1 /*	$OpenBSD: queue.h,v 1.15 2000/04/15 00:20:13 deraadt Exp $	*/
2 /*	$NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $	*/
3 
4 /*
5  * Copyright (c) 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)queue.h	8.5 (Berkeley) 8/20/94
37  */
38 
39 #ifndef	_SYS_QUEUE_H_
40 #define	_SYS_QUEUE_H_
41 
42 /*
43  * This file defines five types of data structures: singly-linked lists,
44  * lists, simple queues, tail queues, and circular queues.
45  *
46  *
47  * A singly-linked list is headed by a single forward pointer. The elements
48  * are singly linked for minimum space and pointer manipulation overhead at
49  * the expense of O(n) removal for arbitrary elements. New elements can be
50  * added to the list after an existing element or at the head of the list.
51  * Elements being removed from the head of the list should use the explicit
52  * macro for this purpose for optimum efficiency. A singly-linked list may
53  * only be traversed in the forward direction.  Singly-linked lists are ideal
54  * for applications with large datasets and few or no removals or for
55  * implementing a LIFO queue.
56  *
57  * A list is headed by a single forward pointer (or an array of forward
58  * pointers for a hash table header). The elements are doubly linked
59  * so that an arbitrary element can be removed without a need to
60  * traverse the list. New elements can be added to the list before
61  * or after an existing element or at the head of the list. A list
62  * may only be traversed in the forward direction.
63  *
64  * A simple queue is headed by a pair of pointers, one the head of the
65  * list and the other to the tail of the list. The elements are singly
66  * linked to save space, so elements can only be removed from the
67  * head of the list. New elements can be added to the list before or after
68  * an existing element, at the head of the list, or at the end of the
69  * list. A simple queue may only be traversed in the forward direction.
70  *
71  * A tail queue is headed by a pair of pointers, one to the head of the
72  * list and the other to the tail of the list. The elements are doubly
73  * linked so that an arbitrary element can be removed without a need to
74  * traverse the list. New elements can be added to the list before or
75  * after an existing element, at the head of the list, or at the end of
76  * the list. A tail queue may be traversed in either direction.
77  *
78  * A circle queue is headed by a pair of pointers, one to the head of the
79  * list and the other to the tail of the list. The elements are doubly
80  * linked so that an arbitrary element can be removed without a need to
81  * traverse the list. New elements can be added to the list before or after
82  * an existing element, at the head of the list, or at the end of the list.
83  * A circle queue may be traversed in either direction, but has a more
84  * complex end of list detection.
85  *
86  * For details on the use of these macros, see the queue(3) manual page.
87  */
88 
89 /*
90  * Singly-linked List definitions.
91  */
92 #define SLIST_HEAD(name, type)						\
93 struct name {								\
94 	struct type *slh_first;	/* first element */			\
95 }
96 
97 #define	SLIST_HEAD_INITIALIZER(head)					\
98 	{ NULL }
99 
100 #define SLIST_ENTRY(type)						\
101 struct {								\
102 	struct type *sle_next;	/* next element */			\
103 }
104 
105 /*
106  * Singly-linked List access methods.
107  */
108 #define	SLIST_FIRST(head)	((head)->slh_first)
109 #define	SLIST_END(head)		NULL
110 #define	SLIST_EMPTY(head)	(SLIST_FIRST(head) == SLIST_END(head))
111 #define	SLIST_NEXT(elm, field)	((elm)->field.sle_next)
112 
113 #define	SLIST_FOREACH(var, head, field)					\
114 	for((var) = SLIST_FIRST(head);					\
115 	    (var) != SLIST_END(head);					\
116 	    (var) = SLIST_NEXT(var, field))
117 
118 /*
119  * Singly-linked List functions.
