1
2                                       ``:oss/
3                           `.+s+.     .+ys--yh+     `./ss+.
4                          -sh//yy+`   +yy   +yy    -+h+-oyy
5                          -yh- .oyy/.-sh.   .syo-.:sy-  /yh
6                 `.-.`    `yh+   -oyyyo.     `/syys:    oys      `.`
7               `/+ssys+-` `sh+      `                   oys`   .:osyo`
8               -yh- ./syyooyo`                          .sys+/oyo--yh/
9               `yy+    .-:-.                             `-/+/:`  -sh-
10                /yh.                                              oys
11          ``..---hho---------`   .---------..`      `.-----.`    -hd+---.
12       `./osmNMMMMMMMMMMMMMMMs. +NNMMMMMMMMNNmh+.   yNMMMMMNm-  oNMMMMMNmo++:`
13       +sy--/sdMMMhyyyyyyyNMMh- .oyNMMmyyyyyhNMMm+` -yMMMdyyo:` .oyyNMMNhs+syy`
14       -yy/   /MMM+.`-+/``mMMy-   `mMMh:`````.dMMN:` `MMMy-`-dhhy```mMMy:``+hs
15        -yy+` /MMMo:-mMM+`-oo/.    mMMh:     `dMMN/`  dMMm:`dMMMMy..MMMo-.+yo`
16         .sys`/MMMMNNMMMs-         mMMmyooooymMMNo:   oMMM/sMMMMMM++MMN//oh:
17          `sh+/MMMhyyMMMs- `-`     mMMMMMMMMMNmy+-`   -MMMhMMMsmMMmdMMd/yy+
18    `-/+++oyy-/MMM+.`/hh/.`mNm:`   mMMd+/////:-.`      NMMMMMd/:NMMMMMy:/yyo/:.`
19   +os+//:-..-oMMMo:--:::-/MMMo. .-mMMd+---`           hMMMMN+. oMMMMMo. `-+osyso:`
20   syo     `mNMMMMMNNNNNNNNMMMo.oNNMMMMMNNNN:`         +MMMMs:`  dMMMN/`     ``:syo
21   /yh`     :syyyyyyyyyyyyyyyy+.`+syyyyyyyyo:`         .oyys:`   .oyys:`        +yh
22   -yh-        ````````````````    `````````              ``        ``          oys
23   -+h/------------------------::::::::://////++++++++++++++++++++++///////::::/yd:
24   shdddddddddddddddddddddddddddddhhhhhhhhyyyyyssssssssssssssssyyyyyyyhhhhhhhddddh`
25
26  S. Ponce, E. R. Margine, C. Verdi, and F. Giustino,
27                                                Comput. Phys. Commun. 209, 116 (2016)
28
29
30     Program EPW v.5.2.0 starts on  9Jul2020 at 18:56:49
31
32     This program is part of the open-source Quantum ESPRESSO suite
33     for quantum simulation of materials; please cite
34         "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
35         "P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
36          URL http://www.quantum-espresso.org",
37     in publications or presentations arising from this work. More details at
38     http://www.quantum-espresso.org/quote
39
40     Parallel version (MPI), running on     4 processors
41
42     MPI processes distributed on     1 nodes
43     K-points division:     npool     =       4
44     Fft bands division:     nmany     =       1
45
46     WARNING: The specified dis_win_min is ignored.
47              You should instead use bands_skipped = 'exclude_bands = ...'
48              to control the lower bound of band manifold.
49
50     Reading xml data from directory:
51
52     ./gan.save/
53
54     IMPORTANT: XC functional enforced from input :
55     Exchange-correlation= PZ
56                           (   1   1   0   0   0   0   0)
57     Any further DFT definition will be discarded
58     Please, verify this is what you really want
59
60
61     G-vector sticks info
62     --------------------
63     sticks:   dense  smooth     PW     G-vecs:    dense   smooth      PW
64     Sum         385     385    139                10179    10179    2069
65
66
67     Check: negative core charge=   -0.000043
68     Reading collected, re-writing distributed wavefunctions
69
70     --
71
72     bravais-lattice index     =            4
73     lattice parameter (a_0)   =       5.9612  a.u.
