1 /*
2  * xxHash - Extremely Fast Hash algorithm
3  * Header File
4  * Copyright (C) 2012-2020 Yann Collet
5  *
6  * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are
10  * met:
11  *
12  *    * Redistributions of source code must retain the above copyright
13  *      notice, this list of conditions and the following disclaimer.
14  *    * Redistributions in binary form must reproduce the above
15  *      copyright notice, this list of conditions and the following disclaimer
16  *      in the documentation and/or other materials provided with the
17  *      distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  * You can contact the author at:
32  *   - xxHash homepage: https://www.xxhash.com
33  *   - xxHash source repository: https://github.com/Cyan4973/xxHash
34  */
35 /*!
36  * @mainpage xxHash
37  *
38  * @file xxhash.h
39  * xxHash prototypes and implementation
40  */
41 /* TODO: update */
42 /* Notice extracted from xxHash homepage:
43 
44 xxHash is an extremely fast hash algorithm, running at RAM speed limits.
45 It also successfully passes all tests from the SMHasher suite.
46 
47 Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz)
48 
49 Name            Speed       Q.Score   Author
50 xxHash          5.4 GB/s     10
51 CrapWow         3.2 GB/s      2       Andrew
52 MurmurHash 3a   2.7 GB/s     10       Austin Appleby
53 SpookyHash      2.0 GB/s     10       Bob Jenkins
54 SBox            1.4 GB/s      9       Bret Mulvey
55 Lookup3         1.2 GB/s      9       Bob Jenkins
56 SuperFastHash   1.2 GB/s      1       Paul Hsieh
57 CityHash64      1.05 GB/s    10       Pike & Alakuijala
58 FNV             0.55 GB/s     5       Fowler, Noll, Vo
59 CRC32           0.43 GB/s     9
60 MD5-32          0.33 GB/s    10       Ronald L. Rivest
61 SHA1-32         0.28 GB/s    10
62 
63 Q.Score is a measure of quality of the hash function.
64 It depends on successfully passing SMHasher test set.
65 10 is a perfect score.
66 
67 Note: SMHasher's CRC32 implementation is not the fastest one.
68 Other speed-oriented implementations can be faster,
69 especially in combination with PCLMUL instruction:
70 https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html?showComment=1552696407071#c3490092340461170735
71 
72 A 64-bit version, named XXH64, is available since r35.
73 It offers much better speed, but for 64-bit applications only.
74 Name     Speed on 64 bits    Speed on 32 bits
75 XXH64       13.8 GB/s            1.9 GB/s
76 XXH32        6.8 GB/s            6.0 GB/s
77 */
78 
79 #if defined (__cplusplus)
80 extern "C" {
81 #endif
82 
83 /* ****************************
84  *  INLINE mode
85  ******************************/
86 /*!
87  * XXH_INLINE_ALL (and XXH_PRIVATE_API)
88  * Use these build macros to inline xxhash into the target unit.
89  * Inlining improves performance on small inputs, especially when the length is
90  * expressed as a compile-time constant:
91  *
92  *      https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html
93  *
94  * It also keeps xxHash symbols private to the unit, so they are not exported.
95  *
96  * Usage:
97  *     #define XXH_INLINE_ALL
98  *     #include "xxhash.h"
99  *
100  * Do not compile and link xxhash.o as a separate object, as it is not useful.
101  */
102 #if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \
103     && !defined(XXH_INLINE_ALL_31684351384)
104    /* this section should be traversed only once */
105 #  define XXH_INLINE_ALL_31684351384
106    /* give access to the advanced API, required to compile implementations */
107 #  undef XXH_STATIC_LINKING_ONLY   /* avoid macro redef */
108 #  define XXH_STATIC_LINKING_ONLY
109    /* make all functions private */
110 #  undef XXH_PUBLIC_API
111 #  if defined(__GNUC__)
112 #    define XXH_PUBLIC_API static __inline __attribute__((unused))
113 #  elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
114 #    define XXH_PUBLIC_API static inline
115 #  elif defined(_MSC_VER)
116 #    define XXH_PUBLIC_API static __inline
117 #  else
118      /* note: this version may generate warnings for unused static functions */
119 #    define XXH_PUBLIC_API static
120 #  endif
121 
122    /*
123     * This part deals with the special case where a unit wants to inline xxHash,
124     * but "xxhash.h" has previously been included without XXH_INLINE_ALL, such
125     * as part of some previously included *.h header file.
126     * Without further action, the new include would just be ignored,
127     * and functions would effectively _not_ be inlined (silent failure).
128     * The following macros solve this situation by prefixing all inlined names,
129     * avoiding naming collision with previous inclusions.
130     */
131 #  ifdef XXH_NAMESPACE
132 #    error "XXH_INLINE_ALL with XXH_NAMESPACE is not supported"
133      /*
134       * Note: Alternative: #undef all symbols (it's a pretty large list).
135       * Without #error: it compiles, but functions are actually not inlined.
136       */
137 #  endif
138 #  define XXH_NAMESPACE XXH_INLINE_
139    /*
140     * Some identifiers (enums, type names) are not symbols, but they must
141     * still be renamed to avoid redeclaration.
142     * Alternative solution: do not redeclare them.
143     * However, this requires some #ifdefs, and is a more dispersed action.
144     * Meanwhile, renaming can be achieved in a single block
145     */
146 #  define XXH_IPREF(Id)   XXH_INLINE_ ## Id
147 #  define XXH_OK XXH_IPREF(XXH_OK)
148 #  define XXH_ERROR XXH_IPREF(XXH_ERROR)
149 #  define XXH_errorcode XXH_IPREF(XXH_errorcode)
150 #  define XXH32_canonical_t  XXH_IPREF(XXH32_canonical_t)
151 #  define XXH64_canonical_t  XXH_IPREF(XXH64_canonical_t)
152 #  define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t)
153 #  define XXH32_state_s XXH_IPREF(XXH32_state_s)
154 #  define XXH32_state_t XXH_IPREF(XXH32_state_t)
155 #  define XXH64_state_s XXH_IPREF(XXH64_state_s)
156 #  define XXH64_state_t XXH_IPREF(XXH64_state_t)
157 #  define XXH3_state_s  XXH_IPREF(XXH3_state_s)
158 #  define XXH3_state_t  XXH_IPREF(XXH3_state_t)
159 #  define XXH128_hash_t XXH_IPREF(XXH128_hash_t)
160    /* Ensure the header is parsed again, even if it was previously included */
161 #  undef XXHASH_H_5627135585666179
162 #  undef XXHASH_H_STATIC_13879238742
163 #endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */
164 
165 
166 
167 /* ****************************************************************
168  *  Stable API
169  *****************************************************************/
170 #ifndef XXHASH_H_5627135585666179
171 #define XXHASH_H_5627135585666179 1
172 
173 
174 /*!
175  * @defgroup public Public API
176  * Contains details on the public xxHash functions.
177  * @{
178  */
179 /* specific declaration modes for Windows */
180 #if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API)
181 #  if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
182 #    ifdef XXH_EXPORT
183 #      define XXH_PUBLIC_API __declspec(dllexport)
184 #    elif XXH_IMPORT
185 #      define XXH_PUBLIC_API __declspec(dllimport)
186 #    endif
187 #  else
188 #    define XXH_PUBLIC_API   /* do nothing */
189 #  endif
190 #endif
191 
192 #ifdef XXH_DOXYGEN
193 /*!
194  * @brief Emulate a namespace by transparently prefixing all symbols.
195  *
196  * If you want to include _and expose_ xxHash functions from within your own
197  * library, but also want to avoid symbol collisions with other libraries which
198  * may also include xxHash, you can use XXH_NAMESPACE to automatically prefix
199  * any public symbol from xxhash library with the value of XXH_NAMESPACE
200  * (therefore, avoid empty or numeric values).
201  *
202  * Note that no change is required within the calling program as long as it
203  * includes `xxhash.h`: Regular symbol names will be automatically translated
204  * by this header.
205  */
206 #  define XXH_NAMESPACE /* YOUR NAME HERE */
207 #  undef XXH_NAMESPACE
208 #endif
209 
210 #ifdef XXH_NAMESPACE
211 #  define XXH_CAT(A,B) A##B
212 #  define XXH_NAME2(A,B) XXH_CAT(A,B)
213 #  define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber)
214 /* XXH32 */
215 #  define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32)
216 #  define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState)
217 #  define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState)
218 #  define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset)
219 #  define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update)
220 #  define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest)
221 #  define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState)
222 #  define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash)
223 #  define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical)
224 /* XXH64 */
225 #  define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64)
226 #  define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState)
227 #  define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState)
228 #  define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset)
229 #  define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update)
230 #  define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest)
231 #  define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState)
232 #  define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash)
233 #  define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical)
234 /* XXH3_64bits */
235 #  define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits)
236 #  define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret)
237 #  define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed)
238 #  define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState)
239 #  define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState)
240 #  define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState)
241 #  define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset)
242 #  define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed)
243 #  define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret)
244 #  define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update)
245 #  define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest)
246 #  define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret)
247 /* XXH3_128bits */
248 #  define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128)
249 #  define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits)
250 #  define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed)
251 #  define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret)
252 #  define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset)
253 #  define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed)
254 #  define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret)
255 #  define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update)
256 #  define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest)
257 #  define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual)
258 #  define XXH128_cmp     XXH_NAME2(XXH_NAMESPACE, XXH128_cmp)
259 #  define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash)
260 #  define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical)
261 #endif
262 
263 
264 /* *************************************
265 *  Version
266 ***************************************/
267 #define XXH_VERSION_MAJOR    0
268 #define XXH_VERSION_MINOR    8
269 #define XXH_VERSION_RELEASE  0
270 #define XXH_VERSION_NUMBER  (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE)
271 
272 /*!
273  * @brief Obtains the xxHash version.
274  *
275  * This is only useful when xxHash is compiled as a shared library, as it is
276  * independent of the version defined in the header.
277  *
278  * @return `XXH_VERSION_NUMBER` as of when the function was compiled.
279  */
280 XXH_PUBLIC_API unsigned XXH_versionNumber (void);
281 
282 
283 /* ****************************
284 *  Definitions
285 ******************************/
286 #include <stddef.h>   /* size_t */
287 typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode;
288 
289 
290 /*-**********************************************************************
291 *  32-bit hash
292 ************************************************************************/
293 #if defined(XXH_DOXYGEN) /* Don't show <stdint.h> include */
294 /*!
295  * @brief An unsigned 32-bit integer.
296  *
297  * Not necessarily defined to `uint32_t` but functionally equivalent.
298  */
299 typedef uint32_t XXH32_hash_t;
300 #elif !defined (__VMS) \
301   && (defined (__cplusplus) \
302   || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
303 #   include <stdint.h>
304     typedef uint32_t XXH32_hash_t;
305 #else
306 #   include <limits.h>
307 #   if UINT_MAX == 0xFFFFFFFFUL
308       typedef unsigned int XXH32_hash_t;
309 #   else
310 #     if ULONG_MAX == 0xFFFFFFFFUL
311         typedef unsigned long XXH32_hash_t;
312 #     else
313 #       error "unsupported platform: need a 32-bit type"
314 #     endif
315 #   endif
316 #endif
317 
318 /*!
319  * @}
320  *
321  * @defgroup xxh32_family XXH32 family
322  * @ingroup public
323  * Contains functions used in the classic 32-bit xxHash algorithm.
324  *
325  * @note
326  *   XXH32 is considered rather weak by today's standards.
327  *   The @ref xxh3_family provides competitive speed for both 32-bit and 64-bit
328  *   systems, and offers true 64/128 bit hash results. It provides a superior
329  *   level of dispersion, and greatly reduces the risks of collisions.
330  *
331  * @see @ref xxh64_family, @ref xxh3_family : Other xxHash families
332  * @see @ref xxh32_impl for implementation details
333  * @{
334  */
335 
336 /*!
337  * @brief Calculates the 32-bit hash of @p input using xxHash32.
338  *
339  * Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark): 5.4 GB/s
340  *
341  * @param input The block of data to be hashed, at least @p length bytes in size.
342  * @param length The length of @p input, in bytes.
343  * @param seed The 32-bit seed to alter the hash's output predictably.
344  *
345  * @pre
346  *   The memory between @p input and @p input + @p length must be valid,
347  *   readable, contiguous memory. However, if @p length is `0`, @p input may be
348  *   `NULL`. In C++, this also must be *TriviallyCopyable*.
349  *
350  * @return The calculated 32-bit hash value.
351  *
352  * @see
353  *    XXH64(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128():
354  *    Direct equivalents for the other variants of xxHash.
355  * @see
356  *    XXH32_createState(), XXH32_update(), XXH32_digest(): Streaming version.
357  */
358 XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed);
359 
360 /*!
361  * Streaming functions generate the xxHash value from an incremental input.
362  * This method is slower than single-call functions, due to state management.
363  * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized.
364  *
365  * An XXH state must first be allocated using `XXH*_createState()`.
366  *
367  * Start a new hash by initializing the state with a seed using `XXH*_reset()`.
368  *
369  * Then, feed the hash state by calling `XXH*_update()` as many times as necessary.
370  *
371  * The function returns an error code, with 0 meaning OK, and any other value
372  * meaning there is an error.
373  *
374  * Finally, a hash value can be produced anytime, by using `XXH*_digest()`.
375  * This function returns the nn-bits hash as an int or long long.
376  *
377  * It's still possible to continue inserting input into the hash state after a
378  * digest, and generate new hash values later on by invoking `XXH*_digest()`.
379  *
380  * When done, release the state using `XXH*_freeState()`.
381  *
382  * Example code for incrementally hashing a file:
383  * @code{.c}
384  *    #include <stdio.h>
385  *    #include <xxhash.h>
386  *    #define BUFFER_SIZE 256
387  *
388  *    // Note: XXH64 and XXH3 use the same interface.
389  *    XXH32_hash_t
390  *    hashFile(FILE* stream)
391  *    {
392  *        XXH32_state_t* state;
393  *        unsigned char buf[BUFFER_SIZE];
394  *        size_t amt;
395  *        XXH32_hash_t hash;
396  *
397  *        state = XXH32_createState();       // Create a state
398  *        assert(state != NULL);             // Error check here
399  *        XXH32_reset(state, 0xbaad5eed);    // Reset state with our seed
400  *        while ((amt = fread(buf, 1, sizeof(buf), stream)) != 0) {
401  *            XXH32_update(state, buf, amt); // Hash the file in chunks
402  *        }
403  *        hash = XXH32_digest(state);        // Finalize the hash
404  *        XXH32_freeState(state);            // Clean up
405  *        return hash;
406  *    }
407  * @endcode
408  */
409 
410 /*!
411  * @typedef struct XXH32_state_s XXH32_state_t
412  * @brief The opaque state struct for the XXH32 streaming API.
413  *
414  * @see XXH32_state_s for details.
415  */
416 typedef struct XXH32_state_s XXH32_state_t;
417 
418 /*!
419  * @brief Allocates an @ref XXH32_state_t.
420  *
421  * Must be freed with XXH32_freeState().
422  * @return An allocated XXH32_state_t on success, `NULL` on failure.
423  */
424 XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void);
425 /*!
426  * @brief Frees an @ref XXH32_state_t.
427  *
428  * Must be allocated with XXH32_createState().
429  * @param statePtr A pointer to an @ref XXH32_state_t allocated with @ref XXH32_createState().
430  * @return XXH_OK.
431  */
432 XXH_PUBLIC_API XXH_errorcode  XXH32_freeState(XXH32_state_t* statePtr);
433 /*!
434  * @brief Copies one @ref XXH32_state_t to another.
435  *
436  * @param dst_state The state to copy to.
437  * @param src_state The state to copy from.
438  * @pre
439  *   @p dst_state and @p src_state must not be `NULL` and must not overlap.
440  */
441 XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state);
442 
443 /*!
444  * @brief Resets an @ref XXH32_state_t to begin a new hash.
445  *
446  * This function resets and seeds a state. Call it before @ref XXH32_update().
447  *
448  * @param statePtr The state struct to reset.
449  * @param seed The 32-bit seed to alter the hash result predictably.
450  *
451  * @pre
452  *   @p statePtr must not be `NULL`.
453  *
454  * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
455  */
456 XXH_PUBLIC_API XXH_errorcode XXH32_reset  (XXH32_state_t* statePtr, XXH32_hash_t seed);
457 
458 /*!
459  * @brief Consumes a block of @p input to an @ref XXH32_state_t.
460  *
461  * Call this to incrementally consume blocks of data.
462  *
463  * @param statePtr The state struct to update.
464  * @param input The block of data to be hashed, at least @p length bytes in size.
465  * @param length The length of @p input, in bytes.
466  *
467  * @pre
468  *   @p statePtr must not be `NULL`.
469  * @pre
470  *   The memory between @p input and @p input + @p length must be valid,
471  *   readable, contiguous memory. However, if @p length is `0`, @p input may be
472  *   `NULL`. In C++, this also must be *TriviallyCopyable*.
473  *
474  * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
475  */
476 XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length);
477 
478 /*!
479  * @brief Returns the calculated hash value from an @ref XXH32_state_t.
480  *
481  * @note
482  *   Calling XXH32_digest() will not affect @p statePtr, so you can update,
483  *   digest, and update again.
484  *
485  * @param statePtr The state struct to calculate the hash from.
486  *
487  * @pre
488  *  @p statePtr must not be `NULL`.
489  *
490  * @return The calculated xxHash32 value from that state.
491  */
492 XXH_PUBLIC_API XXH32_hash_t  XXH32_digest (const XXH32_state_t* statePtr);
493 
494 /*******   Canonical representation   *******/
495 
496 /*
497  * The default return values from XXH functions are unsigned 32 and 64 bit
498  * integers.
499  * This the simplest and fastest format for further post-processing.
500  *
501  * However, this leaves open the question of what is the order on the byte level,
502  * since little and big endian conventions will store the same number differently.
503  *
504  * The canonical representation settles this issue by mandating big-endian
505  * convention, the same convention as human-readable numbers (large digits first).
506  *
507  * When writing hash values to storage, sending them over a network, or printing
508  * them, it's highly recommended to use the canonical representation to ensure
509  * portability across a wider range of systems, present and future.
510  *
511  * The following functions allow transformation of hash values to and from
512  * canonical format.
513  */
514 
515 /*!
516  * @brief Canonical (big endian) representation of @ref XXH32_hash_t.
517  */
518 typedef struct {
519     unsigned char digest[4]; /*!< Hash bytes, big endian */
520 } XXH32_canonical_t;
521 
522 /*!
523  * @brief Converts an @ref XXH32_hash_t to a big endian @ref XXH32_canonical_t.
524  *
525  * @param dst The @ref XXH32_canonical_t pointer to be stored to.
526  * @param hash The @ref XXH32_hash_t to be converted.
527  *
528  * @pre
529  *   @p dst must not be `NULL`.
530  */
531 XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash);
532 
533 /*!
534  * @brief Converts an @ref XXH32_canonical_t to a native @ref XXH32_hash_t.
535  *
536  * @param src The @ref XXH32_canonical_t to convert.
537  *
538  * @pre
539  *   @p src must not be `NULL`.
540  *
541  * @return The converted hash.
542  */
543 XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);
544 
545 
546 /*!
547  * @}
548  * @ingroup public
549  * @{
550  */
551 
552 #ifndef XXH_NO_LONG_LONG
553 /*-**********************************************************************
554 *  64-bit hash
555 ************************************************************************/
556 #if defined(XXH_DOXYGEN) /* don't include <stdint.h> */
557 /*!
558  * @brief An unsigned 64-bit integer.
559  *
560  * Not necessarily defined to `uint64_t` but functionally equivalent.
561  */
562 typedef uint64_t XXH64_hash_t;
563 #elif !defined (__VMS) \
564   && (defined (__cplusplus) \
565   || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
566 #  include <stdint.h>
567    typedef uint64_t XXH64_hash_t;
568 #else
569 #  include <limits.h>
570 #  if defined(__LP64__) && ULONG_MAX == 0xFFFFFFFFFFFFFFFFULL
571      /* LP64 ABI says uint64_t is unsigned long */
572      typedef unsigned long XXH64_hash_t;
573 #  else
574      /* the following type must have a width of 64-bit */
575      typedef unsigned long long XXH64_hash_t;
576 #  endif
577 #endif
578 
579 /*!
580  * @}
581  *
582  * @defgroup xxh64_family XXH64 family
583  * @ingroup public
584  * @{
585  * Contains functions used in the classic 64-bit xxHash algorithm.
586  *
587  * @note
588  *   XXH3 provides competitive speed for both 32-bit and 64-bit systems,
589  *   and offers true 64/128 bit hash results. It provides a superior level of
590  *   dispersion, and greatly reduces the risks of collisions.
591  */
592 
593 
594 /*!
595  * @brief Calculates the 64-bit hash of @p input using xxHash64.
596  *
597  * This function usually runs faster on 64-bit systems, but slower on 32-bit
598  * systems (see benchmark).
599  *
600  * @param input The block of data to be hashed, at least @p length bytes in size.
601  * @param length The length of @p input, in bytes.
602  * @param seed The 64-bit seed to alter the hash's output predictably.
603  *
604  * @pre
605  *   The memory between @p input and @p input + @p length must be valid,
606  *   readable, contiguous memory. However, if @p length is `0`, @p input may be
607  *   `NULL`. In C++, this also must be *TriviallyCopyable*.
608  *
609  * @return The calculated 64-bit hash.
610  *
611  * @see
612  *    XXH32(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128():
613  *    Direct equivalents for the other variants of xxHash.
614  * @see
615  *    XXH64_createState(), XXH64_update(), XXH64_digest(): Streaming version.
616  */
617 XXH_PUBLIC_API XXH64_hash_t XXH64(const void* input, size_t length, XXH64_hash_t seed);
618 
619 /*******   Streaming   *******/
620 /*!
621  * @brief The opaque state struct for the XXH64 streaming API.
622  *
623  * @see XXH64_state_s for details.
624  */
625 typedef struct XXH64_state_s XXH64_state_t;   /* incomplete type */
626 XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void);
627 XXH_PUBLIC_API XXH_errorcode  XXH64_freeState(XXH64_state_t* statePtr);
628 XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dst_state, const XXH64_state_t* src_state);
629 
630 XXH_PUBLIC_API XXH_errorcode XXH64_reset  (XXH64_state_t* statePtr, XXH64_hash_t seed);
631 XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length);
632 XXH_PUBLIC_API XXH64_hash_t  XXH64_digest (const XXH64_state_t* statePtr);
633 
634 /*******   Canonical representation   *******/
635 typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t;
636 XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash);
637 XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src);
638 
639 /*!
