1% Nonlinear mechanical behaviours of materials
2% Thomas Helfer
3% 2017
4
5\newcommand{\tenseur}[1]{\underline{#1}}
6\newcommand{\tenseurq}[1]{\underset{=}{\mathbf{#1}}}
7<!-- the previous works better than the standard solution: -->
8<!-- \newcommand{\tenseurq}[1]{\underline{\underline{{\mathbf{#1}}}}} -->
9\newcommand{\tns}[1]{{\underset{\tilde{}}{\mathbf{#1}}}}
10\newcommand{\transpose}[1]{{#1^{\mathop{T}}}}
11
12\newcommand{\paren}[1]{\left(#1\right)}
13\newcommand{\trace}[1]{\mathrm{tr}\left(#1\right)}
14\newcommand{\tsigma}{\underline{\sigma}}
15
16\newcommand{\Frac}[2]{{{\displaystyle \frac{\displaystyle #1}{\displaystyle #2}}}}
17\newcommand{\deriv}[2]{{\displaystyle \frac{\displaystyle \partial #1}{\displaystyle \partial #2}}}
18\newcommand{\sderiv}[2]{{\displaystyle \frac{\displaystyle \partial^{2} #1}{\displaystyle \partial #2^{2}}}}
19\newcommand{\dtot}{{{\mathrm{d}}}}
20\newcommand{\derivtot}[2]{{\displaystyle \frac{\displaystyle \dtot #1}{\displaystyle \dtot #2}}}
21\newcommand{\grad}[1]{{\displaystyle \overset{\longrightarrow}{\nabla} #1}}
22\newcommand{\Grad}[1]{\mathop{\mathrm{Grad}\,#1}}
23\newcommand{\diver}[1]{{\displaystyle \vec{\nabla} . #1}}
24\newcommand{\divergence}{\mathop{\mathrm{div}}}
25\newcommand{\Divergence}{\mathop{\mathrm{Div}}}
26
27\newcommand{\bts}[1]{\left.#1\right|_{t}}
28\newcommand{\mts}[1]{\left.#1\right|_{t+\theta\,\Delta\,t}}
29\newcommand{\ets}[1]{\left.#1\right|_{t+\Delta\,t}}
30
31\newcommand{\epsilonto}{\epsilon^{\mathrm{to}}}
32\newcommand{\tepsilonto}{\underline{\epsilon}^{\mathrm{to}}}
33\newcommand{\tdepsilonto}{\underline{\dot{\epsilon}}^{\mathrm{tox}}}
34\newcommand{\tepsilonel}{\underline{\epsilon}^{\mathrm{el}}}
35\newcommand{\tdepsilonel}{\underline{\dot{\epsilon}}^{\mathrm{el}}}
36\newcommand{\tepsilonth}{\underline{\epsilon}^{\mathrm{th}}}
37\newcommand{\epsilonvis}{\epsilon^{\mathrm{vis}}}
38\newcommand{\tepsilonvis}{\underline{\epsilon}^{\mathrm{vis}}}
39\newcommand{\depsilonvis}{\dot{\epsilon}^{\mathrm{vis}}}
40\newcommand{\tdepsilonvis}{\underline{\dot{\epsilon}}^{\mathrm{vis}}}
41\newcommand{\tepsilonp}{\underline{\epsilon}^{\mathrm{p}}}
42\newcommand{\tdepsilonp}{\underline{\dot{\epsilon}}^{\mathrm{p}}}
43
44\newcommand{\energieinterne}{e}
45\newcommand{\energielibre}{\Psi}
46\newcommand{\energielibreel}{{\Psi}^{el}}
47\newcommand{\energielibreine}{{\Psi}^{inél}}
48\newcommand{\energielibreduale}{\Psi^{\star}}
49\newcommand{\potentieldissip}{\Phi}
50\newcommand{\potentieldissipdual}{\Phi^{\star}}
51
52\newcommand{\discret}[1]{\mathbb{#1}}
53\newcommand{\residuEF}{\discret{\vec{R}}}
54\newcommand{\forceintEF}{\discret{\vec{F}}_{i}}
55\newcommand{\forceextEF}{\discret{\vec{F}}_{e}}
56\newcommand{\forceintElem}{\discret{\vec{F}}_{i}^{e}}
57\newcommand{\champEF}{\discret{\vec{v}}^{h}}
58
59
60# Preliminary mathematical results
61
62## Tensors
63
64Second order tensors can be represented by matrices:
65\[
66  \tns{F}=
67  \begin{pmatrix}
68    F_{11} & F_{12} & F_{13} \\
69    F_{21} & F_{22} & F_{23} \\
70    F_{31} & F_{32} & F_{33} \\
71  \end{pmatrix}
72  \]
73
74In `TFEL/MFront`, a tensor is stored as an array of values, as follows
75in \(3D\):
76\[
77  \tenseur{s}=
78  \begin{pmatrix}
79    s_{\,11}\quad
80    s_{\,22}\quad
81    s_{\,33}\quad
82    s_{\,12}\quad
83    s_{\,21}\quad
84    s_{\,13}\quad
85    s_{\,31}\quad
86    s_{\,23}\quad
87    s_{\,32}
88  \end{pmatrix}^{T}
89\]
90
91The trace of a tensor is defined by:
92
93\[
94 \trace{\tns{F}}=\sum_{i=0}^{3}F_{ii}
95\]
96
97The products of two tensors is defined by:
98
99\[
100  \paren{\tns{F}\,.\,\tns{G}}_{ij}=\sum_{k=0}^{3}F_{ik}\,G_{kj}\neq\paren{\tns{G}\,.\,\tns{F}}_{ij}
101  \]
102
103The contracted product of two tensors defines a scalar product:
104
105\[
106\tns{F}\,\colon\,\tns{\pi}=\trace{\tns{F}\,.\,\tns{\pi}}=\sum_{i=0}^{3}\sum_{j=0}^{3}F_{ij}\,\pi_{ji}=F_{ij}\,\pi_{ji}
107\]
108
109## Symmetric tensors
110
111A symmetric tensor is stored as an array of values (vector notation),
112as follows in \(3D\):
113
114\[
115\tenseur{s}=
116\begin{pmatrix}
117  s_{\,11}\quad
118  s_{\,22}\quad
119  s_{\,33}\quad
120  \sqrt{2}\,s_{\,12}\quad
121  \sqrt{2}\,s_{\,13}\quad
122  \sqrt{2}\,s_{\,23}
123\end{pmatrix}^{T}
124\]
125
126The contracted product of two symmetric tensors is the scalar product
127  of their vector forms (hence the \(\sqrt{2}\)).
