1 // simon_simd.cpp - written and placed in the public domain by Jeffrey Walton
2 //
3 //    This source file uses intrinsics and built-ins to gain access to
4 //    SSSE3, ARM NEON and ARMv8a, and Altivec instructions. A separate
5 //    source file is needed because additional CXXFLAGS are required to enable
6 //    the appropriate instructions sets in some build configurations.
7 
8 #include "pch.h"
9 #include "config.h"
10 
11 #include "simon.h"
12 #include "misc.h"
13 
14 // Uncomment for benchmarking C++ against SSE or NEON.
15 // Do so in both simon.cpp and simon_simd.cpp.
16 // #undef CRYPTOPP_SSSE3_AVAILABLE
17 // #undef CRYPTOPP_ARM_NEON_AVAILABLE
18 
19 #if (CRYPTOPP_SSSE3_AVAILABLE)
20 # include "adv_simd.h"
21 # include <pmmintrin.h>
22 # include <tmmintrin.h>
23 #endif
24 
25 #if defined(__XOP__)
26 # include <ammintrin.h>
27 # if defined(__GNUC__)
28 #  include <x86intrin.h>
29 # endif
30 #endif
31 
32 #if (CRYPTOPP_ARM_NEON_HEADER)
33 # include "adv_simd.h"
34 # include <arm_neon.h>
35 #endif
36 
37 #if (CRYPTOPP_ARM_ACLE_HEADER)
38 # include <stdint.h>
39 # include <arm_acle.h>
40 #endif
41 
42 #if defined(_M_ARM64)
43 # include "adv_simd.h"
44 #endif
45 
46 #if (CRYPTOPP_ALTIVEC_AVAILABLE)
47 # include "adv_simd.h"
48 # include "ppc_simd.h"
49 #endif
50 
51 // Squash MS LNK4221 and libtool warnings
52 extern const char SIMON128_SIMD_FNAME[] = __FILE__;
53 
54 ANONYMOUS_NAMESPACE_BEGIN
55 
56 using CryptoPP::byte;
57 using CryptoPP::word32;
58 using CryptoPP::word64;
59 using CryptoPP::vec_swap;  // SunCC
60 
61 // *************************** ARM NEON ************************** //
62 
63 #if (CRYPTOPP_ARM_NEON_AVAILABLE)
64 
65 // Missing from Microsoft's ARM A-32 implementation
66 #if defined(_MSC_VER) && !defined(_M_ARM64)
vld1q_dup_u64(const uint64_t * ptr)67 inline uint64x2_t vld1q_dup_u64(const uint64_t* ptr)
68 {
69     return vmovq_n_u64(*ptr);
70 }
71 #endif
72 
73 template <class T>
UnpackHigh64(const T & a,const T & b)74 inline T UnpackHigh64(const T& a, const T& b)
75 {
76     const uint64x1_t x(vget_high_u64((uint64x2_t)a));
77     const uint64x1_t y(vget_high_u64((uint64x2_t)b));
78     return (T)vcombine_u64(x, y);
79 }
80 
81 template <class T>
UnpackLow64(const T & a,const T & b)82 inline T UnpackLow64(const T& a, const T& b)
83 {
84     const uint64x1_t x(vget_low_u64((uint64x2_t)a));
85     const uint64x1_t y(vget_low_u64((uint64x2_t)b));
86     return (T)vcombine_u64(x, y);
87 }
88 
89 template <unsigned int R>
RotateLeft64(const uint64x2_t & val)90 inline uint64x2_t RotateLeft64(const uint64x2_t& val)
91 {
92     const uint64x2_t a(vshlq_n_u64(val, R));
93     const uint64x2_t b(vshrq_n_u64(val, 64 - R));
94     return vorrq_u64(a, b);
95 }
96 
97 template <unsigned int R>
RotateRight64(const uint64x2_t & val)98 inline uint64x2_t RotateRight64(const uint64x2_t& val)
99 {
100     const uint64x2_t a(vshlq_n_u64(val, 64 - R));
101     const uint64x2_t b(vshrq_n_u64(val, R));
102     return vorrq_u64(a, b);
103 }
104 
105 #if defined(__aarch32__) || defined(__aarch64__)
106 // Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
107 template <>
RotateLeft64(const uint64x2_t & val)108 inline uint64x2_t RotateLeft64<8>(const uint64x2_t& val)
109 {
110     const uint8_t maskb[16] = { 7,0,1,2, 3,4,5,6, 15,8,9,10, 11,12,13,14 };
111     const uint8x16_t mask = vld1q_u8(maskb);
112 
113     return vreinterpretq_u64_u8(
114         vqtbl1q_u8(vreinterpretq_u8_u64(val), mask));
115 }
116 
117 // Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
118 template <>
RotateRight64(const uint64x2_t & val)119 inline uint64x2_t RotateRight64<8>(const uint64x2_t& val)
120 {
121     const uint8_t maskb[16] = { 1,2,3,4, 5,6,7,0, 9,10,11,12, 13,14,15,8 };
122     const uint8x16_t mask = vld1q_u8(maskb);
123 
124     return vreinterpretq_u64_u8(
125         vqtbl1q_u8(vreinterpretq_u8_u64(val), mask));
126 }
127 #endif
128 
SIMON128_f(const uint64x2_t & val)129 inline uint64x2_t SIMON128_f(const uint64x2_t& val)
130 {
131     return veorq_u64(RotateLeft64<2>(val),
132         vandq_u64(RotateLeft64<1>(val), RotateLeft64<8>(val)));
133 }
134 
SIMON128_Enc_Block(uint64x2_t & block0,uint64x2_t & block1,const word64 * subkeys,unsigned int rounds)135 inline void SIMON128_Enc_Block(uint64x2_t &block0, uint64x2_t &block1,
136     const word64 *subkeys, unsigned int rounds)
137 {
138     // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
139     uint64x2_t x1 = UnpackHigh64(block0, block1);
140     uint64x2_t y1 = UnpackLow64(block0, block1);
141 
142     for (size_t i = 0; i < static_cast<size_t>(rounds & ~1)-1; i += 2)
143     {
144         const uint64x2_t rk1 = vld1q_dup_u64(subkeys+i);