640  * @}
641  * ************************************************************************
642  * @defgroup xxh3_family XXH3 family
643  * @ingroup public
644  * @{
645  *
646  * XXH3 is a more recent hash algorithm featuring:
647  *  - Improved speed for both small and large inputs
648  *  - True 64-bit and 128-bit outputs
649  *  - SIMD acceleration
650  *  - Improved 32-bit viability
651  *
652  * Speed analysis methodology is explained here:
653  *
654  *    https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html
655  *
656  * Compared to XXH64, expect XXH3 to run approximately
657  * ~2x faster on large inputs and >3x faster on small ones,
658  * exact differences vary depending on platform.
659  *
660  * XXH3's speed benefits greatly from SIMD and 64-bit arithmetic,
661  * but does not require it.
662  * Any 32-bit and 64-bit targets that can run XXH32 smoothly
663  * can run XXH3 at competitive speeds, even without vector support.
664  * Further details are explained in the implementation.
665  *
666  * Optimized implementations are provided for AVX512, AVX2, SSE2, NEON, POWER8,
667  * ZVector and scalar targets. This can be controlled via the XXH_VECTOR macro.
668  *
669  * XXH3 implementation is portable:
670  * it has a generic C90 formulation that can be compiled on any platform,
671  * all implementations generage exactly the same hash value on all platforms.
672  * Starting from v0.8.0, it's also labelled "stable", meaning that
673  * any future version will also generate the same hash value.
674  *
675  * XXH3 offers 2 variants, _64bits and _128bits.
676  *
677  * When only 64 bits are needed, prefer invoking the _64bits variant, as it
678  * reduces the amount of mixing, resulting in faster speed on small inputs.
679  * It's also generally simpler to manipulate a scalar return type than a struct.
680  *
681  * The API supports one-shot hashing, streaming mode, and custom secrets.
682  */
683 
684 /*-**********************************************************************
685 *  XXH3 64-bit variant
686 ************************************************************************/
687 
688 /* XXH3_64bits():
689  * default 64-bit variant, using default secret and default seed of 0.
690  * It's the fastest variant. */
691 XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* data, size_t len);
692 
693 /*
694  * XXH3_64bits_withSeed():
695  * This variant generates a custom secret on the fly
696  * based on default secret altered using the `seed` value.
697  * While this operation is decently fast, note that it's not completely free.
698  * Note: seed==0 produces the same results as XXH3_64bits().
699  */
700 XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void* data, size_t len, XXH64_hash_t seed);
701 
702 /*!
703  * The bare minimum size for a custom secret.
704  *
705  * @see
706  *  XXH3_64bits_withSecret(), XXH3_64bits_reset_withSecret(),
707  *  XXH3_128bits_withSecret(), XXH3_128bits_reset_withSecret().
708  */
709 #define XXH3_SECRET_SIZE_MIN 136
710 
711 /*
712  * XXH3_64bits_withSecret():
713  * It's possible to provide any blob of bytes as a "secret" to generate the hash.
714  * This makes it more difficult for an external actor to prepare an intentional collision.
715  * The main condition is that secretSize *must* be large enough (>= XXH3_SECRET_SIZE_MIN).
716  * However, the quality of produced hash values depends on secret's entropy.
717  * Technically, the secret must look like a bunch of random bytes.
718  * Avoid "trivial" or structured data such as repeated sequences or a text document.
719  * Whenever unsure about the "randomness" of the blob of bytes,
720  * consider relabelling it as a "custom seed" instead,
721  * and employ "XXH3_generateSecret()" (see below)
722  * to generate a high entropy secret derived from the custom seed.
723  */
724 XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
725 
726 
727 /*******   Streaming   *******/
728 /*
729  * Streaming requires state maintenance.
730  * This operation costs memory and CPU.
731  * As a consequence, streaming is slower than one-shot hashing.
732  * For better performance, prefer one-shot functions whenever applicable.
733  */
734 
735 /*!
736  * @brief The state struct for the XXH3 streaming API.
737  *
738  * @see XXH3_state_s for details.
739  */
740 typedef struct XXH3_state_s XXH3_state_t;
741 XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void);
742 XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr);
743 XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state);
744 
745 /*
746  * XXH3_64bits_reset():
747  * Initialize with default parameters.
748  * digest will be equivalent to `XXH3_64bits()`.
749  */
750 XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t* statePtr);
751 /*
752  * XXH3_64bits_reset_withSeed():
753  * Generate a custom secret from `seed`, and store it into `statePtr`.
754  * digest will be equivalent to `XXH3_64bits_withSeed()`.
755  */
756 XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
757 /*
758  * XXH3_64bits_reset_withSecret():
759  * `secret` is referenced, it _must outlive_ the hash streaming session.
760  * Similar to one-shot API, `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`,
761  * and the quality of produced hash values depends on secret's entropy
762  * (secret's content should look like a bunch of random bytes).
763  * When in doubt about the randomness of a candidate `secret`,
764  * consider employing `XXH3_generateSecret()` instead (see below).
765  */
766 XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
767 
768 XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH3_state_t* statePtr, const void* input, size_t length);
769 XXH_PUBLIC_API XXH64_hash_t  XXH3_64bits_digest (const XXH3_state_t* statePtr);
770 
771 /* note : canonical representation of XXH3 is the same as XXH64
772  * since they both produce XXH64_hash_t values */
773 
774 
775 /*-**********************************************************************
776 *  XXH3 128-bit variant
777 ************************************************************************/
778 
779 /*!
780  * @brief The return value from 128-bit hashes.
781  *
782  * Stored in little endian order, although the fields themselves are in native
783  * endianness.
784  */
785 typedef struct {
786     XXH64_hash_t low64;   /*!< `value & 0xFFFFFFFFFFFFFFFF` */
787     XXH64_hash_t high64;  /*!< `value >> 64` */
788 } XXH128_hash_t;
789 
790 XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* data, size_t len);
791 XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(const void* data, size_t len, XXH64_hash_t seed);
792 XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
793 
794 /*******   Streaming   *******/
795 /*
796  * Streaming requires state maintenance.
797  * This operation costs memory and CPU.
798  * As a consequence, streaming is slower than one-shot hashing.
799  * For better performance, prefer one-shot functions whenever applicable.
800  *
801  * XXH3_128bits uses the same XXH3_state_t as XXH3_64bits().
802  * Use already declared XXH3_createState() and XXH3_freeState().
803  *
804  * All reset and streaming functions have same meaning as their 64-bit counterpart.
805  */
806 
807 XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t* statePtr);
808 XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
809 XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
810 
811 XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH3_state_t* statePtr, const void* input, size_t length);
812 XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* statePtr);
813 
814 /* Following helper functions make it possible to compare XXH128_hast_t values.
815  * Since XXH128_hash_t is a structure, this capability is not offered by the language.
816  * Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */
817 
818 /*!
819  * XXH128_isEqual():
820  * Return: 1 if `h1` and `h2` are equal, 0 if they are not.
821  */
822 XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2);
823 
824 /*!
825  * XXH128_cmp():
826  *
827  * This comparator is compatible with stdlib's `qsort()`/`bsearch()`.
828  *
829  * return: >0 if *h128_1  > *h128_2
830  *         =0 if *h128_1 == *h128_2
831  *         <0 if *h128_1  < *h128_2
832  */
833 XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2);
834 
835 
836 /*******   Canonical representation   *******/
837 typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t;
838 XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash);
839 XXH_PUBLIC_API XXH128_hash_t XXH128_hashFromCanonical(const XXH128_canonical_t* src);
840 
841 
842 #endif  /* XXH_NO_LONG_LONG */
843 
844 /*!
845  * @}
846  */
847 #endif /* XXHASH_H_5627135585666179 */
848 
849 
850 
851 #if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742)
852 #define XXHASH_H_STATIC_13879238742
853 /* ****************************************************************************
854  * This section contains declarations which are not guaranteed to remain stable.
855  * They may change in future versions, becoming incompatible with a different
856  * version of the library.
857  * These declarations should only be used with static linking.
858  * Never use them in association with dynamic linking!
859  ***************************************************************************** */
860 
861 /*
862  * These definitions are only present to allow static allocation
863  * of XXH states, on stack or in a struct, for example.
864  * Never **ever** access their members directly.
865  */
866 
867 /*!
868  * @internal
869  * @brief Structure for XXH32 streaming API.
870  *
871  * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
872  * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
873  * an opaque type. This allows fields to safely be changed.
874  *
875  * Typedef'd to @ref XXH32_state_t.
876  * Do not access the members of this struct directly.
877  * @see XXH64_state_s, XXH3_state_s
878  */
879 struct XXH32_state_s {
880    XXH32_hash_t total_len_32; /*!< Total length hashed, modulo 2^32 */
881    XXH32_hash_t large_len;    /*!< Whether the hash is >= 16 (handles @ref total_len_32 overflow) */
882    XXH32_hash_t v1;           /*!< First accumulator lane */
883    XXH32_hash_t v2;           /*!< Second accumulator lane */
884    XXH32_hash_t v3;           /*!< Third accumulator lane */
885    XXH32_hash_t v4;           /*!< Fourth accumulator lane */
886    XXH32_hash_t mem32[4];     /*!< Internal buffer for partial reads. Treated as unsigned char[16]. */
887    XXH32_hash_t memsize;      /*!< Amount of data in @ref mem32 */
888    XXH32_hash_t reserved;     /*!< Reserved field. Do not read or write to it, it may be removed. */
889 };   /* typedef'd to XXH32_state_t */
890 
891 
892 #ifndef XXH_NO_LONG_LONG  /* defined when there is no 64-bit support */
893 
894 /*!
895  * @internal
896  * @brief Structure for XXH64 streaming API.
897  *
898  * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
899  * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
900  * an opaque type. This allows fields to safely be changed.
901  *
902  * Typedef'd to @ref XXH64_state_t.
903  * Do not access the members of this struct directly.
904  * @see XXH32_state_s, XXH3_state_s
905  */
906 struct XXH64_state_s {
907    XXH64_hash_t total_len;    /*!< Total length hashed. This is always 64-bit. */
908    XXH64_hash_t v1;           /*!< First accumulator lane */
909    XXH64_hash_t v2;           /*!< Second accumulator lane */
910    XXH64_hash_t v3;           /*!< Third accumulator lane */
911    XXH64_hash_t v4;           /*!< Fourth accumulator lane */
912    XXH64_hash_t mem64[4];     /*!< Internal buffer for partial reads. Treated as unsigned char[32]. */
913    XXH32_hash_t memsize;      /*!< Amount of data in @ref mem64 */
914    XXH32_hash_t reserved32;   /*!< Reserved field, needed for padding anyways*/
915    XXH64_hash_t reserved64;   /*!< Reserved field. Do not read or write to it, it may be removed. */
916 };   /* typedef'd to XXH64_state_t */
917 
918 #if defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)   /* C11+ */
919 #  include <stdalign.h>
920 #  define XXH_ALIGN(n)      alignas(n)
921 #elif defined(__GNUC__)
922 #  define XXH_ALIGN(n)      __attribute__ ((aligned(n)))
923 #elif defined(_MSC_VER)
924 #  define XXH_ALIGN(n)      __declspec(align(n))
925 #else
926 #  define XXH_ALIGN(n)   /* disabled */
927 #endif
928 
929 /* Old GCC versions only accept the attribute after the type in structures. */
930 #if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L))   /* C11+ */ \
931     && defined(__GNUC__)
932 #   define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align)
933 #else
934 #   define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type
935 #endif
936 
937 /*!
938  * @brief The size of the internal XXH3 buffer.
939  *
940  * This is the optimal update size for incremental hashing.
941  *
942  * @see XXH3_64b_update(), XXH3_128b_update().
943  */
944 #define XXH3_INTERNALBUFFER_SIZE 256
945 
946 /*!
947  * @brief Default size of the secret buffer (and @ref XXH3_kSecret).
948  *
949  * This is the size used in @ref XXH3_kSecret and the seeded functions.
950  *
951  * Not to be confused with @ref XXH3_SECRET_SIZE_MIN.
952  */
953 #define XXH3_SECRET_DEFAULT_SIZE 192
954 
955 /*!
956  * @internal
957  * @brief Structure for XXH3 streaming API.
958  *
959  * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
960  * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
961  * an opaque type. This allows fields to safely be changed.
962  *
963  * @note **This structure has a strict alignment requirement of 64 bytes.** Do
964  * not allocate this with `malloc()` or `new`, it will not be sufficiently
965  * aligned. Use @ref XXH3_createState() and @ref XXH3_freeState(), or stack
966  * allocation.
967  *
968  * Typedef'd to @ref XXH3_state_t.
969  * Do not access the members of this struct directly.
970  *
971  * @see XXH3_INITSTATE() for stack initialization.
972  * @see XXH3_createState(), XXH3_freeState().
973  * @see XXH32_state_s, XXH64_state_s
974  */
975 struct XXH3_state_s {
976    XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]);
977        /*!< The 8 accumulators. Similar to `vN` in @ref XXH32_state_s::v1 and @ref XXH64_state_s */
978    XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]);
979        /*!< Used to store a custom secret generated from a seed. */
980    XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]);
981        /*!< The internal buffer. @see XXH32_state_s::mem32 */
982    XXH32_hash_t bufferedSize;
983        /*!< The amount of memory in @ref buffer, @see XXH32_state_s::memsize */
984    XXH32_hash_t reserved32;
985        /*!< Reserved field. Needed for padding on 64-bit. */
986    size_t nbStripesSoFar;
987        /*!< Number or stripes processed. */
988    XXH64_hash_t totalLen;
989        /*!< Total length hashed. 64-bit even on 32-bit targets. */
990    size_t nbStripesPerBlock;
991        /*!< Number of stripes per block. */
992    size_t secretLimit;
993        /*!< Size of @ref customSecret or @ref extSecret */
994    XXH64_hash_t seed;
995        /*!< Seed for _withSeed variants. Must be zero otherwise, @see XXH3_INITSTATE() */
996    XXH64_hash_t reserved64;
997        /*!< Reserved field. */
998    const unsigned char* extSecret;
999        /*!< Reference to an external secret for the _withSecret variants, NULL
1000         *   for other variants. */
1001    /* note: there may be some padding at the end due to alignment on 64 bytes */
1002 }; /* typedef'd to XXH3_state_t */
1003 
1004 #undef XXH_ALIGN_MEMBER
1005 
1006 /*!
1007  * @brief Initializes a stack-allocated `XXH3_state_s`.
1008  *
1009  * When the @ref XXH3_state_t structure is merely emplaced on stack,
1010  * it should be initialized with XXH3_INITSTATE() or a memset()
1011  * in case its first reset uses XXH3_NNbits_reset_withSeed().
1012  * This init can be omitted if the first reset uses default or _withSecret mode.
1013  * This operation isn't necessary when the state is created with XXH3_createState().
1014  * Note that this doesn't prepare the state for a streaming operation,
1015  * it's still necessary to use XXH3_NNbits_reset*() afterwards.
1016  */
1017 #define XXH3_INITSTATE(XXH3_state_ptr)   { (XXH3_state_ptr)->seed = 0; }
1018 
1019 
1020 /* ===   Experimental API   === */
1021 /* Symbols defined below must be considered tied to a specific library version. */
1022 
1023 /*
1024  * XXH3_generateSecret():
1025  *
1026  * Derive a high-entropy secret from any user-defined content, named customSeed.
1027  * The generated secret can be used in combination with `*_withSecret()` functions.
1028  * The `_withSecret()` variants are useful to provide a higher level of protection than 64-bit seed,
1029  * as it becomes much more difficult for an external actor to guess how to impact the calculation logic.
1030  *
1031  * The function accepts as input a custom seed of any length and any content,
1032  * and derives from it a high-entropy secret of length XXH3_SECRET_DEFAULT_SIZE
1033  * into an already allocated buffer secretBuffer.
1034  * The generated secret is _always_ XXH_SECRET_DEFAULT_SIZE bytes long.
1035  *
1036  * The generated secret can then be used with any `*_withSecret()` variant.
1037  * Functions `XXH3_128bits_withSecret()`, `XXH3_64bits_withSecret()`,
1038  * `XXH3_128bits_reset_withSecret()` and `XXH3_64bits_reset_withSecret()`
1039  * are part of this list. They all accept a `secret` parameter
1040  * which must be very long for implementation reasons (>= XXH3_SECRET_SIZE_MIN)
1041  * _and_ feature very high entropy (consist of random-looking bytes).
1042  * These conditions can be a high bar to meet, so
1043  * this function can be used to generate a secret of proper quality.
1044  *
1045  * customSeed can be anything. It can have any size, even small ones,
1046  * and its content can be anything, even stupidly "low entropy" source such as a bunch of zeroes.
1047  * The resulting `secret` will nonetheless provide all expected qualities.
1048  *
1049  * Supplying NULL as the customSeed copies the default secret into `secretBuffer`.
1050  * When customSeedSize > 0, supplying NULL as customSeed is undefined behavior.
1051  */
1052 XXH_PUBLIC_API void XXH3_generateSecret(void* secretBuffer, const void* customSeed, size_t customSeedSize);
1053 
1054 
1055 /* simple short-cut to pre-selected XXH3_128bits variant */
1056 XXH_PUBLIC_API XXH128_hash_t XXH128(const void* data, size_t len, XXH64_hash_t seed);
1057 
1058 
1059 #endif  /* XXH_NO_LONG_LONG */
1060 #if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)
1061 #  define XXH_IMPLEMENTATION
1062 #endif
1063 
1064 #endif  /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */
1065 
1066 
1067 /* ======================================================================== */
1068 /* ======================================================================== */
1069 /* ======================================================================== */
1070 
1071 
1072 /*-**********************************************************************
1073  * xxHash implementation
1074  *-**********************************************************************
1075  * xxHash's implementation used to be hosted inside xxhash.c.
1076  *
1077  * However, inlining requires implementation to be visible to the compiler,
1078  * hence be included alongside the header.
1079  * Previously, implementation was hosted inside xxhash.c,
1080  * which was then #included when inlining was activated.
1081  * This construction created issues with a few build and install systems,
1082  * as it required xxhash.c to be stored in /include directory.
1083  *
1084  * xxHash implementation is now directly integrated within xxhash.h.
1085  * As a consequence, xxhash.c is no longer needed in /include.
1086  *
1087  * xxhash.c is still available and is still useful.
1088  * In a "normal" setup, when xxhash is not inlined,
1089  * xxhash.h only exposes the prototypes and public symbols,
1090  * while xxhash.c can be built into an object file xxhash.o
1091  * which can then be linked into the final binary.
1092  ************************************************************************/
1093 
1094 #if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \
1095    || defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387)
1096 #  define XXH_IMPLEM_13a8737387
1097 
1098 /* *************************************
1099 *  Tuning parameters
1100 ***************************************/
1101 
1102 /*!
1103  * @defgroup tuning Tuning parameters
1104  * @{
1105  *
1106  * Various macros to control xxHash's behavior.
1107  */
1108 #ifdef XXH_DOXYGEN
1109 /*!
1110  * @brief Define this to disable 64-bit code.
1111  *
1112  * Useful if only using the @ref xxh32_family and you have a strict C90 compiler.
1113  */
1114 #  define XXH_NO_LONG_LONG
1115 #  undef XXH_NO_LONG_LONG /* don't actually */
1116 /*!
1117  * @brief Controls how unaligned memory is accessed.
1118  *
1119  * By default, access to unaligned memory is controlled by `memcpy()`, which is
1120  * safe and portable.
1121  *
1122  * Unfortunately, on some target/compiler combinations, the generated assembly
1123  * is sub-optimal.
1124  *
1125  * The below switch allow selection of a different access method
1126  * in the search for improved performance.
1127  *
1128  * @par Possible options:
1129  *
1130  *  - `XXH_FORCE_MEMORY_ACCESS=0` (default): `memcpy`
1131  *   @par
1132  *     Use `memcpy()`. Safe and portable. Note that most modern compilers will
1133  *     eliminate the function call and treat it as an unaligned access.
1134  *
1135  *  - `XXH_FORCE_MEMORY_ACCESS=1`: `__attribute__((packed))`
1136  *   @par
1137  *     Depends on compiler extensions and is therefore not portable.
1138  *     This method is safe _if_ your compiler supports it,
1139  *     and *generally* as fast or faster than `memcpy`.
1140  *
1141  *  - `XXH_FORCE_MEMORY_ACCESS=2`: Direct cast
1142  *  @par
1143  *     Casts directly and dereferences. This method doesn't depend on the
1144  *     compiler, but it violates the C standard as it directly dereferences an
1145  *     unaligned pointer. It can generate buggy code on targets which do not
1146  *     support unaligned memory accesses, but in some circumstances, it's the
1147  *     only known way to get the most performance.
1148  *
1149  *  - `XXH_FORCE_MEMORY_ACCESS=3`: Byteshift
1150  *  @par
1151  *     Also portable. This can generate the best code on old compilers which don't
1152  *     inline small `memcpy()` calls, and it might also be faster on big-endian
1153  *     systems which lack a native byteswap instruction. However, some compilers
1154  *     will emit literal byteshifts even if the target supports unaligned access.
1155  *  .
1156  *
1157  * @warning
1158  *   Methods 1 and 2 rely on implementation-defined behavior. Use these with
1159  *   care, as what works on one compiler/platform/optimization level may cause
1160  *   another to read garbage data or even crash.
1161  *
1162  * See https://stackoverflow.com/a/32095106/646947 for details.
1163  *
1164  * Prefer these methods in priority order (0 > 3 > 1 > 2)
1165  */
1166 #  define XXH_FORCE_MEMORY_ACCESS 0
1167 /*!
1168  * @def XXH_ACCEPT_NULL_INPUT_POINTER
1169  * @brief Whether to add explicit `NULL` checks.
1170  *
1171  * If the input pointer is `NULL` and the length is non-zero, xxHash's default
1172  * behavior is to dereference it, triggering a segfault.
1173  *
1174  * When this macro is enabled, xxHash actively checks the input for a null pointer.
1175  * If it is, the result for null input pointers is the same as a zero-length input.
1176  */
1177 #  define XXH_ACCEPT_NULL_INPUT_POINTER 0
1178 /*!
1179  * @def XXH_FORCE_ALIGN_CHECK
1180  * @brief If defined to non-zero, adds a special path for aligned inputs (XXH32()
1181  * and XXH64() only).
1182  *
1183  * This is an important performance trick for architectures without decent
1184  * unaligned memory access performance.
