask))
1202                   l_map[i] &= static_cast<unsigned char>(~mask);
1203             }
1204          }
1205          return;
1206       }
1207       case syntax_element_word_end:
1208       {
1209          // recurse, then AND with all the word characters:
1210          create_startmap(state->next.p, l_map, pnull, mask);
1211          if(l_map)
1212          {
1213             l_map[0] |= mask_init;
1214             for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i)
1215             {
1216                if(m_traits.isctype(static_cast<charT>(i), m_word_mask))
1217                   l_map[i] &= static_cast<unsigned char>(~mask);
1218             }
1219          }
1220          return;
1221       }
1222       case syntax_element_buffer_end:
1223       {
1224          // we *must be null* :
1225          if(pnull)
1226             *pnull |= mask;
1227          return;
1228       }
1229       case syntax_element_long_set:
1230          if(l_map)
1231          {
1232             typedef typename traits::char_class_type m_type;
1233             if(static_cast<re_set_long<m_type>*>(state)->singleton)
1234             {
1235                l_map[0] |= mask_init;
1236                for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i)
1237                {
1238                   charT c = static_cast<charT>(i);
1239                   if(&c != re_is_set_member(&c, &c + 1, static_cast<re_set_long<m_type>*>(state), *m_pdata, l_icase))
1240                      l_map[i] |= mask;
1241                }
1242             }
1243             else
1244                set_all_masks(l_map, mask);
1245          }
1246          return;
1247       case syntax_element_set:
1248          if(l_map)
1249          {
1250             l_map[0] |= mask_init;
1251             for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i)
1252             {
1253                if(static_cast<re_set*>(state)->_map[
1254                   static_cast<unsigned char>(m_traits.translate(static_cast<charT>(i), l_icase))])
1255                   l_map[i] |= mask;
1256             }
1257          }
1258          return;
1259       case syntax_element_jump:
1260          // take the jump:
1261          state = static_cast<re_alt*>(state)->alt.p;
1262          not_last_jump = -1;
1263          break;
1264       case syntax_element_alt:
1265       case syntax_element_rep:
1266       case syntax_element_dot_rep:
1267       case syntax_element_char_rep:
1268       case syntax_element_short_set_rep:
1269       case syntax_element_long_set_rep:
1270          {
1271             re_alt* rep = static_cast<re_alt*>(state);
1272             if(rep->_map[0] & mask_init)
1273             {
1274                if(l_map)
1275                {
1276                   // copy previous results:
1277                   l_map[0] |= mask_init;
1278                   for(unsigned int i = 0; i <= UCHAR_MAX; ++i)
1279                   {
1280                      if(rep->_map[i] & mask_any)
1281                         l_map[i] |= mask;
1282                   }
1283                }
1284                if(pnull)
1285                {
1286                   if(rep->can_be_null & mask_any)
1287                      *pnull |= mask;
1288                }
1289             }
1290             else
1291             {
1292                // we haven't created a startmap for this alternative yet
1293                // so take the union of the two options:
1294                if(is_bad_repeat(state))
1295                {
1296                   set_all_masks(l_map, mask);
1297                   if(pnull)
1298                      *pnull |= mask;
1299                   return;
1300                }
1301                set_bad_repeat(state);
1302                create_startmap(state->next.p, l_map, pnull, mask);
1303                if((state->type == syntax_element_alt)
1304                   || (static_cast<re_repeat*>(state)->min == 0)
1305                   || (not_last_jump == 0))
1306                   create_startmap(rep->alt.p, l_map, pnull, mask);
1307             }
1308          }
1309          return;
1310       case syntax_element_soft_buffer_end:
1311          // match newline or null:
1312          if(l_map)
1313          {
1314             l_map[0] |= mask_init;
1315             l_map[static_cast<unsigned>('\n')] |= mask;
1316             l_map[static_cast<unsigned>('\r')] |= mask;
1317          }
1318          if(pnull)
1319             *pnull |= mask;
1320          return;
1321       case syntax_element_endmark:
1322          // need to handle independent subs as a special case:
1323          if(static_cast<re_brace*>(state)->index < 0)
1324          {
1325             // can be null, any character can match:
