1 // chacha_simd.cpp - written and placed in the public domain by
2 //                   Jack Lloyd and Jeffrey Walton
3 //
4 //    This source file uses intrinsics and built-ins to gain access to
5 //    SSE2, ARM NEON and ARMv8a, Power7 and Altivec instructions. A separate
6 //    source file is needed because additional CXXFLAGS are required to enable
7 //    the appropriate instructions sets in some build configurations.
8 //
9 //    SSE2 implementation based on Botan's chacha_sse2.cpp. Many thanks
10 //    to Jack Lloyd and the Botan team for allowing us to use it.
11 //
12 //    The SSE2 implementation is kind of unusual among Crypto++ algorithms.
13 //    We guard on CRYTPOPP_SSE2_AVAILABLE and use HasSSE2() at runtime. However,
14 //    if the compiler says a target machine has SSSE3 or XOP available (say, by
15 //    way of -march=native), then we can pull another 150 to 800 MB/s out of
16 //    ChaCha. To capture SSSE3 and XOP we use the compiler defines __SSSE3__ and
17 //    __XOP__ and forgo runtime tests.
18 //
19 //    Runtime tests for HasSSSE3() and HasXop() are too expensive to make a
20 //    sub-case of SSE2. The rotates are on a critical path and the runtime tests
21 //    crush performance.
22 //
23 //    Here are some relative numbers for ChaCha8:
24 //    * Intel Skylake, 3.0 GHz: SSE2 at 2160 MB/s; SSSE3 at 2310 MB/s.
25 //    * AMD Bulldozer, 3.3 GHz: SSE2 at 1680 MB/s; XOP at 2510 MB/s.
26 
27 #include "pch.h"
28 #include "config.h"
29 
30 #include "chacha.h"
31 #include "misc.h"
32 
33 // Internal compiler error in GCC 3.3 and below
34 #if defined(__GNUC__) && (__GNUC__ < 4)
35 # undef CRYPTOPP_SSE2_INTRIN_AVAILABLE
36 #endif
37 
38 #if (CRYPTOPP_SSE2_INTRIN_AVAILABLE)
39 # include <xmmintrin.h>
40 # include <emmintrin.h>
41 #endif
42 
43 #if defined(__SSSE3__)
44 # include <tmmintrin.h>
45 #endif
46 
47 #if defined(__XOP__)
48 # include <ammintrin.h>
49 # if defined(__GNUC__)
50 #  include <x86intrin.h>
51 # endif
52 #endif
53 
54 #if (CRYPTOPP_ARM_NEON_HEADER)
55 # include <arm_neon.h>
56 #endif
57 
58 #if (CRYPTOPP_ARM_ACLE_HEADER)
59 # include <stdint.h>
60 # include <arm_acle.h>
61 #endif
62 
63 #if defined(CRYPTOPP_ALTIVEC_AVAILABLE)
64 # include "ppc_simd.h"
65 #endif
66 
67 // Squash MS LNK4221 and libtool warnings
68 extern const char CHACHA_SIMD_FNAME[] = __FILE__;
69 
70 ANONYMOUS_NAMESPACE_BEGIN
71 
72 // ***************************** NEON ***************************** //
73 
74 #if (CRYPTOPP_ARM_NEON_AVAILABLE)
75 
76 template <unsigned int R>
RotateLeft(const uint32x4_t & val)77 inline uint32x4_t RotateLeft(const uint32x4_t& val)
78 {
79     return vorrq_u32(vshlq_n_u32(val, R), vshrq_n_u32(val, 32 - R));
80 }
81 
82 template <unsigned int R>
RotateRight(const uint32x4_t & val)83 inline uint32x4_t RotateRight(const uint32x4_t& val)
84 {
85     return vorrq_u32(vshlq_n_u32(val, 32 - R), vshrq_n_u32(val, R));
86 }
87 
88 template <>
RotateLeft(const uint32x4_t & val)89 inline uint32x4_t RotateLeft<8>(const uint32x4_t& val)
90 {
91 #if defined(__aarch32__) || defined(__aarch64__)
92     const uint8_t maskb[16] = { 3,0,1,2, 7,4,5,6, 11,8,9,10, 15,12,13,14 };
93     const uint8x16_t mask = vld1q_u8(maskb);
94 
95     return vreinterpretq_u32_u8(
96         vqtbl1q_u8(vreinterpretq_u8_u32(val), mask));
97 #else
98     // fallback to slower C++ rotation.
99     return vorrq_u32(vshlq_n_u32(val, 8),
100         vshrq_n_u32(val, 32 - 8));
101 #endif
102 }
103 
104 template <>
RotateLeft(const uint32x4_t & val)105 inline uint32x4_t RotateLeft<16>(const uint32x4_t& val)
106 {
107 #if defined(__aarch32__) || defined(__aarch64__)
108     return vreinterpretq_u32_u16(
109         vrev32q_u16(vreinterpretq_u16_u32(val)));
110 #else
111     // fallback to slower C++ rotation.
112     return vorrq_u32(vshlq_n_u32(val, 16),
113         vshrq_n_u32(val, 32 - 16));
114 #endif
115 }
116 
117 template <>
RotateRight(const uint32x4_t & val)118 inline uint32x4_t RotateRight<8>(const uint32x4_t& val)
119 {
120 #if defined(__aarch32__) || defined(__aarch64__)
121     const uint8_t maskb[16] = { 1,2,3,0, 5,6,7,4, 9,10,11,8, 13,14,15,12 };
122     const uint8x16_t mask = vld1q_u8(maskb);
123 
124     return vreinterpretq_u32_u8(
125         vqtbl1q_u8(vreinterpretq_u8_u32(val), mask));
126 #else
127     // fallback to slower C++ rotation.
128     return vorrq_u32(vshrq_n_u32(val, 8),
129         vshlq_n_u32(val, 32 - 8));
130 #endif
131 }
132 
133 template <>
RotateRight(const uint32x4_t & val)134 inline uint32x4_t RotateRight<16>(const uint32x4_t& val)
135 {
136 #if defined(__aarch32__) || defined(__aarch64__)
137     return vreinterpretq_u32_u16(
138         vrev32q_u16(vreinterpretq_u16_u32(val)));
139 #else
140     // fallback to slower C++ rotation.