1185  *
1186  * It checks for input alignment, and when conditions are met, uses a "fast
1187  * path" employing direct 32-bit/64-bit reads, resulting in _dramatically
1188  * faster_ read speed.
1189  *
1190  * The check costs one initial branch per hash, which is generally negligible,
1191  * but not zero.
1192  *
1193  * Moreover, it's not useful to generate an additional code path if memory
1194  * access uses the same instruction for both aligned and unaligned
1195  * addresses (e.g. x86 and aarch64).
1196  *
1197  * In these cases, the alignment check can be removed by setting this macro to 0.
1198  * Then the code will always use unaligned memory access.
1199  * Align check is automatically disabled on x86, x64 & arm64,
1200  * which are platforms known to offer good unaligned memory accesses performance.
1201  *
1202  * This option does not affect XXH3 (only XXH32 and XXH64).
1203  */
1204 #  define XXH_FORCE_ALIGN_CHECK 0
1205 
1206 /*!
1207  * @def XXH_NO_INLINE_HINTS
1208  * @brief When non-zero, sets all functions to `static`.
1209  *
1210  * By default, xxHash tries to force the compiler to inline almost all internal
1211  * functions.
1212  *
1213  * This can usually improve performance due to reduced jumping and improved
1214  * constant folding, but significantly increases the size of the binary which
1215  * might not be favorable.
1216  *
1217  * Additionally, sometimes the forced inlining can be detrimental to performance,
1218  * depending on the architecture.
1219  *
1220  * XXH_NO_INLINE_HINTS marks all internal functions as static, giving the
1221  * compiler full control on whether to inline or not.
1222  *
1223  * When not optimizing (-O0), optimizing for size (-Os, -Oz), or using
1224  * -fno-inline with GCC or Clang, this will automatically be defined.
1225  */
1226 #  define XXH_NO_INLINE_HINTS 0
1227 
1228 /*!
1229  * @def XXH_REROLL
1230  * @brief Whether to reroll `XXH32_finalize` and `XXH64_finalize`.
1231  *
1232  * For performance, `XXH32_finalize` and `XXH64_finalize` use an unrolled loop
1233  * in the form of a switch statement.
1234  *
1235  * This is not always desirable, as it generates larger code, and depending on
1236  * the architecture, may even be slower
1237  *
1238  * This is automatically defined with `-Os`/`-Oz` on GCC and Clang.
1239  */
1240 #  define XXH_REROLL 0
1241 
1242 /*!
1243  * @internal
1244  * @brief Redefines old internal names.
1245  *
1246  * For compatibility with code that uses xxHash's internals before the names
1247  * were changed to improve namespacing. There is no other reason to use this.
1248  */
1249 #  define XXH_OLD_NAMES
1250 #  undef XXH_OLD_NAMES /* don't actually use, it is ugly. */
1251 #endif /* XXH_DOXYGEN */
1252 /*!
1253  * @}
1254  */
1255 
1256 #ifndef XXH_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
1257    /* prefer __packed__ structures (method 1) for gcc on armv7 and armv8 */
1258 #  if !defined(__clang__) && ( \
1259     (defined(__INTEL_COMPILER) && !defined(_WIN32)) || \
1260     (defined(__GNUC__) && (defined(__ARM_ARCH) && __ARM_ARCH >= 7)) )
1261 #    define XXH_FORCE_MEMORY_ACCESS 1
1262 #  endif
1263 #endif
1264 
1265 #ifndef XXH_ACCEPT_NULL_INPUT_POINTER   /* can be defined externally */
1266 #  define XXH_ACCEPT_NULL_INPUT_POINTER 0
1267 #endif
1268 
1269 #ifndef XXH_FORCE_ALIGN_CHECK  /* can be defined externally */
1270 #  if defined(__i386)  || defined(__x86_64__) || defined(__aarch64__) \
1271    || defined(_M_IX86) || defined(_M_X64)     || defined(_M_ARM64) /* visual */
1272 #    define XXH_FORCE_ALIGN_CHECK 0
1273 #  else
1274 #    define XXH_FORCE_ALIGN_CHECK 1
1275 #  endif
1276 #endif
1277 
1278 #ifndef XXH_NO_INLINE_HINTS
1279 #  if defined(__OPTIMIZE_SIZE__) /* -Os, -Oz */ \
1280    || defined(__NO_INLINE__)     /* -O0, -fno-inline */
1281 #    define XXH_NO_INLINE_HINTS 1
1282 #  else
1283 #    define XXH_NO_INLINE_HINTS 0
1284 #  endif
1285 #endif
1286 
1287 #ifndef XXH_REROLL
1288 #  if defined(__OPTIMIZE_SIZE__)
1289 #    define XXH_REROLL 1
1290 #  else
1291 #    define XXH_REROLL 0
1292 #  endif
1293 #endif
1294 
1295 /*!
1296  * @defgroup impl Implementation
1297  * @{
1298  */
1299 
1300 
1301 /* *************************************
1302 *  Includes & Memory related functions
1303 ***************************************/
1304 /*
1305  * Modify the local functions below should you wish to use
1306  * different memory routines for malloc() and free()
1307  */
1308 #include <stdlib.h>
1309 
1310 /*!
1311  * @internal
1312  * @brief Modify this function to use a different routine than malloc().
1313  */
XXH_malloc(size_t s)1314 static void* XXH_malloc(size_t s) { return malloc(s); }
1315 
1316 /*!
1317  * @internal
1318  * @brief Modify this function to use a different routine than free().
1319  */
XXH_free(void * p)1320 static void XXH_free(void* p) { free(p); }
1321 
1322 #include <string.h>
1323 
1324 /*!
1325  * @internal
1326  * @brief Modify this function to use a different routine than memcpy().
1327  */
XXH_memcpy(void * dest,const void * src,size_t size)1328 static void* XXH_memcpy(void* dest, const void* src, size_t size)
1329 {
1330     return memcpy(dest,src,size);
1331 }
1332 
1333 #include <limits.h>   /* ULLONG_MAX */
1334 
1335 
1336 /* *************************************
1337 *  Compiler Specific Options
1338 ***************************************/
1339 #ifdef _MSC_VER /* Visual Studio warning fix */
1340 #  pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
1341 #endif
1342 
1343 #if XXH_NO_INLINE_HINTS  /* disable inlining hints */
1344 #  if defined(__GNUC__)
1345 #    define XXH_FORCE_INLINE static __attribute__((unused))
1346 #  else
1347 #    define XXH_FORCE_INLINE static
1348 #  endif
1349 #  define XXH_NO_INLINE static
1350 /* enable inlining hints */
1351 #elif defined(_MSC_VER)  /* Visual Studio */
1352 #  define XXH_FORCE_INLINE static __forceinline
1353 #  define XXH_NO_INLINE static __declspec(noinline)
1354 #elif defined(__GNUC__)
1355 #  define XXH_FORCE_INLINE static __inline__ __attribute__((always_inline, unused))
1356 #  define XXH_NO_INLINE static __attribute__((noinline))
1357 #elif defined (__cplusplus) \
1358   || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L))   /* C99 */
1359 #  define XXH_FORCE_INLINE static inline
1360 #  define XXH_NO_INLINE static
1361 #else
1362 #  define XXH_FORCE_INLINE static
1363 #  define XXH_NO_INLINE static
1364 #endif
1365 
1366 
1367 
1368 /* *************************************
1369 *  Debug
1370 ***************************************/
1371 /*!
1372  * @ingroup tuning
1373  * @def XXH_DEBUGLEVEL
1374  * @brief Sets the debugging level.
1375  *
1376  * XXH_DEBUGLEVEL is expected to be defined externally, typically via the
1377  * compiler's command line options. The value must be a number.
1378  */
1379 #ifndef XXH_DEBUGLEVEL
1380 #  ifdef DEBUGLEVEL /* backwards compat */
1381 #    define XXH_DEBUGLEVEL DEBUGLEVEL
1382 #  else
1383 #    define XXH_DEBUGLEVEL 0
1384 #  endif
1385 #endif
1386 
1387 #if (XXH_DEBUGLEVEL>=1)
1388 #  include <assert.h>   /* note: can still be disabled with NDEBUG */
1389 #  define XXH_ASSERT(c)   assert(c)
1390 #else
1391 #  define XXH_ASSERT(c)   ((void)0)
1392 #endif
1393 
1394 /* note: use after variable declarations */
1395 #define XXH_STATIC_ASSERT(c)  do { enum { XXH_sa = 1/(int)(!!(c)) }; } while (0)
1396 
1397 /*!
1398  * @internal
1399  * @def XXH_COMPILER_GUARD(var)
1400  * @brief Used to prevent unwanted optimizations for @p var.
1401  *
1402  * It uses an empty GCC inline assembly statement with a register constraint
1403  * which forces @p var into a general purpose register (eg eax, ebx, ecx
1404  * on x86) and marks it as modified.
1405  *
1406  * This is used in a few places to avoid unwanted autovectorization (e.g.
1407  * XXH32_round()). All vectorization we want is explicit via intrinsics,
1408  * and _usually_ isn't wanted elsewhere.
1409  *
1410  * We also use it to prevent unwanted constant folding for AArch64 in
1411  * XXH3_initCustomSecret_scalar().
1412  */
1413 #ifdef __GNUC__
1414 #  define XXH_COMPILER_GUARD(var) __asm__ __volatile__("" : "+r" (var))
1415 #else
1416 #  define XXH_COMPILER_GUARD(var) ((void)0)
1417 #endif
1418 
1419 /* *************************************
1420 *  Basic Types
1421 ***************************************/
1422 #if !defined (__VMS) \
1423  && (defined (__cplusplus) \
1424  || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
1425 # include <stdint.h>
1426   typedef uint8_t xxh_u8;
1427 #else
1428   typedef unsigned char xxh_u8;
1429 #endif
1430 typedef XXH32_hash_t xxh_u32;
1431 
1432 #ifdef XXH_OLD_NAMES
1433 #  define BYTE xxh_u8
1434 #  define U8   xxh_u8
1435 #  define U32  xxh_u32
1436 #endif
1437 
1438 /* ***   Memory access   *** */
1439 
1440 /*!
1441  * @internal
1442  * @fn xxh_u32 XXH_read32(const void* ptr)
1443  * @brief Reads an unaligned 32-bit integer from @p ptr in native endianness.
1444  *
1445  * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
1446  *
1447  * @param ptr The pointer to read from.
1448  * @return The 32-bit native endian integer from the bytes at @p ptr.
1449  */
1450 
1451 /*!
1452  * @internal
1453  * @fn xxh_u32 XXH_readLE32(const void* ptr)
1454  * @brief Reads an unaligned 32-bit little endian integer from @p ptr.
1455  *
1456  * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
1457  *
1458  * @param ptr The pointer to read from.
1459  * @return The 32-bit little endian integer from the bytes at @p ptr.
1460  */
1461 
1462 /*!
1463  * @internal
1464  * @fn xxh_u32 XXH_readBE32(const void* ptr)
1465  * @brief Reads an unaligned 32-bit big endian integer from @p ptr.
1466  *
1467  * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
1468  *
1469  * @param ptr The pointer to read from.
1470  * @return The 32-bit big endian integer from the bytes at @p ptr.
1471  */
1472 
1473 /*!
1474  * @internal
1475  * @fn xxh_u32 XXH_readLE32_align(const void* ptr, XXH_alignment align)
1476  * @brief Like @ref XXH_readLE32(), but has an option for aligned reads.
1477  *
1478  * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
1479  * Note that when @ref XXH_FORCE_ALIGN_CHECK == 0, the @p align parameter is
1480  * always @ref XXH_alignment::XXH_unaligned.
1481  *
1482  * @param ptr The pointer to read from.
1483  * @param align Whether @p ptr is aligned.
1484  * @pre
1485  *   If @p align == @ref XXH_alignment::XXH_aligned, @p ptr must be 4 byte
1486  *   aligned.
1487  * @return The 32-bit little endian integer from the bytes at @p ptr.
1488  */
1489 
1490 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
1491 /*
1492  * Manual byteshift. Best for old compilers which don't inline memcpy.
1493  * We actually directly use XXH_readLE32 and XXH_readBE32.
1494  */
1495 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
1496 
1497 /*
1498  * Force direct memory access. Only works on CPU which support unaligned memory
1499  * access in hardware.
1500  */
XXH_read32(const void * memPtr)1501 static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; }
1502 
1503 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
1504 
1505 /*
1506  * __pack instructions are safer but compiler specific, hence potentially
1507  * problematic for some compilers.
1508  *
1509  * Currently only defined for GCC and ICC.
1510  */
1511 #ifdef XXH_OLD_NAMES
1512 typedef union { xxh_u32 u32; } __attribute__((packed)) unalign;
1513 #endif
XXH_read32(const void * ptr)1514 static xxh_u32 XXH_read32(const void* ptr)
1515 {
1516     typedef union { xxh_u32 u32; } __attribute__((packed)) xxh_unalign;
1517     return ((const xxh_unalign*)ptr)->u32;
1518 }
1519 
1520 #else
1521 
1522 /*
1523  * Portable and safe solution. Generally efficient.
1524  * see: https://stackoverflow.com/a/32095106/646947
1525  */
XXH_read32(const void * memPtr)1526 static xxh_u32 XXH_read32(const void* memPtr)
1527 {
1528     xxh_u32 val;
1529     memcpy(&val, memPtr, sizeof(val));
1530     return val;
1531 }
1532 
1533 #endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
1534 
1535 
1536 /* ***   Endianness   *** */
1537 typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
1538 
1539 /*!
1540  * @ingroup tuning
1541  * @def XXH_CPU_LITTLE_ENDIAN
1542  * @brief Whether the target is little endian.
1543  *
1544  * Defined to 1 if the target is little endian, or 0 if it is big endian.
1545  * It can be defined externally, for example on the compiler command line.
1546  *
1547  * If it is not defined, a runtime check (which is usually constant folded)
1548  * is used instead.
1549  *
1550  * @note
1551  *   This is not necessarily defined to an integer constant.
1552  *
1553  * @see XXH_isLittleEndian() for the runtime check.
1554  */
1555 #ifndef XXH_CPU_LITTLE_ENDIAN
1556 /*
1557  * Try to detect endianness automatically, to avoid the nonstandard behavior
1558  * in `XXH_isLittleEndian()`
1559  */
1560 #  if defined(_WIN32) /* Windows is always little endian */ \
1561      || defined(__LITTLE_ENDIAN__) \
1562      || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
1563 #    define XXH_CPU_LITTLE_ENDIAN 1
1564 #  elif defined(__BIG_ENDIAN__) \
1565      || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
1566 #    define XXH_CPU_LITTLE_ENDIAN 0
1567 #  else
1568 /*!
1569  * @internal
1570  * @brief Runtime check for @ref XXH_CPU_LITTLE_ENDIAN.
1571  *
1572  * Most compilers will constant fold this.
1573  */
XXH_isLittleEndian(void)1574 static int XXH_isLittleEndian(void)
1575 {
1576     /*
1577      * Portable and well-defined behavior.
1578      * Don't use static: it is detrimental to performance.
1579      */
1580     const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 };
1581     return one.c[0];
1582 }
1583 #   define XXH_CPU_LITTLE_ENDIAN   XXH_isLittleEndian()
1584 #  endif
1585 #endif
1586 
1587 
1588 
1589 
1590 /* ****************************************
1591 *  Compiler-specific Functions and Macros
1592 ******************************************/
1593 #define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
1594 
1595 #ifdef __has_builtin
1596 #  define XXH_HAS_BUILTIN(x) __has_builtin(x)
1597 #else
1598 #  define XXH_HAS_BUILTIN(x) 0
1599 #endif
1600 
1601 /*!
1602  * @internal
1603  * @def XXH_rotl32(x,r)
1604  * @brief 32-bit rotate left.
1605  *
1606  * @param x The 32-bit integer to be rotated.
1607  * @param r The number of bits to rotate.
1608  * @pre
1609  *   @p r > 0 && @p r < 32
1610  * @note
1611  *   @p x and @p r may be evaluated multiple times.
1612  * @return The rotated result.
1613  */
1614 #if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) \
1615                                && XXH_HAS_BUILTIN(__builtin_rotateleft64)
1616 #  define XXH_rotl32 __builtin_rotateleft32
1617 #  define XXH_rotl64 __builtin_rotateleft64
1618 /* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */
1619 #elif defined(_MSC_VER)
1620 #  define XXH_rotl32(x,r) _rotl(x,r)
1621 #  define XXH_rotl64(x,r) _rotl64(x,r)
1622 #else
1623 #  define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r))))
1624 #  define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r))))
1625 #endif
1626 
1627 /*!
1628  * @internal
1629  * @fn xxh_u32 XXH_swap32(xxh_u32 x)
1630  * @brief A 32-bit byteswap.
1631  *
1632  * @param x The 32-bit integer to byteswap.
1633  * @return @p x, byteswapped.
1634  */
1635 #if defined(_MSC_VER)     /* Visual Studio */
1636 #  define XXH_swap32 _byteswap_ulong
1637 #elif XXH_GCC_VERSION >= 403
1638 #  define XXH_swap32 __builtin_bswap32
1639 #else
XXH_swap32(xxh_u32 x)1640 static xxh_u32 XXH_swap32 (xxh_u32 x)
1641 {
1642     return  ((x << 24) & 0xff000000 ) |
1643             ((x <<  8) & 0x00ff0000 ) |
1644             ((x >>  8) & 0x0000ff00 ) |
1645             ((x >> 24) & 0x000000ff );
1646 }
1647 #endif
1648 
1649 
1650 /* ***************************
1651 *  Memory reads
1652 *****************************/
1653 
1654 /*!
1655  * @internal
1656  * @brief Enum to indicate whether a pointer is aligned.
1657  */
1658 typedef enum {
1659     XXH_aligned,  /*!< Aligned */
1660     XXH_unaligned /*!< Possibly unaligned */
1661 } XXH_alignment;
1662 
1663 /*
1664  * XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load.
1665  *
1666  * This is ideal for older compilers which don't inline memcpy.
1667  */
1668 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
1669 
XXH_readLE32(const void * memPtr)1670 XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr)
1671 {
1672     const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
1673     return bytePtr[0]
1674          | ((xxh_u32)bytePtr[1] << 8)
1675          | ((xxh_u32)bytePtr[2] << 16)
1676          | ((xxh_u32)bytePtr[3] << 24);
1677 }
1678 
XXH_readBE32(const void * memPtr)1679 XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr)
1680 {
1681     const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
1682     return bytePtr[3]
1683          | ((xxh_u32)bytePtr[2] << 8)
1684          | ((xxh_u32)bytePtr[1] << 16)
1685          | ((xxh_u32)bytePtr[0] << 24);
1686 }
1687 
1688 #else
XXH_readLE32(const void * ptr)1689 XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr)
1690 {
1691     return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
1692 }
1693 
XXH_readBE32(const void * ptr)1694 static xxh_u32 XXH_readBE32(const void* ptr)
1695 {
1696     return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
1697 }
1698 #endif
1699 
1700 XXH_FORCE_INLINE xxh_u32
XXH_readLE32_align(const void * ptr,XXH_alignment align)1701 XXH_readLE32_align(const void* ptr, XXH_alignment align)
1702 {
1703     if (align==XXH_unaligned) {
1704         return XXH_readLE32(ptr);
1705     } else {
1706         return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr);
1707     }
1708 }
1709 
1710 
1711 /* *************************************
1712 *  Misc
1713 ***************************************/
1714 /*! @ingroup public */
XXH_versionNumber(void)1715 XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
1716 
1717 
1718 /* *******************************************************************
1719 *  32-bit hash functions
1720 *********************************************************************/
1721 /*!
1722  * @}
1723  * @defgroup xxh32_impl XXH32 implementation
1724  * @ingroup impl
1725  * @{
1726  */
1727  /* #define instead of static const, to be used as initializers */
1728 #define XXH_PRIME32_1  0x9E3779B1U  /*!< 0b10011110001101110111100110110001 */
1729 #define XXH_PRIME32_2  0x85EBCA77U  /*!< 0b10000101111010111100101001110111 */
1730 #define XXH_PRIME32_3  0xC2B2AE3DU  /*!< 0b11000010101100101010111000111101 */
1731 #define XXH_PRIME32_4  0x27D4EB2FU  /*!< 0b00100111110101001110101100101111 */
1732 #define XXH_PRIME32_5  0x165667B1U  /*!< 0b00010110010101100110011110110001 */
1733 
1734 #ifdef XXH_OLD_NAMES
1735 #  define PRIME32_1 XXH_PRIME32_1
1736 #  define PRIME32_2 XXH_PRIME32_2
1737 #  define PRIME32_3 XXH_PRIME32_3
1738 #  define PRIME32_4 XXH_PRIME32_4
1739 #  define PRIME32_5 XXH_PRIME32_5
1740 #endif
1741 
1742 /*!
1743  * @internal
1744  * @brief Normal stripe processing routine.
1745  *
1746  * This shuffles the bits so that any bit from @p input impacts several bits in
1747  * @p acc.
1748  *
1749  * @param acc The accumulator lane.
1750  * @param input The stripe of input to mix.
1751  * @return The mixed accumulator lane.
1752  */
XXH32_round(xxh_u32 acc,xxh_u32 input)1753 static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input)
1754 {
1755     acc += input * XXH_PRIME32_2;
1756     acc  = XXH_rotl32(acc, 13);
1757     acc *= XXH_PRIME32_1;
1758 #if (defined(__SSE4_1__) || defined(__aarch64__)) && !defined(XXH_ENABLE_AUTOVECTORIZE)
1759     /*
1760      * UGLY HACK:
1761      * A compiler fence is the only thing that prevents GCC and Clang from
1762      * autovectorizing the XXH32 loop (pragmas and attributes don't work for some
1763      * reason) without globally disabling SSE4.1.
1764      *
1765      * The reason we want to avoid vectorization is because despite working on
1766      * 4 integers at a time, there are multiple factors slowing XXH32 down on
1767      * SSE4:
1768      * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on
1769      *   newer chips!) making it slightly slower to multiply four integers at
1770      *   once compared to four integers independently. Even when pmulld was
1771      *   fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE
1772      *   just to multiply unless doing a long operation.