145         y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk1);
146 
147         const uint64x2_t rk2 = vld1q_dup_u64(subkeys+i+1);
148         x1 = veorq_u64(veorq_u64(x1, SIMON128_f(y1)), rk2);
149     }
150 
151     if (rounds & 1)
152     {
153         const uint64x2_t rk = vld1q_dup_u64(subkeys+rounds-1);
154 
155         y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk);
156         std::swap(x1, y1);
157     }
158 
159     // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
160     block0 = UnpackLow64(y1, x1);
161     block1 = UnpackHigh64(y1, x1);
162 }
163 
SIMON128_Enc_6_Blocks(uint64x2_t & block0,uint64x2_t & block1,uint64x2_t & block2,uint64x2_t & block3,uint64x2_t & block4,uint64x2_t & block5,const word64 * subkeys,unsigned int rounds)164 inline void SIMON128_Enc_6_Blocks(uint64x2_t &block0, uint64x2_t &block1,
165     uint64x2_t &block2, uint64x2_t &block3, uint64x2_t &block4, uint64x2_t &block5,
166     const word64 *subkeys, unsigned int rounds)
167 {
168     // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
169     uint64x2_t x1 = UnpackHigh64(block0, block1);
170     uint64x2_t y1 = UnpackLow64(block0, block1);
171     uint64x2_t x2 = UnpackHigh64(block2, block3);
172     uint64x2_t y2 = UnpackLow64(block2, block3);
173     uint64x2_t x3 = UnpackHigh64(block4, block5);
174     uint64x2_t y3 = UnpackLow64(block4, block5);
175 
176     for (size_t i = 0; i < static_cast<size_t>(rounds & ~1) - 1; i += 2)
177     {
178         const uint64x2_t rk1 = vld1q_dup_u64(subkeys+i);
179         y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk1);
180         y2 = veorq_u64(veorq_u64(y2, SIMON128_f(x2)), rk1);
181         y3 = veorq_u64(veorq_u64(y3, SIMON128_f(x3)), rk1);
182 
183         const uint64x2_t rk2 = vld1q_dup_u64(subkeys+i+1);
184         x1 = veorq_u64(veorq_u64(x1, SIMON128_f(y1)), rk2);
185         x2 = veorq_u64(veorq_u64(x2, SIMON128_f(y2)), rk2);
186         x3 = veorq_u64(veorq_u64(x3, SIMON128_f(y3)), rk2);
187     }
188 
189     if (rounds & 1)
190     {
191         const uint64x2_t rk = vld1q_dup_u64(subkeys + rounds - 1);
192 
193         y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk);
194         y2 = veorq_u64(veorq_u64(y2, SIMON128_f(x2)), rk);
195         y3 = veorq_u64(veorq_u64(y3, SIMON128_f(x3)), rk);
196         std::swap(x1, y1); std::swap(x2, y2); std::swap(x3, y3);
197     }
198 
199     // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
200     block0 = UnpackLow64(y1, x1);
201     block1 = UnpackHigh64(y1, x1);
202     block2 = UnpackLow64(y2, x2);
203     block3 = UnpackHigh64(y2, x2);
204     block4 = UnpackLow64(y3, x3);
205     block5 = UnpackHigh64(y3, x3);
206 }
207 
SIMON128_Dec_Block(uint64x2_t & block0,uint64x2_t & block1,const word64 * subkeys,unsigned int rounds)208 inline void SIMON128_Dec_Block(uint64x2_t &block0, uint64x2_t &block1,
209     const word64 *subkeys, unsigned int rounds)
210 {
211     // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
212     uint64x2_t x1 = UnpackHigh64(block0, block1);
213     uint64x2_t y1 = UnpackLow64(block0, block1);
214 
215     if (rounds & 1)
216     {
217         std::swap(x1, y1);
218         const uint64x2_t rk = vld1q_dup_u64(subkeys + rounds - 1);
219 
220         y1 = veorq_u64(veorq_u64(y1, rk), SIMON128_f(x1));
221         rounds--;
222     }
223 
224     for (int i = static_cast<int>(rounds-2); i >= 0; i -= 2)
225     {
226         const uint64x2_t rk1 = vld1q_dup_u64(subkeys+i+1);
227         x1 = veorq_u64(veorq_u64(x1, SIMON128_f(y1)), rk1);
228 
229         const uint64x2_t rk2 = vld1q_dup_u64(subkeys+i);
230         y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk2);
231     }
232 
233     // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
234     block0 = UnpackLow64(y1, x1);
235     block1 = UnpackHigh64(y1, x1);
236 }
237 
SIMON128_Dec_6_Blocks(uint64x2_t & block0,uint64x2_t & block1,uint64x2_t & block2,uint64x2_t & block3,uint64x2_t & block4,uint64x2_t & block5,const word64 * subkeys,unsigned int rounds)238 inline void SIMON128_Dec_6_Blocks(uint64x2_t &block0, uint64x2_t &block1,
239     uint64x2_t &block2, uint64x2_t &block3, uint64x2_t &block4, uint64x2_t &block5,
240     const word64 *subkeys, unsigned int rounds)
241 {
242     // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
243     uint64x2_t x1 = UnpackHigh64(block0, block1);
244     uint64x2_t y1 = UnpackLow64(block0, block1);
245     uint64x2_t x2 = UnpackHigh64(block2, block3);
246     uint64x2_t y2 = UnpackLow64(block2, block3);
247     uint64x2_t x3 = UnpackHigh64(block4, block5);
248     uint64x2_t y3 = UnpackLow64(block4, block5);
249 