141     return vorrq_u32(vshrq_n_u32(val, 16),
142         vshlq_n_u32(val, 32 - 16));
143 #endif
144 }
145 
146 // ChaCha's use of x86 shuffle is really a 4, 8, or 12 byte
147 // rotation on the 128-bit vector word:
148 //   * [3,2,1,0] => [0,3,2,1] is Extract<1>(x)
149 //   * [3,2,1,0] => [1,0,3,2] is Extract<2>(x)
150 //   * [3,2,1,0] => [2,1,0,3] is Extract<3>(x)
151 template <unsigned int S>
Extract(const uint32x4_t & val)152 inline uint32x4_t Extract(const uint32x4_t& val)
153 {
154     return vextq_u32(val, val, S);
155 }
156 
157 // Helper to perform 64-bit addition across two elements of 32-bit vectors
Add64(const uint32x4_t & a,const uint32x4_t & b)158 inline uint32x4_t Add64(const uint32x4_t& a, const uint32x4_t& b)
159 {
160     return vreinterpretq_u32_u64(
161         vaddq_u64(
162             vreinterpretq_u64_u32(a),
163             vreinterpretq_u64_u32(b)));
164 }
165 
166 #endif  // CRYPTOPP_ARM_NEON_AVAILABLE
167 
168 // ***************************** SSE2 ***************************** //
169 
170 #if (CRYPTOPP_SSE2_INTRIN_AVAILABLE)
171 
172 template <unsigned int R>
RotateLeft(const __m128i val)173 inline __m128i RotateLeft(const __m128i val)
174 {
175 #ifdef __XOP__
176     return _mm_roti_epi32(val, R);
177 #else
178     return _mm_or_si128(_mm_slli_epi32(val, R), _mm_srli_epi32(val, 32-R));
179 #endif
180 }
181 
182 template <>
RotateLeft(const __m128i val)183 inline __m128i RotateLeft<8>(const __m128i val)
184 {
185 #if defined(__XOP__)
186     return _mm_roti_epi32(val, 8);
187 #elif defined(__SSSE3__)
188     const __m128i mask = _mm_set_epi8(14,13,12,15, 10,9,8,11, 6,5,4,7, 2,1,0,3);
189     return _mm_shuffle_epi8(val, mask);
190 #else
191     return _mm_or_si128(_mm_slli_epi32(val, 8), _mm_srli_epi32(val, 32-8));
192 #endif
193 }
194 
195 template <>
RotateLeft(const __m128i val)196 inline __m128i RotateLeft<16>(const __m128i val)
197 {
198 #if defined(__XOP__)
199     return _mm_roti_epi32(val, 16);
200 #elif defined(__SSSE3__)
201     const __m128i mask = _mm_set_epi8(13,12,15,14, 9,8,11,10, 5,4,7,6, 1,0,3,2);
202     return _mm_shuffle_epi8(val, mask);
203 #else
204     return _mm_or_si128(_mm_slli_epi32(val, 16), _mm_srli_epi32(val, 32-16));
205 #endif
206 }
207 
208 #endif  // CRYPTOPP_SSE2_INTRIN_AVAILABLE
209 
210 // **************************** Altivec **************************** //
211 
212 #if (CRYPTOPP_ALTIVEC_AVAILABLE)
213 
214 // ChaCha_OperateKeystream is optimized for Altivec. However, Altivec
215 // is supported by using vec_ld and vec_st, and using a composite VecAdd
216 // that supports 64-bit element adds. vec_ld and vec_st add significant
217 // overhead when memory is not aligned. Despite the drawbacks Altivec
218 // is profitable. The numbers for ChaCha8 are:
219 //
220 //   PowerMac, C++, 2.0 GHz: 205 MB/s, 9.29 cpb
221 //   PowerMac, Altivec, 2.0 GHz: 471 MB/s, 4.09 cpb
222 
223 using CryptoPP::uint8x16_p;
224 using CryptoPP::uint32x4_p;
225 using CryptoPP::VecLoad;
226 using CryptoPP::VecLoadAligned;
227 using CryptoPP::VecStore;
228 using CryptoPP::VecPermute;
229 
230 // Permutes bytes in packed 32-bit words to little endian.
231 // State is already in proper endian order. Input and
232 // output must be permuted during load and save.
VecLoad32LE(const uint8_t src[16])233 inline uint32x4_p VecLoad32LE(const uint8_t src[16])
234 {
235 #if (CRYPTOPP_BIG_ENDIAN)
236     const uint8x16_p mask = {3,2,1,0, 7,6,5,4, 11,10,9,8, 15,14,13,12};
237     const uint32x4_p val = VecLoad(src);
238     return VecPermute(val, val, mask);
239 #else
240     return VecLoad(src);
241 #endif
242 }
243 
244 // Permutes bytes in packed 32-bit words to little endian.
245 // State is already in proper endian order. Input and
246 // output must be permuted during load and save.
VecStore32LE(uint8_t dest[16],const uint32x4_p & val)247 inline void VecStore32LE(uint8_t dest[16], const uint32x4_p& val)
248 {
249 #if (CRYPTOPP_BIG_ENDIAN)
250     const uint8x16_p mask = {3,2,1,0, 7,6,5,4, 11,10,9,8, 15,14,13,12};
251     VecStore(VecPermute(val, val, mask), dest);
252 #else
253     return VecStore(val, dest);
254 #endif
255 }
256 
257 // ChaCha's use of x86 shuffle is really a 4, 8, or 12 byte
258 // rotation on the 128-bit vector word:
259 //   * [3,2,1,0] => [0,3,2,1] is Shuffle<1>(x)
260 //   * [3,2,1,0] => [1,0,3,2] is Shuffle<2>(x)
261 //   * [3,2,1,0] => [2,1,0,3] is Shuffle<3>(x)
262 template <unsigned int S>
Shuffle(const uint32x4_p & val)263 inline uint32x4_p Shuffle(const uint32x4_p& val)
264 {
265     CRYPTOPP_ASSERT(0);
266     return val;
267 }
268 
269 template <>
Shuffle(const uint32x4_p & val)270 inline uint32x4_p Shuffle<1>(const uint32x4_p& val)
271 {
272     const uint8x16_p mask = {4,5,6,7, 8,9,10,11, 12,13,14,15, 0,1,2,3};
273     return VecPermute(val, val, mask);
274 }
275 
276 template <>
Shuffle(const uint32x4_p & val)277 inline uint32x4_p Shuffle<2>(const uint32x4_p& val)
278 {
279     const uint8x16_p mask = {8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7};
280     return VecPermute(val, val, mask);
281 }
282 
283 template <>
Shuffle(const uint32x4_p & val)284 inline uint32x4_p Shuffle<3>(const uint32x4_p& val)
285 {
286     const uint8x16_p mask = {12,13,14,15, 0,1,2,3, 4,5,6,7, 8,9,10,11};
287     return VecPermute(val, val, mask);
288 }
289 
290 #endif  // CRYPTOPP_ALTIVEC_AVAILABLE
291 
