1
2 DETAILS OF ITERATIVE TEMPLATES TEST:
3
4    Univ. of Tennessee and Oak Ridge National Laboratory
5    October 1, 1993
6    Details of these algorithms are described in "Templates
7    for the Solution of Linear Systems: Building Blocks for
8    Iterative Methods", Barrett, Berry, Chan, Demmel, Donato,
9    Dongarra, Eijkhout, Pozo, Romine, and van der Vorst,
10    SIAM Publications, 1993.
11    (ftp netlib2.cs.utk.edu; cd linalg; get templates.ps).
12
13
14MACHINE PRECISION = 1.11E-16
15CONVERGENCE TEST TOLERANCE = 1.00E-15
16
17
18  For a detailed description of the following information,
19  see the end of this file.
20
21 ======================================================
22            CONVERGENCE  NORMALIZED  NUM
23   METHOD    CRITERION    RESIDUAL   ITER  INFO  FLAG
24 ======================================================
25
26  see the end of this file.
27Order  36 SPD 2-d Poisson matrix (no preconditioning)
28
29  CG        1.28E-16    3.08E-03       6
30  Chebyshev 6.17E-11    3.29E+02     144      1
31  SOR       2.18E-14    2.39E-01     144      1
32  BiCG      9.09E-17    3.08E-03       6
33  CGS            NaN         NaN     144      1
34  BiCGSTAB  1.29E-17    3.85E-03       6
35  GMRESm    4.00E-20    8.01E+15       1            X
36  QMR       1.99E-16    5.40E-03       6
37  Jacobi    3.02E-08    6.16E+05     144      1
38 -------------------------------------------------------
39Order  36 SPD 2-d Poisson matrix (Jacobi preconditioning)
40
41  CG        1.28E-16    3.08E-03       6
42  Chebyshev 1.20E-06    6.41E+06     144      1
43  SOR       2.18E-14    2.39E-01     144      1
44  BiCG      9.09E-17    3.08E-03       6
45  CGS            NaN         NaN     144      1
46  BiCGSTAB  1.29E-17    3.85E-03       6
47  GMRESm    9.82E-18    3.79E+13       1            X
48  QMR       1.99E-16    5.40E-03       6
49 -------------------------------------------------------
50Order   21 SPD Wathen matrix (no preconditioning)
51
52  CG        2.74E-18    1.24E-03      26
53  Chebyshev 1.52E-02    2.32E+10      84      1
54  SOR       8.41E-11    3.28E+02      84      1
55  BiCG      8.91E-18    1.39E-03      26
56  CGS       4.07E-16    6.80E-02      27
57  BiCGSTAB  1.24E-16    1.55E-03      27
58  GMRESm    7.83E-16    2.95E+15       1            X
59  QMR       2.98E-16    6.18E-04      26
60 -------------------------------------------------------
61Order   21 SPD Wathen matrix (Jacobi preconditioning)
62
63  CG        9.10E-22    6.18E-04      20
64  Chebyshev 5.58E-01    5.28E+11      84      1
65  SOR       8.41E-11    3.28E+02      84      1
66  BiCG      7.45E-22    1.08E-03      20
67  CGS            NaN         NaN      84      1
68  BiCGSTAB  6.78E-16    2.86E+12      74            X
69  GMRESm    5.97E-18    9.33E+11       1            X
70  QMR       6.72E-16    1.08E-03      20
71 -------------------------------------------------------
72Order  27 SPD 3-d Poisson matrix (no preconditioning)
73
74  CG        2.83E-17    3.33E-03       4
75  Chebyshev 9.50E-16    1.83E-02      68
76  SOR       9.92E-16    2.50E-03      24
77  BiCG      3.06E-17    2.91E-03       4
78  CGS       1.34E-17    2.70E-03       4
79  BiCGSTAB  1.42E-18    3.33E-03       4
80  GMRESm    2.53E-17    4.50E+15       1            X
81  QMR       4.77E-16    5.83E-03       4
82  Jacobi    7.35E-16    1.33E-02      98
83 -------------------------------------------------------
84Order  27 SPD 3-d Poisson matrix (Jacobi preconditioning)
85
86  CG        2.41E-17    4.58E-03       4
87  Chebyshev 6.75E-14    4.79E-01     108      1
88  SOR       9.92E-16    2.50E-03      24
89  BiCG      2.70E-17    4.58E-03       4
90  CGS       4.09E-17    3.33E-03       4
91  BiCGSTAB  4.29E-18    4.99E-03       4
92  GMRESm    3.31E-17    5.25E+12       1            X
93  QMR       4.10E-16    4.99E-03       4
94 -------------------------------------------------------
95Order  125 PDE1 nonsymmetric matrix (no preconditioning)
96
97  BiCG      1.03E-16    1.22E-03      62
98  CGS       8.11E-16    6.68E-03      91
99  BiCGSTAB  6.90E-16    5.12E-03     100
100  GMRESm    3.45E-16    1.30E+21       1            X
101  QMR       2.21E-15    1.08E-03     500      1
102 -------------------------------------------------------
103Order  125 PDE1 nonsymmetric matrix (Jacobi preconditioning)
104
105  BiCG      8.62E-16    6.68E-02      61
106  CGS       3.76E-16    2.29E-02      71
107  BiCGSTAB  2.96E-16    4.05E-03      84
108  GMRESm    9.85E-16    4.17E+21       1            X
109  QMR       1.40E-13    1.42E-01     500      1
110 -------------------------------------------------------
111Order  125 PDE2 nonsymmetric matrix (no preconditioning)
112
113  BiCG      2.06E-16    2.84E-02      33
114  CGS       9.46E-16    1.88E+00      40
115  BiCGSTAB  9.61E-03    1.36E+11     248    -10
116  GMRESm    6.00E-16    1.53E+22       1            X
117  QMR       1.26E-14    1.05E-01     500      1