1773      *
1774      * - Four instructions are required to rotate,
1775      *      movqda tmp,  v // not required with VEX encoding
1776      *      pslld  tmp, 13 // tmp <<= 13
1777      *      psrld  v,   19 // x >>= 19
1778      *      por    v,  tmp // x |= tmp
1779      *   compared to one for scalar:
1780      *      roll   v, 13    // reliably fast across the board
1781      *      shldl  v, v, 13 // Sandy Bridge and later prefer this for some reason
1782      *
1783      * - Instruction level parallelism is actually more beneficial here because
1784      *   the SIMD actually serializes this operation: While v1 is rotating, v2
1785      *   can load data, while v3 can multiply. SSE forces them to operate
1786      *   together.
1787      *
1788      * This is also enabled on AArch64, as Clang autovectorizes it incorrectly
1789      * and it is pointless writing a NEON implementation that is basically the
1790      * same speed as scalar for XXH32.
1791      */
1792     XXH_COMPILER_GUARD(acc);
1793 #endif
1794     return acc;
1795 }
1796 
1797 /*!
1798  * @internal
1799  * @brief Mixes all bits to finalize the hash.
1800  *
1801  * The final mix ensures that all input bits have a chance to impact any bit in
1802  * the output digest, resulting in an unbiased distribution.
1803  *
1804  * @param h32 The hash to avalanche.
1805  * @return The avalanched hash.
1806  */
XXH32_avalanche(xxh_u32 h32)1807 static xxh_u32 XXH32_avalanche(xxh_u32 h32)
1808 {
1809     h32 ^= h32 >> 15;
1810     h32 *= XXH_PRIME32_2;
1811     h32 ^= h32 >> 13;
1812     h32 *= XXH_PRIME32_3;
1813     h32 ^= h32 >> 16;
1814     return(h32);
1815 }
1816 
1817 #define XXH_get32bits(p) XXH_readLE32_align(p, align)
1818 
1819 /*!
1820  * @internal
1821  * @brief Processes the last 0-15 bytes of @p ptr.
1822  *
1823  * There may be up to 15 bytes remaining to consume from the input.
1824  * This final stage will digest them to ensure that all input bytes are present
1825  * in the final mix.
1826  *
1827  * @param h32 The hash to finalize.
1828  * @param ptr The pointer to the remaining input.
1829  * @param len The remaining length, modulo 16.
1830  * @param align Whether @p ptr is aligned.
1831  * @return The finalized hash.
1832  */
1833 static xxh_u32
XXH32_finalize(xxh_u32 h32,const xxh_u8 * ptr,size_t len,XXH_alignment align)1834 XXH32_finalize(xxh_u32 h32, const xxh_u8* ptr, size_t len, XXH_alignment align)
1835 {
1836 #define XXH_PROCESS1 do {                           \
1837     h32 += (*ptr++) * XXH_PRIME32_5;                \
1838     h32 = XXH_rotl32(h32, 11) * XXH_PRIME32_1;      \
1839 } while (0)
1840 
1841 #define XXH_PROCESS4 do {                           \
1842     h32 += XXH_get32bits(ptr) * XXH_PRIME32_3;      \
1843     ptr += 4;                                   \
1844     h32  = XXH_rotl32(h32, 17) * XXH_PRIME32_4;     \
1845 } while (0)
1846 
1847     /* Compact rerolled version */
1848     if (XXH_REROLL) {
1849         len &= 15;
1850         while (len >= 4) {
1851             XXH_PROCESS4;
1852             len -= 4;
1853         }
1854         while (len > 0) {
1855             XXH_PROCESS1;
1856             --len;
1857         }
1858         return XXH32_avalanche(h32);
1859     } else {
1860          switch(len&15) /* or switch(bEnd - p) */ {
1861            case 12:      XXH_PROCESS4;
1862                          /* fallthrough */
1863            case 8:       XXH_PROCESS4;
1864                          /* fallthrough */
1865            case 4:       XXH_PROCESS4;
1866                          return XXH32_avalanche(h32);
1867 
1868            case 13:      XXH_PROCESS4;
1869                          /* fallthrough */
1870            case 9:       XXH_PROCESS4;
1871                          /* fallthrough */
1872            case 5:       XXH_PROCESS4;
1873                          XXH_PROCESS1;
1874                          return XXH32_avalanche(h32);
1875 
1876            case 14:      XXH_PROCESS4;
1877                          /* fallthrough */
1878            case 10:      XXH_PROCESS4;
1879                          /* fallthrough */
1880            case 6:       XXH_PROCESS4;
1881                          XXH_PROCESS1;
1882                          XXH_PROCESS1;
1883                          return XXH32_avalanche(h32);
1884 
1885            case 15:      XXH_PROCESS4;
1886                          /* fallthrough */
1887            case 11:      XXH_PROCESS4;
1888                          /* fallthrough */
1889            case 7:       XXH_PROCESS4;
1890                          /* fallthrough */
1891            case 3:       XXH_PROCESS1;
1892                          /* fallthrough */
1893            case 2:       XXH_PROCESS1;
1894                          /* fallthrough */
1895            case 1:       XXH_PROCESS1;
1896                          /* fallthrough */
1897            case 0:       return XXH32_avalanche(h32);
1898         }
1899         XXH_ASSERT(0);
1900         return h32;   /* reaching this point is deemed impossible */
1901     }
1902 }
1903 
1904 #ifdef XXH_OLD_NAMES
1905 #  define PROCESS1 XXH_PROCESS1
1906 #  define PROCESS4 XXH_PROCESS4
1907 #else
1908 #  undef XXH_PROCESS1
1909 #  undef XXH_PROCESS4
1910 #endif
1911 
1912 /*!
1913  * @internal
1914  * @brief The implementation for @ref XXH32().
1915  *
1916  * @param input, len, seed Directly passed from @ref XXH32().
1917  * @param align Whether @p input is aligned.
1918  * @return The calculated hash.
1919  */
1920 XXH_FORCE_INLINE xxh_u32
XXH32_endian_align(const xxh_u8 * input,size_t len,xxh_u32 seed,XXH_alignment align)1921 XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align)
1922 {
1923     const xxh_u8* bEnd = input + len;
1924     xxh_u32 h32;
1925 
1926 #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
1927     if (input==NULL) {
1928         len=0;
1929         bEnd=input=(const xxh_u8*)(size_t)16;
1930     }
1931 #endif
1932 
1933     if (len>=16) {
1934         const xxh_u8* const limit = bEnd - 15;
1935         xxh_u32 v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
1936         xxh_u32 v2 = seed + XXH_PRIME32_2;
1937         xxh_u32 v3 = seed + 0;
1938         xxh_u32 v4 = seed - XXH_PRIME32_1;
1939 
1940         do {
1941             v1 = XXH32_round(v1, XXH_get32bits(input)); input += 4;
1942             v2 = XXH32_round(v2, XXH_get32bits(input)); input += 4;
1943             v3 = XXH32_round(v3, XXH_get32bits(input)); input += 4;
1944             v4 = XXH32_round(v4, XXH_get32bits(input)); input += 4;
1945         } while (input < limit);
1946 
1947         h32 = XXH_rotl32(v1, 1)  + XXH_rotl32(v2, 7)
1948             + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
1949     } else {
1950         h32  = seed + XXH_PRIME32_5;
1951     }
1952 
1953     h32 += (xxh_u32)len;
1954 
1955     return XXH32_finalize(h32, input, len&15, align);
1956 }
1957 
1958 /*! @ingroup xxh32_family */
XXH32(const void * input,size_t len,XXH32_hash_t seed)1959 XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed)
1960 {
1961 #if 0
1962     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
1963     XXH32_state_t state;
1964     XXH32_reset(&state, seed);
1965     XXH32_update(&state, (const xxh_u8*)input, len);
1966     return XXH32_digest(&state);
1967 #else
1968     if (XXH_FORCE_ALIGN_CHECK) {
1969         if ((((size_t)input) & 3) == 0) {   /* Input is 4-bytes aligned, leverage the speed benefit */
1970             return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
1971     }   }
1972 
1973     return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
1974 #endif
1975 }
1976 
1977 
1978 
1979 /*******   Hash streaming   *******/
1980 /*!
1981  * @ingroup xxh32_family
1982  */
XXH32_createState(void)1983 XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
1984 {
1985     return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
1986 }
1987 /*! @ingroup xxh32_family */
XXH32_freeState(XXH32_state_t * statePtr)1988 XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
1989 {
1990     XXH_free(statePtr);
1991     return XXH_OK;
1992 }
1993 
1994 /*! @ingroup xxh32_family */
XXH32_copyState(XXH32_state_t * dstState,const XXH32_state_t * srcState)1995 XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState)
1996 {
1997     memcpy(dstState, srcState, sizeof(*dstState));
1998 }
1999 
2000 /*! @ingroup xxh32_family */
XXH32_reset(XXH32_state_t * statePtr,XXH32_hash_t seed)2001 XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed)
2002 {
2003     XXH32_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
2004     memset(&state, 0, sizeof(state));
2005     state.v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
2006     state.v2 = seed + XXH_PRIME32_2;
2007     state.v3 = seed + 0;
2008     state.v4 = seed - XXH_PRIME32_1;
2009     /* do not write into reserved, planned to be removed in a future version */
2010     memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved));
2011     return XXH_OK;
2012 }
2013 
2014 
2015 /*! @ingroup xxh32_family */
2016 XXH_PUBLIC_API XXH_errorcode
XXH32_update(XXH32_state_t * state,const void * input,size_t len)2017 XXH32_update(XXH32_state_t* state, const void* input, size_t len)
2018 {
2019     if (input==NULL)
2020 #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
2021         return XXH_OK;
2022 #else
2023         return XXH_ERROR;
2024 #endif
2025 
2026     {   const xxh_u8* p = (const xxh_u8*)input;
2027         const xxh_u8* const bEnd = p + len;
2028 
2029         state->total_len_32 += (XXH32_hash_t)len;
2030         state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16));
2031 
2032         if (state->memsize + len < 16)  {   /* fill in tmp buffer */
2033             XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, len);
2034             state->memsize += (XXH32_hash_t)len;
2035             return XXH_OK;
2036         }
2037 
2038         if (state->memsize) {   /* some data left from previous update */
2039             XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16-state->memsize);
2040             {   const xxh_u32* p32 = state->mem32;
2041                 state->v1 = XXH32_round(state->v1, XXH_readLE32(p32)); p32++;
2042                 state->v2 = XXH32_round(state->v2, XXH_readLE32(p32)); p32++;
2043                 state->v3 = XXH32_round(state->v3, XXH_readLE32(p32)); p32++;
2044                 state->v4 = XXH32_round(state->v4, XXH_readLE32(p32));
2045             }
2046             p += 16-state->memsize;
2047             state->memsize = 0;
2048         }
2049 
2050         if (p <= bEnd-16) {
2051             const xxh_u8* const limit = bEnd - 16;
2052             xxh_u32 v1 = state->v1;
2053             xxh_u32 v2 = state->v2;
2054             xxh_u32 v3 = state->v3;
2055             xxh_u32 v4 = state->v4;
2056 
2057             do {
2058                 v1 = XXH32_round(v1, XXH_readLE32(p)); p+=4;
2059                 v2 = XXH32_round(v2, XXH_readLE32(p)); p+=4;
2060                 v3 = XXH32_round(v3, XXH_readLE32(p)); p+=4;
2061                 v4 = XXH32_round(v4, XXH_readLE32(p)); p+=4;
2062             } while (p<=limit);
2063 
2064             state->v1 = v1;
2065             state->v2 = v2;
2066             state->v3 = v3;
2067             state->v4 = v4;
2068         }
2069 
2070         if (p < bEnd) {
2071             XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
2072             state->memsize = (unsigned)(bEnd-p);
2073         }
2074     }
2075 
2076     return XXH_OK;
2077 }
2078 
2079 
2080 /*! @ingroup xxh32_family */
XXH32_digest(const XXH32_state_t * state)2081 XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t* state)
2082 {
2083     xxh_u32 h32;
2084 
2085     if (state->large_len) {
2086         h32 = XXH_rotl32(state->v1, 1)
2087             + XXH_rotl32(state->v2, 7)
2088             + XXH_rotl32(state->v3, 12)
2089             + XXH_rotl32(state->v4, 18);
2090     } else {
2091         h32 = state->v3 /* == seed */ + XXH_PRIME32_5;
2092     }
2093 
2094     h32 += state->total_len_32;
2095 
2096     return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned);
2097 }
2098 
2099 
2100 /*******   Canonical representation   *******/
2101 
2102 /*!
2103  * @ingroup xxh32_family
2104  * The default return values from XXH functions are unsigned 32 and 64 bit
2105  * integers.
2106  *
2107  * The canonical representation uses big endian convention, the same convention
2108  * as human-readable numbers (large digits first).
2109  *
2110  * This way, hash values can be written into a file or buffer, remaining
2111  * comparable across different systems.
2112  *
2113  * The following functions allow transformation of hash values to and from their
2114  * canonical format.
2115  */
XXH32_canonicalFromHash(XXH32_canonical_t * dst,XXH32_hash_t hash)2116 XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
2117 {
2118     XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
2119     if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
2120     memcpy(dst, &hash, sizeof(*dst));
2121 }
2122 /*! @ingroup xxh32_family */
XXH32_hashFromCanonical(const XXH32_canonical_t * src)2123 XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
2124 {
2125     return XXH_readBE32(src);
2126 }
2127 
2128 
2129 #ifndef XXH_NO_LONG_LONG
2130 
2131 /* *******************************************************************
2132 *  64-bit hash functions
2133 *********************************************************************/
2134 /*!
2135  * @}
2136  * @ingroup impl
2137  * @{
2138  */
2139 /*******   Memory access   *******/
2140 
2141 typedef XXH64_hash_t xxh_u64;
2142 
2143 #ifdef XXH_OLD_NAMES
2144 #  define U64 xxh_u64
2145 #endif
2146 
2147 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
2148 /*
2149  * Manual byteshift. Best for old compilers which don't inline memcpy.
2150  * We actually directly use XXH_readLE64 and XXH_readBE64.
2151  */
2152 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
2153 
2154 /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
XXH_read64(const void * memPtr)2155 static xxh_u64 XXH_read64(const void* memPtr)
2156 {
2157     return *(const xxh_u64*) memPtr;
2158 }
2159 
2160 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
2161 
2162 /*
2163  * __pack instructions are safer, but compiler specific, hence potentially
2164  * problematic for some compilers.
2165  *
2166  * Currently only defined for GCC and ICC.
2167  */
2168 #ifdef XXH_OLD_NAMES
2169 typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) unalign64;
2170 #endif
XXH_read64(const void * ptr)2171 static xxh_u64 XXH_read64(const void* ptr)
2172 {
2173     typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) xxh_unalign64;
2174     return ((const xxh_unalign64*)ptr)->u64;
2175 }
2176 
2177 #else
2178 
2179 /*
2180  * Portable and safe solution. Generally efficient.
2181  * see: https://stackoverflow.com/a/32095106/646947
2182  */
XXH_read64(const void * memPtr)2183 static xxh_u64 XXH_read64(const void* memPtr)
2184 {
2185     xxh_u64 val;
2186     memcpy(&val, memPtr, sizeof(val));
2187     return val;
2188 }
2189 
2190 #endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
2191 
2192 #if defined(_MSC_VER)     /* Visual Studio */
2193 #  define XXH_swap64 _byteswap_uint64
2194 #elif XXH_GCC_VERSION >= 403
2195 #  define XXH_swap64 __builtin_bswap64
2196 #else
XXH_swap64(xxh_u64 x)2197 static xxh_u64 XXH_swap64(xxh_u64 x)
2198 {
2199     return  ((x << 56) & 0xff00000000000000ULL) |
2200             ((x << 40) & 0x00ff000000000000ULL) |
2201             ((x << 24) & 0x0000ff0000000000ULL) |
2202             ((x << 8)  & 0x000000ff00000000ULL) |
2203             ((x >> 8)  & 0x00000000ff000000ULL) |
2204             ((x >> 24) & 0x0000000000ff0000ULL) |
2205             ((x >> 40) & 0x000000000000ff00ULL) |
2206             ((x >> 56) & 0x00000000000000ffULL);
2207 }
2208 #endif
2209 
2210 
2211 /* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */
2212 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
2213 
XXH_readLE64(const void * memPtr)2214 XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr)
2215 {
2216     const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
2217     return bytePtr[0]
2218          | ((xxh_u64)bytePtr[1] << 8)
2219          | ((xxh_u64)bytePtr[2] << 16)
2220          | ((xxh_u64)bytePtr[3] << 24)
2221          | ((xxh_u64)bytePtr[4] << 32)
2222          | ((xxh_u64)bytePtr[5] << 40)
2223          | ((xxh_u64)bytePtr[6] << 48)
2224          | ((xxh_u64)bytePtr[7] << 56);
2225 }
2226 
XXH_readBE64(const void * memPtr)2227 XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr)
2228 {
2229     const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
2230     return bytePtr[7]
2231          | ((xxh_u64)bytePtr[6] << 8)
2232          | ((xxh_u64)bytePtr[5] << 16)
2233          | ((xxh_u64)bytePtr[4] << 24)
2234          | ((xxh_u64)bytePtr[3] << 32)
2235          | ((xxh_u64)bytePtr[2] << 40)
2236          | ((xxh_u64)bytePtr[1] << 48)
2237          | ((xxh_u64)bytePtr[0] << 56);
2238 }
2239 
2240 #else
XXH_readLE64(const void * ptr)2241 XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr)
2242 {
2243     return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
2244 }
2245 
XXH_readBE64(const void * ptr)2246 static xxh_u64 XXH_readBE64(const void* ptr)
2247 {
2248     return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
2249 }
2250 #endif
2251 
2252 XXH_FORCE_INLINE xxh_u64
XXH_readLE64_align(const void * ptr,XXH_alignment align)2253 XXH_readLE64_align(const void* ptr, XXH_alignment align)
2254 {
2255     if (align==XXH_unaligned)
2256         return XXH_readLE64(ptr);
2257     else
2258         return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr);
2259 }
2260 
2261 
2262 /*******   xxh64   *******/
2263 /*!