250     if (rounds & 1)
251     {
252         std::swap(x1, y1); std::swap(x2, y2); std::swap(x3, y3);
253         const uint64x2_t rk = vld1q_dup_u64(subkeys + rounds - 1);
254 
255         y1 = veorq_u64(veorq_u64(y1, rk), SIMON128_f(x1));
256         y2 = veorq_u64(veorq_u64(y2, rk), SIMON128_f(x2));
257         y3 = veorq_u64(veorq_u64(y3, rk), SIMON128_f(x3));
258         rounds--;
259     }
260 
261     for (int i = static_cast<int>(rounds-2); i >= 0; i -= 2)
262     {
263         const uint64x2_t rk1 = vld1q_dup_u64(subkeys + i + 1);
264         x1 = veorq_u64(veorq_u64(x1, SIMON128_f(y1)), rk1);
265         x2 = veorq_u64(veorq_u64(x2, SIMON128_f(y2)), rk1);
266         x3 = veorq_u64(veorq_u64(x3, SIMON128_f(y3)), rk1);
267 
268         const uint64x2_t rk2 = vld1q_dup_u64(subkeys + i);
269         y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk2);
270         y2 = veorq_u64(veorq_u64(y2, SIMON128_f(x2)), rk2);
271         y3 = veorq_u64(veorq_u64(y3, SIMON128_f(x3)), rk2);
272     }
273 
274     // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
275     block0 = UnpackLow64(y1, x1);
276     block1 = UnpackHigh64(y1, x1);
277     block2 = UnpackLow64(y2, x2);
278     block3 = UnpackHigh64(y2, x2);
279     block4 = UnpackLow64(y3, x3);
280     block5 = UnpackHigh64(y3, x3);
281 }
282 
283 #endif  // CRYPTOPP_ARM_NEON_AVAILABLE
284 
285 // ***************************** IA-32 ***************************** //
286 
287 #if (CRYPTOPP_SSSE3_AVAILABLE)
288 
289 // GCC double casts, https://www.spinics.net/lists/gcchelp/msg47735.html
290 #ifndef DOUBLE_CAST
291 # define DOUBLE_CAST(x) ((double *)(void *)(x))
292 #endif
293 #ifndef CONST_DOUBLE_CAST
294 # define CONST_DOUBLE_CAST(x) ((const double *)(const void *)(x))
295 #endif
296 
Swap128(__m128i & a,__m128i & b)297 inline void Swap128(__m128i& a,__m128i& b)
298 {
299 #if defined(__SUNPRO_CC) && (__SUNPRO_CC <= 0x5120)
300     // __m128i is an unsigned long long[2], and support for swapping it was not added until C++11.
301     // SunCC 12.1 - 12.3 fail to consume the swap; while SunCC 12.4 consumes it without -std=c++11.
302     vec_swap(a, b);
303 #else
304     std::swap(a, b);
305 #endif
306 }
307 
308 template <unsigned int R>
RotateLeft64(const __m128i & val)309 inline __m128i RotateLeft64(const __m128i& val)
310 {
311 #if defined(__XOP__)
312     return _mm_roti_epi64(val, R);
313 #else
314     return _mm_or_si128(
315         _mm_slli_epi64(val, R), _mm_srli_epi64(val, 64-R));
316 #endif
317 }
318 
319 template <unsigned int R>
RotateRight64(const __m128i & val)320 inline __m128i RotateRight64(const __m128i& val)
321 {
322 #if defined(__XOP__)
323     return _mm_roti_epi64(val, 64-R);
324 #else
325     return _mm_or_si128(
326         _mm_slli_epi64(val, 64-R), _mm_srli_epi64(val, R));
327 #endif
328 }
329 
330 // Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
331 template <>
RotateLeft64(const __m128i & val)332 __m128i RotateLeft64<8>(const __m128i& val)
333 {
334 #if defined(__XOP__)
335     return _mm_roti_epi64(val, 8);
336 #else
337     const __m128i mask = _mm_set_epi8(14,13,12,11, 10,9,8,15, 6,5,4,3, 2,1,0,7);
338     return _mm_shuffle_epi8(val, mask);
339 #endif
340 }
341 
342 // Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
343 template <>
RotateRight64(const __m128i & val)344 __m128i RotateRight64<8>(const __m128i& val)
345 {
346 #if defined(__XOP__)
347     return _mm_roti_epi64(val, 64-8);
348 #else
349     const __m128i mask = _mm_set_epi8(8,15,14,13, 12,11,10,9, 0,7,6,5, 4,3,2,1);
350     return _mm_shuffle_epi8(val, mask);
351 #endif
352 }
353 
SIMON128_f(const __m128i & v)354 inline __m128i SIMON128_f(const __m128i& v)
355 {
356     return _mm_xor_si128(RotateLeft64<2>(v),
357         _mm_and_si128(RotateLeft64<1>(v), RotateLeft64<8>(v)));
358 }
359 
SIMON128_Enc_Block(__m128i & block0,__m128i & block1,const word64 * subkeys,unsigned int rounds)360 inline void SIMON128_Enc_Block(__m128i &block0, __m128i &block1,
361     const word64 *subkeys, unsigned int rounds)
362 {
363     // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
364     __m128i x1 = _mm_unpackhi_epi64(block0, block1);
365     __m128i y1 = _mm_unpacklo_epi64(block0, block1);
366 
367     for (size_t i = 0; i < static_cast<size_t>(rounds & ~1)-1; i += 2)
368     {
369         // Round keys are pre-splated in forward direction
370         const __m128i rk1 = _mm_load_si128(CONST_M128_CAST(subkeys+i*2));
371         y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk1);
372 
373         const __m128i rk2 = _mm_load_si128(CONST_M128_CAST(subkeys+(i+1)*2));
374         x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON128_f(y1)), rk2);