128
129### Diagonalisation of a symmetric tensor
130
131Symmetric tensors are diagonalisable:
132\[
133\tenseur{s}=\sum_{i=0}^{3}\lambda_{i}\,\tenseur{n}_{i}
134\]
135
136- \(\lambda_{i}\) are the eigenvalues of the tensor.
137- The eigentensors \(\tenseur{n}_{i}\) are orthogonals.
138
139### Isotropic functions of symmetric tensors
140
141This decomposition allows the definition of isotropic functions of
142tensors (logarithm, exponential, square root, ..):
143
144\[
145\tepsilonto_{\mathrm{log}}=\sum_{i=0}^{3}f\paren{\lambda_{i}}\,\tenseur{n}_{i}
146\]
147
148# Kinematics
149
150## Deformation of a body
151
152![Initial and deformed configurations](img/Configuration.png "Initial and deformed configurations"){width=75%}
153
154- at a given time \(t\), a structure is characterised by its
155  {\em configuration} \(\mathcal{C}_{t}\);
156- the initial configuration \(\mathcal{C}_{0}\) is often taken
157  as the reference configuration
158- the motion is described by a family of mappings \(\phi_{t}\),
159  the {\bf deformation}, which associates a point \(\vec{X}\) in
160  \(\mathcal{C}_{0}\) to its position \(\vec{x}\) in
161  \(\mathcal{C}_{t}\):
162  \[
163  \vec{x}=\phi_{t}\paren{\vec{X}}=\vec{X}+\vec{u}_{t}\paren{\vec{X}}
164  \]
165- \(\vec{u}_{t}\) is the {\bf displacement field}
166
167### Deformation gradient
168
169- Locally, the material is mechanically loaded if the
170  deformation of the current point differs from the deformation of
171  its neighbours
172- The \nom{Taylor} expansion of the deformation leads to:
173  \[
174  \phi\paren{\vec{X}+\dtot\,\vec{X}}-\phi\paren{\vec{X}}=\deriv{\phi}{\vec{X}}\,.\dtot\,\vec{X}+\underbrace{\vec{X}\,.\,\Frac{\partial^{2}\,\phi}{\partial\,\vec{X}^{2}}\,.\dtot\,\vec{X}+\ldots}_{\text{Higher order terms}}
175  \]
176- The deformation gradient \(\tns{F}\) is a tensor defined by:
177  \[
178  \tns{F}=\deriv{\phi}{\vec{X}}=\tns{I}+\deriv{\vec{u}}{\vec{X}}
179  \]
180- Volume change:
181  \[
182  J=\det\paren{\deriv{\vec{x}}{\vec{X}}}=\det{\tns{F}}
183  \]
184
185Higher order theories will not be considered in this course in this
186paper.
187
188
189### Polar decomposition of $\tns{F}$
190
191![Polar decomposition (Wikipedia)](img/Polar_decomposition_of_F.png "Polar decomposition (Wikipedia)"){width=75%}
192
193- Unicity and existence of a polar decomposition of \(\tns{F}\):
194  \(
195  \quad\quad\tns{F}=\tns{R}\,.\tenseur{U}=\tenseur{V}\,.\tns{R}
196  \)
197- \(\tns{R}\) is a rotation
198- \(\tenseur{V}\) and \(\tenseur{U}\) are {\bf symmetric tensors}
199- \(\tenseur{V}\) is the eulerian stretch tensor:
200    - \(\bts{\tenseur{V}}\) and \(\ets{\tenseur{V}}\) are
201    expressed in two different configuration:
202  - \(\Delta\,\tenseur{V}=\ets{\tenseur{V}}-\bts{\tenseur{V}}\)
203    is {\bf not} well defined
204  - \(\tenseur{U}\) is the lagrangian stretch tensor:
205    - expressed in the reference configuration
206  - \(\Delta\,\tenseur{U}=\ets{\tenseur{U}}-\bts{\tenseur{U}}\)
207    is {\bf well defined}
208  - Volume change:
209  \[
210  J=\det\,\tns{F}=\det\,\tenseur{U}
211  \]
212
213### Pure dilatation
214
215- Pure dilatations correspond to diagonal deformation gradients:
216  \[
217  \tns{F}=\tenseur{U}=
218  \begin{pmatrix}
219    F_{11} & 0 & 0 \\
220    0 & F_{22} & 0 \\
221    0 & 0 & F_{33} \\
222  \end{pmatrix}
223  \]
224- Example of thermal expansion.
225
226### Rate of deformation
227
228- velocity of a point:
229  \[
230  \vec{v}=\derivtot{\vec{x}}{t}
231  \]
232- gradient velocity of a point:
233  \[
234  \tns{L}=\deriv{\vec{\dot{x}}}{\vec{x}}=\deriv{\vec{\dot{x}}}{\vec{X}}\,.\,\deriv{\vec{X}}{\vec{x}}=\paren{\derivtot{}{t}\deriv{\vec{x}}{\vec{X}}}\,.\,\deriv{\vec{X}}{\vec{x}}=\tns{\derivtot{F}{t}}\,.\,\tns{F}^{-1}
235  \]
236- rate of deformation:
237  \[
238  \tenseur{D}=\Frac{1}{2}\left(\tns{L}+\transpose{\tns{L}}\right)
239  \]
240- rate of :
241  \[
242  \dot{J} = \trace{\tenseur{D}}
243  \]
244- rotation rate:
245  \[
246  \tns{\omega}=\Frac{1}{2}\left(\tns{L}-\transpose{\tns{L}}\right)
247  \]
248
249### Rate of deformation in pure dilatations
250
251- for pure dilatations, we have:
252  \[
253  \tenseur{D}=
254  \begin{pmatrix}
255    \frac{\dot{F}_{11}}{F_{11}} & 0 & 0 \\
256    0 & \frac{\dot{F}_{22}}{F_{22}} & 0 \\
257    0 & 0 & \frac{\dot{F}_{33}}{F_{33}} \\
258  \end{pmatrix}=
259  \begin{pmatrix}
260    \frac{\dot{l}_{1}}{l_{1}\paren{t}} & 0 & 0 \\
261    0 & \frac{\dot{l}_{2}}{l_{2}\paren{t}} & 0 \\
262    0 & 0 & \frac{\dot{l}_{3}}{l_{3}\paren{t}} \\
263  \end{pmatrix}
264  \]
265- \(\displaystyle\int_{0}^{t}D_{11}\,\dtot\,t=\int_{l_{0}}^{l\paren{t}}\Frac{\dtot\,l}{l}=\log\paren{\Frac{l\paren{t}}{l_{0}}}\)
266- \(\displaystyle\log\paren{\Frac{l\paren{t}}{l_{0}}}\) is
267  sometimes calls the true strain, altough the meaning of this is
268  dubious, as discussed later
269- The expression
270  \(\displaystyle\int_{l_{0}}^{l\paren{t}}\Frac{\dtot\,l}{l}\) is
271  sometimes used to justify an incremental framework of the
272  mechanics of deformable body at finite strain (updated lagrangian
273  formulations, hypoelasticity): it's a common pitfall of the
274  \(80's\) which is still present in major finite element solvers.