2264  * @}
2265  * @defgroup xxh64_impl XXH64 implementation
2266  * @ingroup impl
2267  * @{
2268  */
2269 /* #define rather that static const, to be used as initializers */
2270 #define XXH_PRIME64_1  0x9E3779B185EBCA87ULL  /*!< 0b1001111000110111011110011011000110000101111010111100101010000111 */
2271 #define XXH_PRIME64_2  0xC2B2AE3D27D4EB4FULL  /*!< 0b1100001010110010101011100011110100100111110101001110101101001111 */
2272 #define XXH_PRIME64_3  0x165667B19E3779F9ULL  /*!< 0b0001011001010110011001111011000110011110001101110111100111111001 */
2273 #define XXH_PRIME64_4  0x85EBCA77C2B2AE63ULL  /*!< 0b1000010111101011110010100111011111000010101100101010111001100011 */
2274 #define XXH_PRIME64_5  0x27D4EB2F165667C5ULL  /*!< 0b0010011111010100111010110010111100010110010101100110011111000101 */
2275 
2276 #ifdef XXH_OLD_NAMES
2277 #  define PRIME64_1 XXH_PRIME64_1
2278 #  define PRIME64_2 XXH_PRIME64_2
2279 #  define PRIME64_3 XXH_PRIME64_3
2280 #  define PRIME64_4 XXH_PRIME64_4
2281 #  define PRIME64_5 XXH_PRIME64_5
2282 #endif
2283 
XXH64_round(xxh_u64 acc,xxh_u64 input)2284 static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input)
2285 {
2286     acc += input * XXH_PRIME64_2;
2287     acc  = XXH_rotl64(acc, 31);
2288     acc *= XXH_PRIME64_1;
2289     return acc;
2290 }
2291 
XXH64_mergeRound(xxh_u64 acc,xxh_u64 val)2292 static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val)
2293 {
2294     val  = XXH64_round(0, val);
2295     acc ^= val;
2296     acc  = acc * XXH_PRIME64_1 + XXH_PRIME64_4;
2297     return acc;
2298 }
2299 
XXH64_avalanche(xxh_u64 h64)2300 static xxh_u64 XXH64_avalanche(xxh_u64 h64)
2301 {
2302     h64 ^= h64 >> 33;
2303     h64 *= XXH_PRIME64_2;
2304     h64 ^= h64 >> 29;
2305     h64 *= XXH_PRIME64_3;
2306     h64 ^= h64 >> 32;
2307     return h64;
2308 }
2309 
2310 
2311 #define XXH_get64bits(p) XXH_readLE64_align(p, align)
2312 
2313 static xxh_u64
XXH64_finalize(xxh_u64 h64,const xxh_u8 * ptr,size_t len,XXH_alignment align)2314 XXH64_finalize(xxh_u64 h64, const xxh_u8* ptr, size_t len, XXH_alignment align)
2315 {
2316     len &= 31;
2317     while (len >= 8) {
2318         xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr));
2319         ptr += 8;
2320         h64 ^= k1;
2321         h64  = XXH_rotl64(h64,27) * XXH_PRIME64_1 + XXH_PRIME64_4;
2322         len -= 8;
2323     }
2324     if (len >= 4) {
2325         h64 ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1;
2326         ptr += 4;
2327         h64 = XXH_rotl64(h64, 23) * XXH_PRIME64_2 + XXH_PRIME64_3;
2328         len -= 4;
2329     }
2330     while (len > 0) {
2331         h64 ^= (*ptr++) * XXH_PRIME64_5;
2332         h64 = XXH_rotl64(h64, 11) * XXH_PRIME64_1;
2333         --len;
2334     }
2335     return  XXH64_avalanche(h64);
2336 }
2337 
2338 #ifdef XXH_OLD_NAMES
2339 #  define PROCESS1_64 XXH_PROCESS1_64
2340 #  define PROCESS4_64 XXH_PROCESS4_64
2341 #  define PROCESS8_64 XXH_PROCESS8_64
2342 #else
2343 #  undef XXH_PROCESS1_64
2344 #  undef XXH_PROCESS4_64
2345 #  undef XXH_PROCESS8_64
2346 #endif
2347 
2348 XXH_FORCE_INLINE xxh_u64
XXH64_endian_align(const xxh_u8 * input,size_t len,xxh_u64 seed,XXH_alignment align)2349 XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align)
2350 {
2351     const xxh_u8* bEnd = input + len;
2352     xxh_u64 h64;
2353 
2354 #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
2355     if (input==NULL) {
2356         len=0;
2357         bEnd=input=(const xxh_u8*)(size_t)32;
2358     }
2359 #endif
2360 
2361     if (len>=32) {
2362         const xxh_u8* const limit = bEnd - 32;
2363         xxh_u64 v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
2364         xxh_u64 v2 = seed + XXH_PRIME64_2;
2365         xxh_u64 v3 = seed + 0;
2366         xxh_u64 v4 = seed - XXH_PRIME64_1;
2367 
2368         do {
2369             v1 = XXH64_round(v1, XXH_get64bits(input)); input+=8;
2370             v2 = XXH64_round(v2, XXH_get64bits(input)); input+=8;
2371             v3 = XXH64_round(v3, XXH_get64bits(input)); input+=8;
2372             v4 = XXH64_round(v4, XXH_get64bits(input)); input+=8;
2373         } while (input<=limit);
2374 
2375         h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
2376         h64 = XXH64_mergeRound(h64, v1);
2377         h64 = XXH64_mergeRound(h64, v2);
2378         h64 = XXH64_mergeRound(h64, v3);
2379         h64 = XXH64_mergeRound(h64, v4);
2380 
2381     } else {
2382         h64  = seed + XXH_PRIME64_5;
2383     }
2384 
2385     h64 += (xxh_u64) len;
2386 
2387     return XXH64_finalize(h64, input, len, align);
2388 }
2389 
2390 
2391 /*! @ingroup xxh64_family */
XXH64(const void * input,size_t len,XXH64_hash_t seed)2392 XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t len, XXH64_hash_t seed)
2393 {
2394 #if 0
2395     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
2396     XXH64_state_t state;
2397     XXH64_reset(&state, seed);
2398     XXH64_update(&state, (const xxh_u8*)input, len);
2399     return XXH64_digest(&state);
2400 #else
2401     if (XXH_FORCE_ALIGN_CHECK) {
2402         if ((((size_t)input) & 7)==0) {  /* Input is aligned, let's leverage the speed advantage */
2403             return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
2404     }   }
2405 
2406     return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
2407 
2408 #endif
2409 }
2410 
2411 /*******   Hash Streaming   *******/
2412 
2413 /*! @ingroup xxh64_family*/
XXH64_createState(void)2414 XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
2415 {
2416     return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
2417 }
2418 /*! @ingroup xxh64_family */
XXH64_freeState(XXH64_state_t * statePtr)2419 XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
2420 {
2421     XXH_free(statePtr);
2422     return XXH_OK;
2423 }
2424 
2425 /*! @ingroup xxh64_family */
XXH64_copyState(XXH64_state_t * dstState,const XXH64_state_t * srcState)2426 XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState)
2427 {
2428     memcpy(dstState, srcState, sizeof(*dstState));
2429 }
2430 
2431 /*! @ingroup xxh64_family */
XXH64_reset(XXH64_state_t * statePtr,XXH64_hash_t seed)2432 XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, XXH64_hash_t seed)
2433 {
2434     XXH64_state_t state;   /* use a local state to memcpy() in order to avoid strict-aliasing warnings */
2435     memset(&state, 0, sizeof(state));
2436     state.v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
2437     state.v2 = seed + XXH_PRIME64_2;
2438     state.v3 = seed + 0;
2439     state.v4 = seed - XXH_PRIME64_1;
2440      /* do not write into reserved64, might be removed in a future version */
2441     memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved64));
2442     return XXH_OK;
2443 }
2444 
2445 /*! @ingroup xxh64_family */
2446 XXH_PUBLIC_API XXH_errorcode
XXH64_update(XXH64_state_t * state,const void * input,size_t len)2447 XXH64_update (XXH64_state_t* state, const void* input, size_t len)
2448 {
2449     if (input==NULL)
2450 #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
2451         return XXH_OK;
2452 #else
2453         return XXH_ERROR;
2454 #endif
2455 
2456     {   const xxh_u8* p = (const xxh_u8*)input;
2457         const xxh_u8* const bEnd = p + len;
2458 
2459         state->total_len += len;
2460 
2461         if (state->memsize + len < 32) {  /* fill in tmp buffer */
2462             XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, len);
2463             state->memsize += (xxh_u32)len;
2464             return XXH_OK;
2465         }
2466 
2467         if (state->memsize) {   /* tmp buffer is full */
2468             XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32-state->memsize);
2469             state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0));
2470             state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1));
2471             state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2));
2472             state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3));
2473             p += 32 - state->memsize;
2474             state->memsize = 0;
2475         }
2476 
2477         if (p+32 <= bEnd) {
2478             const xxh_u8* const limit = bEnd - 32;
2479             xxh_u64 v1 = state->v1;
2480             xxh_u64 v2 = state->v2;
2481             xxh_u64 v3 = state->v3;
2482             xxh_u64 v4 = state->v4;
2483 
2484             do {
2485                 v1 = XXH64_round(v1, XXH_readLE64(p)); p+=8;
2486                 v2 = XXH64_round(v2, XXH_readLE64(p)); p+=8;
2487                 v3 = XXH64_round(v3, XXH_readLE64(p)); p+=8;
2488                 v4 = XXH64_round(v4, XXH_readLE64(p)); p+=8;
2489             } while (p<=limit);
2490 
2491             state->v1 = v1;
2492             state->v2 = v2;
2493             state->v3 = v3;
2494             state->v4 = v4;
2495         }
2496 
2497         if (p < bEnd) {
2498             XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
2499             state->memsize = (unsigned)(bEnd-p);
2500         }
2501     }
2502 
2503     return XXH_OK;
2504 }
2505 
2506 
2507 /*! @ingroup xxh64_family */
XXH64_digest(const XXH64_state_t * state)2508 XXH_PUBLIC_API XXH64_hash_t XXH64_digest(const XXH64_state_t* state)
2509 {
2510     xxh_u64 h64;
2511 
2512     if (state->total_len >= 32) {
2513         xxh_u64 const v1 = state->v1;
2514         xxh_u64 const v2 = state->v2;
2515         xxh_u64 const v3 = state->v3;
2516         xxh_u64 const v4 = state->v4;
2517 
2518         h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
2519         h64 = XXH64_mergeRound(h64, v1);
2520         h64 = XXH64_mergeRound(h64, v2);
2521         h64 = XXH64_mergeRound(h64, v3);
2522         h64 = XXH64_mergeRound(h64, v4);
2523     } else {
2524         h64  = state->v3 /*seed*/ + XXH_PRIME64_5;
2525     }
2526 
2527     h64 += (xxh_u64) state->total_len;
2528 
2529     return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned);
2530 }
2531 
2532 
2533 /******* Canonical representation   *******/
2534 
2535 /*! @ingroup xxh64_family */
XXH64_canonicalFromHash(XXH64_canonical_t * dst,XXH64_hash_t hash)2536 XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
2537 {
2538     XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
2539     if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
2540     memcpy(dst, &hash, sizeof(*dst));
2541 }
2542 
2543 /*! @ingroup xxh64_family */
XXH64_hashFromCanonical(const XXH64_canonical_t * src)2544 XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
2545 {
2546     return XXH_readBE64(src);
2547 }
2548 
2549 #ifndef XXH_NO_XXH3
2550 
2551 /* *********************************************************************
2552 *  XXH3
2553 *  New generation hash designed for speed on small keys and vectorization
2554 ************************************************************************ */
2555 /*!
2556  * @}
2557  * @defgroup xxh3_impl XXH3 implementation
2558  * @ingroup impl
2559  * @{
2560  */
2561 
2562 /* ===   Compiler specifics   === */
2563 
2564 #if ((defined(sun) || defined(__sun)) && __cplusplus) /* Solaris includes __STDC_VERSION__ with C++. Tested with GCC 5.5 */
2565 #  define XXH_RESTRICT /* disable */
2566 #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* >= C99 */
2567 #  define XXH_RESTRICT   restrict
2568 #else
2569 /* Note: it might be useful to define __restrict or __restrict__ for some C++ compilers */
2570 #  define XXH_RESTRICT   /* disable */
2571 #endif
2572 
2573 #if (defined(__GNUC__) && (__GNUC__ >= 3))  \
2574   || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \
2575   || defined(__clang__)
2576 #    define XXH_likely(x) __builtin_expect(x, 1)
2577 #    define XXH_unlikely(x) __builtin_expect(x, 0)
2578 #else
2579 #    define XXH_likely(x) (x)
2580 #    define XXH_unlikely(x) (x)
2581 #endif
2582 
2583 #if defined(__GNUC__)
2584 #  if defined(__AVX2__)
2585 #    include <immintrin.h>
2586 #  elif defined(__SSE2__)
2587 #    include <emmintrin.h>
2588 #  elif defined(__ARM_NEON__) || defined(__ARM_NEON)
2589 #    define inline __inline__  /* circumvent a clang bug */
2590 #    include <arm_neon.h>
2591 #    undef inline
2592 #  endif
2593 #elif defined(_MSC_VER)
2594 #  include <intrin.h>
2595 #endif
2596 
2597 /*
2598  * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while
2599  * remaining a true 64-bit/128-bit hash function.
2600  *
2601  * This is done by prioritizing a subset of 64-bit operations that can be
2602  * emulated without too many steps on the average 32-bit machine.
2603  *
2604  * For example, these two lines seem similar, and run equally fast on 64-bit:
2605  *
2606  *   xxh_u64 x;
2607  *   x ^= (x >> 47); // good
2608  *   x ^= (x >> 13); // bad
2609  *
2610  * However, to a 32-bit machine, there is a major difference.
2611  *
2612  * x ^= (x >> 47) looks like this:
2613  *
2614  *   x.lo ^= (x.hi >> (47 - 32));
2615  *
2616  * while x ^= (x >> 13) looks like this:
2617  *
2618  *   // note: funnel shifts are not usually cheap.
2619  *   x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13));
2620  *   x.hi ^= (x.hi >> 13);
2621  *
2622  * The first one is significantly faster than the second, simply because the
2623  * shift is larger than 32. This means:
2624  *  - All the bits we need are in the upper 32 bits, so we can ignore the lower
2625  *    32 bits in the shift.
2626  *  - The shift result will always fit in the lower 32 bits, and therefore,
2627  *    we can ignore the upper 32 bits in the xor.
2628  *
2629  * Thanks to this optimization, XXH3 only requires these features to be efficient:
2630  *
2631  *  - Usable unaligned access
2632  *  - A 32-bit or 64-bit ALU
2633  *      - If 32-bit, a decent ADC instruction
2634  *  - A 32 or 64-bit multiply with a 64-bit result
2635  *  - For the 128-bit variant, a decent byteswap helps short inputs.
2636  *
2637  * The first two are already required by XXH32, and almost all 32-bit and 64-bit
2638  * platforms which can run XXH32 can run XXH3 efficiently.
2639  *
2640  * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one
2641  * notable exception.
2642  *
2643  * First of all, Thumb-1 lacks support for the UMULL instruction which
2644  * performs the important long multiply. This means numerous __aeabi_lmul
2645  * calls.
2646  *
2647  * Second of all, the 8 functional registers are just not enough.
2648  * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need
2649  * Lo registers, and this shuffling results in thousands more MOVs than A32.
2650  *
2651  * A32 and T32 don't have this limitation. They can access all 14 registers,
2652  * do a 32->64 multiply with UMULL, and the flexible operand allowing free
2653  * shifts is helpful, too.
2654  *
2655  * Therefore, we do a quick sanity check.
2656  *
2657  * If compiling Thumb-1 for a target which supports ARM instructions, we will
2658  * emit a warning, as it is not a "sane" platform to compile for.
2659  *
2660  * Usually, if this happens, it is because of an accident and you probably need
2661  * to specify -march, as you likely meant to compile for a newer architecture.
2662  *
2663  * Credit: large sections of the vectorial and asm source code paths
2664  *         have been contributed by @easyaspi314
2665  */
2666 #if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM)
2667 #   warning "XXH3 is highly inefficient without ARM or Thumb-2."
2668 #endif
2669 
2670 /* ==========================================
2671  * Vectorization detection
2672  * ========================================== */
2673 
2674 #ifdef XXH_DOXYGEN
2675 /*!
2676  * @ingroup tuning
2677  * @brief Overrides the vectorization implementation chosen for XXH3.
2678  *
2679  * Can be defined to 0 to disable SIMD or any of the values mentioned in
2680  * @ref XXH_VECTOR_TYPE.
2681  *
2682  * If this is not defined, it uses predefined macros to determine the best
2683  * implementation.
2684  */
2685 #  define XXH_VECTOR XXH_SCALAR
2686 /*!
2687  * @ingroup tuning
2688  * @brief Possible values for @ref XXH_VECTOR.
2689  *
2690  * Note that these are actually implemented as macros.
2691  *
2692  * If this is not defined, it is detected automatically.
2693  * @ref XXH_X86DISPATCH overrides this.
2694  */
2695 enum XXH_VECTOR_TYPE /* fake enum */ {
2696     XXH_SCALAR = 0,  /*!< Portable scalar version */
2697     XXH_SSE2   = 1,  /*!<
2698                       * SSE2 for Pentium 4, Opteron, all x86_64.
2699                       *
2700                       * @note SSE2 is also guaranteed on Windows 10, macOS, and
2701                       * Android x86.
2702                       */
2703     XXH_AVX2   = 2,  /*!< AVX2 for Haswell and Bulldozer */
2704     XXH_AVX512 = 3,  /*!< AVX512 for Skylake and Icelake */
2705     XXH_NEON   = 4,  /*!< NEON for most ARMv7-A and all AArch64 */
2706     XXH_VSX    = 5,  /*!< VSX and ZVector for POWER8/z13 (64-bit) */
2707 };
2708 /*!
2709  * @ingroup tuning
2710  * @brief Selects the minimum alignment for XXH3's accumulators.
2711  *
2712  * When using SIMD, this should match the alignment reqired for said vector
2713  * type, so, for example, 32 for AVX2.
2714  *
2715  * Default: Auto detected.
2716  */
2717 #  define XXH_ACC_ALIGN 8
2718 #endif
2719 
2720 /* Actual definition */
2721 #ifndef XXH_DOXYGEN
2722 #  define XXH_SCALAR 0
2723 #  define XXH_SSE2   1
2724 #  define XXH_AVX2   2
2725 #  define XXH_AVX512 3
2726 #  define XXH_NEON   4
2727 #  define XXH_VSX    5
2728 #endif
2729 
2730 #ifndef XXH_VECTOR    /* can be defined on command line */
2731 #  if defined(__AVX512F__)
2732 #    define XXH_VECTOR XXH_AVX512
2733 #  elif defined(__AVX2__)
2734 #    define XXH_VECTOR XXH_AVX2
2735 #  elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
2736 #    define XXH_VECTOR XXH_SSE2
2737 #  elif defined(__GNUC__) /* msvc support maybe later */ \
2738   && (defined(__ARM_NEON__) || defined(__ARM_NEON)) \
2739   && (defined(__LITTLE_ENDIAN__) /* We only support little endian NEON */ \
2740     || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
2741 #    define XXH_VECTOR XXH_NEON
2742 #  elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \
2743      || (defined(__s390x__) && defined(__VEC__)) \
2744      && defined(__GNUC__) /* TODO: IBM XL */
2745 #    define XXH_VECTOR XXH_VSX
2746 #  else
2747 #    define XXH_VECTOR XXH_SCALAR
2748 #  endif
2749 #endif
2750 
2751 /*
2752  * Controls the alignment of the accumulator,
2753  * for compatibility with aligned vector loads, which are usually faster.
2754  */
2755 #ifndef XXH_ACC_ALIGN
2756 #  if defined(XXH_X86DISPATCH)
2757 #     define XXH_ACC_ALIGN 64  /* for compatibility with avx512 */
2758 #  elif XXH_VECTOR == XXH_SCALAR  /* scalar */
2759 #     define XXH_ACC_ALIGN 8
2760 #  elif XXH_VECTOR == XXH_SSE2  /* sse2 */
2761 #     define XXH_ACC_ALIGN 16
2762 #  elif XXH_VECTOR == XXH_AVX2  /* avx2 */
2763 #     define XXH_ACC_ALIGN 32
2764 #  elif XXH_VECTOR == XXH_NEON  /* neon */
2765 #     define XXH_ACC_ALIGN 16
2766 #  elif XXH_VECTOR == XXH_VSX   /* vsx */
2767 #     define XXH_ACC_ALIGN 16
2768 #  elif XXH_VECTOR == XXH_AVX512  /* avx512 */
2769 #     define XXH_ACC_ALIGN 64
2770 #  endif
2771 #endif
2772 
2773 #if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \
2774     || XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512
2775 #  define XXH_SEC_ALIGN XXH_ACC_ALIGN
2776 #else
2777 #  define XXH_SEC_ALIGN 8
2778 #endif
2779 
2780 /*
2781  * UGLY HACK:
2782  * GCC usually generates the best code with -O3 for xxHash.
2783  *
2784  * However, when targeting AVX2, it is overzealous in its unrolling resulting
2785  * in code roughly 3/4 the speed of Clang.
2786  *
2787  * There are other issues, such as GCC splitting _mm256_loadu_si256 into
2788  * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which
2789  * only applies to Sandy and Ivy Bridge... which don't even support AVX2.
2790  *
2791  * That is why when compiling the AVX2 version, it is recommended to use either
2792  *   -O2 -mavx2 -march=haswell
2793  * or
2794  *   -O2 -mavx2 -mno-avx256-split-unaligned-load
2795  * for decent performance, or to use Clang instead.
2796  *
2797  * Fortunately, we can control the first one with a pragma that forces GCC into
2798  * -O2, but the other one we can't control without "failed to inline always
2799  * inline function due to target mismatch" warnings.
2800  */
2801 #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
2802   && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
2803   && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
2804 #  pragma GCC push_options
2805 #  pragma GCC optimize("-O2")
2806 #endif
2807 
2808 
2809 #if XXH_VECTOR == XXH_NEON
2810 /*
2811  * NEON's setup for vmlal_u32 is a little more complicated than it is on
2812  * SSE2, AVX2, and VSX.
2813  *
2814  * While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an upcast.
2815  *
2816  * To do the same operation, the 128-bit 'Q' register needs to be split into
2817  * two 64-bit 'D' registers, performing this operation::
2818  *
2819  *   [                a                 |                 b                ]
2820  *            |              '---------. .--------'                |
2821  *            |                         x                          |
2822  *            |              .---------' '--------.                |
2823  *   [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[    a >> 32     |     b >> 32    ]
2824  *
2825  * Due to significant changes in aarch64, the fastest method for aarch64 is
2826  * completely different than the fastest method for ARMv7-A.
2827  *
2828  * ARMv7-A treats D registers as unions overlaying Q registers, so modifying
2829  * D11 will modify the high half of Q5. This is similar to how modifying AH
2830  * will only affect bits 8-15 of AX on x86.
2831  *
2832  * VZIP takes two registers, and puts even lanes in one register and odd lanes
2833  * in the other.
2834  *
2835  * On ARMv7-A, this strangely modifies both parameters in place instead of
2836  * taking the usual 3-operand form.
2837  *
2838  * Therefore, if we want to do this, we can simply use a D-form VZIP.32 on the
2839  * lower and upper halves of the Q register to end up with the high and low
2840  * halves where we want - all in one instruction.
2841  *
2842  *   vzip.32   d10, d11       @ d10 = { d10[0], d11[0] }; d11 = { d10[1], d11[1] }
2843  *
2844  * Unfortunately we need inline assembly for this: Instructions modifying two
2845  * registers at once is not possible in GCC or Clang's IR, and they have to
2846  * create a copy.
2847  *
2848  * aarch64 requires a different approach.
2849  *
2850  * In order to make it easier to write a decent compiler for aarch64, many
2851  * quirks were removed, such as conditional execution.
2852  *
2853  * NEON was also affected by this.
2854  *
2855  * aarch64 cannot access the high bits of a Q-form register, and writes to a
2856  * D-form register zero the high bits, similar to how writes to W-form scalar
2857  * registers (or DWORD registers on x86_64) work.
2858  *
2859  * The formerly free vget_high intrinsics now require a vext (with a few
2860  * exceptions)
2861  *
2862  * Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the equivalent
2863  * of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to only modify one
2864  * operand.
2865  *
2866  * The equivalent of the VZIP.32 on the lower and upper halves would be this
2867  * mess:
2868  *
2869  *   ext     v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1] }
2870  *   zip1    v1.2s, v0.2s, v2.2s     // v1 = { v0[0], v2[0] }
2871  *   zip2    v0.2s, v0.2s, v1.2s     // v0 = { v0[1], v2[1] }
2872  *
2873  * Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64 (SHRN):
2874  *
2875  *   shrn    v1.2s, v0.2d, #32  // v1 = (uint32x2_t)(v0 >> 32);
2876  *   xtn     v0.2s, v0.2d       // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF);
2877  *
2878  * This is available on ARMv7-A, but is less efficient than a single VZIP.32.
2879  */
2880 
2881 /*!
2882  * Function-like macro:
2883  * void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t &outHi)
2884  * {
2885  *     outLo = (uint32x2_t)(in & 0xFFFFFFFF);
2886  *     outHi = (uint32x2_t)(in >> 32);
2887  *     in = UNDEFINED;
2888  * }
2889  */
2890 # if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \
2891    && defined(__GNUC__) \
2892    && !defined(__aarch64__) && !defined(__arm64__)
2893 #  define XXH_SPLIT_IN_PLACE(in, outLo, outHi)                                              \
2894     do {                                                                                    \
2895       /* Undocumented GCC/Clang operand modifier: %e0 = lower D half, %f0 = upper D half */ \
2896       /* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486 */     \
2897       /* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 */ \
2898       __asm__("vzip.32  %e0, %f0" : "+w" (in));                                             \
2899       (outLo) = vget_low_u32 (vreinterpretq_u32_u64(in));                                   \
2900       (outHi) = vget_high_u32(vreinterpretq_u32_u64(in));                                   \
2901    } while (0)
2902 # else
2903 #  define XXH_SPLIT_IN_PLACE(in, outLo, outHi)                                            \
2904     do {                                                                                  \
2905       (outLo) = vmovn_u64    (in);                                                        \
2906       (outHi) = vshrn_n_u64  ((in), 32);                                                  \
2907     } while (0)
2908 # endif
2909 #endif  /* XXH_VECTOR == XXH_NEON */
2910 
2911 /*
2912  * VSX and Z Vector helpers.
2913  *
2914  * This is very messy, and any pull requests to clean this up are welcome.
2915  *
2916  * There are a lot of problems with supporting VSX and s390x, due to
2917  * inconsistent intrinsics, spotty coverage, and multiple endiannesses.
2918  */
2919 #if XXH_VECTOR == XXH_VSX
2920 #  if defined(__s390x__)
2921 #    include <s390intrin.h>
2922 #  else
2923 /* gcc's altivec.h can have the unwanted consequence to unconditionally
2924  * #define bool, vector, and pixel keywords,
2925  * with bad consequences for programs already using these keywords for other purposes.