120  */
121 #define	SLIST_INIT(head) {						\
122 	SLIST_FIRST(head) = SLIST_END(head);				\
123 }
124 
125 #define	SLIST_INSERT_AFTER(slistelm, elm, field) do {			\
126 	(elm)->field.sle_next = (slistelm)->field.sle_next;		\
127 	(slistelm)->field.sle_next = (elm);				\
128 } while (0)
129 
130 #define	SLIST_INSERT_HEAD(head, elm, field) do {			\
131 	(elm)->field.sle_next = (head)->slh_first;			\
132 	(head)->slh_first = (elm);					\
133 } while (0)
134 
135 #define	SLIST_REMOVE_HEAD(head, field) do {				\
136 	(head)->slh_first = (head)->slh_first->field.sle_next;		\
137 } while (0)
138 
139 /*
140  * List definitions.
141  */
142 #define LIST_HEAD(name, type)						\
143 struct name {								\
144 	struct type *lh_first;	/* first element */			\
145 }
146 
147 #define LIST_HEAD_INITIALIZER(head)					\
148 	{ NULL }
149 
150 #define LIST_ENTRY(type)						\
151 struct {								\
152 	struct type *le_next;	/* next element */			\
153 	struct type **le_prev;	/* address of previous next element */	\
154 }
155 
156 /*
157  * List access methods
158  */
159 #define	LIST_FIRST(head)		((head)->lh_first)
160 #define	LIST_END(head)			NULL
161 #define	LIST_EMPTY(head)		(LIST_FIRST(head) == LIST_END(head))
162 #define	LIST_NEXT(elm, field)		((elm)->field.le_next)
163 
164 #define LIST_FOREACH(var, head, field)					\
165 	for((var) = LIST_FIRST(head);					\
166 	    (var)!= LIST_END(head);					\
167 	    (var) = LIST_NEXT(var, field))
168 
169 /*
170  * List functions.
171  */
172 #define	LIST_INIT(head) do {						\
173 	LIST_FIRST(head) = LIST_END(head);				\
174 } while (0)
175 
176 #define LIST_INSERT_AFTER(listelm, elm, field) do {			\
177 	if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)	\
178 		(listelm)->field.le_next->field.le_prev =		\
179 		    &(elm)->field.le_next;				\
180 	(listelm)->field.le_next = (elm);				\
181 	(elm)->field.le_prev = &(listelm)->field.le_next;		\
182 } while (0)
183 
184 #define	LIST_INSERT_BEFORE(listelm, elm, field) do {			\
185 	(elm)->field.le_prev = (listelm)->field.le_prev;		\
186 	(elm)->field.le_next = (listelm);				\
187 	*(listelm)->field.le_prev = (elm);				\
188 	(listelm)->field.le_prev = &(elm)->field.le_next;		\
189 } while (0)
190 
191 #define LIST_INSERT_HEAD(head, elm, field) do {				\
192 	if (((elm)->field.le_next = (head)->lh_first) != NULL)		\
193 		(head)->lh_first->field.le_prev = &(elm)->field.le_next;\
194 	(head)->lh_first = (elm);					\
195 	(elm)->field.le_prev = &(head)->lh_first;			\
196 } while (0)
197 
198 #define LIST_REMOVE(elm, field) do {					\
199 	if ((elm)->field.le_next != NULL)				\
200 		(elm)->field.le_next->field.le_prev =			\
201 		    (elm)->field.le_prev;				\
202 	*(elm)->field.le_prev = (elm)->field.le_next;			\
203 } while (0)
204 
205 #define LIST_REPLACE(elm, elm2, field) do {				\
206 	if (((elm2)->field.le_next = (elm)->field.le_next) != NULL)	\
207 		(elm2)->field.le_next->field.le_prev =			\
208 		    &(elm2)->field.le_next;				\
209 	(elm2)->field.le_prev = (elm)->field.le_prev;			\
210 	*(elm2)->field.le_prev = (elm2);				\
211 } while (0)
212 
213 /*
214  * Simple queue definitions.
215  */
216 #define SIMPLEQ_HEAD(name, type)					\
217 struct name {								\
218 	struct type *sqh_first;	/* first element */			\
219 	struct type **sqh_last;	/* addr of last next element */		\
220 }
221 
222 #define SIMPLEQ_HEAD_INITIALIZER(head)					\
223 	{ NULL, &(head).sqh_first }
224 
225 #define SIMPLEQ_ENTRY(type)						\
226 struct {								\
227 	struct type *sqe_next;	/* next element */			\
228 }
229 
230 /*
231  * Simple queue access methods.