275
276# Mechanical equilibrium
277
278## Cauchy stress
279
280![Components of the Cauchy stress (Wikipedia)](img/CauchyStressComponents.png "Components of the Cauchy stress (Wikipedia)"){width=75%}
281
282- The stress state of a body at a given point is characterised
283  by a second order tensor called the Cauchy stress:
284  \(\quad\quad\quad\tsigma=
285  \begin{pmatrix}
286    \sigma_{11} & \sigma_{12} & \sigma_{13} \\
287    \sigma_{21} & \sigma_{22} & \sigma_{23} \\
288    \sigma_{31} & \sigma_{32} & \sigma_{33}
289  \end{pmatrix}
290  \)
291- The Cauchy stress satisfies:\\
292  \(
293  \quad\quad\quad\dtot\vec{T} = \tsigma\,.\,\dtot\vec{s}
294  \)
295    - \(\dtot\vec{s}\): oriented unit surface
296  - \(\dtot\vec{T}\): traction acting on \(\dtot\vec{s}\)
297  - \(\dtot\vec{s}\) is defined of the current configuration
298- Example of a pressure \(p\) applied to the boundary of a body,
299  \(\vec{n}\) being the outer normal to the boundary:
300  \[
301  \tsigma\,.\,\dtot\vec{n}=-p
302  \]
303
304\paragraph{Mechanical equilibrium}
305
306- Linear momentum conservation:
307  \[
308  \divergence\tsigma+\vec{f}=\rho\,\vec{a}\equiv
309  \left\{
310    \begin{aligned}
311      \deriv{\sigma_{11}}{x_{1}}+
312      \deriv{\sigma_{21}}{x_{2}}+
313      \deriv{\sigma_{31}}{x_{3}}+f_{1}=\rho\,a_{1}\\
314      \deriv{\sigma_{12}}{x_{1}}+
315      \deriv{\sigma_{22}}{x_{2}}+
316      \deriv{\sigma_{32}}{x_{3}}+f_{2}=\rho\,a_{2} \\
317      \deriv{\sigma_{13}}{x_{1}}+
318      \deriv{\sigma_{23}}{x_{2}}+
319      \deriv{\sigma_{33}}{x_{3}}+f_{3}=\rho\,a_{3} \\
320    \end{aligned}
321  \right.
322  \]
323  with \(\vec{a}\) acceleration, \(\rho\) density, \(\vec{f}\) body forces (gravity)
324- Equilibrium is expressed in the unknown {\bf deformed} configuration:
325    - geometrical {\bf non linearity} of continuum mechanics
326  - Angular momentum conservation: without body momentum, the
327  Cauchy stress is {\bf symmetric}
328  \[
329  \tsigma=\transpose{\tsigma}
330  \]
331
332## Infinitesimal perturbation theory
333
334- {\bf no rotation}:
335  \[
336  \tns{R}\approx\tns{I}
337  \]
338- {\bf small strain (first order perturbation)}:
339  \[
340  \tenseur{U}\approx\tenseur{I}+\tepsilonto
341  \]
342- \(\tepsilonto\) is the {\bf linearised strain tensor}:
343  \[
344  \epsilonto_{ji}=\Frac{1}{2}\paren{\deriv{u_{i}}{X_{j}}+\deriv{u_{j}}{X_{i}}}
345  \quad\text{or}\quad
346  \tepsilonto=\Frac{1}{2}\paren{\Grad{\vec{u}}+\transpose{\Grad{\vec{u}}}}
347  \]
348- change of volume:
349  \[
350  J=\det\tns{F}\approx{}=\det\tenseur{U}=1+\trace{\tepsilonto}
351  \]
352- \(\Omega_{t}\) can be replaced by \(\Omega_{0}\):
353    - no more geometrical non linearity
354  - Equilibrium:
355  \[
356  \Divergence\tsigma+\vec{f}=\rho_{0}\,\vec{a} \quad\text{and}\quad
357  \tsigma=\transpose{\tsigma}
358  \]
359
360# Energy, strain measures, stress measures
361
362## Mechanical power
363
364- Power of body forces:
365  \[
366  \begin{aligned}
367    \int_{\Omega}\vec{f}\,.\,\vec{v}\,\dtot\,v
368    &=-\int_{\partial\,\Omega}\left(\tsigma\,.\,\vec{n}\right)\,.\,\vec{v}\,\dtot\,s+\int_{\Omega}\tsigma\,\colon\,\tns{L}\,\dtot\,v\\
369    &=-\int_{\partial\,\Omega}\left(\tsigma\,.\,\vec{n}\right)\,.\,\vec{v}\,\dtot\,s+\int_{\Omega}\tsigma\,\colon\,\tns{D}\,\dtot\,v\quad\text{(symmetry of \(\tsigma\))}\\
370  \end{aligned}
371  \]
372- Conservation of energy:
373  \[
374  \underbrace{\int_{\Omega}\tsigma\,\colon\,\tns{D}\,\dtot\,v}_{\text{inner forces power}} = \underbrace{\int_{\Omega}\vec{f}\,.\,\vec{v}\,\dtot\,v + \int_{\partial\,\Omega}\vec{t}\,.\,\vec{v}\,\dtot\,s}_{\text{external forces power}}
375  \]
376
377## Strain measures
378
379- A strain measure must satisfy the following hypotheses:
380    - tends to \(\tepsilonto\) when the infinitesimal strain
381    theory's assumptions are satisfied;
382  - is objective (filters finite body rotation)
383  - is symmetric
384  - many isotropic functions of \(\tenseur{U}\) satisfy those
385  requirements:
386    - Green-Lagrange strain:
387    \[
388    \tepsilonto_{GL}=\Frac{1}{2}\paren{\tenseur{U}^{2}-\tns{I}}= \Frac{1}{2}\paren{\tns{F}^{T}\,.\,\tns{F}-\tns{I}}
389    \]
390  - Hencky strain:
391    \[\tepsilonto_{\mathrm{log}}=\log\tenseur{U}=\displaystyle\sum_{i=0}^{3}\log\lambda_{i}\,\tenseur{n}_{i}\]
392    where \(\lambda_{i}\) are the eigenvalues of \(\tenseur{U}\) and
393    \(\tenseur{n}_{i}\) are its eigentensors
394  - functions of \(\tns{V}\) will not be considered {\bf here}
395- \(\tepsilonto\) is {\bf not} a strain measure, \(\tns{F}\) is {\bf not} a strain measure
396- \(\tns{D}\) is {\bf not} the time derivative of a strain measure
397
398## Energetic conjugates (stress measures)
399
400- Mechanical work:
401  \[
402  \int_{\Omega}\tsigma\,\colon\,\tenseur{D}\,\dtot\,v=
403  \int_{\Omega_{0}}\tsigma\,\colon\,\tenseur{D}\,J\,\dtot\,V_{0}
404  \]
405- For each strain measure \(\tepsilonto_{\star}\), one may
406  define its dual stress \(\tns{T}_{\star}\):
407  \[
408  J\,\tsigma\,\colon\,\tenseur{D}=\tenseur{\tau}\,\colon\,\tenseur{D}=\tepsilonto_{\star}\,\colon\,\tns{T}_{\star}
409  \]
