1 //===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BitVector class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ADT_BITVECTOR_H
15 #define LLVM_ADT_BITVECTOR_H
16 
17 #include "llvm/Support/MathExtras.h"
18 #include <algorithm>
19 #include <cassert>
20 #include <climits>
21 #include <cstring>
22 
23 namespace llvm {
24 
25 class BitVector {
26   typedef unsigned long BitWord;
27 
28   enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
29 
30   BitWord  *Bits;        // Actual bits.
31   unsigned Size;         // Size of bitvector in bits.
32   unsigned Capacity;     // Size of allocated memory in BitWord.
33 
34 public:
35   // Encapsulation of a single bit.
36   class reference {
37     friend class BitVector;
38 
39     BitWord *WordRef;
40     unsigned BitPos;
41 
42     reference();  // Undefined
43 
44   public:
reference(BitVector & b,unsigned Idx)45     reference(BitVector &b, unsigned Idx) {
46       WordRef = &b.Bits[Idx / BITWORD_SIZE];
47       BitPos = Idx % BITWORD_SIZE;
48     }
49 
~reference()50     ~reference() {}
51 
52     reference &operator=(reference t) {
53       *this = bool(t);
54       return *this;
55     }
56 
57     reference& operator=(bool t) {
58       if (t)
59         *WordRef |= 1L << BitPos;
60       else
61         *WordRef &= ~(1L << BitPos);
62       return *this;
63     }
64 
65     operator bool() const {
66       return ((*WordRef) & (1L << BitPos)) ? true : false;
67     }
68   };
69 
70 
71   /// BitVector default ctor - Creates an empty bitvector.
BitVector()72   BitVector() : Size(0), Capacity(0) {
73     Bits = 0;
74   }
75 
76   /// BitVector ctor - Creates a bitvector of specified number of bits. All
77   /// bits are initialized to the specified value.
Size(s)78   explicit BitVector(unsigned s, bool t = false) : Size(s) {
79     Capacity = NumBitWords(s);
80     Bits = new BitWord[Capacity];
81     init_words(Bits, Capacity, t);
82     if (t)
83       clear_unused_bits();
84   }
85 
86   /// BitVector copy ctor.
BitVector(const BitVector & RHS)87   BitVector(const BitVector &RHS) : Size(RHS.size()) {
88     if (Size == 0) {
89       Bits = 0;
90       Capacity = 0;
91       return;
92     }
93 
94     Capacity = NumBitWords(RHS.size());
95     Bits = new BitWord[Capacity];
96     std::copy(RHS.Bits, &RHS.Bits[Capacity], Bits);
97   }
98 
~BitVector()99   ~BitVector() {
100     delete[] Bits;
101   }
102 
103   /// empty - Tests whether there are no bits in this bitvector.
empty()104   bool empty() const { return Size == 0; }
105 
106   /// size - Returns the number of bits in this bitvector.
size()107   unsigned size() const { return Size; }
108 
109   /// count - Returns the number of bits which are set.
count()110   unsigned count() const {
111     unsigned NumBits = 0;
112     for (unsigned i = 0; i < NumBitWords(size()); ++i)
113       if (sizeof(BitWord) == 4)
114         NumBits += CountPopulation_32((uint32_t)Bits[i]);
115       else if (sizeof(BitWord) == 8)
116         NumBits += CountPopulation_64(Bits[i]);
117       else
118         assert(0 && "Unsupported!");
119     return NumBits;
120   }
121 
122   /// any - Returns true if any bit is set.
any()123   bool any() const {
124     for (unsigned i = 0; i < NumBitWords(size()); ++i)
125       if (Bits[i] != 0)
126         return true;
127     return false;
128   }
129 
130   /// none - Returns true if none of the bits are set.
none()131   bool none() const {
132     return !any();
133   }
134 
135   /// find_first - Returns the index of the first set bit, -1 if none
136   /// of the bits are set.
find_first()137   int find_first() const {
138     for (unsigned i = 0; i < NumBitWords(size()); ++i)
139       if (Bits[i] != 0) {
140         if (sizeof(BitWord) == 4)
141           return i * BITWORD_SIZE + CountTrailingZeros_32((uint32_t)Bits[i]);
142         else if (sizeof(BitWord) == 8)
143           return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]);
144         else
145           assert(0 && "Unsupported!");
146       }
147     return -1;
148   }
149 
150   /// find_next - Returns the index of the next set bit following the
151   /// "Prev" bit. Returns -1 if the next set bit is not found.
find_next(unsigned Prev)152   int find_next(unsigned Prev) const {
153     ++Prev;
154     if (Prev >= Size)
155       return -1;
156 
157     unsigned WordPos = Prev / BITWORD_SIZE;
158     unsigned BitPos = Prev % BITWORD_SIZE;
159     BitWord Copy = Bits[WordPos];
160     // Mask off previous bits.