2926  * The paragraph defining these macros is skipped when __APPLE_ALTIVEC__ is defined.
2927  * __APPLE_ALTIVEC__ is _generally_ defined automatically by the compiler,
2928  * but it seems that, in some cases, it isn't.
2929  * Force the build macro to be defined, so that keywords are not altered.
2930  */
2931 #    if defined(__GNUC__) && !defined(__APPLE_ALTIVEC__)
2932 #      define __APPLE_ALTIVEC__
2933 #    endif
2934 #    include <altivec.h>
2935 #  endif
2936 
2937 typedef __vector unsigned long long xxh_u64x2;
2938 typedef __vector unsigned char xxh_u8x16;
2939 typedef __vector unsigned xxh_u32x4;
2940 
2941 # ifndef XXH_VSX_BE
2942 #  if defined(__BIG_ENDIAN__) \
2943   || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
2944 #    define XXH_VSX_BE 1
2945 #  elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__
2946 #    warning "-maltivec=be is not recommended. Please use native endianness."
2947 #    define XXH_VSX_BE 1
2948 #  else
2949 #    define XXH_VSX_BE 0
2950 #  endif
2951 # endif /* !defined(XXH_VSX_BE) */
2952 
2953 # if XXH_VSX_BE
2954 #  if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__))
2955 #    define XXH_vec_revb vec_revb
2956 #  else
2957 /*!
2958  * A polyfill for POWER9's vec_revb().
2959  */
XXH_vec_revb(xxh_u64x2 val)2960 XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val)
2961 {
2962     xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
2963                                   0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 };
2964     return vec_perm(val, val, vByteSwap);
2965 }
2966 #  endif
2967 # endif /* XXH_VSX_BE */
2968 
2969 /*!
2970  * Performs an unaligned vector load and byte swaps it on big endian.
2971  */
XXH_vec_loadu(const void * ptr)2972 XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr)
2973 {
2974     xxh_u64x2 ret;
2975     memcpy(&ret, ptr, sizeof(xxh_u64x2));
2976 # if XXH_VSX_BE
2977     ret = XXH_vec_revb(ret);
2978 # endif
2979     return ret;
2980 }
2981 
2982 /*
2983  * vec_mulo and vec_mule are very problematic intrinsics on PowerPC
2984  *
2985  * These intrinsics weren't added until GCC 8, despite existing for a while,
2986  * and they are endian dependent. Also, their meaning swap depending on version.
2987  * */
2988 # if defined(__s390x__)
2989  /* s390x is always big endian, no issue on this platform */
2990 #  define XXH_vec_mulo vec_mulo
2991 #  define XXH_vec_mule vec_mule
2992 # elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw)
2993 /* Clang has a better way to control this, we can just use the builtin which doesn't swap. */
2994 #  define XXH_vec_mulo __builtin_altivec_vmulouw
2995 #  define XXH_vec_mule __builtin_altivec_vmuleuw
2996 # else
2997 /* gcc needs inline assembly */
2998 /* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */
XXH_vec_mulo(xxh_u32x4 a,xxh_u32x4 b)2999 XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b)
3000 {
3001     xxh_u64x2 result;
3002     __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
3003     return result;
3004 }
XXH_vec_mule(xxh_u32x4 a,xxh_u32x4 b)3005 XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b)
3006 {
3007     xxh_u64x2 result;
3008     __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
3009     return result;
3010 }
3011 # endif /* XXH_vec_mulo, XXH_vec_mule */
3012 #endif /* XXH_VECTOR == XXH_VSX */
3013 
3014 
3015 /* prefetch
3016  * can be disabled, by declaring XXH_NO_PREFETCH build macro */
3017 #if defined(XXH_NO_PREFETCH)
3018 #  define XXH_PREFETCH(ptr)  (void)(ptr)  /* disabled */
3019 #else
3020 #  if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86))  /* _mm_prefetch() not defined outside of x86/x64 */
3021 #    include <mmintrin.h>   /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
3022 #    define XXH_PREFETCH(ptr)  _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
3023 #  elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
3024 #    define XXH_PREFETCH(ptr)  __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
3025 #  else
3026 #    define XXH_PREFETCH(ptr) (void)(ptr)  /* disabled */
3027 #  endif
3028 #endif  /* XXH_NO_PREFETCH */
3029 
3030 
3031 /* ==========================================
3032  * XXH3 default settings
3033  * ========================================== */
3034 
3035 #define XXH_SECRET_DEFAULT_SIZE 192   /* minimum XXH3_SECRET_SIZE_MIN */
3036 
3037 #if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN)
3038 #  error "default keyset is not large enough"
3039 #endif
3040 
3041 /*! Pseudorandom secret taken directly from FARSH. */
3042 XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = {
3043     0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
3044     0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
3045     0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
3046     0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
3047     0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
3048     0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
3049     0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
3050     0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
3051     0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
3052     0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
3053     0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
3054     0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
3055 };
3056 
3057 
3058 #ifdef XXH_OLD_NAMES
3059 #  define kSecret XXH3_kSecret
3060 #endif
3061 
3062 #ifdef XXH_DOXYGEN
3063 /*!
3064  * @brief Calculates a 32-bit to 64-bit long multiply.
3065  *
3066  * Implemented as a macro.
3067  *
3068  * Wraps `__emulu` on MSVC x86 because it tends to call `__allmul` when it doesn't
3069  * need to (but it shouldn't need to anyways, it is about 7 instructions to do
3070  * a 64x64 multiply...). Since we know that this will _always_ emit `MULL`, we
3071  * use that instead of the normal method.
3072  *
3073  * If you are compiling for platforms like Thumb-1 and don't have a better option,
3074  * you may also want to write your own long multiply routine here.
3075  *
3076  * @param x, y Numbers to be multiplied
3077  * @return 64-bit product of the low 32 bits of @p x and @p y.
3078  */
3079 XXH_FORCE_INLINE xxh_u64
XXH_mult32to64(xxh_u64 x,xxh_u64 y)3080 XXH_mult32to64(xxh_u64 x, xxh_u64 y)
3081 {
3082    return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF);
3083 }
3084 #elif defined(_MSC_VER) && defined(_M_IX86)
3085 #    include <intrin.h>
3086 #    define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y))
3087 #else
3088 /*
3089  * Downcast + upcast is usually better than masking on older compilers like
3090  * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers.
3091  *
3092  * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands
3093  * and perform a full 64x64 multiply -- entirely redundant on 32-bit.
3094  */
3095 #    define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y))
3096 #endif
3097 
3098 /*!
3099  * @brief Calculates a 64->128-bit long multiply.
3100  *
3101  * Uses `__uint128_t` and `_umul128` if available, otherwise uses a scalar
3102  * version.
3103  *
3104  * @param lhs, rhs The 64-bit integers to be multiplied
3105  * @return The 128-bit result represented in an @ref XXH128_hash_t.
3106  */
3107 static XXH128_hash_t
XXH_mult64to128(xxh_u64 lhs,xxh_u64 rhs)3108 XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs)
3109 {
3110     /*
3111      * GCC/Clang __uint128_t method.
3112      *
3113      * On most 64-bit targets, GCC and Clang define a __uint128_t type.
3114      * This is usually the best way as it usually uses a native long 64-bit
3115      * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
3116      *
3117      * Usually.
3118      *
3119      * Despite being a 32-bit platform, Clang (and emscripten) define this type
3120      * despite not having the arithmetic for it. This results in a laggy
3121      * compiler builtin call which calculates a full 128-bit multiply.
3122      * In that case it is best to use the portable one.
3123      * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
3124      */
3125 #if defined(__GNUC__) && !defined(__wasm__) \
3126     && defined(__SIZEOF_INT128__) \
3127     || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
3128 
3129     __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs;
3130     XXH128_hash_t r128;
3131     r128.low64  = (xxh_u64)(product);
3132     r128.high64 = (xxh_u64)(product >> 64);
3133     return r128;
3134 
3135     /*
3136      * MSVC for x64's _umul128 method.
3137      *
3138      * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct);
3139      *
3140      * This compiles to single operand MUL on x64.
3141      */
3142 #elif defined(_M_X64) || defined(_M_IA64)
3143 
3144 #ifndef _MSC_VER
3145 #   pragma intrinsic(_umul128)
3146 #endif
3147     xxh_u64 product_high;
3148     xxh_u64 const product_low = _umul128(lhs, rhs, &product_high);
3149     XXH128_hash_t r128;
3150     r128.low64  = product_low;
3151     r128.high64 = product_high;
3152     return r128;
3153 
3154 #else
3155     /*
3156      * Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
3157      *
3158      * This is a fast and simple grade school multiply, which is shown below
3159      * with base 10 arithmetic instead of base 0x100000000.
3160      *
3161      *           9 3 // D2 lhs = 93
3162      *         x 7 5 // D2 rhs = 75
3163      *     ----------
3164      *           1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15
3165      *         4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45
3166      *         2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21
3167      *     + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63
3168      *     ---------
3169      *         2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27
3170      *     + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67
3171      *     ---------
3172      *       6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975
3173      *
3174      * The reasons for adding the products like this are:
3175      *  1. It avoids manual carry tracking. Just like how
3176      *     (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX.
3177      *     This avoids a lot of complexity.
3178      *
3179      *  2. It hints for, and on Clang, compiles to, the powerful UMAAL
3180      *     instruction available in ARM's Digital Signal Processing extension
3181      *     in 32-bit ARMv6 and later, which is shown below:
3182      *
3183      *         void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
3184      *         {
3185      *             xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm;
3186      *             *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
3187      *             *RdHi = (xxh_u32)(product >> 32);
3188      *         }
3189      *
3190      *     This instruction was designed for efficient long multiplication, and
3191      *     allows this to be calculated in only 4 instructions at speeds
3192      *     comparable to some 64-bit ALUs.
3193      *
3194      *  3. It isn't terrible on other platforms. Usually this will be a couple
3195      *     of 32-bit ADD/ADCs.
3196      */
3197 
3198     /* First calculate all of the cross products. */
3199     xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
3200     xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32,        rhs & 0xFFFFFFFF);
3201     xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
3202     xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32,        rhs >> 32);
3203 
3204     /* Now add the products together. These will never overflow. */
3205     xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
3206     xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32)        + hi_hi;
3207     xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
3208 
3209     XXH128_hash_t r128;
3210     r128.low64  = lower;
3211     r128.high64 = upper;
3212     return r128;
3213 #endif
3214 }
3215 
3216 /*!
3217  * @brief Calculates a 64-bit to 128-bit multiply, then XOR folds it.
3218  *
3219  * The reason for the separate function is to prevent passing too many structs
3220  * around by value. This will hopefully inline the multiply, but we don't force it.
3221  *
3222  * @param lhs, rhs The 64-bit integers to multiply
3223  * @return The low 64 bits of the product XOR'd by the high 64 bits.
3224  * @see XXH_mult64to128()
3225  */
3226 static xxh_u64
XXH3_mul128_fold64(xxh_u64 lhs,xxh_u64 rhs)3227 XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs)
3228 {
3229     XXH128_hash_t product = XXH_mult64to128(lhs, rhs);
3230     return product.low64 ^ product.high64;
3231 }
3232 
3233 /*! Seems to produce slightly better code on GCC for some reason. */
XXH_xorshift64(xxh_u64 v64,int shift)3234 XXH_FORCE_INLINE xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift)
3235 {
3236     XXH_ASSERT(0 <= shift && shift < 64);
3237     return v64 ^ (v64 >> shift);
3238 }
3239 
3240 /*
3241  * This is a fast avalanche stage,
3242  * suitable when input bits are already partially mixed
3243  */
XXH3_avalanche(xxh_u64 h64)3244 static XXH64_hash_t XXH3_avalanche(xxh_u64 h64)
3245 {
3246     h64 = XXH_xorshift64(h64, 37);
3247     h64 *= 0x165667919E3779F9ULL;
3248     h64 = XXH_xorshift64(h64, 32);
3249     return h64;
3250 }
3251 
3252 /*
3253  * This is a stronger avalanche,
3254  * inspired by Pelle Evensen's rrmxmx
3255  * preferable when input has not been previously mixed
3256  */
XXH3_rrmxmx(xxh_u64 h64,xxh_u64 len)3257 static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len)
3258 {
3259     /* this mix is inspired by Pelle Evensen's rrmxmx */
3260     h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24);
3261     h64 *= 0x9FB21C651E98DF25ULL;
3262     h64 ^= (h64 >> 35) + len ;
3263     h64 *= 0x9FB21C651E98DF25ULL;
3264     return XXH_xorshift64(h64, 28);
3265 }
3266 
3267 
3268 /* ==========================================
3269  * Short keys
3270  * ==========================================
3271  * One of the shortcomings of XXH32 and XXH64 was that their performance was
3272  * sub-optimal on short lengths. It used an iterative algorithm which strongly
3273  * favored lengths that were a multiple of 4 or 8.
3274  *
3275  * Instead of iterating over individual inputs, we use a set of single shot
3276  * functions which piece together a range of lengths and operate in constant time.
3277  *
3278  * Additionally, the number of multiplies has been significantly reduced. This
3279  * reduces latency, especially when emulating 64-bit multiplies on 32-bit.
3280  *
3281  * Depending on the platform, this may or may not be faster than XXH32, but it
3282  * is almost guaranteed to be faster than XXH64.
3283  */
3284 
3285 /*
3286  * At very short lengths, there isn't enough input to fully hide secrets, or use
3287  * the entire secret.
3288  *
3289  * There is also only a limited amount of mixing we can do before significantly
3290  * impacting performance.
3291  *
3292  * Therefore, we use different sections of the secret and always mix two secret
3293  * samples with an XOR. This should have no effect on performance on the
3294  * seedless or withSeed variants because everything _should_ be constant folded
3295  * by modern compilers.
3296  *
3297  * The XOR mixing hides individual parts of the secret and increases entropy.
3298  *
3299  * This adds an extra layer of strength for custom secrets.
3300  */
3301 XXH_FORCE_INLINE XXH64_hash_t
XXH3_len_1to3_64b(const xxh_u8 * input,size_t len,const xxh_u8 * secret,XXH64_hash_t seed)3302 XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
3303 {
3304     XXH_ASSERT(input != NULL);
3305     XXH_ASSERT(1 <= len && len <= 3);
3306     XXH_ASSERT(secret != NULL);
3307     /*
3308      * len = 1: combined = { input[0], 0x01, input[0], input[0] }
3309      * len = 2: combined = { input[1], 0x02, input[0], input[1] }
3310      * len = 3: combined = { input[2], 0x03, input[0], input[1] }
3311      */
3312     {   xxh_u8  const c1 = input[0];
3313         xxh_u8  const c2 = input[len >> 1];
3314         xxh_u8  const c3 = input[len - 1];
3315         xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2  << 24)
3316                                | ((xxh_u32)c3 <<  0) | ((xxh_u32)len << 8);
3317         xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
3318         xxh_u64 const keyed = (xxh_u64)combined ^ bitflip;
3319         return XXH64_avalanche(keyed);
3320     }
3321 }
3322 
3323 XXH_FORCE_INLINE XXH64_hash_t
XXH3_len_4to8_64b(const xxh_u8 * input,size_t len,const xxh_u8 * secret,XXH64_hash_t seed)3324 XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
3325 {
3326     XXH_ASSERT(input != NULL);
3327     XXH_ASSERT(secret != NULL);
3328     XXH_ASSERT(4 <= len && len <= 8);
3329     seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
3330     {   xxh_u32 const input1 = XXH_readLE32(input);
3331         xxh_u32 const input2 = XXH_readLE32(input + len - 4);
3332         xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed;
3333         xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32);
3334         xxh_u64 const keyed = input64 ^ bitflip;
3335         return XXH3_rrmxmx(keyed, len);
3336     }
3337 }
3338 
3339 XXH_FORCE_INLINE XXH64_hash_t
XXH3_len_9to16_64b(const xxh_u8 * input,size_t len,const xxh_u8 * secret,XXH64_hash_t seed)3340 XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
3341 {
3342     XXH_ASSERT(input != NULL);
3343     XXH_ASSERT(secret != NULL);
3344     XXH_ASSERT(8 <= len && len <= 16);
3345     {   xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed;
3346         xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed;
3347         xxh_u64 const input_lo = XXH_readLE64(input)           ^ bitflip1;
3348         xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2;
3349         xxh_u64 const acc = len
3350                           + XXH_swap64(input_lo) + input_hi
3351                           + XXH3_mul128_fold64(input_lo, input_hi);
3352         return XXH3_avalanche(acc);
3353     }
3354 }
3355 
3356 XXH_FORCE_INLINE XXH64_hash_t
XXH3_len_0to16_64b(const xxh_u8 * input,size_t len,const xxh_u8 * secret,XXH64_hash_t seed)3357 XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
3358 {
3359     XXH_ASSERT(len <= 16);
3360     {   if (XXH_likely(len >  8)) return XXH3_len_9to16_64b(input, len, secret, seed);
3361         if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed);
3362         if (len) return XXH3_len_1to3_64b(input, len, secret, seed);
3363         return XXH64_avalanche(seed ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64)));
3364     }
3365 }
3366 
3367 /*
3368  * DISCLAIMER: There are known *seed-dependent* multicollisions here due to
3369  * multiplication by zero, affecting hashes of lengths 17 to 240.
3370  *
3371  * However, they are very unlikely.
3372  *
3373  * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all
3374  * unseeded non-cryptographic hashes, it does not attempt to defend itself
3375  * against specially crafted inputs, only random inputs.
3376  *
3377  * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes
3378  * cancelling out the secret is taken an arbitrary number of times (addressed
3379  * in XXH3_accumulate_512), this collision is very unlikely with random inputs
3380  * and/or proper seeding:
3381  *
3382  * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a
3383  * function that is only called up to 16 times per hash with up to 240 bytes of
3384  * input.
3385  *
3386  * This is not too bad for a non-cryptographic hash function, especially with
3387  * only 64 bit outputs.
3388  *
3389  * The 128-bit variant (which trades some speed for strength) is NOT affected
3390  * by this, although it is always a good idea to use a proper seed if you care
3391  * about strength.
3392  */
XXH3_mix16B(const xxh_u8 * XXH_RESTRICT input,const xxh_u8 * XXH_RESTRICT secret,xxh_u64 seed64)3393 XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input,
3394                                      const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64)
3395 {
3396 #if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
3397   && defined(__i386__) && defined(__SSE2__)  /* x86 + SSE2 */ \
3398   && !defined(XXH_ENABLE_AUTOVECTORIZE)      /* Define to disable like XXH32 hack */
3399     /*
3400      * UGLY HACK:
3401      * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in
3402      * slower code.
3403      *
3404      * By forcing seed64 into a register, we disrupt the cost model and
3405      * cause it to scalarize. See `XXH32_round()`
3406      *
3407      * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600,
3408      * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on
3409      * GCC 9.2, despite both emitting scalar code.
3410      *
3411      * GCC generates much better scalar code than Clang for the rest of XXH3,
3412      * which is why finding a more optimal codepath is an interest.
3413      */
3414     XXH_COMPILER_GUARD(seed64);
3415 #endif
3416     {   xxh_u64 const input_lo = XXH_readLE64(input);
3417         xxh_u64 const input_hi = XXH_readLE64(input+8);
3418         return XXH3_mul128_fold64(
3419             input_lo ^ (XXH_readLE64(secret)   + seed64),
3420             input_hi ^ (XXH_readLE64(secret+8) - seed64)
3421         );
3422     }
3423 }
3424 
3425 /* For mid range keys, XXH3 uses a Mum-hash variant. */
3426 XXH_FORCE_INLINE XXH64_hash_t
XXH3_len_17to128_64b(const xxh_u8 * XXH_RESTRICT input,size_t len,const xxh_u8 * XXH_RESTRICT secret,size_t secretSize,XXH64_hash_t seed)3427 XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
3428                      const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
3429                      XXH64_hash_t seed)
3430 {
3431     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
3432     XXH_ASSERT(16 < len && len <= 128);
3433 
3434     {   xxh_u64 acc = len * XXH_PRIME64_1;
3435         if (len > 32) {
3436             if (len > 64) {
3437                 if (len > 96) {
3438                     acc += XXH3_mix16B(input+48, secret+96, seed);
3439                     acc += XXH3_mix16B(input+len-64, secret+112, seed);
3440                 }
3441                 acc += XXH3_mix16B(input+32, secret+64, seed);
3442                 acc += XXH3_mix16B(input+len-48, secret+80, seed);
3443             }
3444             acc += XXH3_mix16B(input+16, secret+32, seed);
3445             acc += XXH3_mix16B(input+len-32, secret+48, seed);
3446         }
3447         acc += XXH3_mix16B(input+0, secret+0, seed);
3448         acc += XXH3_mix16B(input+len-16, secret+16, seed);
3449 
3450         return XXH3_avalanche(acc);
3451     }
3452 }
3453 
3454 #define XXH3_MIDSIZE_MAX 240
3455 
3456 XXH_NO_INLINE XXH64_hash_t
XXH3_len_129to240_64b(const xxh_u8 * XXH_RESTRICT input,size_t len,const xxh_u8 * XXH_RESTRICT secret,size_t secretSize,XXH64_hash_t seed)3457 XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
3458                       const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
3459                       XXH64_hash_t seed)
3460 {
3461     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
3462     XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
3463 
3464     #define XXH3_MIDSIZE_STARTOFFSET 3
3465     #define XXH3_MIDSIZE_LASTOFFSET  17
3466 
3467     {   xxh_u64 acc = len * XXH_PRIME64_1;
3468         int const nbRounds = (int)len / 16;
3469         int i;
3470         for (i=0; i<8; i++) {
3471             acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed);
3472         }
3473         acc = XXH3_avalanche(acc);
3474         XXH_ASSERT(nbRounds >= 8);
3475 #if defined(__clang__)                                /* Clang */ \
3476     && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
3477     && !defined(XXH_ENABLE_AUTOVECTORIZE)             /* Define to disable */
3478         /*
3479          * UGLY HACK:
3480          * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86.
3481          * In everywhere else, it uses scalar code.
3482          *
3483          * For 64->128-bit multiplies, even if the NEON was 100% optimal, it
3484          * would still be slower than UMAAL (see XXH_mult64to128).
3485          *
3486          * Unfortunately, Clang doesn't handle the long multiplies properly and
3487          * converts them to the nonexistent "vmulq_u64" intrinsic, which is then
3488          * scalarized into an ugly mess of VMOV.32 instructions.