410- The tensor \(\tenseur{\tau}=J\,\tsigma\) is called the
411  Kirchhoff stress.
412- The dual of the Green-Lagrange strain is the second
413  Piola-Kirchhoff stress \(\tenseur{S}\):
414  \[
415  \tenseur{S}=\tns{F}^{-1}\,.\,\tenseur{\tau}\,.\,\tns{F}^{-T} \quad\Leftrightarrow\quad\tau = \tns{F}\,.\,\tenseur{S}\,.\,\tns{F}^{T}
416  \]
417- There is no strain measure which is the dual of \(\tenseur{\tau}\), nor \(\tsigma\)
418
419## Choice of a stress/strain couple
420
421- All strain measures are {\bf equivalent}: there is no
422  theoretical reason to prefer one strain measure over
423  another.
424- However, there are {\bf pratical} reasons to do so.
425
426
427### The Green-Lagrange strain
428
429- The Green-Lagrange strain and its dual are:
430    - easy to compute (no computational penalty);
431  - there is no straight-forward relation between the
432    Green-Lagrange strain and the change of volume
433        - for small strain however:
434      \[
435      J \approx 1+\trace{\tepsilonto_{\mathrm{GL}}}
436      \]
437      \begin{center}
438
439* The Green-Lagrange strain framework is indeed well suited for
440extending behaviours identified in the infinitesimal perturbation
441theory to finite rotation*
442
443### The logarithmic strain framework
444
445- There is a straight-forward relation between the
446  Hencky strain strain and the change of volume:
447  \[
448  J = \exp\paren{\trace{\tepsilonto_{\mathrm{log}}}}
449  \]
450- For pure dilatations:
451    - \(\tepsilonto_{\mathrm{log}}=\displaystyle\int_{0}^{t}\tenseur{D}\,\dtot\,t\)
452  - \(\tenseur{T}_{\mathrm{log}}\) is equal to the Kirchhoff
453    stress \(\tenseur{\tau}\), which is egal to the Cauchy stress
454    \(\tsigma\) for isochoric deformation
455  - However, the Hencky strain and its dual are costly to compute
456  (see Miehe et al., 2005);
457
458** The logarithmic strain framework is indeed well suited for
459 plasticity and/or viscoplasticity **
460
461# Elasticity
462
463- The mechanical work during the deformation process is
464  (time integral of the mechanical power):
465  \[
466  w\paren{0,t}=\int_{0}^{t}J\,\tsigma\,\colon\,\tenseur{D}\,\dtot\,t
467  =\int_{0}^{t}\tenseur{T}_{\star}\,\colon\,\tepsilonto_{\star}\,\dtot\,t
468  =\int_{\left.\tepsilonto_{\star}\right|0}^{\left.\tepsilonto_{\star}\right|t}\tenseur{T}_{\star}\,\colon\,\dtot\,\tepsilonto_{\star}
469  \]
470- Elasticity assumes that the previous integral is
471  path-independent, i.e. the mechanical work only depends on the
472  current state of deformation and not the history of the
473  deformation process
474- The dual stress \(\tenseur{T}_{\star}\) then satisfies :
475  \[
476  \tenseur{T}_{\star} = \deriv{w}{\tepsilonto_{\star}}
477  \]
478
479## Linear Elasticity
480
481- Linear elasticity assumes a linear relationship between
482  \(\tepsilonto_{\star}\) and \(\tenseur{T}_{\star}\):
483  \[
484  \tenseur{T}_{\star} = \tenseurq{D}\,\colon\,\tepsilonto_{\star}\quad\Leftrightarrow\quad w=\Frac{1}{2}\tepsilonto_{\star}\,\colon\,\tenseurq{D}\,\colon\,\tepsilonto_{\star}
485  \]
486- The fourth order tensor \(\tenseurq{D}\) satisfies:
487  \[
488  \tenseurq{D}=\Frac{\partial^{2}w}{\partial\tepsilonto_{\star}\partial\tepsilonto_{\star}}
489  \]
490- \(\tenseurq{D}\) have the following properties:
491    - \(\tenseurq{D}\) has minor symmetries (\(\tenseur{T}_{\star}\) and \(\tepsilonto_{\star}\)
492    are symmetric):
493    \[
494    D_{ijkl}= D_{jikl}\quad\text{and}\quad D_{ijkl}= D_{ijlk}
495    \]
496  - \(\tenseurq{D}\) has major symmetries (Schwarz theorem):
497    \[
498    D_{ijkl}=D_{klij}
499    \]
500
501
502<!-- - matrix notations for \(\tenseurq{D}\): -->
503<!--   \[ -->
504<!--   \tenseurq{D}= -->
505<!--   \begin{pmatrix} -->
506<!--     D_{1111} & D_{1122} &  D_{1133} &  \sqrt{2}\,D_{1112}  & \sqrt{2}\,D_{1113} & \sqrt{2}\,D_{1123}  \\ -->
507<!--     &D_{2222} & D_{2233} & \sqrt{2}\,D_{2212}  &  \sqrt{2}\,D_{2213}  & \sqrt{2}\,D_{2223} \\ -->
508<!--     &        & D_{3333} & \sqrt{2}\,D_{3312}  &  \sqrt{2}\,D_{3313}  & \sqrt{2}\,D_{3323} \\ -->
509<!--     &        &         & 2\,D_{1212}  &   2\,D_{1213} & 2\,D_{1223} \\ -->
510<!--     &        &         &          &   2\,D_{1313} & 2\,D_{1323} \\ -->
511<!--     &        &         &          &           & 2\,D_{2323} \\ -->
512<!--   \end{pmatrix} -->
513<!--   \] -->
514<!-- - \(21\) independent coefficients in general -->
515
516
517## Isotropic elasticity
518
519- For an isotropic material, only two independant material properties remains:
520  \[
521  \tenseur{T}_{\star}
522  = \lambda\,\paren{\trace{\tepsilonto_{\star}}}\,\tenseur{I}+2\,\mu\,\tepsilonto_{\star}
523  \]
524- \(\lambda\) and \(\mu\) are called the Lamé coefficients
525- \(\mu\) is also called the shear modulus
526- In the infinitesimal perturbation hypothesis, this is the Hooke law.