161     Copy &= ~0L << BitPos;
162 
163     if (Copy != 0) {
164       if (sizeof(BitWord) == 4)
165         return WordPos * BITWORD_SIZE + CountTrailingZeros_32((uint32_t)Copy);
166       else if (sizeof(BitWord) == 8)
167         return WordPos * BITWORD_SIZE + CountTrailingZeros_64(Copy);
168       else
169         assert(0 && "Unsupported!");
170     }
171 
172     // Check subsequent words.
173     for (unsigned i = WordPos+1; i < NumBitWords(size()); ++i)
174       if (Bits[i] != 0) {
175         if (sizeof(BitWord) == 4)
176           return i * BITWORD_SIZE + CountTrailingZeros_32((uint32_t)Bits[i]);
177         else if (sizeof(BitWord) == 8)
178           return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]);
179         else
180           assert(0 && "Unsupported!");
181       }
182     return -1;
183   }
184 
185   /// clear - Clear all bits.
clear()186   void clear() {
187     Size = 0;
188   }
189 
190   /// resize - Grow or shrink the bitvector.
191   void resize(unsigned N, bool t = false) {
192     if (N > Capacity * BITWORD_SIZE) {
193       unsigned OldCapacity = Capacity;
194       grow(N);
195       init_words(&Bits[OldCapacity], (Capacity-OldCapacity), t);
196     }
197 
198     // Set any old unused bits that are now included in the BitVector. This
199     // may set bits that are not included in the new vector, but we will clear
200     // them back out below.
201     if (N > Size)
202       set_unused_bits(t);
203 
204     // Update the size, and clear out any bits that are now unused
205     unsigned OldSize = Size;
206     Size = N;
207     if (t || N < OldSize)
208       clear_unused_bits();
209   }
210 
reserve(unsigned N)211   void reserve(unsigned N) {
212     if (N > Capacity * BITWORD_SIZE)
213       grow(N);
214   }
215 
216   // Set, reset, flip
set()217   BitVector &set() {
218     init_words(Bits, Capacity, true);
219     clear_unused_bits();
220     return *this;
221   }
222 
set(unsigned Idx)223   BitVector &set(unsigned Idx) {
224     Bits[Idx / BITWORD_SIZE] |= 1L << (Idx % BITWORD_SIZE);
225     return *this;
226   }
227 
reset()228   BitVector &reset() {
229     init_words(Bits, Capacity, false);
230     return *this;
231   }
232 
reset(unsigned Idx)233   BitVector &reset(unsigned Idx) {
234     Bits[Idx / BITWORD_SIZE] &= ~(1L << (Idx % BITWORD_SIZE));
235     return *this;
236   }
237 
flip()238   BitVector &flip() {
239     for (unsigned i = 0; i < NumBitWords(size()); ++i)
240       Bits[i] = ~Bits[i];
241     clear_unused_bits();
242     return *this;
243   }
244 
flip(unsigned Idx)245   BitVector &flip(unsigned Idx) {
246     Bits[Idx / BITWORD_SIZE] ^= 1L << (Idx % BITWORD_SIZE);
247     return *this;
248   }
249 
250   // No argument flip.
251   BitVector operator~() const {
252     return BitVector(*this).flip();
253   }
254 
255   // Indexing.
256   reference operator[](unsigned Idx) {
257     assert (Idx < Size && "Out-of-bounds Bit access.");
258     return reference(*this, Idx);
259   }
260 
261   bool operator[](unsigned Idx) const {
262     assert (Idx < Size && "Out-of-bounds Bit access.");
263     BitWord Mask = 1L << (Idx % BITWORD_SIZE);
264     return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
265   }
266 
test(unsigned Idx)267   bool test(unsigned Idx) const {
268     return (*this)[Idx];
269   }
270 
271   // Comparison operators.
272   bool operator==(const BitVector &RHS) const {
273     unsigned ThisWords = NumBitWords(size());
274     unsigned RHSWords  = NumBitWords(RHS.size());
275     unsigned i;
276     for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
277       if (Bits[i] != RHS.Bits[i])
278         return false;
279 
280     // Verify that any extra words are all zeros.
281     if (i != ThisWords) {
282       for (; i != ThisWords; ++i)
283         if (Bits[i])
284           return false;
285     } else if (i != RHSWords) {
286       for (; i != RHSWords; ++i)
287         if (RHS.Bits[i])
288           return false;
289     }
290     return true;
291   }
292 
293   bool operator!=(const BitVector &RHS) const {
294     return !(*this == RHS);
295   }
296 
297   // Intersection, union, disjoint union.