1326             set_all_masks(l_map, mask);
1327             if(pnull)
1328                *pnull |= mask;
1329             return;
1330          }
1331          else if(recursion_start && (recursion_sub != 0) && (recursion_sub == static_cast<re_brace*>(state)->index))
1332          {
1333             // recursion termination:
1334             recursion_start = 0;
1335             state = recursion_restart;
1336             break;
1337          }
1338 
1339          //
1340          // Normally we just go to the next state... but if this sub-expression is
1341          // the target of a recursion, then we might be ending a recursion, in which
1342          // case we should check whatever follows that recursion, as well as whatever
1343          // follows this state:
1344          //
1345          if(m_pdata->m_has_recursions && static_cast<re_brace*>(state)->index)
1346          {
1347             bool ok = false;
1348             re_syntax_base* p = m_pdata->m_first_state;
1349             while(p)
1350             {
1351                if(p->type == syntax_element_recurse)
1352                {
1353                   re_brace* p2 = static_cast<re_brace*>(static_cast<re_jump*>(p)->alt.p);
1354                   if((p2->type == syntax_element_startmark) && (p2->index == static_cast<re_brace*>(state)->index))
1355                   {
1356                      ok = true;
1357                      break;
1358                   }
1359                }
1360                p = p->next.p;
1361             }
1362             if(ok && ((m_recursion_checks[static_cast<re_brace*>(state)->index] & 2u) == 0))
1363             {
1364                m_recursion_checks[static_cast<re_brace*>(state)->index] |= 2u;
1365                create_startmap(p->next.p, l_map, pnull, mask);
1366             }
1367          }
1368          state = state->next.p;
1369          break;
1370 
1371       case syntax_element_commit:
1372          set_all_masks(l_map, mask);
1373          // Continue scanning so we can figure out whether we can be null:
1374          state = state->next.p;
1375          break;
1376       case syntax_element_startmark:
1377          // need to handle independent subs as a special case:
1378          if(static_cast<re_brace*>(state)->index == -3)
1379          {
1380             state = state->next.p->next.p;
1381             break;
1382          }
1383          BOOST_FALLTHROUGH;
1384       default:
1385          state = state->next.p;
1386       }
1387       ++not_last_jump;
1388    }
1389 }
1390 
1391 template <class charT, class traits>
1392 unsigned basic_regex_creator<charT, traits>::get_restart_type(re_syntax_base* state)
1393 {
1394    //
1395    // find out how the machine starts, so we can optimise the search:
1396    //
1397    while(state)
1398    {
1399       switch(state->type)
1400       {
1401       case syntax_element_startmark:
1402       case syntax_element_endmark:
1403          state = state->next.p;
1404          continue;
1405       case syntax_element_start_line:
1406          return regbase::restart_line;
1407       case syntax_element_word_start:
1408          return regbase::restart_word;
1409       case syntax_element_buffer_start:
1410          return regbase::restart_buf;
1411       case syntax_element_restart_continue:
1412          return regbase::restart_continue;
1413       default:
1414          state = 0;
1415          continue;
1416       }
1417    }
1418    return regbase::restart_any;
1419 }
1420 
1421 template <class charT, class traits>
1422 void basic_regex_creator<charT, traits>::set_all_masks(unsigned char* bits, unsigned char mask)
1423 {
1424    //
1425    // set mask in all of bits elements,
1426    // if bits[0] has mask_init not set then we can
1427    // optimise this to a call to memset:
1428    //
1429    if(bits)
1430    {
1431       if(bits[0] == 0)
1432          (std::memset)(bits, mask, 1u << CHAR_BIT);
1433       else
1434       {
1435          for(unsigned i = 0; i < (1u << CHAR_BIT); ++i)
1436             bits[i] |= mask;
1437       }
1438       bits[0] |= mask_init;
1439    }
1440 }
1441 
1442 template <class charT, class traits>
1443 bool basic_regex_creator<charT, traits>::is_bad_repeat(re_syntax_base* pt)
1444 {
1445    switch(pt->type)
1446    {
1447    case syntax_element_rep:
1448    case syntax_element_dot_rep:
1449    case syntax_element_char_rep:
1450    case syntax_element_short_set_rep:
1451    case syntax_element_long_set_rep:
1452       {
1453          unsigned state_id = static_cast<re_repeat*>(pt)->state_id;
1454          if(state_id >= sizeof(m_bad_repeats) * CHAR_BIT)
1455             return true;  // run out of bits, assume we can't traverse this one.