74     unit-cell volume          =     299.0148 (a.u.)^3
75     number of atoms/cell      =            4
76     number of atomic types    =            2
77     kinetic-energy cut-off    =      40.0000  Ry
78     charge density cut-off    =     160.0000  Ry
79     Exchange-correlation= PZ
80                           (   1   1   0   0   0   0   0)
81
82
83     celldm(1)=    5.96120  celldm(2)=    0.00000  celldm(3)=    1.62990
84     celldm(4)=    0.00000  celldm(5)=    0.00000  celldm(6)=    0.00000
85
86     crystal axes: (cart. coord. in units of a_0)
87               a(1) = (  1.0000  0.0000  0.0000 )
88               a(2) = ( -0.5000  0.8660  0.0000 )
89               a(3) = (  0.0000  0.0000  1.6299 )
90
91     reciprocal axes: (cart. coord. in units 2 pi/a_0)
92               b(1) = (  1.0000  0.5774  0.0000 )
93               b(2) = (  0.0000  1.1547  0.0000 )
94               b(3) = (  0.0000  0.0000  0.6135 )
95
96
97     Atoms inside the unit cell:
98
99   Cartesian axes
100
101     site n.  atom      mass           positions (a_0 units)
102        1        Ga  69.7230   tau( 1) = (    0.50000    0.28868    0.00000  )
103        2        N   14.0070   tau( 2) = (    0.50000    0.28868    0.61359  )
104        3        Ga  69.7230   tau( 3) = (   -0.00000    0.57735    0.81495  )
105        4        N   14.0070   tau( 4) = (   -0.00000    0.57735    1.42854  )
106
107     13 Sym.Ops. (with q -> -q+G )
108
109
110     G cutoff =  144.0216  (  10179 G-vectors)     FFT grid: ( 25, 25, 40)
111     number of k points=    8
112                       cart. coord. in units 2pi/a_0
113        k(    1) = (   0.0000000   0.0000000   0.0000000), wk =   0.2500000
114        k(    2) = (   0.0000000   0.0000000   0.3067673), wk =   0.2500000
115        k(    3) = (   0.0000000   0.5773503   0.0000000), wk =   0.2500000
116        k(    4) = (   0.0000000   0.5773503   0.3067673), wk =   0.2500000
117        k(    5) = (   0.5000000   0.2886751   0.0000000), wk =   0.2500000
118        k(    6) = (   0.5000000   0.2886751   0.3067673), wk =   0.2500000
119        k(    7) = (   0.5000000   0.8660254   0.0000000), wk =   0.2500000
120        k(    8) = (   0.5000000   0.8660254   0.3067673), wk =   0.2500000
121
122     PseudoPot. # 1 for Ga read from file:
123     ./Ga-LDA.upf
124     MD5 check sum: 876592653117dae7654c8939816812b6
125     Pseudo is Norm-conserving + core correction, Zval = 13.0
126     Generated using ONCVPSP code by D. R. Hamann
127     Using radial grid of 1858 points,  6 beta functions with:
128                l(1) =   0
129                l(2) =   0
130                l(3) =   1
131                l(4) =   1
132                l(5) =   2
133                l(6) =   2
134
135     PseudoPot. # 2 for N  read from file:
136     ./N-LDA.upf
137     MD5 check sum: 866fc8d98626a2fc4e4cda8444e99222
138     Pseudo is Norm-conserving + core correction, Zval =  5.0
139     Generated using ONCVPSP code by D. R. Hamann
140     Using radial grid of 1058 points,  4 beta functions with:
141                l(1) =   0
142                l(2) =   0
143                l(3) =   1
144                l(4) =   1
145     EPW          :      0.26s CPU      0.30s WALL
146
147     EPW          :      0.42s CPU      0.45s WALL
148
149     -------------------------------------------------------------------
150     Wannierization on  2 x  2 x  2 electronic grid
151     -------------------------------------------------------------------
152
153     Spin CASE ( default = unpolarized )
154
155     Initializing Wannier90
156
157
158     Initial Wannier projections
159
160     (   0.66667   0.33333   0.00000) :  l =  -3 mr =   1
161     (   0.66667   0.33333   0.00000) :  l =  -3 mr =   2
162     (   0.66667   0.33333   0.00000) :  l =  -3 mr =   3
163     (   0.66667   0.33333   0.00000) :  l =  -3 mr =   4
164     (   0.33333   0.66667   0.50000) :  l =  -3 mr =   1
165     (   0.33333   0.66667   0.50000) :  l =  -3 mr =   2
166     (   0.33333   0.66667   0.50000) :  l =  -3 mr =   3
167     (   0.33333   0.66667   0.50000) :  l =  -3 mr =   4
168     (   0.66667   0.33333   0.37646) :  l =   1 mr =   1
169     (   0.66667   0.33333   0.37646) :  l =   1 mr =   2
170     (   0.66667   0.33333   0.37646) :  l =   1 mr =   3
171     (   0.33333   0.66667   0.87646) :  l =   1 mr =   1
172     (   0.33333   0.66667   0.87646) :  l =   1 mr =   2
173     (   0.33333   0.66667   0.87646) :  l =   1 mr =   3
