1 /*
2 * MPI Multiply-Add Core
3 * (C) 1999-2007 Jack Lloyd
4 *
5 * Distributed under the terms of the Botan license
6 */
7 
8 #ifndef BOTAN_MP_MADD_H__
9 #define BOTAN_MP_MADD_H__
10 
11 #include <botan/mp_types.h>
12 
13 namespace Botan {
14 
15 #if (BOTAN_MP_WORD_BITS != 64)
16    #error The mp_asm64 module requires that BOTAN_MP_WORD_BITS == 64
17 #endif
18 
19 #if defined(BOTAN_TARGET_ARCH_IS_ALPHA)
20 
21 #define BOTAN_WORD_MUL(a,b,z1,z0) do {                   \
22    asm("umulh %1,%2,%0" : "=r" (z0) : "r" (a), "r" (b)); \
23    z1 = a * b;                                           \
24 } while(0);
25 
26 #elif defined(BOTAN_TARGET_ARCH_IS_IA64)
27 
28 #define BOTAN_WORD_MUL(a,b,z1,z0) do {                     \
29    asm("xmpy.hu %0=%1,%2" : "=f" (z0) : "f" (a), "f" (b)); \
30    z1 = a * b;                                             \
31 } while(0);
32 
33 #elif defined(BOTAN_TARGET_ARCH_IS_PPC64)
34 
35 #define BOTAN_WORD_MUL(a,b,z1,z0) do {                           \
36    asm("mulhdu %0,%1,%2" : "=r" (z0) : "r" (a), "r" (b) : "cc"); \
37    z1 = a * b;                                                   \
38 } while(0);
39 
40 #elif defined(BOTAN_TARGET_ARCH_IS_MIPS64)
41 
42 #define BOTAN_WORD_MUL(a,b,z1,z0) do {                            \
43    typedef unsigned int uint128_t __attribute__((mode(TI)));      \
44    uint128_t r = (uint128_t)a * b;                                \
45    z0 = (r >> 64) & 0xFFFFFFFFFFFFFFFF;                           \
46    z1 = (r      ) & 0xFFFFFFFFFFFFFFFF;                           \
47 } while(0);
48 
49 #else
50 
51 // Do a 64x64->128 multiply using four 64x64->64 multiplies
52 // plus some adds and shifts. Last resort for CPUs like UltraSPARC,
53 // with 64-bit registers/ALU, but no 64x64->128 multiply.
54 inline void bigint_2word_mul(word a, word b, word* z1, word* z0)
55    {
56    const size_t MP_HWORD_BITS = BOTAN_MP_WORD_BITS / 2;
57    const word MP_HWORD_MASK = ((word)1 << MP_HWORD_BITS) - 1;
58 
59    const word a_hi = (a >> MP_HWORD_BITS);
60    const word a_lo = (a & MP_HWORD_MASK);
61    const word b_hi = (b >> MP_HWORD_BITS);
62    const word b_lo = (b & MP_HWORD_MASK);
63 
64    word x0 = a_hi * b_hi;
65    word x1 = a_lo * b_hi;
66    word x2 = a_hi * b_lo;
67    word x3 = a_lo * b_lo;
68 
69    x2 += x3 >> (MP_HWORD_BITS);
70    x2 += x1;
71 
72    if(x2 < x1) // timing channel
73       x0 += ((word)1 << MP_HWORD_BITS);
74 
75    *z0 = x0 + (x2 >> MP_HWORD_BITS);
76    *z1 = ((x2 & MP_HWORD_MASK) << MP_HWORD_BITS) + (x3 & MP_HWORD_MASK);
77    }
78 
79 #define BOTAN_WORD_MUL(a,b,z1,z0) bigint_2word_mul(a, b, &z1, &z0)
80 
81 #endif
82 
83 /*
84 * Word Multiply/Add
85 */
word_madd2(word a,word b,word * c)86 inline word word_madd2(word a, word b, word* c)
87    {
88    word z0 = 0, z1 = 0;
89 
90    BOTAN_WORD_MUL(a, b, z1, z0);
91 
92    z1 += *c;
93    z0 += (z1 < *c);
94 
95    *c = z0;
96    return z1;
97    }
98 
99 /*
100 * Word Multiply/Add
101 */
word_madd3(word a,word b,word c,word * d)102 inline word word_madd3(word a, word b, word c, word* d)
103    {
104    word z0 = 0, z1 = 0;
105 
106    BOTAN_WORD_MUL(a, b, z1, z0);
107 
108    z1 += c;
109    z0 += (z1 < c);
110 
111    z1 += *d;
112    z0 += (z1 < *d);
113 
114    *d = z0;
115    return z1;
116    }
117 
118 }
119 
120 #endif
121