1456          static const boost::uintmax_t one = 1uL;
1457          return m_bad_repeats & (one << state_id);
1458       }
1459    default:
1460       return false;
1461    }
1462 }
1463 
1464 template <class charT, class traits>
1465 void basic_regex_creator<charT, traits>::set_bad_repeat(re_syntax_base* pt)
1466 {
1467    switch(pt->type)
1468    {
1469    case syntax_element_rep:
1470    case syntax_element_dot_rep:
1471    case syntax_element_char_rep:
1472    case syntax_element_short_set_rep:
1473    case syntax_element_long_set_rep:
1474       {
1475          unsigned state_id = static_cast<re_repeat*>(pt)->state_id;
1476          static const boost::uintmax_t one = 1uL;
1477          if(state_id <= sizeof(m_bad_repeats) * CHAR_BIT)
1478             m_bad_repeats |= (one << state_id);
1479       }
1480       break;
1481    default:
1482       break;
1483    }
1484 }
1485 
1486 template <class charT, class traits>
1487 syntax_element_type basic_regex_creator<charT, traits>::get_repeat_type(re_syntax_base* state)
1488 {
1489    typedef typename traits::char_class_type m_type;
1490    if(state->type == syntax_element_rep)
1491    {
1492       // check to see if we are repeating a single state:
1493       if(state->next.p->next.p->next.p == static_cast<re_alt*>(state)->alt.p)
1494       {
1495          switch(state->next.p->type)
1496          {
1497          case BOOST_REGEX_DETAIL_NS::syntax_element_wild:
1498             return BOOST_REGEX_DETAIL_NS::syntax_element_dot_rep;
1499          case BOOST_REGEX_DETAIL_NS::syntax_element_literal:
1500             return BOOST_REGEX_DETAIL_NS::syntax_element_char_rep;
1501          case BOOST_REGEX_DETAIL_NS::syntax_element_set:
1502             return BOOST_REGEX_DETAIL_NS::syntax_element_short_set_rep;
1503          case BOOST_REGEX_DETAIL_NS::syntax_element_long_set:
1504             if(static_cast<BOOST_REGEX_DETAIL_NS::re_set_long<m_type>*>(state->next.p)->singleton)
1505                return BOOST_REGEX_DETAIL_NS::syntax_element_long_set_rep;
1506             break;
1507          default:
1508             break;
1509          }
1510       }
1511    }
1512    return state->type;
1513 }
1514 
1515 template <class charT, class traits>
1516 void basic_regex_creator<charT, traits>::probe_leading_repeat(re_syntax_base* state)
1517 {
1518    // enumerate our states, and see if we have a leading repeat
1519    // for which failed search restarts can be optimised;
1520    do
1521    {
1522       switch(state->type)
1523       {
1524       case syntax_element_startmark:
1525          if(static_cast<re_brace*>(state)->index >= 0)
1526          {
1527             state = state->next.p;
1528             continue;
1529          }
1530 #ifdef BOOST_MSVC
1531 #  pragma warning(push)
1532 #pragma warning(disable:6011)
1533 #endif
1534          if((static_cast<re_brace*>(state)->index == -1)
1535             || (static_cast<re_brace*>(state)->index == -2))
1536          {
1537             // skip past the zero width assertion:
1538             state = static_cast<const re_jump*>(state->next.p)->alt.p->next.p;
1539             continue;
1540          }
1541 #ifdef BOOST_MSVC
1542 #  pragma warning(pop)
1543 #endif
1544          if(static_cast<re_brace*>(state)->index == -3)
1545          {
1546             // Have to skip the leading jump state:
1547             state = state->next.p->next.p;
1548             continue;
1549          }
1550          return;
1551       case syntax_element_endmark:
1552       case syntax_element_start_line:
1553       case syntax_element_end_line:
1554       case syntax_element_word_boundary:
1555       case syntax_element_within_word:
1556       case syntax_element_word_start:
1557       case syntax_element_word_end:
1558       case syntax_element_buffer_start:
1559       case syntax_element_buffer_end:
1560       case syntax_element_restart_continue:
1561          state = state->next.p;
1562          break;
1563       case syntax_element_dot_rep:
1564       case syntax_element_char_rep:
1565       case syntax_element_short_set_rep:
1566       case syntax_element_long_set_rep:
1567          if(this->m_has_backrefs == 0)
1568             static_cast<re_repeat*>(state)->leading = true;
1569          BOOST_FALLTHROUGH;
1570       default:
1571          return;
1572       }
1573    }while(state);
1574 }
1575 
1576 
1577 } // namespace BOOST_REGEX_DETAIL_NS
1578 
1579 } // namespace boost
1580 
1581 #ifdef BOOST_MSVC
1582 #  pragma warning(pop)
1583 #endif
1584 
1585 #ifdef BOOST_MSVC
1586 #pragma warning(push)
1587 #pragma warning(disable: 4103)
1588 #endif
1589 #ifdef BOOST_HAS_ABI_HEADERS
1590 #  include BOOST_ABI_SUFFIX
1591 #endif
1592 #ifdef BOOST_MSVC
1593 #pragma warning(pop)
1594 #endif
1595 
1596 #endif
1597 
1598