375     }
376 
377     if (rounds & 1)
378     {
379         // Round keys are pre-splated in forward direction
380         const __m128i rk = _mm_load_si128(CONST_M128_CAST(subkeys+(rounds-1)*2));
381 
382         y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk);
383         Swap128(x1, y1);
384     }
385 
386     // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
387     block0 = _mm_unpacklo_epi64(y1, x1);
388     block1 = _mm_unpackhi_epi64(y1, x1);
389 }
390 
SIMON128_Enc_6_Blocks(__m128i & block0,__m128i & block1,__m128i & block2,__m128i & block3,__m128i & block4,__m128i & block5,const word64 * subkeys,unsigned int rounds)391 inline void SIMON128_Enc_6_Blocks(__m128i &block0, __m128i &block1,
392     __m128i &block2, __m128i &block3, __m128i &block4, __m128i &block5,
393     const word64 *subkeys, unsigned int rounds)
394 {
395     // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
396     __m128i x1 = _mm_unpackhi_epi64(block0, block1);
397     __m128i y1 = _mm_unpacklo_epi64(block0, block1);
398     __m128i x2 = _mm_unpackhi_epi64(block2, block3);
399     __m128i y2 = _mm_unpacklo_epi64(block2, block3);
400     __m128i x3 = _mm_unpackhi_epi64(block4, block5);
401     __m128i y3 = _mm_unpacklo_epi64(block4, block5);
402 
403     for (size_t i = 0; i < static_cast<size_t>(rounds & ~1) - 1; i += 2)
404     {
405         // Round keys are pre-splated in forward direction
406         const __m128i rk1 = _mm_load_si128(CONST_M128_CAST(subkeys+i*2));
407         y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk1);
408         y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON128_f(x2)), rk1);
409         y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON128_f(x3)), rk1);
410 
411         // Round keys are pre-splated in forward direction
412         const __m128i rk2 = _mm_load_si128(CONST_M128_CAST(subkeys+(i+1)*2));
413         x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON128_f(y1)), rk2);
414         x2 = _mm_xor_si128(_mm_xor_si128(x2, SIMON128_f(y2)), rk2);
415         x3 = _mm_xor_si128(_mm_xor_si128(x3, SIMON128_f(y3)), rk2);
416     }
417 
418     if (rounds & 1)
419     {
420         // Round keys are pre-splated in forward direction
421         const __m128i rk = _mm_load_si128(CONST_M128_CAST(subkeys+(rounds-1)*2));
422         y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk);
423         y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON128_f(x2)), rk);
424         y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON128_f(x3)), rk);
425         Swap128(x1, y1); Swap128(x2, y2); Swap128(x3, y3);
426     }
427 
428     // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
429     block0 = _mm_unpacklo_epi64(y1, x1);
430     block1 = _mm_unpackhi_epi64(y1, x1);
431     block2 = _mm_unpacklo_epi64(y2, x2);
432     block3 = _mm_unpackhi_epi64(y2, x2);
433     block4 = _mm_unpacklo_epi64(y3, x3);
434     block5 = _mm_unpackhi_epi64(y3, x3);
435 }
436 
SIMON128_Dec_Block(__m128i & block0,__m128i & block1,const word64 * subkeys,unsigned int rounds)437 inline void SIMON128_Dec_Block(__m128i &block0, __m128i &block1,
438     const word64 *subkeys, unsigned int rounds)
439 {
440     // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
441     __m128i x1 = _mm_unpackhi_epi64(block0, block1);
442     __m128i y1 = _mm_unpacklo_epi64(block0, block1);
443 
444     if (rounds & 1)
445     {
446         const __m128i rk = _mm_castpd_si128(
447             _mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys + rounds - 1)));
448 
449         Swap128(x1, y1);
450         y1 = _mm_xor_si128(_mm_xor_si128(y1, rk), SIMON128_f(x1));
451         rounds--;
452     }
453 
454     for (int i = static_cast<int>(rounds-2); i >= 0; i -= 2)
455     {
456         const __m128i rk1 = _mm_castpd_si128(
457             _mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys+i+1)));
458         x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON128_f(y1)), rk1);
459 
460         const __m128i rk2 = _mm_castpd_si128(
461             _mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys+i)));
462         y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk2);
463     }
464 
465     // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
466     block0 = _mm_unpacklo_epi64(y1, x1);
467     block1 = _mm_unpackhi_epi64(y1, x1);
468 }
469 
SIMON128_Dec_6_Blocks(__m128i & block0,__m128i & block1,__m128i & block2,__m128i & block3,__m128i & block4,__m128i & block5,const word64 * subkeys,unsigned int rounds)470 inline void SIMON128_Dec_6_Blocks(__m128i &block0, __m128i &block1,
471     __m128i &block2, __m128i &block3, __m128i &block4, __m128i &block5,