298   BitVector &operator&=(const BitVector &RHS) {
299     unsigned ThisWords = NumBitWords(size());
300     unsigned RHSWords  = NumBitWords(RHS.size());
301     unsigned i;
302     for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
303       Bits[i] &= RHS.Bits[i];
304 
305     // Any bits that are just in this bitvector become zero, because they aren't
306     // in the RHS bit vector.  Any words only in RHS are ignored because they
307     // are already zero in the LHS.
308     for (; i != ThisWords; ++i)
309       Bits[i] = 0;
310 
311     return *this;
312   }
313 
314   BitVector &operator|=(const BitVector &RHS) {
315     if (size() < RHS.size())
316       resize(RHS.size());
317     for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
318       Bits[i] |= RHS.Bits[i];
319     return *this;
320   }
321 
322   BitVector &operator^=(const BitVector &RHS) {
323     if (size() < RHS.size())
324       resize(RHS.size());
325     for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
326       Bits[i] ^= RHS.Bits[i];
327     return *this;
328   }
329 
330   // Assignment operator.
331   const BitVector &operator=(const BitVector &RHS) {
332     if (this == &RHS) return *this;
333 
334     Size = RHS.size();
335     unsigned RHSWords = NumBitWords(Size);
336     if (Size <= Capacity * BITWORD_SIZE) {
337       if (Size)
338         std::copy(RHS.Bits, &RHS.Bits[RHSWords], Bits);
339       clear_unused_bits();
340       return *this;
341     }
342 
343     // Grow the bitvector to have enough elements.
344     Capacity = RHSWords;
345     BitWord *NewBits = new BitWord[Capacity];
346     std::copy(RHS.Bits, &RHS.Bits[RHSWords], NewBits);
347 
348     // Destroy the old bits.
349     delete[] Bits;
350     Bits = NewBits;
351 
352     return *this;
353   }
354 
swap(BitVector & RHS)355   void swap(BitVector &RHS) {
356     std::swap(Bits, RHS.Bits);
357     std::swap(Size, RHS.Size);
358     std::swap(Capacity, RHS.Capacity);
359   }
360 
361 private:
NumBitWords(unsigned S)362   unsigned NumBitWords(unsigned S) const {
363     return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
364   }
365 
366   // Set the unused bits in the high words.
367   void set_unused_bits(bool t = true) {
368     //  Set high words first.
369     unsigned UsedWords = NumBitWords(Size);
370     if (Capacity > UsedWords)
371       init_words(&Bits[UsedWords], (Capacity-UsedWords), t);
372 
373     //  Then set any stray high bits of the last used word.
374     unsigned ExtraBits = Size % BITWORD_SIZE;
375     if (ExtraBits) {
376       Bits[UsedWords-1] &= ~(~0L << ExtraBits);
377       Bits[UsedWords-1] |= (0 - (BitWord)t) << ExtraBits;
378     }
379   }
380 
381   // Clear the unused bits in the high words.
clear_unused_bits()382   void clear_unused_bits() {
383     set_unused_bits(false);
384   }
385 
grow(unsigned NewSize)386   void grow(unsigned NewSize) {
387     unsigned OldCapacity = Capacity;
388     Capacity = NumBitWords(NewSize);
389     BitWord *NewBits = new BitWord[Capacity];
390 
391     // Copy the old bits over.
392     if (OldCapacity != 0)
393       std::copy(Bits, &Bits[OldCapacity], NewBits);
394 
395     // Destroy the old bits.
396     delete[] Bits;
397     Bits = NewBits;
398 
399     clear_unused_bits();
400   }
401 
init_words(BitWord * B,unsigned NumWords,bool t)402   void init_words(BitWord *B, unsigned NumWords, bool t) {
403     memset(B, 0 - (int)t, NumWords*sizeof(BitWord));
404   }
405 };
406 
407 inline BitVector operator&(const BitVector &LHS, const BitVector &RHS) {
408   BitVector Result(LHS);
409   Result &= RHS;
410   return Result;
411 }
412 
413 inline BitVector operator|(const BitVector &LHS, const BitVector &RHS) {
414   BitVector Result(LHS);
415   Result |= RHS;
416   return Result;
417 }
418 
419 inline BitVector operator^(const BitVector &LHS, const BitVector &RHS) {
420   BitVector Result(LHS);
421   Result ^= RHS;
422   return Result;
423 }
424 
425 } // End llvm namespace
426 
427 namespace std {
428   /// Implement std::swap in terms of BitVector swap.
429   inline void
swap(llvm::BitVector & LHS,llvm::BitVector & RHS)430   swap(llvm::BitVector &LHS, llvm::BitVector &RHS) {
431     LHS.swap(RHS);
432   }
433 }
434 
435 #endif
436