174
175      - Number of bands is ( 18)
176      - Number of total bands is ( 30)
177      - Number of excluded bands is ( 12)
178      - Number of wannier functions is ( 14)
179      - All guiding functions are given
180
181  Reading data about k-point neighbours
182
183      - All neighbours are found
184
185     AMN
186      k points =     8 in    4 pools
187            1 of    2 on ionode
188            2 of    2 on ionode
189
190     AMN calculated
191
192     MMN
193      k points =     8 in    4 pools
194            1 of    2 on ionode
195            2 of    2 on ionode
196     MMN calculated
197
198     Running Wannier90
199
200     Wannier Function centers (cartesian, alat) and spreads (ang):
201
202     (   0.50000   0.53838   0.10578) :   1.25690
203     (   0.71623   0.16380   0.10577) :   1.25685
204     (   0.50000   0.28859  -0.28544) :   1.39651
205     (   0.28377   0.16380   0.10577) :   1.25686
206     (   0.21623   0.70223   0.92072) :   1.25686
207     (   0.00000   0.57743   0.52951) :   1.39651
208     (  -0.21623   0.70223   0.92072) :   1.25685
209     (   0.00000   0.32765   0.92073) :   1.25690
210     (   0.50000   0.28852   0.61652) :   0.80082
211     (   0.50000   0.27872   0.61750) :   0.71643
212     (   0.50000   0.29988   0.61751) :   0.71640
213     (  -0.00000   0.57751   1.43147) :   0.80082
214     (  -0.00000   0.58730   1.43245) :   0.71643
215     (   0.00000   0.56614   1.43246) :   0.71640
216
217     -------------------------------------------------------------------
218     WANNIER      :      0.75s CPU      0.98s WALL (       1 calls)
219     -------------------------------------------------------------------
220
221     Calculating kgmap
222
223     Progress kgmap: ########################################
224     kmaps        :      0.02s CPU      0.20s WALL (       1 calls)
225     Symmetries of Bravais lattice:  24
226     Symmetries of crystal:          12
227
228
229     ===================================================================
230     irreducible q point #    1
231     ===================================================================
232
233     Symmetries of small group of q: 12
234          in addition sym. q -> -q+G:
235
236     Number of q in the star =    1
237     List of q in the star:
238          1   0.000000000   0.000000000   0.000000000
239     Imposing acoustic sum rule on the dynamical matrix
240     Read dielectric tensor and effective charges
241
242        q(    1 ) = (   0.0000000   0.0000000   0.0000000 )
243
244
245     ===================================================================
246     irreducible q point #    2
247     ===================================================================
248
249     Symmetries of small group of q: 12
250          in addition sym. q -> -q+G:
251
252     Number of q in the star =    1
253     List of q in the star:
254          1   0.000000000   0.000000000  -0.306767286
255
256        q(    2 ) = (   0.0000000   0.0000000  -0.3067673 )
257
258
259     ===================================================================
260     irreducible q point #    3
261     ===================================================================
262
263     Symmetries of small group of q:  4
264          in addition sym. q -> -q+G:
265
266     Number of q in the star =    3
267     List of q in the star:
268          1   0.000000000  -0.577350269   0.000000000
269          2   0.500000000   0.288675135   0.000000000
270          3  -0.500000000   0.288675135   0.000000000
271
272        q(    3 ) = (   0.0000000  -0.5773503   0.0000000 )
273        q(    4 ) = (   0.5000000   0.2886751   0.0000000 )
274        q(    5 ) = (  -0.5000000   0.2886751   0.0000000 )
275
276
277     ===================================================================
278     irreducible q point #    4
279     ===================================================================
280
281     Symmetries of small group of q:  4
282          in addition sym. q -> -q+G:
283
284     Number of q in the star =    3
285     List of q in the star:
286          1   0.000000000  -0.577350269  -0.306767286
287          2   0.500000000   0.288675135  -0.306767286
288          3  -0.500000000   0.288675135  -0.306767286
289
290        q(    6 ) = (   0.0000000  -0.5773503  -0.3067673 )
291        q(    7 ) = (   0.5000000   0.2886751  -0.3067673 )
292        q(    8 ) = (  -0.5000000   0.2886751  -0.3067673 )