472     const word64 *subkeys, unsigned int rounds)
473 {
474     // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
475     __m128i x1 = _mm_unpackhi_epi64(block0, block1);
476     __m128i y1 = _mm_unpacklo_epi64(block0, block1);
477     __m128i x2 = _mm_unpackhi_epi64(block2, block3);
478     __m128i y2 = _mm_unpacklo_epi64(block2, block3);
479     __m128i x3 = _mm_unpackhi_epi64(block4, block5);
480     __m128i y3 = _mm_unpacklo_epi64(block4, block5);
481 
482     if (rounds & 1)
483     {
484         const __m128i rk = _mm_castpd_si128(
485             _mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys + rounds - 1)));
486 
487         Swap128(x1, y1); Swap128(x2, y2); Swap128(x3, y3);
488         y1 = _mm_xor_si128(_mm_xor_si128(y1, rk), SIMON128_f(x1));
489         y2 = _mm_xor_si128(_mm_xor_si128(y2, rk), SIMON128_f(x2));
490         y3 = _mm_xor_si128(_mm_xor_si128(y3, rk), SIMON128_f(x3));
491         rounds--;
492     }
493 
494     for (int i = static_cast<int>(rounds-2); i >= 0; i -= 2)
495     {
496         const __m128i rk1 = _mm_castpd_si128(
497             _mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys + i + 1)));
498         x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON128_f(y1)), rk1);
499         x2 = _mm_xor_si128(_mm_xor_si128(x2, SIMON128_f(y2)), rk1);
500         x3 = _mm_xor_si128(_mm_xor_si128(x3, SIMON128_f(y3)), rk1);
501 
502         const __m128i rk2 = _mm_castpd_si128(
503             _mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys + i)));
504         y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk2);
505         y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON128_f(x2)), rk2);
506         y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON128_f(x3)), rk2);
507     }
508 
509     // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
510     block0 = _mm_unpacklo_epi64(y1, x1);
511     block1 = _mm_unpackhi_epi64(y1, x1);
512     block2 = _mm_unpacklo_epi64(y2, x2);
513     block3 = _mm_unpackhi_epi64(y2, x2);
514     block4 = _mm_unpacklo_epi64(y3, x3);
515     block5 = _mm_unpackhi_epi64(y3, x3);
516 }
517 
518 #endif  // CRYPTOPP_SSSE3_AVAILABLE
519 
520 // ***************************** Altivec ***************************** //
521 
522 #if (CRYPTOPP_ALTIVEC_AVAILABLE)
523 
524 // Altivec uses native 64-bit types on 64-bit environments, or 32-bit types
525 // in 32-bit environments. Speck128 will use the appropriate type for the
526 // environment. Functions like VecAdd64 have two overloads, one for each
527 // environment. The 32-bit overload treats uint32x4_p like a 64-bit type,
528 // and does things like perform a add with carry or subtract with borrow.
529 
530 // Speck128 on Power8 performed as expected because of 64-bit environment.
531 // Performance sucked on old PowerPC machines because of 32-bit environments.
532 // At Crypto++ 8.3 we added an implementation that operated on 32-bit words.
533 // Native 64-bit Speck128 performance dropped from about 4.1 to 6.3 cpb, but
534 // 32-bit Speck128 improved from 66.5 cpb to 10.4 cpb. Overall it was a
535 // good win even though we lost some performance in 64-bit environments.
536 
537 using CryptoPP::uint8x16_p;
538 using CryptoPP::uint32x4_p;
539 #if defined(_ARCH_PWR8)
540 using CryptoPP::uint64x2_p;
541 #endif
542 
543 using CryptoPP::VecAdd64;
544 using CryptoPP::VecSub64;
545 using CryptoPP::VecAnd64;
546 using CryptoPP::VecOr64;
547 using CryptoPP::VecXor64;
548 using CryptoPP::VecRotateLeft64;
549 using CryptoPP::VecRotateRight64;
550 using CryptoPP::VecSplatElement64;
551 using CryptoPP::VecLoad;
552 using CryptoPP::VecLoadAligned;
553 using CryptoPP::VecPermute;
554 
555 #if defined(_ARCH_PWR8)
556 #define simon128_t uint64x2_p
557 #else
558 #define simon128_t uint32x4_p
559 #endif
560 
SIMON128_f(const simon128_t val)561 inline simon128_t SIMON128_f(const simon128_t val)
562 {
563     return (simon128_t)VecXor64(VecRotateLeft64<2>(val),
564         VecAnd64(VecRotateLeft64<1>(val), VecRotateLeft64<8>(val)));
565 }
566 
SIMON128_Enc_Block(uint32x4_p & block,const word64 * subkeys,unsigned int rounds)567 inline void SIMON128_Enc_Block(uint32x4_p &block, const word64 *subkeys, unsigned int rounds)
568 {
569 #if (CRYPTOPP_BIG_ENDIAN)
570     const uint8x16_p m1 = {31,30,29,28,27,26,25,24, 15,14,13,12,11,10,9,8};
571     const uint8x16_p m2 = {23,22,21,20,19,18,17,16, 7,6,5,4,3,2,1,0};
572 #else
573     const uint8x16_p m1 = {7,6,5,4,3,2,1,0, 23,22,21,20,19,18,17,16};
574     const uint8x16_p m2 = {15,14,13,12,11,10,9,8, 31,30,29,28,27,26,25,24};
575 #endif
576 
577     // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