527- In the Green-Lagrange strain framework, this is the Saint-Venant Kirchhoff law.
528- In the logarithmic strain framework, this is the Hencky-Biot law.
529
530### Bulk modulus
531
532- Separate change of volume from deviatoric part:
533  \[
534  \begin{aligned}
535    \tenseur{T}_{\star}&= \lambda\,\paren{\trace{\tepsilonto_{\star}}}\,\tenseur{I}+2\,\mu\,\tepsilonto_{\star} \\
536    &= \paren{\lambda+\Frac{2\,\mu}{3}}\,\underbrace{\paren{\trace{\tepsilonto_{\star}}}\,\tenseur{I}}_{\text{volume change}}+2\,\mu\,\underbrace{\paren{\tepsilonto_{\star}-\Frac{\trace{\tepsilonto_{\star}}}{3}\,\tenseur{I}}}_{\text{deviator}} \\
537    &= K\,\paren{\trace{\tepsilonto_{\star}}}\,\tenseur{I}+2\,\mu\,\paren{\tepsilonto_{\star}-\Frac{\trace{\tepsilonto_{\star}}}{3}\,\tenseur{I}} \\
538  \end{aligned}
539  \]
540- \(K=\lambda+\Frac{2\,\mu}{3}\) is called the bulk modulus
541
542### Young modulus and Poisson coefficient
543
544- consider an uniaxial tensile state along \(11\):
545  \[
546  \begin{aligned}
547    \tepsilonto_{\star}& =
548    \begin{pmatrix}
549      \epsilonto_{\star\,11} &
550      \epsilonto_{\star\,22} &
551      \epsilonto_{\star\,33} &
552      0 & 0 & 0
553    \end{pmatrix}^{T}\\
554    \tenseur{T}_{\star}&=
555    \begin{pmatrix}
556      T_{\star\,11} &
557      0 & 0 & 0 & 0 & 0
558    \end{pmatrix}^{T}\\
559  \end{aligned}
560  \]
561- The Young modulus \(E\) is defined by:
562  \[
563  T_{\star\,11} = E\,\epsilonto_{\star\,11}
564  \]
565- The Poisson ratio \(\nu\) is defined by:
566  \[
567  \epsilonto_{\star\,22} = -\nu\,\epsilonto_{\star\,11}
568  \]
569- \(\lambda=\Frac{E\,\nu}{\paren{1+\nu}\,\paren{1-2\,\nu}}\quad\mu=\Frac{E}{2\,\paren{1+\nu}}\quad K=\Frac{E}{3\,\paren{1-2\,\nu}}\)
570
571## Orthotropy
572
573- An orthotropic material introduces a preferential material
574  frame:
575  \[
576  \tenseurq{D}=
577  \begin{pmatrix}
578    D_{1111} & D_{1122} &  D_{1133} & 0  & 0 & 0  \\
579    D_{1122} & D_{2222} & D_{2233} & 0 & 0 & 0 \\
580    D_{1133} & D_{2233} & D_{3333} & 0 & 0 & 0 \\
581    0 & 0 & 0  & D_{1212} & 0 & 0 \\
582    0 & 0 & 0  & 0       & D_{1313} & 0 \\
583    0 & 0 & 0  & 0       & 0       & D_{2323} \\
584  \end{pmatrix}
585  \]
586- \(9\) independent coefficients
587
588## Thermo-elasticty
589
590### Thermal strain
591
592- The total strain is splitted into an elastic part and a
593  thermal part:
594  \[
595  \tepsilonto_{\star}=
596  \tepsilonel_{\star}+
597  \tepsilonth_{\star}
598  \]
599- The elastic part \(\tepsilonel_{\star}\) defines the stresses
600  \(\tenseur{T}_{\star}\) through the Hooke law:
601  \[
602  \tenseur{T}_{\star}=\tenseurq{D}\,\colon\,\tepsilonel_{\star}
603  \]
604
605#### Isotropic thermal expansion
606
607- The thermal expansion is given by:
608  \[
609  \Frac{\Delta\,l}{l_{T^{\alpha}}}=\Frac{l_{T}-l_{T^{\alpha}}}{l_{T^{\alpha}}}=\alpha\paren{T}\,\paren{T-T^{\alpha}}
610  \]
611- If the reference temperature \(T^{\alpha}\) for the thermal
612  expansion is different than the reference temperature \(T^{i}\) of the
613  geometry:
614  \[
615  \Frac{\Delta\,l}{l_{T^{i}}} = \Frac{1}{1+\alpha\paren{T^{i}}\,\paren{T^{i}-T^{\alpha}}}\,\left[\alpha\paren{T}\,\paren{T-T^{\alpha}}-\alpha\paren{T^{i}}\,\paren{T^{i}-T^{\alpha}}\right]
616  \]
617
618# Isotropic damage
619
620# Visco-plasticity
621
622## A first approach to viscoplastic behaviour
623
624- The total strain is splitted into an elastic part and a
625  viscoplastic part:
626  \[
627  \tepsilonto_{\star}=
628  \tepsilonel_{\star}+
629  \tepsilonvis_{\star}
630  \]
631- The plastic flow is generally isochoric\footnote{This is an
632    approximation for all strain measures execpt the logarithmic
633    strain}:
634  \[
635  \trace{\tepsilonvis_{\star}}=0
636  \]
637- Without internal state, the mechanical dissipation associated
638  with plasticity is:
639  \[
640  \tenseur{T}_{\star}\,\colon\,\tdepsilonto_{\star}=
641  \underbrace{\tenseur{T}_{\star}\,\colon\,\tdepsilonel_{\star}}_{\text{stored reversibly}}+
642  \underbrace{\tenseur{T}_{\star}\,\colon\,\tdepsilonvis_{\star}}_{\text{dissipated}}
643  \]
644- The expression dissipated power can be rewritten using the deviator of the stress \(\tenseur{s}_{\star}\):
645  \[
646  \tenseur{T}_{\star}\,\colon\,\tdepsilonvis_{\star}=
647  \tenseur{s}_{\star}\,\colon\,\tdepsilonvis_{\star}
648  \quad\text{with}\quad\tenseur{s}_{\star}=\tenseur{T}_{\star}-\Frac{1}{3}\,\trace{\tenseur{T}_{\star}}\,\tenseur{I}
649  \]
650- The dissipation is maximal if the \(\tdepsilonvis_{\star}\) is
651  colinear with \(\tenseur{s}_{\star}\).