292 ANONYMOUS_NAMESPACE_END
293 
NAMESPACE_BEGIN(CryptoPP)294 NAMESPACE_BEGIN(CryptoPP)
295 
296 // ***************************** NEON ***************************** //
297 
298 #if (CRYPTOPP_ARM_NEON_AVAILABLE)
299 
300 void ChaCha_OperateKeystream_NEON(const word32 *state, const byte* input, byte *output, unsigned int rounds)
301 {
302     const uint32x4_t state0 = vld1q_u32(state + 0*4);
303     const uint32x4_t state1 = vld1q_u32(state + 1*4);
304     const uint32x4_t state2 = vld1q_u32(state + 2*4);
305     const uint32x4_t state3 = vld1q_u32(state + 3*4);
306 
307     const unsigned int w[] = {1,0,0,0, 2,0,0,0, 3,0,0,0};
308     const uint32x4_t CTRS[3] = {
309         vld1q_u32(w+0), vld1q_u32(w+4), vld1q_u32(w+8)
310     };
311 
312     uint32x4_t r0_0 = state0;
313     uint32x4_t r0_1 = state1;
314     uint32x4_t r0_2 = state2;
315     uint32x4_t r0_3 = state3;
316 
317     uint32x4_t r1_0 = state0;
318     uint32x4_t r1_1 = state1;
319     uint32x4_t r1_2 = state2;
320     uint32x4_t r1_3 = Add64(r0_3, CTRS[0]);
321 
322     uint32x4_t r2_0 = state0;
323     uint32x4_t r2_1 = state1;
324     uint32x4_t r2_2 = state2;
325     uint32x4_t r2_3 = Add64(r0_3, CTRS[1]);
326 
327     uint32x4_t r3_0 = state0;
328     uint32x4_t r3_1 = state1;
329     uint32x4_t r3_2 = state2;
330     uint32x4_t r3_3 = Add64(r0_3, CTRS[2]);
331 
332     for (int i = static_cast<int>(rounds); i > 0; i -= 2)
333     {
334         r0_0 = vaddq_u32(r0_0, r0_1);
335         r1_0 = vaddq_u32(r1_0, r1_1);
336         r2_0 = vaddq_u32(r2_0, r2_1);
337         r3_0 = vaddq_u32(r3_0, r3_1);
338 
339         r0_3 = veorq_u32(r0_3, r0_0);
340         r1_3 = veorq_u32(r1_3, r1_0);
341         r2_3 = veorq_u32(r2_3, r2_0);
342         r3_3 = veorq_u32(r3_3, r3_0);
343 
344         r0_3 = RotateLeft<16>(r0_3);
345         r1_3 = RotateLeft<16>(r1_3);
346         r2_3 = RotateLeft<16>(r2_3);
347         r3_3 = RotateLeft<16>(r3_3);
348 
349         r0_2 = vaddq_u32(r0_2, r0_3);
350         r1_2 = vaddq_u32(r1_2, r1_3);
351         r2_2 = vaddq_u32(r2_2, r2_3);
352         r3_2 = vaddq_u32(r3_2, r3_3);
353 
354         r0_1 = veorq_u32(r0_1, r0_2);
355         r1_1 = veorq_u32(r1_1, r1_2);
356         r2_1 = veorq_u32(r2_1, r2_2);
357         r3_1 = veorq_u32(r3_1, r3_2);
358 
359         r0_1 = RotateLeft<12>(r0_1);
360         r1_1 = RotateLeft<12>(r1_1);
361         r2_1 = RotateLeft<12>(r2_1);
362         r3_1 = RotateLeft<12>(r3_1);
363 
364         r0_0 = vaddq_u32(r0_0, r0_1);
365         r1_0 = vaddq_u32(r1_0, r1_1);
366         r2_0 = vaddq_u32(r2_0, r2_1);
367         r3_0 = vaddq_u32(r3_0, r3_1);
368 
369         r0_3 = veorq_u32(r0_3, r0_0);
370         r1_3 = veorq_u32(r1_3, r1_0);
371         r2_3 = veorq_u32(r2_3, r2_0);
372         r3_3 = veorq_u32(r3_3, r3_0);
373 
374         r0_3 = RotateLeft<8>(r0_3);
375         r1_3 = RotateLeft<8>(r1_3);
376         r2_3 = RotateLeft<8>(r2_3);
377         r3_3 = RotateLeft<8>(r3_3);
378 
379         r0_2 = vaddq_u32(r0_2, r0_3);
380         r1_2 = vaddq_u32(r1_2, r1_3);
381         r2_2 = vaddq_u32(r2_2, r2_3);
382         r3_2 = vaddq_u32(r3_2, r3_3);
383 
384         r0_1 = veorq_u32(r0_1, r0_2);
385         r1_1 = veorq_u32(r1_1, r1_2);
386         r2_1 = veorq_u32(r2_1, r2_2);
387         r3_1 = veorq_u32(r3_1, r3_2);
388 
389         r0_1 = RotateLeft<7>(r0_1);
390         r1_1 = RotateLeft<7>(r1_1);
391         r2_1 = RotateLeft<7>(r2_1);
392         r3_1 = RotateLeft<7>(r3_1);
393 
394         r0_1 = Extract<1>(r0_1);
395         r0_2 = Extract<2>(r0_2);
396         r0_3 = Extract<3>(r0_3);
397 
398         r1_1 = Extract<1>(r1_1);
399         r1_2 = Extract<2>(r1_2);
400         r1_3 = Extract<3>(r1_3);
401 
402         r2_1 = Extract<1>(r2_1);
403         r2_2 = Extract<2>(r2_2);
404         r2_3 = Extract<3>(r2_3);
405 
406         r3_1 = Extract<1>(r3_1);
407         r3_2 = Extract<2>(r3_2);
408         r3_3 = Extract<3>(r3_3);
409 
410         r0_0 = vaddq_u32(r0_0, r0_1);
411         r1_0 = vaddq_u32(r1_0, r1_1);
412         r2_0 = vaddq_u32(r2_0, r2_1);
413         r3_0 = vaddq_u32(r3_0, r3_1);
414 
415         r0_3 = veorq_u32(r0_3, r0_0);
416         r1_3 = veorq_u32(r1_3, r1_0);
417         r2_3 = veorq_u32(r2_3, r2_0);
418         r3_3 = veorq_u32(r3_3, r3_0);
419 
420         r0_3 = RotateLeft<16>(r0_3);
421         r1_3 = RotateLeft<16>(r1_3);
422         r2_3 = RotateLeft<16>(r2_3);
423         r3_3 = RotateLeft<16>(r3_3);
424 
425         r0_2 = vaddq_u32(r0_2, r0_3);
426         r1_2 = vaddq_u32(r1_2, r1_3);
427         r2_2 = vaddq_u32(r2_2, r2_3);
428         r3_2 = vaddq_u32(r3_2, r3_3);
429 
430         r0_1 = veorq_u32(r0_1, r0_2);
431         r1_1 = veorq_u32(r1_1, r1_2);
432         r2_1 = veorq_u32(r2_1, r2_2);
433         r3_1 = veorq_u32(r3_1, r3_2);
434 
435         r0_1 = RotateLeft<12>(r0_1);
436         r1_1 = RotateLeft<12>(r1_1);
437         r2_1 = RotateLeft<12>(r2_1);
438         r3_1 = RotateLeft<12>(r3_1);
439 
440         r0_0 = vaddq_u32(r0_0, r0_1);
441         r1_0 = vaddq_u32(r1_0, r1_1);
442         r2_0 = vaddq_u32(r2_0, r2_1);
443         r3_0 = vaddq_u32(r3_0, r3_1);
444 
445         r0_3 = veorq_u32(r0_3, r0_0);
446         r1_3 = veorq_u32(r1_3, r1_0);
447         r2_3 = veorq_u32(r2_3, r2_0);
448         r3_3 = veorq_u32(r3_3, r3_0);
449 
450         r0_3 = RotateLeft<8>(r0_3);