232  */
233 #define	SIMPLEQ_FIRST(head)	    ((head)->sqh_first)
234 #define	SIMPLEQ_END(head)	    NULL
235 #define	SIMPLEQ_EMPTY(head)	    (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
236 #define	SIMPLEQ_NEXT(elm, field)    ((elm)->field.sqe_next)
237 
238 #define SIMPLEQ_FOREACH(var, head, field)				\
239 	for((var) = SIMPLEQ_FIRST(head);				\
240 	    (var) != SIMPLEQ_END(head);					\
241 	    (var) = SIMPLEQ_NEXT(var, field))
242 
243 /*
244  * Simple queue functions.
245  */
246 #define	SIMPLEQ_INIT(head) do {						\
247 	(head)->sqh_first = NULL;					\
248 	(head)->sqh_last = &(head)->sqh_first;				\
249 } while (0)
250 
251 #define SIMPLEQ_INSERT_HEAD(head, elm, field) do {			\
252 	if (((elm)->field.sqe_next = (head)->sqh_first) == NULL)	\
253 		(head)->sqh_last = &(elm)->field.sqe_next;		\
254 	(head)->sqh_first = (elm);					\
255 } while (0)
256 
257 #define SIMPLEQ_INSERT_TAIL(head, elm, field) do {			\
258 	(elm)->field.sqe_next = NULL;					\
259 	*(head)->sqh_last = (elm);					\
260 	(head)->sqh_last = &(elm)->field.sqe_next;			\
261 } while (0)
262 
263 #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
264 	if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
265 		(head)->sqh_last = &(elm)->field.sqe_next;		\
266 	(listelm)->field.sqe_next = (elm);				\
267 } while (0)
268 
269 #define SIMPLEQ_REMOVE_HEAD(head, elm, field) do {			\
270 	if (((head)->sqh_first = (elm)->field.sqe_next) == NULL)	\
271 		(head)->sqh_last = &(head)->sqh_first;			\
272 } while (0)
273 
274 /*
275  * Tail queue definitions.
276  */
277 #define TAILQ_HEAD(name, type)						\
278 struct name {								\
279 	struct type *tqh_first;	/* first element */			\
280 	struct type **tqh_last;	/* addr of last next element */		\
281 }
282 
283 #define TAILQ_HEAD_INITIALIZER(head)					\
284 	{ NULL, &(head).tqh_first }
285 
286 #define TAILQ_ENTRY(type)						\
287 struct {								\
288 	struct type *tqe_next;	/* next element */			\
289 	struct type **tqe_prev;	/* address of previous next element */	\
290 }
291 
292 /*
293  * tail queue access methods
294  */
295 #define	TAILQ_FIRST(head)		((head)->tqh_first)
296 #define	TAILQ_END(head)			NULL
297 #define	TAILQ_NEXT(elm, field)		((elm)->field.tqe_next)
298 #define TAILQ_LAST(head, headname)					\
299 	(*(((struct headname *)((head)->tqh_last))->tqh_last))
300 /* XXX */
301 #define TAILQ_PREV(elm, headname, field)				\
302 	(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
303 #define	TAILQ_EMPTY(head)						\
304 	(TAILQ_FIRST(head) == TAILQ_END(head))
305 
306 #define TAILQ_FOREACH(var, head, field)					\
307 	for((var) = TAILQ_FIRST(head);					\
308 	    (var) != TAILQ_END(head);					\
309 	    (var) = TAILQ_NEXT(var, field))
310 
311 #define TAILQ_FOREACH_REVERSE(var, head, field)				\
312 	for((var) = TAILQ_LAST(head);					\
313 	    (var) != TAILQ_END(head);					\
314 	    (var) = TAILQ_PREV(var, field))
315 
316 /*
317  * Tail queue functions.