3489          *
3490          * This mess is difficult to avoid without turning autovectorization
3491          * off completely, but they are usually relatively minor and/or not
3492          * worth it to fix.
3493          *
3494          * This loop is the easiest to fix, as unlike XXH32, this pragma
3495          * _actually works_ because it is a loop vectorization instead of an
3496          * SLP vectorization.
3497          */
3498         #pragma clang loop vectorize(disable)
3499 #endif
3500         for (i=8 ; i < nbRounds; i++) {
3501             acc += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed);
3502         }
3503         /* last bytes */
3504         acc += XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
3505         return XXH3_avalanche(acc);
3506     }
3507 }
3508 
3509 
3510 /* =======     Long Keys     ======= */
3511 
3512 #define XXH_STRIPE_LEN 64
3513 #define XXH_SECRET_CONSUME_RATE 8   /* nb of secret bytes consumed at each accumulation */
3514 #define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64))
3515 
3516 #ifdef XXH_OLD_NAMES
3517 #  define STRIPE_LEN XXH_STRIPE_LEN
3518 #  define ACC_NB XXH_ACC_NB
3519 #endif
3520 
XXH_writeLE64(void * dst,xxh_u64 v64)3521 XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64)
3522 {
3523     if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64);
3524     memcpy(dst, &v64, sizeof(v64));
3525 }
3526 
3527 /* Several intrinsic functions below are supposed to accept __int64 as argument,
3528  * as documented in https://software.intel.com/sites/landingpage/IntrinsicsGuide/ .
3529  * However, several environments do not define __int64 type,
3530  * requiring a workaround.
3531  */
3532 #if !defined (__VMS) \
3533   && (defined (__cplusplus) \
3534   || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
3535     typedef int64_t xxh_i64;
3536 #else
3537     /* the following type must have a width of 64-bit */
3538     typedef long long xxh_i64;
3539 #endif
3540 
3541 /*
3542  * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized.
3543  *
3544  * It is a hardened version of UMAC, based off of FARSH's implementation.
3545  *
3546  * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD
3547  * implementations, and it is ridiculously fast.
3548  *
3549  * We harden it by mixing the original input to the accumulators as well as the product.
3550  *
3551  * This means that in the (relatively likely) case of a multiply by zero, the
3552  * original input is preserved.
3553  *
3554  * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve
3555  * cross-pollination, as otherwise the upper and lower halves would be
3556  * essentially independent.
3557  *
3558  * This doesn't matter on 64-bit hashes since they all get merged together in
3559  * the end, so we skip the extra step.
3560  *
3561  * Both XXH3_64bits and XXH3_128bits use this subroutine.
3562  */
3563 
3564 #if (XXH_VECTOR == XXH_AVX512) \
3565      || (defined(XXH_DISPATCH_AVX512) && XXH_DISPATCH_AVX512 != 0)
3566 
3567 #ifndef XXH_TARGET_AVX512
3568 # define XXH_TARGET_AVX512  /* disable attribute target */
3569 #endif
3570 
3571 XXH_FORCE_INLINE XXH_TARGET_AVX512 void
XXH3_accumulate_512_avx512(void * XXH_RESTRICT acc,const void * XXH_RESTRICT input,const void * XXH_RESTRICT secret)3572 XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc,
3573                      const void* XXH_RESTRICT input,
3574                      const void* XXH_RESTRICT secret)
3575 {
3576     XXH_ALIGN(64) __m512i* const xacc = (__m512i *) acc;
3577     XXH_ASSERT((((size_t)acc) & 63) == 0);
3578     XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
3579 
3580     {
3581         /* data_vec    = input[0]; */
3582         __m512i const data_vec    = _mm512_loadu_si512   (input);
3583         /* key_vec     = secret[0]; */
3584         __m512i const key_vec     = _mm512_loadu_si512   (secret);
3585         /* data_key    = data_vec ^ key_vec; */
3586         __m512i const data_key    = _mm512_xor_si512     (data_vec, key_vec);
3587         /* data_key_lo = data_key >> 32; */
3588         __m512i const data_key_lo = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1));
3589         /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
3590         __m512i const product     = _mm512_mul_epu32     (data_key, data_key_lo);
3591         /* xacc[0] += swap(data_vec); */
3592         __m512i const data_swap = _mm512_shuffle_epi32(data_vec, (_MM_PERM_ENUM)_MM_SHUFFLE(1, 0, 3, 2));
3593         __m512i const sum       = _mm512_add_epi64(*xacc, data_swap);
3594         /* xacc[0] += product; */
3595         *xacc = _mm512_add_epi64(product, sum);
3596     }
3597 }
3598 
3599 /*
3600  * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing.
3601  *
3602  * Multiplication isn't perfect, as explained by Google in HighwayHash:
3603  *
3604  *  // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to
3605  *  // varying degrees. In descending order of goodness, bytes
3606  *  // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32.
3607  *  // As expected, the upper and lower bytes are much worse.
3608  *
3609  * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291
3610  *
3611  * Since our algorithm uses a pseudorandom secret to add some variance into the
3612  * mix, we don't need to (or want to) mix as often or as much as HighwayHash does.
3613  *
3614  * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid
3615  * extraction.
3616  *
3617  * Both XXH3_64bits and XXH3_128bits use this subroutine.
3618  */
3619 
3620 XXH_FORCE_INLINE XXH_TARGET_AVX512 void
XXH3_scrambleAcc_avx512(void * XXH_RESTRICT acc,const void * XXH_RESTRICT secret)3621 XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
3622 {
3623     XXH_ASSERT((((size_t)acc) & 63) == 0);
3624     XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
3625     {   XXH_ALIGN(64) __m512i* const xacc = (__m512i*) acc;
3626         const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1);
3627 
3628         /* xacc[0] ^= (xacc[0] >> 47) */
3629         __m512i const acc_vec     = *xacc;
3630         __m512i const shifted     = _mm512_srli_epi64    (acc_vec, 47);
3631         __m512i const data_vec    = _mm512_xor_si512     (acc_vec, shifted);
3632         /* xacc[0] ^= secret; */
3633         __m512i const key_vec     = _mm512_loadu_si512   (secret);
3634         __m512i const data_key    = _mm512_xor_si512     (data_vec, key_vec);
3635 
3636         /* xacc[0] *= XXH_PRIME32_1; */
3637         __m512i const data_key_hi = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1));
3638         __m512i const prod_lo     = _mm512_mul_epu32     (data_key, prime32);
3639         __m512i const prod_hi     = _mm512_mul_epu32     (data_key_hi, prime32);
3640         *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32));
3641     }
3642 }
3643 
3644 XXH_FORCE_INLINE XXH_TARGET_AVX512 void
XXH3_initCustomSecret_avx512(void * XXH_RESTRICT customSecret,xxh_u64 seed64)3645 XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
3646 {
3647     XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0);
3648     XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64);
3649     XXH_ASSERT(((size_t)customSecret & 63) == 0);
3650     (void)(&XXH_writeLE64);
3651     {   int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i);
3652         __m512i const seed = _mm512_mask_set1_epi64(_mm512_set1_epi64((xxh_i64)seed64), 0xAA, -(xxh_i64)seed64);
3653 
3654         XXH_ALIGN(64) const __m512i* const src  = (const __m512i*) XXH3_kSecret;
3655         XXH_ALIGN(64)       __m512i* const dest = (      __m512i*) customSecret;
3656         int i;
3657         for (i=0; i < nbRounds; ++i) {
3658             /* GCC has a bug, _mm512_stream_load_si512 accepts 'void*', not 'void const*',
3659              * this will warn "discards ‘const’ qualifier". */
3660             union {
3661                 XXH_ALIGN(64) const __m512i* cp;
3662                 XXH_ALIGN(64) void* p;
3663             } remote_const_void;
3664             remote_const_void.cp = src + i;
3665             dest[i] = _mm512_add_epi64(_mm512_stream_load_si512(remote_const_void.p), seed);
3666     }   }
3667 }
3668 
3669 #endif
3670 
3671 #if (XXH_VECTOR == XXH_AVX2) \
3672     || (defined(XXH_DISPATCH_AVX2) && XXH_DISPATCH_AVX2 != 0)
3673 
3674 #ifndef XXH_TARGET_AVX2
3675 # define XXH_TARGET_AVX2  /* disable attribute target */
3676 #endif
3677 
3678 XXH_FORCE_INLINE XXH_TARGET_AVX2 void
XXH3_accumulate_512_avx2(void * XXH_RESTRICT acc,const void * XXH_RESTRICT input,const void * XXH_RESTRICT secret)3679 XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc,
3680                     const void* XXH_RESTRICT input,
3681                     const void* XXH_RESTRICT secret)
3682 {
3683     XXH_ASSERT((((size_t)acc) & 31) == 0);
3684     {   XXH_ALIGN(32) __m256i* const xacc    =       (__m256i *) acc;
3685         /* Unaligned. This is mainly for pointer arithmetic, and because
3686          * _mm256_loadu_si256 requires  a const __m256i * pointer for some reason. */
3687         const         __m256i* const xinput  = (const __m256i *) input;
3688         /* Unaligned. This is mainly for pointer arithmetic, and because
3689          * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
3690         const         __m256i* const xsecret = (const __m256i *) secret;
3691 
3692         size_t i;
3693         for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
3694             /* data_vec    = xinput[i]; */
3695             __m256i const data_vec    = _mm256_loadu_si256    (xinput+i);
3696             /* key_vec     = xsecret[i]; */
3697             __m256i const key_vec     = _mm256_loadu_si256   (xsecret+i);
3698             /* data_key    = data_vec ^ key_vec; */
3699             __m256i const data_key    = _mm256_xor_si256     (data_vec, key_vec);
3700             /* data_key_lo = data_key >> 32; */
3701             __m256i const data_key_lo = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
3702             /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
3703             __m256i const product     = _mm256_mul_epu32     (data_key, data_key_lo);
3704             /* xacc[i] += swap(data_vec); */
3705             __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
3706             __m256i const sum       = _mm256_add_epi64(xacc[i], data_swap);
3707             /* xacc[i] += product; */
3708             xacc[i] = _mm256_add_epi64(product, sum);
3709     }   }
3710 }
3711 
3712 XXH_FORCE_INLINE XXH_TARGET_AVX2 void
XXH3_scrambleAcc_avx2(void * XXH_RESTRICT acc,const void * XXH_RESTRICT secret)3713 XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
3714 {
3715     XXH_ASSERT((((size_t)acc) & 31) == 0);
3716     {   XXH_ALIGN(32) __m256i* const xacc = (__m256i*) acc;
3717         /* Unaligned. This is mainly for pointer arithmetic, and because
3718          * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
3719         const         __m256i* const xsecret = (const __m256i *) secret;
3720         const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1);
3721 
3722         size_t i;
3723         for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
3724             /* xacc[i] ^= (xacc[i] >> 47) */
3725             __m256i const acc_vec     = xacc[i];
3726             __m256i const shifted     = _mm256_srli_epi64    (acc_vec, 47);
3727             __m256i const data_vec    = _mm256_xor_si256     (acc_vec, shifted);
3728             /* xacc[i] ^= xsecret; */
3729             __m256i const key_vec     = _mm256_loadu_si256   (xsecret+i);
3730             __m256i const data_key    = _mm256_xor_si256     (data_vec, key_vec);
3731 
3732             /* xacc[i] *= XXH_PRIME32_1; */
3733             __m256i const data_key_hi = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
3734             __m256i const prod_lo     = _mm256_mul_epu32     (data_key, prime32);
3735             __m256i const prod_hi     = _mm256_mul_epu32     (data_key_hi, prime32);
3736             xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32));
3737         }
3738     }
3739 }
3740 
XXH3_initCustomSecret_avx2(void * XXH_RESTRICT customSecret,xxh_u64 seed64)3741 XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
3742 {
3743     XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0);
3744     XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6);
3745     XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64);
3746     (void)(&XXH_writeLE64);
3747     XXH_PREFETCH(customSecret);
3748     {   __m256i const seed = _mm256_set_epi64x(-(xxh_i64)seed64, (xxh_i64)seed64, -(xxh_i64)seed64, (xxh_i64)seed64);
3749 
3750         XXH_ALIGN(64) const __m256i* const src  = (const __m256i*) XXH3_kSecret;
3751         XXH_ALIGN(64)       __m256i*       dest = (      __m256i*) customSecret;
3752 
3753 #       if defined(__GNUC__) || defined(__clang__)
3754         /*
3755          * On GCC & Clang, marking 'dest' as modified will cause the compiler:
3756          *   - do not extract the secret from sse registers in the internal loop
3757          *   - use less common registers, and avoid pushing these reg into stack
3758          */
3759         XXH_COMPILER_GUARD(dest);
3760 #       endif
3761 
3762         /* GCC -O2 need unroll loop manually */
3763         dest[0] = _mm256_add_epi64(_mm256_stream_load_si256(src+0), seed);
3764         dest[1] = _mm256_add_epi64(_mm256_stream_load_si256(src+1), seed);
3765         dest[2] = _mm256_add_epi64(_mm256_stream_load_si256(src+2), seed);
3766         dest[3] = _mm256_add_epi64(_mm256_stream_load_si256(src+3), seed);
3767         dest[4] = _mm256_add_epi64(_mm256_stream_load_si256(src+4), seed);
3768         dest[5] = _mm256_add_epi64(_mm256_stream_load_si256(src+5), seed);
3769     }
3770 }
3771 
3772 #endif
3773 
3774 /* x86dispatch always generates SSE2 */
3775 #if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH)
3776 
3777 #ifndef XXH_TARGET_SSE2
3778 # define XXH_TARGET_SSE2  /* disable attribute target */
3779 #endif
3780 
3781 XXH_FORCE_INLINE XXH_TARGET_SSE2 void
XXH3_accumulate_512_sse2(void * XXH_RESTRICT acc,const void * XXH_RESTRICT input,const void * XXH_RESTRICT secret)3782 XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc,
3783                     const void* XXH_RESTRICT input,
3784                     const void* XXH_RESTRICT secret)
3785 {
3786     /* SSE2 is just a half-scale version of the AVX2 version. */
3787     XXH_ASSERT((((size_t)acc) & 15) == 0);
3788     {   XXH_ALIGN(16) __m128i* const xacc    =       (__m128i *) acc;
3789         /* Unaligned. This is mainly for pointer arithmetic, and because
3790          * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
3791         const         __m128i* const xinput  = (const __m128i *) input;
3792         /* Unaligned. This is mainly for pointer arithmetic, and because
3793          * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
3794         const         __m128i* const xsecret = (const __m128i *) secret;
3795 
3796         size_t i;
3797         for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
3798             /* data_vec    = xinput[i]; */
3799             __m128i const data_vec    = _mm_loadu_si128   (xinput+i);
3800             /* key_vec     = xsecret[i]; */
3801             __m128i const key_vec     = _mm_loadu_si128   (xsecret+i);
3802             /* data_key    = data_vec ^ key_vec; */
3803             __m128i const data_key    = _mm_xor_si128     (data_vec, key_vec);
3804             /* data_key_lo = data_key >> 32; */
3805             __m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
3806             /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
3807             __m128i const product     = _mm_mul_epu32     (data_key, data_key_lo);
3808             /* xacc[i] += swap(data_vec); */
3809             __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2));
3810             __m128i const sum       = _mm_add_epi64(xacc[i], data_swap);
3811             /* xacc[i] += product; */
3812             xacc[i] = _mm_add_epi64(product, sum);
3813     }   }
3814 }
3815 
3816 XXH_FORCE_INLINE XXH_TARGET_SSE2 void
XXH3_scrambleAcc_sse2(void * XXH_RESTRICT acc,const void * XXH_RESTRICT secret)3817 XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
3818 {
3819     XXH_ASSERT((((size_t)acc) & 15) == 0);
3820     {   XXH_ALIGN(16) __m128i* const xacc = (__m128i*) acc;
3821         /* Unaligned. This is mainly for pointer arithmetic, and because
3822          * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
3823         const         __m128i* const xsecret = (const __m128i *) secret;
3824         const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1);
3825 
3826         size_t i;
3827         for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
3828             /* xacc[i] ^= (xacc[i] >> 47) */
3829             __m128i const acc_vec     = xacc[i];
3830             __m128i const shifted     = _mm_srli_epi64    (acc_vec, 47);
3831             __m128i const data_vec    = _mm_xor_si128     (acc_vec, shifted);
3832             /* xacc[i] ^= xsecret[i]; */
3833             __m128i const key_vec     = _mm_loadu_si128   (xsecret+i);
3834             __m128i const data_key    = _mm_xor_si128     (data_vec, key_vec);
3835 
3836             /* xacc[i] *= XXH_PRIME32_1; */
3837             __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
3838             __m128i const prod_lo     = _mm_mul_epu32     (data_key, prime32);
3839             __m128i const prod_hi     = _mm_mul_epu32     (data_key_hi, prime32);
3840             xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32));
3841         }
3842     }
3843 }
3844 
XXH3_initCustomSecret_sse2(void * XXH_RESTRICT customSecret,xxh_u64 seed64)3845 XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
3846 {
3847     XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
3848     (void)(&XXH_writeLE64);
3849     {   int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i);
3850 
3851 #       if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900
3852         // MSVC 32bit mode does not support _mm_set_epi64x before 2015
3853         XXH_ALIGN(16) const xxh_i64 seed64x2[2] = { (xxh_i64)seed64, -(xxh_i64)seed64 };
3854         __m128i const seed = _mm_load_si128((__m128i const*)seed64x2);
3855 #       else
3856         __m128i const seed = _mm_set_epi64x(-(xxh_i64)seed64, (xxh_i64)seed64);
3857 #       endif
3858         int i;
3859 
3860         XXH_ALIGN(64)        const float* const src  = (float const*) XXH3_kSecret;
3861         XXH_ALIGN(XXH_SEC_ALIGN) __m128i*       dest = (__m128i*) customSecret;
3862 #       if defined(__GNUC__) || defined(__clang__)
3863         /*
3864          * On GCC & Clang, marking 'dest' as modified will cause the compiler:
3865          *   - do not extract the secret from sse registers in the internal loop
3866          *   - use less common registers, and avoid pushing these reg into stack
3867          */
3868         XXH_COMPILER_GUARD(dest);
3869 #       endif
3870 
3871         for (i=0; i < nbRounds; ++i) {
3872             dest[i] = _mm_add_epi64(_mm_castps_si128(_mm_load_ps(src+i*4)), seed);
3873     }   }
3874 }
3875 
3876 #endif
3877 
3878 #if (XXH_VECTOR == XXH_NEON)
3879 
3880 XXH_FORCE_INLINE void
XXH3_accumulate_512_neon(void * XXH_RESTRICT acc,const void * XXH_RESTRICT input,const void * XXH_RESTRICT secret)3881 XXH3_accumulate_512_neon( void* XXH_RESTRICT acc,
3882                     const void* XXH_RESTRICT input,
3883                     const void* XXH_RESTRICT secret)
3884 {
3885     XXH_ASSERT((((size_t)acc) & 15) == 0);
3886     {
3887         XXH_ALIGN(16) uint64x2_t* const xacc = (uint64x2_t *) acc;
3888         /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */
3889         uint8_t const* const xinput = (const uint8_t *) input;
3890         uint8_t const* const xsecret  = (const uint8_t *) secret;
3891 
3892         size_t i;
3893         for (i=0; i < XXH_STRIPE_LEN / sizeof(uint64x2_t); i++) {
3894             /* data_vec = xinput[i]; */
3895             uint8x16_t data_vec    = vld1q_u8(xinput  + (i * 16));
3896             /* key_vec  = xsecret[i];  */
3897             uint8x16_t key_vec     = vld1q_u8(xsecret + (i * 16));
3898             uint64x2_t data_key;
3899             uint32x2_t data_key_lo, data_key_hi;
3900             /* xacc[i] += swap(data_vec); */
3901             uint64x2_t const data64  = vreinterpretq_u64_u8(data_vec);
3902             uint64x2_t const swapped = vextq_u64(data64, data64, 1);
3903             xacc[i] = vaddq_u64 (xacc[i], swapped);
3904             /* data_key = data_vec ^ key_vec; */
3905             data_key = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec));
3906             /* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF);
3907              * data_key_hi = (uint32x2_t) (data_key >> 32);
3908              * data_key = UNDEFINED; */
3909             XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
3910             /* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */
3911             xacc[i] = vmlal_u32 (xacc[i], data_key_lo, data_key_hi);
3912 
3913         }
3914     }
3915 }
3916 
3917 XXH_FORCE_INLINE void
XXH3_scrambleAcc_neon(void * XXH_RESTRICT acc,const void * XXH_RESTRICT secret)3918 XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
3919 {
3920     XXH_ASSERT((((size_t)acc) & 15) == 0);
3921 
3922     {   uint64x2_t* xacc       = (uint64x2_t*) acc;
3923         uint8_t const* xsecret = (uint8_t const*) secret;
3924         uint32x2_t prime       = vdup_n_u32 (XXH_PRIME32_1);
3925 
3926         size_t i;
3927         for (i=0; i < XXH_STRIPE_LEN/sizeof(uint64x2_t); i++) {
3928             /* xacc[i] ^= (xacc[i] >> 47); */
3929             uint64x2_t acc_vec  = xacc[i];
3930             uint64x2_t shifted  = vshrq_n_u64 (acc_vec, 47);
3931             uint64x2_t data_vec = veorq_u64   (acc_vec, shifted);
3932 
3933             /* xacc[i] ^= xsecret[i]; */
3934             uint8x16_t key_vec  = vld1q_u8(xsecret + (i * 16));
3935             uint64x2_t data_key = veorq_u64(data_vec, vreinterpretq_u64_u8(key_vec));
3936 
3937             /* xacc[i] *= XXH_PRIME32_1 */
3938             uint32x2_t data_key_lo, data_key_hi;
3939             /* data_key_lo = (uint32x2_t) (xacc[i] & 0xFFFFFFFF);
3940              * data_key_hi = (uint32x2_t) (xacc[i] >> 32);
3941              * xacc[i] = UNDEFINED; */
3942             XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
3943             {   /*
3944                  * prod_hi = (data_key >> 32) * XXH_PRIME32_1;
3945                  *
3946                  * Avoid vmul_u32 + vshll_n_u32 since Clang 6 and 7 will
3947                  * incorrectly "optimize" this:
3948                  *   tmp     = vmul_u32(vmovn_u64(a), vmovn_u64(b));
3949                  *   shifted = vshll_n_u32(tmp, 32);
3950                  * to this:
3951                  *   tmp     = "vmulq_u64"(a, b); // no such thing!