451         r1_3 = RotateLeft<8>(r1_3);
452         r2_3 = RotateLeft<8>(r2_3);
453         r3_3 = RotateLeft<8>(r3_3);
454 
455         r0_2 = vaddq_u32(r0_2, r0_3);
456         r1_2 = vaddq_u32(r1_2, r1_3);
457         r2_2 = vaddq_u32(r2_2, r2_3);
458         r3_2 = vaddq_u32(r3_2, r3_3);
459 
460         r0_1 = veorq_u32(r0_1, r0_2);
461         r1_1 = veorq_u32(r1_1, r1_2);
462         r2_1 = veorq_u32(r2_1, r2_2);
463         r3_1 = veorq_u32(r3_1, r3_2);
464 
465         r0_1 = RotateLeft<7>(r0_1);
466         r1_1 = RotateLeft<7>(r1_1);
467         r2_1 = RotateLeft<7>(r2_1);
468         r3_1 = RotateLeft<7>(r3_1);
469 
470         r0_1 = Extract<3>(r0_1);
471         r0_2 = Extract<2>(r0_2);
472         r0_3 = Extract<1>(r0_3);
473 
474         r1_1 = Extract<3>(r1_1);
475         r1_2 = Extract<2>(r1_2);
476         r1_3 = Extract<1>(r1_3);
477 
478         r2_1 = Extract<3>(r2_1);
479         r2_2 = Extract<2>(r2_2);
480         r2_3 = Extract<1>(r2_3);
481 
482         r3_1 = Extract<3>(r3_1);
483         r3_2 = Extract<2>(r3_2);
484         r3_3 = Extract<1>(r3_3);
485     }
486 
487     r0_0 = vaddq_u32(r0_0, state0);
488     r0_1 = vaddq_u32(r0_1, state1);
489     r0_2 = vaddq_u32(r0_2, state2);
490     r0_3 = vaddq_u32(r0_3, state3);
491 
492     r1_0 = vaddq_u32(r1_0, state0);
493     r1_1 = vaddq_u32(r1_1, state1);
494     r1_2 = vaddq_u32(r1_2, state2);
495     r1_3 = vaddq_u32(r1_3, state3);
496     r1_3 = Add64(r1_3, CTRS[0]);
497 
498     r2_0 = vaddq_u32(r2_0, state0);
499     r2_1 = vaddq_u32(r2_1, state1);
500     r2_2 = vaddq_u32(r2_2, state2);
501     r2_3 = vaddq_u32(r2_3, state3);
502     r2_3 = Add64(r2_3, CTRS[1]);
503 
504     r3_0 = vaddq_u32(r3_0, state0);
505     r3_1 = vaddq_u32(r3_1, state1);
506     r3_2 = vaddq_u32(r3_2, state2);
507     r3_3 = vaddq_u32(r3_3, state3);
508     r3_3 = Add64(r3_3, CTRS[2]);
509 
510     if (input)
511     {
512         r0_0 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 0*16)), r0_0);
513         r0_1 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 1*16)), r0_1);
514         r0_2 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 2*16)), r0_2);
515         r0_3 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 3*16)), r0_3);
516     }
517 
518     vst1q_u8(output + 0*16, vreinterpretq_u8_u32(r0_0));
519     vst1q_u8(output + 1*16, vreinterpretq_u8_u32(r0_1));
520     vst1q_u8(output + 2*16, vreinterpretq_u8_u32(r0_2));
521     vst1q_u8(output + 3*16, vreinterpretq_u8_u32(r0_3));
522 
523     if (input)
524     {
525         r1_0 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 4*16)), r1_0);
526         r1_1 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 5*16)), r1_1);
527         r1_2 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 6*16)), r1_2);
528         r1_3 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 7*16)), r1_3);
529     }
530 
531     vst1q_u8(output + 4*16, vreinterpretq_u8_u32(r1_0));
532     vst1q_u8(output + 5*16, vreinterpretq_u8_u32(r1_1));
533     vst1q_u8(output + 6*16, vreinterpretq_u8_u32(r1_2));
534     vst1q_u8(output + 7*16, vreinterpretq_u8_u32(r1_3));
535 
536     if (input)
537     {
538         r2_0 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input +  8*16)), r2_0);
539         r2_1 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input +  9*16)), r2_1);
540         r2_2 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 10*16)), r2_2);
541         r2_3 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 11*16)), r2_3);
542     }
543 
544     vst1q_u8(output +  8*16, vreinterpretq_u8_u32(r2_0));
545     vst1q_u8(output +  9*16, vreinterpretq_u8_u32(r2_1));
546     vst1q_u8(output + 10*16, vreinterpretq_u8_u32(r2_2));
547     vst1q_u8(output + 11*16, vreinterpretq_u8_u32(r2_3));
548 
549     if (input)
550     {
551         r3_0 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 12*16)), r3_0);
552         r3_1 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 13*16)), r3_1);
553         r3_2 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 14*16)), r3_2);
554         r3_3 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 15*16)), r3_3);
555     }
556 
557     vst1q_u8(output + 12*16, vreinterpretq_u8_u32(r3_0));
558     vst1q_u8(output + 13*16, vreinterpretq_u8_u32(r3_1));
559     vst1q_u8(output + 14*16, vreinterpretq_u8_u32(r3_2));
560     vst1q_u8(output + 15*16, vreinterpretq_u8_u32(r3_3));
561 }
562 
563 #endif  // CRYPTOPP_ARM_NEON_AVAILABLE
564 
565 // ***************************** SSE2 ***************************** //
566 
567 #if (CRYPTOPP_SSE2_INTRIN_AVAILABLE)
568 
ChaCha_OperateKeystream_SSE2(const word32 * state,const byte * input,byte * output,unsigned int rounds)569 void ChaCha_OperateKeystream_SSE2(const word32 *state, const byte* input, byte *output, unsigned int rounds)
570 {
571     const __m128i state0 = _mm_load_si128(reinterpret_cast<const __m128i*>(state+0*4));
572     const __m128i state1 = _mm_load_si128(reinterpret_cast<const __m128i*>(state+1*4));
573     const __m128i state2 = _mm_load_si128(reinterpret_cast<const __m128i*>(state+2*4));
574     const __m128i state3 = _mm_load_si128(reinterpret_cast<const __m128i*>(state+3*4));
575 
576     __m128i r0_0 = state0;
577     __m128i r0_1 = state1;
578     __m128i r0_2 = state2;
579     __m128i r0_3 = state3;
580 