652
653## The Von Mises stress
654
655- The material is now assumed {\bf isotropic}
656- A convenient isotropic norm for deviatoric stress tensor is
657  the Von Mises norm:
658  \[
659  T^{eq}_{\star}=\sqrt{\Frac{3}{2}\tenseur{s}_{\star}\,\colon\,\tenseur{s}_{\star}}
660  \]
661- The \(\Frac{3}{2}\) factor is here so that in uniaxial tensile tests:
662  \[
663  T^{eq}_{\star}=\left|T_{xx}\right|
664  \]
665- The Von Mises norm is one the three invariants of the stress
666  (the other ones are the pressure and the determinant)
667- In term of eigen values:
668  \[
669  T^{eq}_{\star}=\sqrt{\Frac{1}{2}\left[\paren{T_{1}-T_{2}}^{2}+\paren{T_{1}-T_{3}}^{2}+\paren{T_{2}-T_{3}}^{2}\right]}
670  \]
671
672## The normal tensor
673
674- The equation:
675  \[
676  T^{eq}_{\star}=\text{Cste}
677  \]
678  defines a sphere in the deviatoric space
679- The normal to this surface is:
680  \[
681  \tenseur{n}_{\star}=\deriv{T^{eq}_{\star}}{\tenseur{T}_{\star}}=\Frac{3\,\tenseur{s}_{\star}}{2\,T^{eq}_{\star}}
682  \]
683- \(\tenseur{n}_{\star}\colon\tenseur{n}_{\star}=\Frac{3}{2}\)
684- The normal is colinear to \(\tenseur{s}_{\star}\), thus an
685  isochoric viscoplastic flow of the form:
686  \[
687  \tdepsilonvis_{\star}=f\paren{\tenseur{T}_{\star}}\tenseur{n}_{\star}
688  \]
689  would maximise the mechanical dissipation.
690- In uniaxial tensile tests:
691  \[
692  \tenseur{n}_{\star}=
693  \begin{pmatrix}
694    1 &
695    -\frac{1}{2} &
696    -\frac{1}{2} &
697    0 &
698    0 &
699    0
700  \end{pmatrix}^{T}
701  \]
702
703## The Norton behaviour
704
705- The viscoplastic flow is:
706  \(
707  \tdepsilonvis_{\star}=f\paren{\tenseur{T}_{\star}}\tenseur{n}_{\star}
708  \)
709- The material being isotropic, \(f\) must be a function of the
710  invariants of the stresses: the pressure, the Von Mises stress,
711  the determinant.
712- Experimentally, viscoplastic behaviour is found to be pressure
713  insensitive.
714- The effect of the third invariant is neglected in general.
715- Thus, a simple viscoplastic model for an isotropic
716  incompressible material is:
717  \[
718  \tdepsilonvis_{\star}=f\paren{T^{eq}_{\star}}\tenseur{n}_{\star}
719  \]
720- Restrictions:
721    - \(f\) must be positive for the dissipation to be positive
722  - \(f\paren{\tenseur{0}}\) must be null
723  - The Norton behaviour correspond to a power function:
724  \[
725  \tdepsilonvis_{\star}=A\,\paren{T^{eq}_{\star}}^{n}\tenseur{n}_{\star}=\dot{\varepsilon}^{0}\paren{\Frac{T^{eq}_{\star}}{T^{0}}}^{n}\tenseur{n}_{\star}
726  \]
727
728## Equivalent viscoplastic strain
729
730- A convenient choice for the viscoplastic strain rate norm is:
731  \[
732  \dot{p}=f\paren{T^{eq}_{\star}}=\sqrt{\Frac{2}{3}\,\tdepsilonvis_{\star}\,\colon\,\tdepsilonvis_{\star}}
733  \]
734- In uniaxial tensile tests:
735  \[
736  \dot{p} = \left|\paren{\depsilonvis_{\star}}_{xx}\right|
737  \]
738- The equivalent viscoplastic strain is defined by:
739  \[
740  p=\int_{0}^{t}\dot{p}\,\dtot\,t
741  \]
742- This quantity is a convenient measure of the viscoplastic
743  history of the material and is widely used as a damage criterium.
744
745
746## Dissipation potential
747
748- The Norton behaviour can be expressed as:
749  \[
750  \tdepsilonvis_{\star}=\deriv{\potentieldissipdual}{\tenseur{T}_{\star}}
751  \quad\text{with}\quad
752  \potentieldissipdual\paren{T^{eq}_{\star}}=\Frac{T^{0}\dot{\varepsilon}^{0}}{n+1}\paren{\Frac{T^{eq}_{\star}}{T^{0}}}^{n+1}
753  \]
754- \(\potentieldissipdual\) is called the dissipation potential
755- Other expressions of the dissipation potential defines used the
756  define other viscoplastic behaviours.
757- The resulting viscoplastic behaviours will lead to a positive
758  dissipation if \(\potentieldissipdual\) is {\bf convex} and {\bf
759    minimal} at zero.