578     simon128_t x1 = (simon128_t)VecPermute(block, block, m1);
579     simon128_t y1 = (simon128_t)VecPermute(block, block, m2);
580 
581     for (size_t i = 0; i < static_cast<size_t>(rounds & ~1)-1; i += 2)
582     {
583         // Round keys are pre-splated in forward direction
584         const word32* ptr1 = reinterpret_cast<const word32*>(subkeys+i*2);
585         const simon128_t rk1 = (simon128_t)VecLoadAligned(ptr1);
586         const word32* ptr2 = reinterpret_cast<const word32*>(subkeys+(i+1)*2);
587         const simon128_t rk2 = (simon128_t)VecLoadAligned(ptr2);
588 
589         y1 = VecXor64(VecXor64(y1, SIMON128_f(x1)), rk1);
590         x1 = VecXor64(VecXor64(x1, SIMON128_f(y1)), rk2);
591     }
592 
593     if (rounds & 1)
594     {
595         // Round keys are pre-splated in forward direction
596         const word32* ptr = reinterpret_cast<const word32*>(subkeys+(rounds-1)*2);
597         const simon128_t rk = (simon128_t)VecLoadAligned(ptr);
598 
599         y1 = VecXor64(VecXor64(y1, SIMON128_f(x1)), rk);
600 
601         std::swap(x1, y1);
602     }
603 
604 #if (CRYPTOPP_BIG_ENDIAN)
605     const uint8x16_p m3 = {31,30,29,28,27,26,25,24, 15,14,13,12,11,10,9,8};
606     //const uint8x16_p m4 = {23,22,21,20,19,18,17,16, 7,6,5,4,3,2,1,0};
607 #else
608     const uint8x16_p m3 = {7,6,5,4,3,2,1,0, 23,22,21,20,19,18,17,16};
609     //const uint8x16_p m4 = {15,14,13,12,11,10,9,8, 31,30,29,28,27,26,25,24};
610 #endif
611 
612     // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
613     block = (uint32x4_p)VecPermute(x1, y1, m3);
614 }
615 
SIMON128_Dec_Block(uint32x4_p & block,const word64 * subkeys,unsigned int rounds)616 inline void SIMON128_Dec_Block(uint32x4_p &block, const word64 *subkeys, unsigned int rounds)
617 {
618 #if (CRYPTOPP_BIG_ENDIAN)
619     const uint8x16_p m1 = {31,30,29,28,27,26,25,24, 15,14,13,12,11,10,9,8};
620     const uint8x16_p m2 = {23,22,21,20,19,18,17,16, 7,6,5,4,3,2,1,0};
621 #else
622     const uint8x16_p m1 = {7,6,5,4,3,2,1,0, 23,22,21,20,19,18,17,16};
623     const uint8x16_p m2 = {15,14,13,12,11,10,9,8, 31,30,29,28,27,26,25,24};
624 #endif
625 
626     // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
627     simon128_t x1 = (simon128_t)VecPermute(block, block, m1);
628     simon128_t y1 = (simon128_t)VecPermute(block, block, m2);
629 
630     if (rounds & 1)
631     {
632         std::swap(x1, y1);
633 
634         const word32* ptr = reinterpret_cast<const word32*>(subkeys+rounds-1);
635         const simon128_t tk = (simon128_t)VecLoad(ptr);
636         const simon128_t rk = (simon128_t)VecSplatElement64<0>(tk);
637 
638         y1 = VecXor64(VecXor64(y1, rk), SIMON128_f(x1));
639         rounds--;
640     }
641 
642     for (int i = static_cast<int>(rounds-2); i >= 0; i -= 2)
643     {
644         const word32* ptr = reinterpret_cast<const word32*>(subkeys+i);
645         const simon128_t tk = (simon128_t)VecLoad(ptr);
646         const simon128_t rk1 = (simon128_t)VecSplatElement64<1>(tk);
647         const simon128_t rk2 = (simon128_t)VecSplatElement64<0>(tk);
648 
649         x1 = VecXor64(VecXor64(x1, SIMON128_f(y1)), rk1);
650         y1 = VecXor64(VecXor64(y1, SIMON128_f(x1)), rk2);
651     }
652 
653 #if (CRYPTOPP_BIG_ENDIAN)
654     const uint8x16_p m3 = {31,30,29,28,27,26,25,24, 15,14,13,12,11,10,9,8};
655     //const uint8x16_p m4 = {23,22,21,20,19,18,17,16, 7,6,5,4,3,2,1,0};
656 #else
657     const uint8x16_p m3 = {7,6,5,4,3,2,1,0, 23,22,21,20,19,18,17,16};
658     //const uint8x16_p m4 = {15,14,13,12,11,10,9,8, 31,30,29,28,27,26,25,24};
659 #endif
660 
661     // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
662     block = (uint32x4_p)VecPermute(x1, y1, m3);
663 }
664 
SIMON128_Enc_6_Blocks(uint32x4_p & block0,uint32x4_p & block1,uint32x4_p & block2,uint32x4_p & block3,uint32x4_p & block4,uint32x4_p & block5,const word64 * subkeys,unsigned int rounds)665 inline void SIMON128_Enc_6_Blocks(uint32x4_p &block0, uint32x4_p &block1,
666             uint32x4_p &block2, uint32x4_p &block3, uint32x4_p &block4,
667             uint32x4_p &block5, const word64 *subkeys, unsigned int rounds)
668 {
669 #if (CRYPTOPP_BIG_ENDIAN)
670     const uint8x16_p m1 = {31,30,29,28,27,26,25,24, 15,14,13,12,11,10,9,8};
671     const uint8x16_p m2 = {23,22,21,20,19,18,17,16, 7,6,5,4,3,2,1,0};
672 #else
673     const uint8x16_p m1 = {7,6,5,4,3,2,1,0, 23,22,21,20,19,18,17,16};
674     const uint8x16_p m2 = {15,14,13,12,11,10,9,8, 31,30,29,28,27,26,25,24};
675 #endif
676 
677     // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
678     simon128_t x1 = (simon128_t)VecPermute(block0, block1, m1);