581     __m128i r1_0 = state0;
582     __m128i r1_1 = state1;
583     __m128i r1_2 = state2;
584     __m128i r1_3 = _mm_add_epi64(r0_3, _mm_set_epi32(0, 0, 0, 1));
585 
586     __m128i r2_0 = state0;
587     __m128i r2_1 = state1;
588     __m128i r2_2 = state2;
589     __m128i r2_3 = _mm_add_epi64(r0_3, _mm_set_epi32(0, 0, 0, 2));
590 
591     __m128i r3_0 = state0;
592     __m128i r3_1 = state1;
593     __m128i r3_2 = state2;
594     __m128i r3_3 = _mm_add_epi64(r0_3, _mm_set_epi32(0, 0, 0, 3));
595 
596     for (int i = static_cast<int>(rounds); i > 0; i -= 2)
597     {
598         r0_0 = _mm_add_epi32(r0_0, r0_1);
599         r1_0 = _mm_add_epi32(r1_0, r1_1);
600         r2_0 = _mm_add_epi32(r2_0, r2_1);
601         r3_0 = _mm_add_epi32(r3_0, r3_1);
602 
603         r0_3 = _mm_xor_si128(r0_3, r0_0);
604         r1_3 = _mm_xor_si128(r1_3, r1_0);
605         r2_3 = _mm_xor_si128(r2_3, r2_0);
606         r3_3 = _mm_xor_si128(r3_3, r3_0);
607 
608         r0_3 = RotateLeft<16>(r0_3);
609         r1_3 = RotateLeft<16>(r1_3);
610         r2_3 = RotateLeft<16>(r2_3);
611         r3_3 = RotateLeft<16>(r3_3);
612 
613         r0_2 = _mm_add_epi32(r0_2, r0_3);
614         r1_2 = _mm_add_epi32(r1_2, r1_3);
615         r2_2 = _mm_add_epi32(r2_2, r2_3);
616         r3_2 = _mm_add_epi32(r3_2, r3_3);
617 
618         r0_1 = _mm_xor_si128(r0_1, r0_2);
619         r1_1 = _mm_xor_si128(r1_1, r1_2);
620         r2_1 = _mm_xor_si128(r2_1, r2_2);
621         r3_1 = _mm_xor_si128(r3_1, r3_2);
622 
623         r0_1 = RotateLeft<12>(r0_1);
624         r1_1 = RotateLeft<12>(r1_1);
625         r2_1 = RotateLeft<12>(r2_1);
626         r3_1 = RotateLeft<12>(r3_1);
627 
628         r0_0 = _mm_add_epi32(r0_0, r0_1);
629         r1_0 = _mm_add_epi32(r1_0, r1_1);
630         r2_0 = _mm_add_epi32(r2_0, r2_1);
631         r3_0 = _mm_add_epi32(r3_0, r3_1);
632 
633         r0_3 = _mm_xor_si128(r0_3, r0_0);
634         r1_3 = _mm_xor_si128(r1_3, r1_0);
635         r2_3 = _mm_xor_si128(r2_3, r2_0);
636         r3_3 = _mm_xor_si128(r3_3, r3_0);
637 
638         r0_3 = RotateLeft<8>(r0_3);
639         r1_3 = RotateLeft<8>(r1_3);
640         r2_3 = RotateLeft<8>(r2_3);
641         r3_3 = RotateLeft<8>(r3_3);
642 
643         r0_2 = _mm_add_epi32(r0_2, r0_3);
644         r1_2 = _mm_add_epi32(r1_2, r1_3);
645         r2_2 = _mm_add_epi32(r2_2, r2_3);
646         r3_2 = _mm_add_epi32(r3_2, r3_3);
647 
648         r0_1 = _mm_xor_si128(r0_1, r0_2);
649         r1_1 = _mm_xor_si128(r1_1, r1_2);
650         r2_1 = _mm_xor_si128(r2_1, r2_2);
651         r3_1 = _mm_xor_si128(r3_1, r3_2);
652 
653         r0_1 = RotateLeft<7>(r0_1);
654         r1_1 = RotateLeft<7>(r1_1);
655         r2_1 = RotateLeft<7>(r2_1);
656         r3_1 = RotateLeft<7>(r3_1);
657 
658         r0_1 = _mm_shuffle_epi32(r0_1, _MM_SHUFFLE(0, 3, 2, 1));
659         r0_2 = _mm_shuffle_epi32(r0_2, _MM_SHUFFLE(1, 0, 3, 2));
660         r0_3 = _mm_shuffle_epi32(r0_3, _MM_SHUFFLE(2, 1, 0, 3));
661 
662         r1_1 = _mm_shuffle_epi32(r1_1, _MM_SHUFFLE(0, 3, 2, 1));
663         r1_2 = _mm_shuffle_epi32(r1_2, _MM_SHUFFLE(1, 0, 3, 2));
664         r1_3 = _mm_shuffle_epi32(r1_3, _MM_SHUFFLE(2, 1, 0, 3));
665 
666         r2_1 = _mm_shuffle_epi32(r2_1, _MM_SHUFFLE(0, 3, 2, 1));
667         r2_2 = _mm_shuffle_epi32(r2_2, _MM_SHUFFLE(1, 0, 3, 2));
668         r2_3 = _mm_shuffle_epi32(r2_3, _MM_SHUFFLE(2, 1, 0, 3));
669 
670         r3_1 = _mm_shuffle_epi32(r3_1, _MM_SHUFFLE(0, 3, 2, 1));
671         r3_2 = _mm_shuffle_epi32(r3_2, _MM_SHUFFLE(1, 0, 3, 2));
672         r3_3 = _mm_shuffle_epi32(r3_3, _MM_SHUFFLE(2, 1, 0, 3));
673 
674         r0_0 = _mm_add_epi32(r0_0, r0_1);
675         r1_0 = _mm_add_epi32(r1_0, r1_1);
676         r2_0 = _mm_add_epi32(r2_0, r2_1);
677         r3_0 = _mm_add_epi32(r3_0, r3_1);
678 
679         r0_3 = _mm_xor_si128(r0_3, r0_0);
680         r1_3 = _mm_xor_si128(r1_3, r1_0);
681         r2_3 = _mm_xor_si128(r2_3, r2_0);
682         r3_3 = _mm_xor_si128(r3_3, r3_0);
683 
684         r0_3 = RotateLeft<16>(r0_3);
685         r1_3 = RotateLeft<16>(r1_3);
686         r2_3 = RotateLeft<16>(r2_3);
687         r3_3 = RotateLeft<16>(r3_3);
688 
689         r0_2 = _mm_add_epi32(r0_2, r0_3);
690         r1_2 = _mm_add_epi32(r1_2, r1_3);
691         r2_2 = _mm_add_epi32(r2_2, r2_3);
692         r3_2 = _mm_add_epi32(r3_2, r3_3);
693 
694         r0_1 = _mm_xor_si128(r0_1, r0_2);
695         r1_1 = _mm_xor_si128(r1_1, r1_2);
696         r2_1 = _mm_xor_si128(r2_1, r2_2);
697         r3_1 = _mm_xor_si128(r3_1, r3_2);
698 
699         r0_1 = RotateLeft<12>(r0_1);
700         r1_1 = RotateLeft<12>(r1_1);
701         r2_1 = RotateLeft<12>(r2_1);
702         r3_1 = RotateLeft<12>(r3_1);
703 
704         r0_0 = _mm_add_epi32(r0_0, r0_1);
705         r1_0 = _mm_add_epi32(r1_0, r1_1);
706         r2_0 = _mm_add_epi32(r2_0, r2_1);
707         r3_0 = _mm_add_epi32(r3_0, r3_1);
708 
709         r0_3 = _mm_xor_si128(r0_3, r0_0);
710         r1_3 = _mm_xor_si128(r1_3, r1_0);
711         r2_3 = _mm_xor_si128(r2_3, r2_0);
712         r3_3 = _mm_xor_si128(r3_3, r3_0);
713 
714         r0_3 = RotateLeft<8>(r0_3);
715         r1_3 = RotateLeft<8>(r1_3);
716         r2_3 = RotateLeft<8>(r2_3);
717         r3_3 = RotateLeft<8>(r3_3);
718 
719         r0_2 = _mm_add_epi32(r0_2, r0_3);
720         r1_2 = _mm_add_epi32(r1_2, r1_3);
721         r2_2 = _mm_add_epi32(r2_2, r2_3);