760- The introduction of dissipation potentials is the departure of
761  a theorical developments which can ease the formulation of
762  mechanical behaviours:
763    - thermodynamical consistent behaviours
764  - numerically efficient behaviours
765
766# Thermodynamics
767
768## First principle
769
770# The Finite Element Method
771
772## Principle of virtual power
773
774- Let \(\partial_{u}\Omega\) the boundary part where
775  displacements are prescribed
776- \(\partial_{t}\Omega=\partial\Omega\setminus\partial_{u}\Omega\)
777  is the boundary part where tractions are prescribed
778- Let \(\vec{v}^{\star}\) be a vector field compatible with
779  prescribed displacement and
780  \(\delta\,\vec{v}^{\star}=\vec{v}^{\star}-\vec{v}\), then:
781  \[
782  \underbrace{\int_{\Omega}\tsigma\,\colon\,\delta\,\tns{D}^{\star}\,\dtot\,v}_{\text{virtual inner forces power}} = \underbrace{\int_{\Omega}\vec{f}\,.\,\delta\,\vec{v}^{\star}\,\dtot\,v + \int_{\partial\,\Omega_{t}}\vec{t}\,.\,\delta\,\vec{v}^{\star}\,\dtot\,s}_{\text{virtual external forces power}}
783  \]
784- this is the principle of virtual power which is the basis of
785  the Finite Element Method (FEM)
786
787## Finite element method
788
789- The principle of virtual power is used to find the best
790  approximation of the solution on a finite space.
791- Finite elements are a widely used way of defining such a
792  finite space by discretizing the real geometry by subdomains
793  called finite elements:
794    - Given values at specified points of the finite element (the
795    nodes), the function value is approximated by interpolation
796    functions.
797
798### Resolution
799
800- Mechanical equilibrium: find\(\Delta\discret{\vec{u}}\) such as:
801  \[
802  \small
803  \residuEF\paren{\Delta\discret{\vec{u}}}=\discret{\vec{O}}\quad\text{
804    avec
805  }\quad\residuEF\paren{\Delta\discret{\vec{u}}}=\forceintEF\paren{\Delta\discret{\vec{u}}}-\forceextEF
806  \]
807- element contribution to inner forces:
808  \[
809  \small
810  \begin{aligned}
811    \forceintElem&=\int_{V^{e}}\tsigma_{t+\Delta
812      t}\paren{\Delta\,\tepsilonto,\Delta\, t}\colon\tenseur{B}\;\dtot V \\
813    &=  \sum_{i=1}^{N^{G}} \paren{\tsigma_{t+\Delta\,t}\paren{\Delta\tepsilonto\paren{\vec{\eta}_{i}},\Delta\, t}\colon\tenseurq{B}\paren{\vec{\eta}_{i}}}w_{i}
814  \end{aligned}
815  \]
816  where \(\tenseur{B}\) gives the relationship between \(\Delta\,\tepsilonto\) and \(\Delta\discret{\vec{u}}\)
817
818  \[
819  \forceintElem = \sum_{i=1}^{N^{G}} \paren{\tsigma_{t+\Delta\,t}\paren{\Delta\tepsilonto\paren{\vec{\eta}_{i}},\Delta\, t}\colon\tenseurq{B}\paren{\vec{\eta}_{i}}}w_{i}
820  \]
821
822### Resolution using the \nom{Newton-Raphson} algorithm
823
824<!-- %   \[ -->
825<!-- %   \Delta\discret{\vec{u}}^{n+1}=\Delta\discret{\vec{u}}^{n}-\paren{\left.\deriv{\residuEF}{\Delta\discret{\vec{u}}}\right|_{\Delta\discret{\vec{u}}^{n}}}^{-1}.\residuEF\paren{\Delta\discret{\vec{u}}^{n}}= \Delta\discret{\vec{u}}^{n}-\tenseurq{\mathbb{K}}^{-1}.\residuEF\paren{\Delta\discret{\vec{u}}^{n}}} -->
826<!-- % \] -->
827
828<!-- % \[ -->
829<!-- % \Delta\discret{\vec{u}}^{n+1}=\Delta\discret{\vec{u}}^{n}-\tenseurq{\mathbb{K}}^{-1}.\residuEF\paren{\Delta\discret{\vec{u}}^{n}} -->
830<!-- % \] -->
831<!-- - element contribution to the stiffness: -->
832<!--   \[ -->
833<!--   \small -->
834<!--   \tenseurq{\mathbb{K}}^{e}=\displaystyle\sum_{i=1}^{N^{G}} -->
835<!--   \mbox{}^{t}\tenseurq{B}\paren{\vec{\eta}_{i}}\colon\deriv{\Delta\tsigma}{\Delta\tepsilonto}\paren{\vec{\eta}_{i}}\colon\tenseurq{B}\paren{\vec{\eta}_{i}}w_{i} -->
836<!--   \] -->
837<!--   \(\scriptsize\deriv{\Delta\tsigma}{\Delta\tepsilonto}\) is the -->
838<!--   {\bf consistent tangent operator} -->
839
840
841## Mechanical behaviours
842
843<!-- \paragraph{Main functions of the mechanical behaviour} -->
844
845<!-- \[ -->
846<!-- \paren{ -->
847<!--   \bts{\tepsilonto_{\star}} \,, -->
848<!--   \bts{\vec{Y}} \,, -->
849<!--   \Delta\,\tepsilonto_{\star} \,, -->
850<!--   \Delta\,t -->
851<!-- } -->
852<!-- \underbrace{\Longrightarrow}_{behaviour} -->
853<!-- \paren{ -->
854<!--   \ets{\tenseur{T}_{\star}} \,, -->
855<!--   \ets{\vec{Y}} \,, -->
856<!--   \deriv{\Delta\,\tepsilonto_{\star}}{\Delta\,\tepsilonto_{\star}} -->
857<!-- } -->
858<!-- \] -->
859<!-- - Given a strain increment \(\Delta\,\tepsilonto_{\star}\) over -->
860<!--   a time step \(\Delta\,t\), the mechanical behaviour must compute: -->
861<!--     - The value of the stress \(\ets{\tenseur{T}_{\star}}\) at the -->
862<!--     end of the time step. -->
863<!--   - The value of internal state variables, noted -->
864<!--     \(\ets{\vec{Y}}\) at the end of the time step. -->
865<!--   - The consistent tangent operator: -->
866<!--     \( -->
867<!--     \deriv{\Delta\,\tenseur{T}_{\star}}{\Delta\,\tepsilonto_{\star}} -->
868<!--     \) -->
869<!--   - For specific cases, the mechanical behaviour shall also provide: -->
870<!--     - a prediction operator -->