318  */
319 #define	TAILQ_INIT(head) do {						\
320 	(head)->tqh_first = NULL;					\
321 	(head)->tqh_last = &(head)->tqh_first;				\
322 } while (0)
323 
324 #define TAILQ_INSERT_HEAD(head, elm, field) do {			\
325 	if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)	\
326 		(head)->tqh_first->field.tqe_prev =			\
327 		    &(elm)->field.tqe_next;				\
328 	else								\
329 		(head)->tqh_last = &(elm)->field.tqe_next;		\
330 	(head)->tqh_first = (elm);					\
331 	(elm)->field.tqe_prev = &(head)->tqh_first;			\
332 } while (0)
333 
334 #define TAILQ_INSERT_TAIL(head, elm, field) do {			\
335 	(elm)->field.tqe_next = NULL;					\
336 	(elm)->field.tqe_prev = (head)->tqh_last;			\
337 	*(head)->tqh_last = (elm);					\
338 	(head)->tqh_last = &(elm)->field.tqe_next;			\
339 } while (0)
340 
341 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do {		\
342 	if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
343 		(elm)->field.tqe_next->field.tqe_prev =			\
344 		    &(elm)->field.tqe_next;				\
345 	else								\
346 		(head)->tqh_last = &(elm)->field.tqe_next;		\
347 	(listelm)->field.tqe_next = (elm);				\
348 	(elm)->field.tqe_prev = &(listelm)->field.tqe_next;		\
349 } while (0)
350 
351 #define	TAILQ_INSERT_BEFORE(listelm, elm, field) do {			\
352 	(elm)->field.tqe_prev = (listelm)->field.tqe_prev;		\
353 	(elm)->field.tqe_next = (listelm);				\
354 	*(listelm)->field.tqe_prev = (elm);				\
355 	(listelm)->field.tqe_prev = &(elm)->field.tqe_next;		\
356 } while (0)
357 
358 #define TAILQ_REMOVE(head, elm, field) do {				\
359 	if (((elm)->field.tqe_next) != NULL)				\
360 		(elm)->field.tqe_next->field.tqe_prev =			\
361 		    (elm)->field.tqe_prev;				\
362 	else								\
363 		(head)->tqh_last = (elm)->field.tqe_prev;		\
364 	*(elm)->field.tqe_prev = (elm)->field.tqe_next;			\
365 } while (0)
366 
367 #define TAILQ_REPLACE(head, elm, elm2, field) do {			\
368 	if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL)	\
369 		(elm2)->field.tqe_next->field.tqe_prev =		\
370 		    &(elm2)->field.tqe_next;				\
371 	else								\
372 		(head)->tqh_last = &(elm2)->field.tqe_next;		\
373 	(elm2)->field.tqe_prev = (elm)->field.tqe_prev;			\
374 	*(elm2)->field.tqe_prev = (elm2);				\
375 } while (0)
376 
377 /*
378  * Circular queue definitions.
379  */
380 #define CIRCLEQ_HEAD(name, type)					\
381 struct name {								\
382 	struct type *cqh_first;		/* first element */		\
383 	struct type *cqh_last;		/* last element */		\
384 }
385 
386 #define CIRCLEQ_HEAD_INITIALIZER(head)					\
387 	{ CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
388 
389 #define CIRCLEQ_ENTRY(type)						\
390 struct {								\
391 	struct type *cqe_next;		/* next element */		\
392 	struct type *cqe_prev;		/* previous element */		\
393 }
394 
395 /*
396  * Circular queue access methods
397  */
398 #define	CIRCLEQ_FIRST(head)		((head)->cqh_first)
399 #define	CIRCLEQ_LAST(head)		((head)->cqh_last)
400 #define	CIRCLEQ_END(head)		((void *)(head))
401 #define	CIRCLEQ_NEXT(elm, field)	((elm)->field.cqe_next)
402 #define	CIRCLEQ_PREV(elm, field)	((elm)->field.cqe_prev)
403 #define	CIRCLEQ_EMPTY(head)						\
404 	(CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
405 
406 #define CIRCLEQ_FOREACH(var, head, field)				\
407 	for((var) = CIRCLEQ_FIRST(head);				\
408 	    (var) != CIRCLEQ_END(head);					\
409 	    (var) = CIRCLEQ_NEXT(var, field))
410 
411 #define CIRCLEQ_FOREACH_REVERSE(var, head, field)			\
412 	for((var) = CIRCLEQ_LAST(head);					\
413 	    (var) != CIRCLEQ_END(head);					\
414 	    (var) = CIRCLEQ_PREV(var, field))
415 
416 /*
417  * Circular queue functions.