722         r3_2 = _mm_add_epi32(r3_2, r3_3);
723 
724         r0_1 = _mm_xor_si128(r0_1, r0_2);
725         r1_1 = _mm_xor_si128(r1_1, r1_2);
726         r2_1 = _mm_xor_si128(r2_1, r2_2);
727         r3_1 = _mm_xor_si128(r3_1, r3_2);
728 
729         r0_1 = RotateLeft<7>(r0_1);
730         r1_1 = RotateLeft<7>(r1_1);
731         r2_1 = RotateLeft<7>(r2_1);
732         r3_1 = RotateLeft<7>(r3_1);
733 
734         r0_1 = _mm_shuffle_epi32(r0_1, _MM_SHUFFLE(2, 1, 0, 3));
735         r0_2 = _mm_shuffle_epi32(r0_2, _MM_SHUFFLE(1, 0, 3, 2));
736         r0_3 = _mm_shuffle_epi32(r0_3, _MM_SHUFFLE(0, 3, 2, 1));
737 
738         r1_1 = _mm_shuffle_epi32(r1_1, _MM_SHUFFLE(2, 1, 0, 3));
739         r1_2 = _mm_shuffle_epi32(r1_2, _MM_SHUFFLE(1, 0, 3, 2));
740         r1_3 = _mm_shuffle_epi32(r1_3, _MM_SHUFFLE(0, 3, 2, 1));
741 
742         r2_1 = _mm_shuffle_epi32(r2_1, _MM_SHUFFLE(2, 1, 0, 3));
743         r2_2 = _mm_shuffle_epi32(r2_2, _MM_SHUFFLE(1, 0, 3, 2));
744         r2_3 = _mm_shuffle_epi32(r2_3, _MM_SHUFFLE(0, 3, 2, 1));
745 
746         r3_1 = _mm_shuffle_epi32(r3_1, _MM_SHUFFLE(2, 1, 0, 3));
747         r3_2 = _mm_shuffle_epi32(r3_2, _MM_SHUFFLE(1, 0, 3, 2));
748         r3_3 = _mm_shuffle_epi32(r3_3, _MM_SHUFFLE(0, 3, 2, 1));
749     }
750 
751     r0_0 = _mm_add_epi32(r0_0, state0);
752     r0_1 = _mm_add_epi32(r0_1, state1);
753     r0_2 = _mm_add_epi32(r0_2, state2);
754     r0_3 = _mm_add_epi32(r0_3, state3);
755 
756     r1_0 = _mm_add_epi32(r1_0, state0);
757     r1_1 = _mm_add_epi32(r1_1, state1);
758     r1_2 = _mm_add_epi32(r1_2, state2);
759     r1_3 = _mm_add_epi32(r1_3, state3);
760     r1_3 = _mm_add_epi64(r1_3, _mm_set_epi32(0, 0, 0, 1));
761 
762     r2_0 = _mm_add_epi32(r2_0, state0);
763     r2_1 = _mm_add_epi32(r2_1, state1);
764     r2_2 = _mm_add_epi32(r2_2, state2);
765     r2_3 = _mm_add_epi32(r2_3, state3);
766     r2_3 = _mm_add_epi64(r2_3, _mm_set_epi32(0, 0, 0, 2));
767 
768     r3_0 = _mm_add_epi32(r3_0, state0);
769     r3_1 = _mm_add_epi32(r3_1, state1);
770     r3_2 = _mm_add_epi32(r3_2, state2);
771     r3_3 = _mm_add_epi32(r3_3, state3);
772     r3_3 = _mm_add_epi64(r3_3, _mm_set_epi32(0, 0, 0, 3));
773 
774     if (input)
775     {
776         r0_0 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+0*16)), r0_0);
777         r0_1 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+1*16)), r0_1);
778         r0_2 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+2*16)), r0_2);
779         r0_3 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+3*16)), r0_3);
780     }
781 
782     _mm_storeu_si128(reinterpret_cast<__m128i*>(output+0*16), r0_0);
783     _mm_storeu_si128(reinterpret_cast<__m128i*>(output+1*16), r0_1);
784     _mm_storeu_si128(reinterpret_cast<__m128i*>(output+2*16), r0_2);
785     _mm_storeu_si128(reinterpret_cast<__m128i*>(output+3*16), r0_3);
786 
787     if (input)
788     {
789         r1_0 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+4*16)), r1_0);
790         r1_1 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+5*16)), r1_1);
791         r1_2 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+6*16)), r1_2);
792         r1_3 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+7*16)), r1_3);
793     }
794 
795     _mm_storeu_si128(reinterpret_cast<__m128i*>(output+4*16), r1_0);
796     _mm_storeu_si128(reinterpret_cast<__m128i*>(output+5*16), r1_1);
797     _mm_storeu_si128(reinterpret_cast<__m128i*>(output+6*16), r1_2);
798     _mm_storeu_si128(reinterpret_cast<__m128i*>(output+7*16), r1_3);
799 
800     if (input)
801     {
802         r2_0 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+ 8*16)), r2_0);
803         r2_1 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+ 9*16)), r2_1);
804         r2_2 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+10*16)), r2_2);
805         r2_3 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+11*16)), r2_3);
806     }
807 
808     _mm_storeu_si128(reinterpret_cast<__m128i*>(output+ 8*16), r2_0);
809     _mm_storeu_si128(reinterpret_cast<__m128i*>(output+ 9*16), r2_1);
810     _mm_storeu_si128(reinterpret_cast<__m128i*>(output+10*16), r2_2);
811     _mm_storeu_si128(reinterpret_cast<__m128i*>(output+11*16), r2_3);
812 
813     if (input)
814     {
815         r3_0 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+12*16)), r3_0);
816         r3_1 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+13*16)), r3_1);
817         r3_2 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+14*16)), r3_2);
818         r3_3 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+15*16)), r3_3);
819     }
820 
821     _mm_storeu_si128(reinterpret_cast<__m128i*>(output+12*16), r3_0);
822     _mm_storeu_si128(reinterpret_cast<__m128i*>(output+13*16), r3_1);
823     _mm_storeu_si128(reinterpret_cast<__m128i*>(output+14*16), r3_2);
824     _mm_storeu_si128(reinterpret_cast<__m128i*>(output+15*16), r3_3);
825 }
826 
827 #endif  // CRYPTOPP_SSE2_INTRIN_AVAILABLE
828 
829 #if (CRYPTOPP_ALTIVEC_AVAILABLE)
830 
831 // ChaCha_OperateKeystream_CORE will use either POWER7 or ALTIVEC,
832 // depending on the flags used to compile this source file. The
833 // abstractions are handled in VecLoad, VecStore and friends. In
834 // the future we may to provide both POWER7 or ALTIVEC at the same
835 // time to better support distros.