871<!--   - the elastic operator (Abaqus-Explicit, Europlexus) -->
872<!--   - estimation of the stored and dissipated energies (Abaqus-Explicit) -->
873
874
875<!-- \paragraph{Other functions of the mechanical behaviour} -->
876
877<!-- - Provide a estimation of the next time step for time step automatic adaptation -->
878<!-- - Check bounds: -->
879<!--     - Physical bounds -->
880<!--   - Standard bounds -->
881<!--   - Clear error messages -->
882<!-- - Parameters -->
883<!--     - It is all about AQ! -->
884<!--   - Parametric studies, identification, etc… -->
885<!--   -	Generate mtest files on integration failures -->
886<!-- -	Generated example of usage: -->
887<!--     - Generation of MODELISER/MATERIAU instructions (Cast3M) -->
888<!--   - Input file for Abaqus -->
889<!--   - Provide information for dynamic resolution of inputs (MTest/Aster/Europlexus): -->
890<!--     - Numbers Types (scalar, tensors, symmetric tensors) -->
891<!--   - Entry names /Glossary names… -->
892
893
894<!-- \paragraph{Mechanical behaviour integration} -->
895
896<!-- - The evolution of the state variables are usually expressed by -->
897<!--   a ordinary differential equation: -->
898<!--   \[ -->
899<!--   \vec{\dot{Y}}=G\paren{\vec{Y},\tdepsilonto_{\star}} -->
900<!--   \] -->
901<!-- - Example of the Norton behaviour: -->
902<!--   \[ -->
903<!--   \left\{ -->
904<!--     \begin{aligned} -->
905<!--       \tenseur{T}_{\star}&=\tenseurq{D}\,\colon\,\tepsilonel \\ -->
906<!--       \tdepsilonel+\tdepsilonvis &= \tdepsilonto_{\star} \\       -->
907<!--       \tdepsilonvis &= \dot{\varepsilon}^{0}\paren{\Frac{T^{eq}_{\star}}{T^{0}}}^{n}\tenseur{n}_{\star} \\ -->
908<!--     \end{aligned} -->
909<!--   \right. -->
910<!--   \] -->
911
912
913<!-- \paragraph{Explicit schemes} -->
914
915<!-- - This ode may be solved using one of the many Runge-Kutta algorithms: -->
916<!--     - This is not recommended as one can't derive the consistent -->
917<!--     tangent operator. -->
918<!--   - There are intrisic pitfalls with those algorithms when the -->
919<!--     behaviour depends on external state variables, such as the -->
920<!--     temperature. -->
921<!--   - Plasticity and damage are not treated exactly. -->
922<!--   - Poor numerical performances. -->
923
924
925<!-- \paragraph{Implicit schemes} -->
926
927<!-- - The previous ordinary differential equations can be rewritten -->
928<!--   as a system of non linear equations: -->
929<!--   \[ -->
930<!--   F\paren{\Delta\,\vec{Y}}= -->
931<!--   \Delta\,\vec{Y}-\Delta\,t\,G\paren{\mts{\vec{Y}},\Delta\,\tepsilonto_{\star}}=\vec{0} -->
932<!--   \] -->
933<!--   with -->
934<!--   \(\mts{\vec{Y}}=\bts{\vec{Y}}+\theta\,\Delta\,\vec{Y}\) -->
935<!-- - \(\theta\) is a numerical parameter: -->
936<!--     - \(\theta\in\left[0:1\right]\) -->
937<!--   - \(\theta=\frac{1}{2}\) leads to a second order method: -->
938
939
940<!-- \paragraph{Example} -->
941
942<!-- - The Norton behaviour integrated by an implicit schemes leads -->
943<!--   to: -->
944<!--   \[ -->
945<!--   \begin{aligned} -->
946<!--     \mts{\tenseur{T}_{\star}}&=\tenseurq{D}\,\colon\,\mts{\tepsilonel}\\ -->
947<!--     \Delta\,\tepsilonel+\Delta\,\tepsilonvis - \Delta\,\tepsilonto_{\star} &= \tenseur{0}\\       -->
948<!--     \Delta\,\tepsilonvis -\Delta\,t\,\dot{\varepsilon}^{0}\,\paren{\Frac{\mts{T^{eq}_{\star}}}{T^{0}}}^{n}\,\mts{\tenseur{n}_{\star}}&=\tenseur{0} \\ -->
949<!--   \end{aligned} -->
950<!--   \] -->
951
952
953<!-- \paragraph{Resolution of the implicit scheme} -->
954
955<!-- - The previous equation is generally solved using a -->
956<!--   variant of the Newton-Raphson algorithm: -->
957<!--   \[ -->
958<!--   \Delta\,\vec{Y}^{(n+1)}=\Delta\,\vec{Y}^{(n)}-J^{-1}\paren{\Delta\,\vec{Y}^{(n)}}\,F\paren{\Delta\,\vec{Y}^{(n)}} -->
959<!--   \] -->
960<!-- - \(J=\derivtot{F}{\Delta\,\vec{Y}}\) is the jacobian of the system: -->
961<!--     - Computing \(J\) is the difficult part ! -->
962<!--   - One can use a finite-difference approximation or Broyden algorithm: -->
963<!--         - Poorer performances (although better than explicit schemes) -->
964
965
966<!-- \paragraph{Block decomposition} -->
967
968<!-- - The implicit system can be decomposed by blocks: -->
969<!--   \[ -->
970<!--   F = -->
971<!--   \begin{pmatrix} -->
972<!--     f_{y_{1}} \\ -->
973<!--     \vdots  \\ -->
974<!--     f_{y_{N}} \\ -->
975<!--   \end{pmatrix} -->
976<!--   \] -->
977<!-- - The jacobian system can be also be decomposed by blocks: -->
978<!--   \[ -->
979<!--   J = \deriv{F}{Y} = -->
980<!--   \begin{pmatrix} -->
981<!--     \deriv{f_{y_{1}}}{y_{1}} & \ldots & \ldots & \ldots & \ldots \\ -->
982<!--     \vdots & \vdots & \vdots & \vdots & \vdots \\ -->
983<!--     \vdots & \vdots & \deriv{f_{y_{i}}}{y_{j}} & \vdots & \vdots \\ -->
984<!--     \vdots & \vdots & \vdots & \vdots & \vdots \\ -->
985<!--     \ldots & \ldots & \ldots & \ldots & \deriv{f_{y_{N}}}{y_{N}} \\n -->
986<!--   \end{pmatrix} -->
987<!--   \] -->
988
989
990<!-- Local IspellDict: english -->
991