418  */
419 #define	CIRCLEQ_INIT(head) do {						\
420 	(head)->cqh_first = CIRCLEQ_END(head);				\
421 	(head)->cqh_last = CIRCLEQ_END(head);				\
422 } while (0)
423 
424 #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
425 	(elm)->field.cqe_next = (listelm)->field.cqe_next;		\
426 	(elm)->field.cqe_prev = (listelm);				\
427 	if ((listelm)->field.cqe_next == CIRCLEQ_END(head))		\
428 		(head)->cqh_last = (elm);				\
429 	else								\
430 		(listelm)->field.cqe_next->field.cqe_prev = (elm);	\
431 	(listelm)->field.cqe_next = (elm);				\
432 } while (0)
433 
434 #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {		\
435 	(elm)->field.cqe_next = (listelm);				\
436 	(elm)->field.cqe_prev = (listelm)->field.cqe_prev;		\
437 	if ((listelm)->field.cqe_prev == CIRCLEQ_END(head))		\
438 		(head)->cqh_first = (elm);				\
439 	else								\
440 		(listelm)->field.cqe_prev->field.cqe_next = (elm);	\
441 	(listelm)->field.cqe_prev = (elm);				\
442 } while (0)
443 
444 #define CIRCLEQ_INSERT_HEAD(head, elm, field) do {			\
445 	(elm)->field.cqe_next = (head)->cqh_first;			\
446 	(elm)->field.cqe_prev = CIRCLEQ_END(head);			\
447 	if ((head)->cqh_last == CIRCLEQ_END(head))			\
448 		(head)->cqh_last = (elm);				\
449 	else								\
450 		(head)->cqh_first->field.cqe_prev = (elm);		\
451 	(head)->cqh_first = (elm);					\
452 } while (0)
453 
454 #define CIRCLEQ_INSERT_TAIL(head, elm, field) do {			\
455 	(elm)->field.cqe_next = CIRCLEQ_END(head);			\
456 	(elm)->field.cqe_prev = (head)->cqh_last;			\
457 	if ((head)->cqh_first == CIRCLEQ_END(head))			\
458 		(head)->cqh_first = (elm);				\
459 	else								\
460 		(head)->cqh_last->field.cqe_next = (elm);		\
461 	(head)->cqh_last = (elm);					\
462 } while (0)
463 
464 #define	CIRCLEQ_REMOVE(head, elm, field) do {				\
465 	if ((elm)->field.cqe_next == CIRCLEQ_END(head))			\
466 		(head)->cqh_last = (elm)->field.cqe_prev;		\
467 	else								\
468 		(elm)->field.cqe_next->field.cqe_prev =			\
469 		    (elm)->field.cqe_prev;				\
470 	if ((elm)->field.cqe_prev == CIRCLEQ_END(head))			\
471 		(head)->cqh_first = (elm)->field.cqe_next;		\
472 	else								\
473 		(elm)->field.cqe_prev->field.cqe_next =			\
474 		    (elm)->field.cqe_next;				\
475 } while (0)
476 
477 #define CIRCLEQ_REPLACE(head, elm, elm2, field) do {			\
478 	if (((elm2)->field.cqe_next = (elm)->field.cqe_next) ==		\
479 	    CIRCLEQ_END(head))						\
480 		(head).cqh_last = (elm2);				\
481 	else								\
482 		(elm2)->field.cqe_next->field.cqe_prev = (elm2);	\
483 	if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) ==		\
484 	    CIRCLEQ_END(head))						\
485 		(head).cqh_first = (elm2);				\
486 	else								\
487 		(elm2)->field.cqe_prev->field.cqe_next = (elm2);	\
488 } while (0)
489 
490 #endif	/* !_SYS_QUEUE_H_ */
491