ChaCha_OperateKeystream_CORE(const word32 * state,const byte * input,byte * output,unsigned int rounds)836 inline void ChaCha_OperateKeystream_CORE(const word32 *state, const byte* input, byte *output, unsigned int rounds)
837 {
838     const uint32x4_p state0 = VecLoadAligned(state + 0*4);
839     const uint32x4_p state1 = VecLoadAligned(state + 1*4);
840     const uint32x4_p state2 = VecLoadAligned(state + 2*4);
841     const uint32x4_p state3 = VecLoadAligned(state + 3*4);
842 
843     const uint32x4_p CTRS[3] = {
844         {1,0,0,0}, {2,0,0,0}, {3,0,0,0}
845     };
846 
847     uint32x4_p r0_0 = state0;
848     uint32x4_p r0_1 = state1;
849     uint32x4_p r0_2 = state2;
850     uint32x4_p r0_3 = state3;
851 
852     uint32x4_p r1_0 = state0;
853     uint32x4_p r1_1 = state1;
854     uint32x4_p r1_2 = state2;
855     uint32x4_p r1_3 = VecAdd64(r0_3, CTRS[0]);
856 
857     uint32x4_p r2_0 = state0;
858     uint32x4_p r2_1 = state1;
859     uint32x4_p r2_2 = state2;
860     uint32x4_p r2_3 = VecAdd64(r0_3, CTRS[1]);
861 
862     uint32x4_p r3_0 = state0;
863     uint32x4_p r3_1 = state1;
864     uint32x4_p r3_2 = state2;
865     uint32x4_p r3_3 = VecAdd64(r0_3, CTRS[2]);
866 
867     for (int i = static_cast<int>(rounds); i > 0; i -= 2)
868     {
869         r0_0 = VecAdd(r0_0, r0_1);
870         r1_0 = VecAdd(r1_0, r1_1);
871         r2_0 = VecAdd(r2_0, r2_1);
872         r3_0 = VecAdd(r3_0, r3_1);
873 
874         r0_3 = VecXor(r0_3, r0_0);
875         r1_3 = VecXor(r1_3, r1_0);
876         r2_3 = VecXor(r2_3, r2_0);
877         r3_3 = VecXor(r3_3, r3_0);
878 
879         r0_3 = VecRotateLeft<16>(r0_3);
880         r1_3 = VecRotateLeft<16>(r1_3);
881         r2_3 = VecRotateLeft<16>(r2_3);
882         r3_3 = VecRotateLeft<16>(r3_3);
883 
884         r0_2 = VecAdd(r0_2, r0_3);
885         r1_2 = VecAdd(r1_2, r1_3);
886         r2_2 = VecAdd(r2_2, r2_3);
887         r3_2 = VecAdd(r3_2, r3_3);
888 
889         r0_1 = VecXor(r0_1, r0_2);
890         r1_1 = VecXor(r1_1, r1_2);
891         r2_1 = VecXor(r2_1, r2_2);
892         r3_1 = VecXor(r3_1, r3_2);
893 
894         r0_1 = VecRotateLeft<12>(r0_1);
895         r1_1 = VecRotateLeft<12>(r1_1);
896         r2_1 = VecRotateLeft<12>(r2_1);
897         r3_1 = VecRotateLeft<12>(r3_1);
898 
899         r0_0 = VecAdd(r0_0, r0_1);
900         r1_0 = VecAdd(r1_0, r1_1);
901         r2_0 = VecAdd(r2_0, r2_1);
902         r3_0 = VecAdd(r3_0, r3_1);
903 
904         r0_3 = VecXor(r0_3, r0_0);
905         r1_3 = VecXor(r1_3, r1_0);
906         r2_3 = VecXor(r2_3, r2_0);
907         r3_3 = VecXor(r3_3, r3_0);
908 
909         r0_3 = VecRotateLeft<8>(r0_3);
910         r1_3 = VecRotateLeft<8>(r1_3);
911         r2_3 = VecRotateLeft<8>(r2_3);
912         r3_3 = VecRotateLeft<8>(r3_3);
913 
914         r0_2 = VecAdd(r0_2, r0_3);
915         r1_2 = VecAdd(r1_2, r1_3);
916         r2_2 = VecAdd(r2_2, r2_3);
917         r3_2 = VecAdd(r3_2, r3_3);
918 
919         r0_1 = VecXor(r0_1, r0_2);
920         r1_1 = VecXor(r1_1, r1_2);
921         r2_1 = VecXor(r2_1, r2_2);
922         r3_1 = VecXor(r3_1, r3_2);
923 
924         r0_1 = VecRotateLeft<7>(r0_1);
925         r1_1 = VecRotateLeft<7>(r1_1);
926         r2_1 = VecRotateLeft<7>(r2_1);
927         r3_1 = VecRotateLeft<7>(r3_1);
928 
929         r0_1 = Shuffle<1>(r0_1);
930         r0_2 = Shuffle<2>(r0_2);
931         r0_3 = Shuffle<3>(r0_3);
932 
933         r1_1 = Shuffle<1>(r1_1);
934         r1_2 = Shuffle<2>(r1_2);
935         r1_3 = Shuffle<3>(r1_3);
936 
937         r2_1 = Shuffle<1>(r2_1);
938         r2_2 = Shuffle<2>(r2_2);
939         r2_3 = Shuffle<3>(r2_3);
940 
941         r3_1 = Shuffle<1>(r3_1);
942         r3_2 = Shuffle<2>(r3_2);
943         r3_3 = Shuffle<3>(r3_3);
944 
945         r0_0 = VecAdd(r0_0, r0_1);
946         r1_0 = VecAdd(r1_0, r1_1);
947         r2_0 = VecAdd(r2_0, r2_1);
948         r3_0 = VecAdd(r3_0, r3_1);
949 
950         r0_3 = VecXor(r0_3, r0_0);
951         r1_3 = VecXor(r1_3, r1_0);
952         r2_3 = VecXor(r2_3, r2_0);
953         r3_3 = VecXor(r3_3, r3_0);
954 
955         r0_3 = VecRotateLeft<16>(r0_3);
956         r1_3 = VecRotateLeft<16>(r1_3);
957         r2_3 = VecRotateLeft<16>(r2_3);
958         r3_3 = VecRotateLeft<16>(r3_3);
959 
960         r0_2 = VecAdd(r0_2, r0_3);
961         r1_2 = VecAdd(r1_2, r1_3);
962         r2_2 = VecAdd(r2_2, r2_3);
963         r3_2 = VecAdd(r3_2, r3_3);
964 
965         r0_1 = VecXor(r0_1, r0_2);
966         r1_1 = VecXor(r1_1, r1_2);
967         r2_1 = VecXor(r2_1, r2_2);
968         r3_1 = VecXor(r3_1, r3_2);
969 
970         r0_1 = VecRotateLeft<12>(r0_1);
971         r1_1 = VecRotateLeft<12>(r1_1);
972         r2_1 = VecRotateLeft<12>(r2_1);