293
294     Writing epmatq on .epb files
295
296
297     The .epb files have been correctly written
298
299
300     Band disentanglement is used: nbndsub =   14
301
302     Computes the analytic long-range interaction for polar materials [lpolar]
303
304     Construct the Wigner-Seitz cell using Wannier centers and atomic positions
305     Number of WS vectors for electrons       35
306     Number of WS vectors for phonons       25
307     Number of WS vectors for electron-phonon       29
308     Maximum number of cores for efficient parallelization      116
309
310     Velocity matrix elements calculated
311
312
313     Bloch2wane:          1 /          8
314     Bloch2wane:          2 /          8
315     Bloch2wane:          3 /          8
316     Bloch2wane:          4 /          8
317     Bloch2wane:          5 /          8
318     Bloch2wane:          6 /          8
319     Bloch2wane:          7 /          8
320     Bloch2wane:          8 /          8
321
322     Bloch2wanp:          1 /          8
323     Bloch2wanp:          2 /          8
324     Bloch2wanp:          3 /          8
325     Bloch2wanp:          4 /          8
326     Bloch2wanp:          5 /          8
327     Bloch2wanp:          6 /          8
328     Bloch2wanp:          7 /          8
329     Bloch2wanp:          8 /          8
330
331     Writing Hamiltonian, Dynamical matrix and EP vertex in Wann rep to file
332
333     ===================================================================
334     Memory usage:  VmHWM =       103Mb
335                   VmPeak =       449Mb
336     ===================================================================
337
338     Using q-mesh file: ./MGA.txt
339     Size of q point mesh for interpolation:        178
340     Using k-mesh file: ./MGA.txt
341     Size of k point mesh for interpolation:        356
342     Max number of k points per pool:               90
343
344     Fermi energy coarse grid =  11.381868 eV
345
346     ===================================================================
347
348     Fermi energy is read from the input file: Ef =  11.800000 eV
349
350     ===================================================================
351
352     Skipping the first   12 bands:
353
354     The Fermi level will be determined with  12.00000 electrons
355
356              ibndmin =     1  ebndmin =     0.266
357              ibndmax =    14  ebndmax =     1.859
358
359
360     Number of ep-matrix elements per pool :       105840 ~=  826.88 Kb (@ 8 bytes/ DP)
361     Number selected, total         100         100
362     We only need to compute      178 q-points
363
364     Progression iq (fine) =        100/       178
365     ===================================================================
366     Memory usage:  VmHWM =       105Mb
367                   VmPeak =       449Mb
368     ===================================================================
369
370
371     Unfolding on the coarse grid
372     elphon_wrap  :      4.46s CPU      5.20s WALL (       1 calls)
373
374     INITIALIZATION:
375
376     set_drhoc    :      0.71s CPU      0.71s WALL (       9 calls)
377     init_vloc    :      0.00s CPU      0.00s WALL (       1 calls)
378     init_us_1    :      0.01s CPU      0.01s WALL (       2 calls)
379
380
381
382     Electron-Phonon interpolation
383     ephwann      :     10.65s CPU     11.44s WALL (       1 calls)
384     ep-interp    :      7.09s CPU      7.50s WALL (     178 calls)
385
386     Ham: step 1  :      0.00s CPU      0.00s WALL (       1 calls)
387     Ham: step 2  :      0.00s CPU      0.00s WALL (       1 calls)
388     ep: step 1   :      0.00s CPU      0.00s WALL (      96 calls)
389     ep: step 2   :      7.21s CPU      7.98s WALL (       1 calls)
390     DynW2B       :      0.01s CPU      0.01s WALL (     178 calls)
391     HamW2B       :      0.69s CPU      0.71s WALL (   16333 calls)
392     ephW2Bp      :      0.48s CPU      0.81s WALL (     178 calls)
393     ephW2B       :      1.30s CPU      1.32s WALL (    8010 calls)
394     vmewan2bloch :      1.49s CPU      1.51s WALL (   16020 calls)
395     vmewan2bloch :      1.49s CPU      1.51s WALL (   16020 calls)
396
397
398     Total program execution
399     EPW          :     16.27s CPU     18.08s WALL
400
401
402 Please consider citing:
403 S. Ponce, E. R. Margine, C. Verdi and F. Giustino, Comput. Phys. Commun. 209, 116 (2016)
404
405