679     simon128_t y1 = (simon128_t)VecPermute(block0, block1, m2);
680     simon128_t x2 = (simon128_t)VecPermute(block2, block3, m1);
681     simon128_t y2 = (simon128_t)VecPermute(block2, block3, m2);
682     simon128_t x3 = (simon128_t)VecPermute(block4, block5, m1);
683     simon128_t y3 = (simon128_t)VecPermute(block4, block5, m2);
684 
685     for (size_t i = 0; i < static_cast<size_t>(rounds & ~1)-1; i += 2)
686     {
687         // Round keys are pre-splated in forward direction
688         const word32* ptr1 = reinterpret_cast<const word32*>(subkeys+i*2);
689         const simon128_t rk1 = (simon128_t)VecLoadAligned(ptr1);
690 
691         const word32* ptr2 = reinterpret_cast<const word32*>(subkeys+(i+1)*2);
692         const simon128_t rk2 = (simon128_t)VecLoadAligned(ptr2);
693 
694         y1 = VecXor64(VecXor64(y1, SIMON128_f(x1)), rk1);
695         y2 = VecXor64(VecXor64(y2, SIMON128_f(x2)), rk1);
696         y3 = VecXor64(VecXor64(y3, SIMON128_f(x3)), rk1);
697 
698         x1 = VecXor64(VecXor64(x1, SIMON128_f(y1)), rk2);
699         x2 = VecXor64(VecXor64(x2, SIMON128_f(y2)), rk2);
700         x3 = VecXor64(VecXor64(x3, SIMON128_f(y3)), rk2);
701     }
702 
703     if (rounds & 1)
704     {
705         // Round keys are pre-splated in forward direction
706         const word32* ptr = reinterpret_cast<const word32*>(subkeys+(rounds-1)*2);
707         const simon128_t rk = (simon128_t)VecLoadAligned(ptr);
708 
709         y1 = VecXor64(VecXor64(y1, SIMON128_f(x1)), rk);
710         y2 = VecXor64(VecXor64(y2, SIMON128_f(x2)), rk);
711         y3 = VecXor64(VecXor64(y3, SIMON128_f(x3)), rk);
712 
713         std::swap(x1, y1); std::swap(x2, y2); std::swap(x3, y3);
714     }
715 
716 #if (CRYPTOPP_BIG_ENDIAN)
717     const uint8x16_p m3 = {31,30,29,28,27,26,25,24, 15,14,13,12,11,10,9,8};
718     const uint8x16_p m4 = {23,22,21,20,19,18,17,16, 7,6,5,4,3,2,1,0};
719 #else
720     const uint8x16_p m3 = {7,6,5,4,3,2,1,0, 23,22,21,20,19,18,17,16};
721     const uint8x16_p m4 = {15,14,13,12,11,10,9,8, 31,30,29,28,27,26,25,24};
722 #endif
723 
724     // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
725     block0 = (uint32x4_p)VecPermute(x1, y1, m3);
726     block1 = (uint32x4_p)VecPermute(x1, y1, m4);
727     block2 = (uint32x4_p)VecPermute(x2, y2, m3);
728     block3 = (uint32x4_p)VecPermute(x2, y2, m4);
729     block4 = (uint32x4_p)VecPermute(x3, y3, m3);
730     block5 = (uint32x4_p)VecPermute(x3, y3, m4);
731 }
732 
SIMON128_Dec_6_Blocks(uint32x4_p & block0,uint32x4_p & block1,uint32x4_p & block2,uint32x4_p & block3,uint32x4_p & block4,uint32x4_p & block5,const word64 * subkeys,unsigned int rounds)733 inline void SIMON128_Dec_6_Blocks(uint32x4_p &block0, uint32x4_p &block1,
734             uint32x4_p &block2, uint32x4_p &block3, uint32x4_p &block4,
735             uint32x4_p &block5, const word64 *subkeys, unsigned int rounds)
736 {
737 #if (CRYPTOPP_BIG_ENDIAN)
738     const uint8x16_p m1 = {31,30,29,28,27,26,25,24, 15,14,13,12,11,10,9,8};
739     const uint8x16_p m2 = {23,22,21,20,19,18,17,16, 7,6,5,4,3,2,1,0};
740 #else
741     const uint8x16_p m1 = {7,6,5,4,3,2,1,0, 23,22,21,20,19,18,17,16};
742     const uint8x16_p m2 = {15,14,13,12,11,10,9,8, 31,30,29,28,27,26,25,24};
743 #endif
744 
745     // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
746     simon128_t x1 = (simon128_t)VecPermute(block0, block1, m1);
747     simon128_t y1 = (simon128_t)VecPermute(block0, block1, m2);
748     simon128_t x2 = (simon128_t)VecPermute(block2, block3, m1);
749     simon128_t y2 = (simon128_t)VecPermute(block2, block3, m2);
750     simon128_t x3 = (simon128_t)VecPermute(block4, block5, m1);
751     simon128_t y3 = (simon128_t)VecPermute(block4, block5, m2);
752 
753     if (rounds & 1)
754     {
755         std::swap(x1, y1); std::swap(x2, y2); std::swap(x3, y3);
756 
757         const word32* ptr = reinterpret_cast<const word32*>(subkeys+rounds-1);
758         const simon128_t tk = (simon128_t)VecLoad(ptr);
759         const simon128_t rk = (simon128_t)VecSplatElement64<0>(tk);
760 
761         y1 = VecXor64(VecXor64(y1, rk), SIMON128_f(x1));
762         y2 = VecXor64(VecXor64(y2, rk), SIMON128_f(x2));
763         y3 = VecXor64(VecXor64(y3, rk), SIMON128_f(x3));
764         rounds--;
765     }
766 
767     for (int i = static_cast<int>(rounds-2); i >= 0; i -= 2)
768     {
769         const word32* ptr = reinterpret_cast<const word32*>(subkeys+i);
770         const simon128_t tk = (simon128_t)VecLoad(ptr);
771         const simon128_t rk1 = (simon128_t)VecSplatElement64<1>(tk);
772         const simon128_t rk2 = (simon128_t)VecSplatElement64<0>(tk);
773 
774         x1 = VecXor64(VecXor64(x1, SIMON128_f(y1)), rk1);