973         r3_1 = VecRotateLeft<12>(r3_1);
974 
975         r0_0 = VecAdd(r0_0, r0_1);
976         r1_0 = VecAdd(r1_0, r1_1);
977         r2_0 = VecAdd(r2_0, r2_1);
978         r3_0 = VecAdd(r3_0, r3_1);
979 
980         r0_3 = VecXor(r0_3, r0_0);
981         r1_3 = VecXor(r1_3, r1_0);
982         r2_3 = VecXor(r2_3, r2_0);
983         r3_3 = VecXor(r3_3, r3_0);
984 
985         r0_3 = VecRotateLeft<8>(r0_3);
986         r1_3 = VecRotateLeft<8>(r1_3);
987         r2_3 = VecRotateLeft<8>(r2_3);
988         r3_3 = VecRotateLeft<8>(r3_3);
989 
990         r0_2 = VecAdd(r0_2, r0_3);
991         r1_2 = VecAdd(r1_2, r1_3);
992         r2_2 = VecAdd(r2_2, r2_3);
993         r3_2 = VecAdd(r3_2, r3_3);
994 
995         r0_1 = VecXor(r0_1, r0_2);
996         r1_1 = VecXor(r1_1, r1_2);
997         r2_1 = VecXor(r2_1, r2_2);
998         r3_1 = VecXor(r3_1, r3_2);
999 
1000         r0_1 = VecRotateLeft<7>(r0_1);
1001         r1_1 = VecRotateLeft<7>(r1_1);
1002         r2_1 = VecRotateLeft<7>(r2_1);
1003         r3_1 = VecRotateLeft<7>(r3_1);
1004 
1005         r0_1 = Shuffle<3>(r0_1);
1006         r0_2 = Shuffle<2>(r0_2);
1007         r0_3 = Shuffle<1>(r0_3);
1008 
1009         r1_1 = Shuffle<3>(r1_1);
1010         r1_2 = Shuffle<2>(r1_2);
1011         r1_3 = Shuffle<1>(r1_3);
1012 
1013         r2_1 = Shuffle<3>(r2_1);
1014         r2_2 = Shuffle<2>(r2_2);
1015         r2_3 = Shuffle<1>(r2_3);
1016 
1017         r3_1 = Shuffle<3>(r3_1);
1018         r3_2 = Shuffle<2>(r3_2);
1019         r3_3 = Shuffle<1>(r3_3);
1020     }
1021 
1022     r0_0 = VecAdd(r0_0, state0);
1023     r0_1 = VecAdd(r0_1, state1);
1024     r0_2 = VecAdd(r0_2, state2);
1025     r0_3 = VecAdd(r0_3, state3);
1026 
1027     r1_0 = VecAdd(r1_0, state0);
1028     r1_1 = VecAdd(r1_1, state1);
1029     r1_2 = VecAdd(r1_2, state2);
1030     r1_3 = VecAdd(r1_3, state3);
1031     r1_3 = VecAdd64(r1_3, CTRS[0]);
1032 
1033     r2_0 = VecAdd(r2_0, state0);
1034     r2_1 = VecAdd(r2_1, state1);
1035     r2_2 = VecAdd(r2_2, state2);
1036     r2_3 = VecAdd(r2_3, state3);
1037     r2_3 = VecAdd64(r2_3, CTRS[1]);
1038 
1039     r3_0 = VecAdd(r3_0, state0);
1040     r3_1 = VecAdd(r3_1, state1);
1041     r3_2 = VecAdd(r3_2, state2);
1042     r3_3 = VecAdd(r3_3, state3);
1043     r3_3 = VecAdd64(r3_3, CTRS[2]);
1044 
1045     if (input)
1046     {
1047         r0_0 = VecXor(VecLoad32LE(input + 0*16), r0_0);
1048         r0_1 = VecXor(VecLoad32LE(input + 1*16), r0_1);
1049         r0_2 = VecXor(VecLoad32LE(input + 2*16), r0_2);
1050         r0_3 = VecXor(VecLoad32LE(input + 3*16), r0_3);
1051     }
1052 
1053     VecStore32LE(output + 0*16, r0_0);
1054     VecStore32LE(output + 1*16, r0_1);
1055     VecStore32LE(output + 2*16, r0_2);
1056     VecStore32LE(output + 3*16, r0_3);
1057 
1058     if (input)
1059     {
1060         r1_0 = VecXor(VecLoad32LE(input + 4*16), r1_0);
1061         r1_1 = VecXor(VecLoad32LE(input + 5*16), r1_1);
1062         r1_2 = VecXor(VecLoad32LE(input + 6*16), r1_2);
1063         r1_3 = VecXor(VecLoad32LE(input + 7*16), r1_3);
1064     }
1065 
1066     VecStore32LE(output + 4*16, r1_0);
1067     VecStore32LE(output + 5*16, r1_1);
1068     VecStore32LE(output + 6*16, r1_2);
1069     VecStore32LE(output + 7*16, r1_3);
1070 
1071     if (input)
1072     {
1073         r2_0 = VecXor(VecLoad32LE(input +  8*16), r2_0);
1074         r2_1 = VecXor(VecLoad32LE(input +  9*16), r2_1);
1075         r2_2 = VecXor(VecLoad32LE(input + 10*16), r2_2);
1076         r2_3 = VecXor(VecLoad32LE(input + 11*16), r2_3);
1077     }
1078 
1079     VecStore32LE(output +  8*16, r2_0);
1080     VecStore32LE(output +  9*16, r2_1);
1081     VecStore32LE(output + 10*16, r2_2);
1082     VecStore32LE(output + 11*16, r2_3);
1083 
1084     if (input)
1085     {
1086         r3_0 = VecXor(VecLoad32LE(input + 12*16), r3_0);
1087         r3_1 = VecXor(VecLoad32LE(input + 13*16), r3_1);
1088         r3_2 = VecXor(VecLoad32LE(input + 14*16), r3_2);
1089         r3_3 = VecXor(VecLoad32LE(input + 15*16), r3_3);
1090     }
1091 
1092     VecStore32LE(output + 12*16, r3_0);
1093     VecStore32LE(output + 13*16, r3_1);
1094     VecStore32LE(output + 14*16, r3_2);
1095     VecStore32LE(output + 15*16, r3_3);
1096 }
1097 
1098 #endif  // CRYPTOPP_ALTIVEC_AVAILABLE
1099 
1100 #if (CRYPTOPP_ALTIVEC_AVAILABLE)
1101 
ChaCha_OperateKeystream_ALTIVEC(const word32 * state,const byte * input,byte * output,unsigned int rounds)1102 void ChaCha_OperateKeystream_ALTIVEC(const word32 *state, const byte* input, byte *output, unsigned int rounds)
1103 {
1104     ChaCha_OperateKeystream_CORE(state, input, output, rounds);
1105 }
1106 
1107 #endif
1108 
1109 NAMESPACE_END
1110