118 -------------------------------------------------------
119Order  125 PDE2 nonsymmetric matrix (Jacobi preconditioning)
120
121  BiCG      1.39E-16    4.96E-02      33
122  CGS       1.68E-16    1.87E+00      37
123  BiCGSTAB  2.62E-09    2.93E+04     500      1
124  GMRESm    1.62E-19    1.18E+19       1            X
125  QMR       2.76E-15    5.54E-02     500      1
126 -------------------------------------------------------
127Order  125 PDE3 nonsymmetric matrix (no preconditioning)
128
129  BiCG      9.48E-16    2.47E-03     399
130  CGS       8.28E+12    4.14E+12     500      1
131  BiCGSTAB  1.11E+02    5.48E+11     116    -10
132  GMRESm    2.88E-17    4.79E+15       1            X
133  QMR       9.09E-14    3.02E-03     500      1
134 -------------------------------------------------------
135Order  125 PDE3 nonsymmetric matrix (Jacobi preconditioning)
136
137  BiCG      9.51E-16    2.47E-03     447
138  CGS       2.64E+08    3.61E+12     500      1
139  BiCGSTAB  4.69E+00    9.06E+11     106    -10
140  GMRESm    1.28E-19    4.75E+12       1            X
141  QMR       1.10E-13    3.45E-03     500      1
142 -------------------------------------------------------
143Order   36 PDE4 nonsymmetric matrix (no preconditioning)
144
145  BiCG      5.60E-16    5.56E-03      42
146  CGS       9.41E-01    4.60E+11     144      1
147  BiCGSTAB  1.25E-01    6.84E+10     144      1
148  GMRESm    5.94E-23    1.42E+13       1            X
149  QMR       2.20E-14    6.95E-03     144      1
150 -------------------------------------------------------
151Order   36 PDE4 nonsymmetric matrix (Jacobi preconditioning)
152
153  BiCG      5.60E-16    5.56E-03      42
154  CGS       9.41E-01    4.60E+11     144      1
155  BiCGSTAB  1.25E-01    6.84E+10     144      1
156  GMRESm    7.21E-17    6.76E+12       1            X
157  QMR       2.20E-14    6.95E-03     144      1
158 -------------------------------------------------------
159
160 ======
161 LEGEND:
162 ======
163
164    ==================
165    SYSTEM DESCRIPTION
166    ==================
167
168    SPD matrices:
169
170       WATH: "Wathen Matrix": consistent mass matrix
171       F2SH: 2-d Poisson problem
172       F3SH: 3-d Poisson problem
173
174       PDE1: u_xx+u_yy+au_x+(a_x/2)u
175             for a = 20exp[3.5(x**2+y**2 )]
176
177    Nonsymmetric matrices:
178
179       PDE2: u_xx+u_yy+u_zz+1000u_x
180       PDE3  u_xx+u_yy+u_zz-10**5x**2(u_x+u_y+u_z )
181       PDE4: u_xx+u_yy+u_zz+1000exp(xyz)(u_x+u_y-u_z)
182
183    =====================
184    CONVERGENCE CRITERION
185    =====================
186
187    Convergence criteria: residual as reported by the
188    algorithm: ||AX - B|| / ||B||. Note that NaN may signify
189    divergence of the residual to the point of numerical overflow.
190
191    ===================
192    NORMALIZED RESIDUAL
193    ===================
194
195    Normalized Residual: ||AX - B|| / (||A||||X||*N*TOL).
196    This is an apostiori check of the iterated solution.
197
198    ====
199    INFO
200    ====
201
202    If this column is blank, then the algorithm claims to have
203    found the solution to tolerance (i.e. INFO = 0).
204    This should be verified by checking the normalizedresidual.
205
206    Otherwise:
207
208       = 1: Convergence not achieved given the maximum number of iterations.
209
210       Input parameter errors:
211
212       = -1: matrix dimension N < 0
213       = -2: LDW < N
214       = -3: Maximum number of iterations <= 0.
215       = -4: For SOR: OMEGA not in interval (0,2)
216             For GMRES: LDW2 < 2*RESTRT
217       = -5: incorrect index request by uper level.
218       = -6: incorrect job code from upper level.
219
220       <= -10: Algorithm was terminated due to breakdown.
221               See algorithm documentation for details.
222
223    ====
224    FLAG
225    ====
226
227       X: Algorithm has reported convergence, but
228          approximate solution fails scaled
229          residual check.
230
231    =====
232    NOTES
233    =====
234
235    GMRES: For the symmetric test matrices, the restart parameter is
236    set to N. This should, theoretically, result in no restarting. For
237    nonsymmetric testing the restart parameter is set to N / 2.
238
239    Stationary methods:
240
241    - Since the residual norm ||b-Ax|| is not available as part of
242      the algorithm, the convergence criteria is different from the
243      nonstationary methods. Here we use
244
245         || X - X1 || / || X ||.
246
247      That is, we compare the current approximated solution with the
248      approximation from the previous step.
249
250    - Since Jacobi and SOR do not use preconditioning,
251      Jacobi is only iterated once per system, and SOR loops over
252      different values for OMEGA (the first time through OMEGA = 1,
253      i.e. the algorithm defaults to Gauss-Siedel). This explains the
254      different residual norms for SOR with the same matrix.
255
256