775         x2 = VecXor64(VecXor64(x2, SIMON128_f(y2)), rk1);
776         x3 = VecXor64(VecXor64(x3, SIMON128_f(y3)), rk1);
777 
778         y1 = VecXor64(VecXor64(y1, SIMON128_f(x1)), rk2);
779         y2 = VecXor64(VecXor64(y2, SIMON128_f(x2)), rk2);
780         y3 = VecXor64(VecXor64(y3, SIMON128_f(x3)), rk2);
781     }
782 
783 #if (CRYPTOPP_BIG_ENDIAN)
784     const uint8x16_p m3 = {31,30,29,28,27,26,25,24, 15,14,13,12,11,10,9,8};
785     const uint8x16_p m4 = {23,22,21,20,19,18,17,16, 7,6,5,4,3,2,1,0};
786 #else
787     const uint8x16_p m3 = {7,6,5,4,3,2,1,0, 23,22,21,20,19,18,17,16};
788     const uint8x16_p m4 = {15,14,13,12,11,10,9,8, 31,30,29,28,27,26,25,24};
789 #endif
790 
791     // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
792     block0 = (uint32x4_p)VecPermute(x1, y1, m3);
793     block1 = (uint32x4_p)VecPermute(x1, y1, m4);
794     block2 = (uint32x4_p)VecPermute(x2, y2, m3);
795     block3 = (uint32x4_p)VecPermute(x2, y2, m4);
796     block4 = (uint32x4_p)VecPermute(x3, y3, m3);
797     block5 = (uint32x4_p)VecPermute(x3, y3, m4);
798 }
799 
800 #endif  // CRYPTOPP_ALTIVEC_AVAILABLE
801 
802 ANONYMOUS_NAMESPACE_END
803 
804 ///////////////////////////////////////////////////////////////////////
805 
NAMESPACE_BEGIN(CryptoPP)806 NAMESPACE_BEGIN(CryptoPP)
807 
808 // *************************** ARM NEON **************************** //
809 
810 #if (CRYPTOPP_ARM_NEON_AVAILABLE)
811 size_t SIMON128_Enc_AdvancedProcessBlocks_NEON(const word64* subKeys, size_t rounds,
812     const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
813 {
814     return AdvancedProcessBlocks128_6x2_NEON(SIMON128_Enc_Block, SIMON128_Enc_6_Blocks,
815         subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
816 }
817 
SIMON128_Dec_AdvancedProcessBlocks_NEON(const word64 * subKeys,size_t rounds,const byte * inBlocks,const byte * xorBlocks,byte * outBlocks,size_t length,word32 flags)818 size_t SIMON128_Dec_AdvancedProcessBlocks_NEON(const word64* subKeys, size_t rounds,
819     const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
820 {
821     return AdvancedProcessBlocks128_6x2_NEON(SIMON128_Dec_Block, SIMON128_Dec_6_Blocks,
822         subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
823 }
824 #endif  // CRYPTOPP_ARM_NEON_AVAILABLE
825 
826 // ***************************** IA-32 ***************************** //
827 
828 #if (CRYPTOPP_SSSE3_AVAILABLE)
SIMON128_Enc_AdvancedProcessBlocks_SSSE3(const word64 * subKeys,size_t rounds,const byte * inBlocks,const byte * xorBlocks,byte * outBlocks,size_t length,word32 flags)829 size_t SIMON128_Enc_AdvancedProcessBlocks_SSSE3(const word64* subKeys, size_t rounds,
830     const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
831 {
832     return AdvancedProcessBlocks128_6x2_SSE(SIMON128_Enc_Block, SIMON128_Enc_6_Blocks,
833         subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
834 }
835 
SIMON128_Dec_AdvancedProcessBlocks_SSSE3(const word64 * subKeys,size_t rounds,const byte * inBlocks,const byte * xorBlocks,byte * outBlocks,size_t length,word32 flags)836 size_t SIMON128_Dec_AdvancedProcessBlocks_SSSE3(const word64* subKeys, size_t rounds,
837     const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
838 {
839     return AdvancedProcessBlocks128_6x2_SSE(SIMON128_Dec_Block, SIMON128_Dec_6_Blocks,
840         subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
841 }
842 #endif  // CRYPTOPP_SSSE3_AVAILABLE
843 
844 // ***************************** Altivec ***************************** //
845 
846 #if (CRYPTOPP_ALTIVEC_AVAILABLE)
SIMON128_Enc_AdvancedProcessBlocks_ALTIVEC(const word64 * subKeys,size_t rounds,const byte * inBlocks,const byte * xorBlocks,byte * outBlocks,size_t length,word32 flags)847 size_t SIMON128_Enc_AdvancedProcessBlocks_ALTIVEC(const word64* subKeys, size_t rounds,
848     const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
849 {
850     return AdvancedProcessBlocks128_6x1_ALTIVEC(SIMON128_Enc_Block, SIMON128_Enc_6_Blocks,
851         subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
852 }
853 
SIMON128_Dec_AdvancedProcessBlocks_ALTIVEC(const word64 * subKeys,size_t rounds,const byte * inBlocks,const byte * xorBlocks,byte * outBlocks,size_t length,word32 flags)854 size_t SIMON128_Dec_AdvancedProcessBlocks_ALTIVEC(const word64* subKeys, size_t rounds,
855     const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
856 {
857     return AdvancedProcessBlocks128_6x1_ALTIVEC(SIMON128_Dec_Block, SIMON128_Dec_6_Blocks,
858         subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
859 }
860 #endif  // CRYPTOPP_ALTIVEC_AVAILABLE
861 
862 NAMESPACE_END
863