3952                  *   shifted = vshlq_n_u64(tmp, 32);
3953                  *
3954                  * However, unlike SSE, Clang lacks a 64-bit multiply routine
3955                  * for NEON, and it scalarizes two 64-bit multiplies instead.
3956                  *
3957                  * vmull_u32 has the same timing as vmul_u32, and it avoids
3958                  * this bug completely.
3959                  * See https://bugs.llvm.org/show_bug.cgi?id=39967
3960                  */
3961                 uint64x2_t prod_hi = vmull_u32 (data_key_hi, prime);
3962                 /* xacc[i] = prod_hi << 32; */
3963                 xacc[i] = vshlq_n_u64(prod_hi, 32);
3964                 /* xacc[i] += (prod_hi & 0xFFFFFFFF) * XXH_PRIME32_1; */
3965                 xacc[i] = vmlal_u32(xacc[i], data_key_lo, prime);
3966             }
3967     }   }
3968 }
3969 
3970 #endif
3971 
3972 #if (XXH_VECTOR == XXH_VSX)
3973 
3974 XXH_FORCE_INLINE void
XXH3_accumulate_512_vsx(void * XXH_RESTRICT acc,const void * XXH_RESTRICT input,const void * XXH_RESTRICT secret)3975 XXH3_accumulate_512_vsx(  void* XXH_RESTRICT acc,
3976                     const void* XXH_RESTRICT input,
3977                     const void* XXH_RESTRICT secret)
3978 {
3979           xxh_u64x2* const xacc     =       (xxh_u64x2*) acc;    /* presumed aligned */
3980     xxh_u64x2 const* const xinput   = (xxh_u64x2 const*) input;   /* no alignment restriction */
3981     xxh_u64x2 const* const xsecret  = (xxh_u64x2 const*) secret;    /* no alignment restriction */
3982     xxh_u64x2 const v32 = { 32, 32 };
3983     size_t i;
3984     for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
3985         /* data_vec = xinput[i]; */
3986         xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + i);
3987         /* key_vec = xsecret[i]; */
3988         xxh_u64x2 const key_vec  = XXH_vec_loadu(xsecret + i);
3989         xxh_u64x2 const data_key = data_vec ^ key_vec;
3990         /* shuffled = (data_key << 32) | (data_key >> 32); */
3991         xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32);
3992         /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */
3993         xxh_u64x2 const product  = XXH_vec_mulo((xxh_u32x4)data_key, shuffled);
3994         xacc[i] += product;
3995 
3996         /* swap high and low halves */
3997 #ifdef __s390x__
3998         xacc[i] += vec_permi(data_vec, data_vec, 2);
3999 #else
4000         xacc[i] += vec_xxpermdi(data_vec, data_vec, 2);
4001 #endif
4002     }
4003 }
4004 
4005 XXH_FORCE_INLINE void
XXH3_scrambleAcc_vsx(void * XXH_RESTRICT acc,const void * XXH_RESTRICT secret)4006 XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
4007 {
4008     XXH_ASSERT((((size_t)acc) & 15) == 0);
4009 
4010     {         xxh_u64x2* const xacc    =       (xxh_u64x2*) acc;
4011         const xxh_u64x2* const xsecret = (const xxh_u64x2*) secret;
4012         /* constants */
4013         xxh_u64x2 const v32  = { 32, 32 };
4014         xxh_u64x2 const v47 = { 47, 47 };
4015         xxh_u32x4 const prime = { XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1 };
4016         size_t i;
4017         for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
4018             /* xacc[i] ^= (xacc[i] >> 47); */
4019             xxh_u64x2 const acc_vec  = xacc[i];
4020             xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47);
4021 
4022             /* xacc[i] ^= xsecret[i]; */
4023             xxh_u64x2 const key_vec  = XXH_vec_loadu(xsecret + i);
4024             xxh_u64x2 const data_key = data_vec ^ key_vec;
4025 
4026             /* xacc[i] *= XXH_PRIME32_1 */
4027             /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF);  */
4028             xxh_u64x2 const prod_even  = XXH_vec_mule((xxh_u32x4)data_key, prime);
4029             /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32);  */
4030             xxh_u64x2 const prod_odd  = XXH_vec_mulo((xxh_u32x4)data_key, prime);
4031             xacc[i] = prod_odd + (prod_even << v32);
4032     }   }
4033 }
4034 
4035 #endif
4036 
4037 /* scalar variants - universal */
4038 
4039 XXH_FORCE_INLINE void
XXH3_accumulate_512_scalar(void * XXH_RESTRICT acc,const void * XXH_RESTRICT input,const void * XXH_RESTRICT secret)4040 XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc,
4041                      const void* XXH_RESTRICT input,
4042                      const void* XXH_RESTRICT secret)
4043 {
4044     XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */
4045     const xxh_u8* const xinput  = (const xxh_u8*) input;  /* no alignment restriction */
4046     const xxh_u8* const xsecret = (const xxh_u8*) secret;   /* no alignment restriction */
4047     size_t i;
4048     XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0);
4049     for (i=0; i < XXH_ACC_NB; i++) {
4050         xxh_u64 const data_val = XXH_readLE64(xinput + 8*i);
4051         xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + i*8);
4052         xacc[i ^ 1] += data_val; /* swap adjacent lanes */
4053         xacc[i] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32);
4054     }
4055 }
4056 
4057 XXH_FORCE_INLINE void
XXH3_scrambleAcc_scalar(void * XXH_RESTRICT acc,const void * XXH_RESTRICT secret)4058 XXH3_scrambleAcc_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
4059 {
4060     XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc;   /* presumed aligned */
4061     const xxh_u8* const xsecret = (const xxh_u8*) secret;   /* no alignment restriction */
4062     size_t i;
4063     XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0);
4064     for (i=0; i < XXH_ACC_NB; i++) {
4065         xxh_u64 const key64 = XXH_readLE64(xsecret + 8*i);
4066         xxh_u64 acc64 = xacc[i];
4067         acc64 = XXH_xorshift64(acc64, 47);
4068         acc64 ^= key64;
4069         acc64 *= XXH_PRIME32_1;
4070         xacc[i] = acc64;
4071     }
4072 }
4073 
4074 XXH_FORCE_INLINE void
XXH3_initCustomSecret_scalar(void * XXH_RESTRICT customSecret,xxh_u64 seed64)4075 XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
4076 {
4077     /*
4078      * We need a separate pointer for the hack below,
4079      * which requires a non-const pointer.
4080      * Any decent compiler will optimize this out otherwise.
4081      */
4082     const xxh_u8* kSecretPtr = XXH3_kSecret;
4083     XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
4084 
4085 #if defined(__clang__) && defined(__aarch64__)
4086     /*
4087      * UGLY HACK:
4088      * Clang generates a bunch of MOV/MOVK pairs for aarch64, and they are
4089      * placed sequentially, in order, at the top of the unrolled loop.
4090      *
4091      * While MOVK is great for generating constants (2 cycles for a 64-bit
4092      * constant compared to 4 cycles for LDR), long MOVK chains stall the
4093      * integer pipelines:
4094      *   I   L   S
4095      * MOVK
4096      * MOVK
4097      * MOVK
4098      * MOVK
4099      * ADD
4100      * SUB      STR
4101      *          STR
4102      * By forcing loads from memory (as the asm line causes Clang to assume
4103      * that XXH3_kSecretPtr has been changed), the pipelines are used more
4104      * efficiently:
4105      *   I   L   S
4106      *      LDR
4107      *  ADD LDR
4108      *  SUB     STR
4109      *          STR
4110      * XXH3_64bits_withSeed, len == 256, Snapdragon 835
4111      *   without hack: 2654.4 MB/s
4112      *   with hack:    3202.9 MB/s
4113      */
4114     XXH_COMPILER_GUARD(kSecretPtr);
4115 #endif
4116     /*
4117      * Note: in debug mode, this overrides the asm optimization
4118      * and Clang will emit MOVK chains again.
4119      */
4120     XXH_ASSERT(kSecretPtr == XXH3_kSecret);
4121 
4122     {   int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
4123         int i;
4124         for (i=0; i < nbRounds; i++) {
4125             /*
4126              * The asm hack causes Clang to assume that kSecretPtr aliases with
4127              * customSecret, and on aarch64, this prevented LDP from merging two
4128              * loads together for free. Putting the loads together before the stores
4129              * properly generates LDP.
4130              */
4131             xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i)     + seed64;
4132             xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64;
4133             XXH_writeLE64((xxh_u8*)customSecret + 16*i,     lo);
4134             XXH_writeLE64((xxh_u8*)customSecret + 16*i + 8, hi);
4135     }   }
4136 }
4137 
4138 
4139 typedef void (*XXH3_f_accumulate_512)(void* XXH_RESTRICT, const void*, const void*);
4140 typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*);
4141 typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64);
4142 
4143 
4144 #if (XXH_VECTOR == XXH_AVX512)
4145 
4146 #define XXH3_accumulate_512 XXH3_accumulate_512_avx512
4147 #define XXH3_scrambleAcc    XXH3_scrambleAcc_avx512
4148 #define XXH3_initCustomSecret XXH3_initCustomSecret_avx512
4149 
4150 #elif (XXH_VECTOR == XXH_AVX2)
4151 
4152 #define XXH3_accumulate_512 XXH3_accumulate_512_avx2
4153 #define XXH3_scrambleAcc    XXH3_scrambleAcc_avx2
4154 #define XXH3_initCustomSecret XXH3_initCustomSecret_avx2
4155 
4156 #elif (XXH_VECTOR == XXH_SSE2)
4157 
4158 #define XXH3_accumulate_512 XXH3_accumulate_512_sse2
4159 #define XXH3_scrambleAcc    XXH3_scrambleAcc_sse2
4160 #define XXH3_initCustomSecret XXH3_initCustomSecret_sse2
4161 
4162 #elif (XXH_VECTOR == XXH_NEON)
4163 
4164 #define XXH3_accumulate_512 XXH3_accumulate_512_neon
4165 #define XXH3_scrambleAcc    XXH3_scrambleAcc_neon
4166 #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
4167 
4168 #elif (XXH_VECTOR == XXH_VSX)
4169 
4170 #define XXH3_accumulate_512 XXH3_accumulate_512_vsx
4171 #define XXH3_scrambleAcc    XXH3_scrambleAcc_vsx
4172 #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
4173 
4174 #else /* scalar */
4175 
4176 #define XXH3_accumulate_512 XXH3_accumulate_512_scalar
4177 #define XXH3_scrambleAcc    XXH3_scrambleAcc_scalar
4178 #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
4179 
4180 #endif
4181 
4182 
4183 
4184 #ifndef XXH_PREFETCH_DIST
4185 #  ifdef __clang__
4186 #    define XXH_PREFETCH_DIST 320
4187 #  else
4188 #    if (XXH_VECTOR == XXH_AVX512)
4189 #      define XXH_PREFETCH_DIST 512
4190 #    else
4191 #      define XXH_PREFETCH_DIST 384
4192 #    endif
4193 #  endif  /* __clang__ */
4194 #endif  /* XXH_PREFETCH_DIST */
4195 
4196 /*
4197  * XXH3_accumulate()
4198  * Loops over XXH3_accumulate_512().
4199  * Assumption: nbStripes will not overflow the secret size
4200  */
4201 XXH_FORCE_INLINE void
XXH3_accumulate(xxh_u64 * XXH_RESTRICT acc,const xxh_u8 * XXH_RESTRICT input,const xxh_u8 * XXH_RESTRICT secret,size_t nbStripes,XXH3_f_accumulate_512 f_acc512)4202 XXH3_accumulate(     xxh_u64* XXH_RESTRICT acc,
4203                 const xxh_u8* XXH_RESTRICT input,
4204                 const xxh_u8* XXH_RESTRICT secret,
4205                       size_t nbStripes,
4206                       XXH3_f_accumulate_512 f_acc512)
4207 {
4208     size_t n;
4209     for (n = 0; n < nbStripes; n++ ) {
4210         const xxh_u8* const in = input + n*XXH_STRIPE_LEN;
4211         XXH_PREFETCH(in + XXH_PREFETCH_DIST);
4212         f_acc512(acc,
4213                  in,
4214                  secret + n*XXH_SECRET_CONSUME_RATE);
4215     }
4216 }
4217 
4218 XXH_FORCE_INLINE void
XXH3_hashLong_internal_loop(xxh_u64 * XXH_RESTRICT acc,const xxh_u8 * XXH_RESTRICT input,size_t len,const xxh_u8 * XXH_RESTRICT secret,size_t secretSize,XXH3_f_accumulate_512 f_acc512,XXH3_f_scrambleAcc f_scramble)4219 XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc,
4220                       const xxh_u8* XXH_RESTRICT input, size_t len,
4221                       const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
4222                             XXH3_f_accumulate_512 f_acc512,
4223                             XXH3_f_scrambleAcc f_scramble)
4224 {
4225     size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
4226     size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock;
4227     size_t const nb_blocks = (len - 1) / block_len;
4228 
4229     size_t n;
4230 
4231     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
4232 
4233     for (n = 0; n < nb_blocks; n++) {
4234         XXH3_accumulate(acc, input + n*block_len, secret, nbStripesPerBlock, f_acc512);
4235         f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN);
4236     }
4237 
4238     /* last partial block */
4239     XXH_ASSERT(len > XXH_STRIPE_LEN);
4240     {   size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
4241         XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE));
4242         XXH3_accumulate(acc, input + nb_blocks*block_len, secret, nbStripes, f_acc512);
4243 
4244         /* last stripe */
4245         {   const xxh_u8* const p = input + len - XXH_STRIPE_LEN;
4246 #define XXH_SECRET_LASTACC_START 7  /* not aligned on 8, last secret is different from acc & scrambler */
4247             f_acc512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START);
4248     }   }
4249 }
4250 
4251 XXH_FORCE_INLINE xxh_u64
XXH3_mix2Accs(const xxh_u64 * XXH_RESTRICT acc,const xxh_u8 * XXH_RESTRICT secret)4252 XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret)
4253 {
4254     return XXH3_mul128_fold64(
4255                acc[0] ^ XXH_readLE64(secret),
4256                acc[1] ^ XXH_readLE64(secret+8) );
4257 }
4258 
4259 static XXH64_hash_t
XXH3_mergeAccs(const xxh_u64 * XXH_RESTRICT acc,const xxh_u8 * XXH_RESTRICT secret,xxh_u64 start)4260 XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start)
4261 {
4262     xxh_u64 result64 = start;
4263     size_t i = 0;
4264 
4265     for (i = 0; i < 4; i++) {
4266         result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i);
4267 #if defined(__clang__)                                /* Clang */ \
4268     && (defined(__arm__) || defined(__thumb__))       /* ARMv7 */ \
4269     && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */  \
4270     && !defined(XXH_ENABLE_AUTOVECTORIZE)             /* Define to disable */
4271         /*
4272          * UGLY HACK:
4273          * Prevent autovectorization on Clang ARMv7-a. Exact same problem as
4274          * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b.
4275          * XXH3_64bits, len == 256, Snapdragon 835:
4276          *   without hack: 2063.7 MB/s
4277          *   with hack:    2560.7 MB/s
4278          */
4279         XXH_COMPILER_GUARD(result64);
4280 #endif
4281     }
4282 
4283     return XXH3_avalanche(result64);
4284 }
4285 
4286 #define XXH3_INIT_ACC { XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \
4287                         XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 }
4288 
4289 XXH_FORCE_INLINE XXH64_hash_t
XXH3_hashLong_64b_internal(const void * XXH_RESTRICT input,size_t len,const void * XXH_RESTRICT secret,size_t secretSize,XXH3_f_accumulate_512 f_acc512,XXH3_f_scrambleAcc f_scramble)4290 XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len,
4291                            const void* XXH_RESTRICT secret, size_t secretSize,
4292                            XXH3_f_accumulate_512 f_acc512,
4293                            XXH3_f_scrambleAcc f_scramble)
4294 {
4295     XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
4296 
4297     XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc512, f_scramble);
4298 
4299     /* converge into final hash */
4300     XXH_STATIC_ASSERT(sizeof(acc) == 64);
4301     /* do not align on 8, so that the secret is different from the accumulator */
4302 #define XXH_SECRET_MERGEACCS_START 11
4303     XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
4304     return XXH3_mergeAccs(acc, (const xxh_u8*)secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * XXH_PRIME64_1);
4305 }
4306 
4307 /*
4308  * It's important for performance that XXH3_hashLong is not inlined.
4309  */
4310 XXH_NO_INLINE XXH64_hash_t
XXH3_hashLong_64b_withSecret(const void * XXH_RESTRICT input,size_t len,XXH64_hash_t seed64,const xxh_u8 * XXH_RESTRICT secret,size_t secretLen)4311 XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len,
4312                              XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
4313 {
4314     (void)seed64;
4315     return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate_512, XXH3_scrambleAcc);
4316 }
4317 
4318 /*
4319  * It's important for performance that XXH3_hashLong is not inlined.
4320  * Since the function is not inlined, the compiler may not be able to understand that,
4321  * in some scenarios, its `secret` argument is actually a compile time constant.
4322  * This variant enforces that the compiler can detect that,
4323  * and uses this opportunity to streamline the generated code for better performance.
4324  */
4325 XXH_NO_INLINE XXH64_hash_t
XXH3_hashLong_64b_default(const void * XXH_RESTRICT input,size_t len,XXH64_hash_t seed64,const xxh_u8 * XXH_RESTRICT secret,size_t secretLen)4326 XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len,
4327                           XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
4328 {
4329     (void)seed64; (void)secret; (void)secretLen;
4330     return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate_512, XXH3_scrambleAcc);
4331 }
4332 
4333 /*
4334  * XXH3_hashLong_64b_withSeed():
4335  * Generate a custom key based on alteration of default XXH3_kSecret with the seed,
4336  * and then use this key for long mode hashing.
4337  *
4338  * This operation is decently fast but nonetheless costs a little bit of time.
4339  * Try to avoid it whenever possible (typically when seed==0).
4340  *
4341  * It's important for performance that XXH3_hashLong is not inlined. Not sure
4342  * why (uop cache maybe?), but the difference is large and easily measurable.
4343  */
4344 XXH_FORCE_INLINE XXH64_hash_t
XXH3_hashLong_64b_withSeed_internal(const void * input,size_t len,XXH64_hash_t seed,XXH3_f_accumulate_512 f_acc512,XXH3_f_scrambleAcc f_scramble,XXH3_f_initCustomSecret f_initSec)4345 XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len,
4346                                     XXH64_hash_t seed,
4347                                     XXH3_f_accumulate_512 f_acc512,
4348                                     XXH3_f_scrambleAcc f_scramble,
4349                                     XXH3_f_initCustomSecret f_initSec)
4350 {
4351     if (seed == 0)
4352         return XXH3_hashLong_64b_internal(input, len,
4353                                           XXH3_kSecret, sizeof(XXH3_kSecret),
4354                                           f_acc512, f_scramble);
4355     {   XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
4356         f_initSec(secret, seed);
4357         return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret),
4358                                           f_acc512, f_scramble);
4359     }
4360 }
4361 
4362 /*
4363  * It's important for performance that XXH3_hashLong is not inlined.
4364  */
4365 XXH_NO_INLINE XXH64_hash_t
XXH3_hashLong_64b_withSeed(const void * input,size_t len,XXH64_hash_t seed,const xxh_u8 * secret,size_t secretLen)4366 XXH3_hashLong_64b_withSeed(const void* input, size_t len,
4367                            XXH64_hash_t seed, const xxh_u8* secret, size_t secretLen)
4368 {
4369     (void)secret; (void)secretLen;
4370     return XXH3_hashLong_64b_withSeed_internal(input, len, seed,
4371                 XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret);
4372 }
4373 
4374 
4375 typedef XXH64_hash_t (*XXH3_hashLong64_f)(const void* XXH_RESTRICT, size_t,
4376                                           XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t);
4377 
4378 XXH_FORCE_INLINE XXH64_hash_t
XXH3_64bits_internal(const void * XXH_RESTRICT input,size_t len,XXH64_hash_t seed64,const void * XXH_RESTRICT secret,size_t secretLen,XXH3_hashLong64_f f_hashLong)4379 XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len,
4380                      XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
4381                      XXH3_hashLong64_f f_hashLong)
4382 {
4383     XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
4384     /*
4385      * If an action is to be taken if `secretLen` condition is not respected,
4386      * it should be done here.
4387      * For now, it's a contract pre-condition.
4388      * Adding a check and a branch here would cost performance at every hash.
4389      * Also, note that function signature doesn't offer room to return an error.
4390      */
4391     if (len <= 16)
4392         return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
4393     if (len <= 128)
4394         return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
4395     if (len <= XXH3_MIDSIZE_MAX)
4396         return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
4397     return f_hashLong(input, len, seed64, (const xxh_u8*)secret, secretLen);
4398 }
4399 
4400 
4401 /* ===   Public entry point   === */
4402 
4403 /*! @ingroup xxh3_family */
XXH3_64bits(const void * input,size_t len)4404 XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* input, size_t len)
4405 {
4406     return XXH3_64bits_internal(input, len, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default);
4407 }
4408 
4409 /*! @ingroup xxh3_family */
4410 XXH_PUBLIC_API XXH64_hash_t
XXH3_64bits_withSecret(const void * input,size_t len,const void * secret,size_t secretSize)4411 XXH3_64bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
4412 {
4413     return XXH3_64bits_internal(input, len, 0, secret, secretSize, XXH3_hashLong_64b_withSecret);
4414 }
4415 
4416 /*! @ingroup xxh3_family */
4417 XXH_PUBLIC_API XXH64_hash_t
XXH3_64bits_withSeed(const void * input,size_t len,XXH64_hash_t seed)4418 XXH3_64bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
4419 {
4420     return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed);
4421 }
4422 
4423 
4424 /* ===   XXH3 streaming   === */
4425 
4426 /*
4427  * Malloc's a pointer that is always aligned to align.
4428  *
4429  * This must be freed with `XXH_alignedFree()`.
4430  *
4431  * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte
4432  * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2
4433  * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON.
4434  *
4435  * This underalignment previously caused a rather obvious crash which went
4436  * completely unnoticed due to XXH3_createState() not actually being tested.
4437  * Credit to RedSpah for noticing this bug.
4438  *
4439  * The alignment is done manually: Functions like posix_memalign or _mm_malloc
4440  * are avoided: To maintain portability, we would have to write a fallback
4441  * like this anyways, and besides, testing for the existence of library
4442  * functions without relying on external build tools is impossible.
4443  *
4444  * The method is simple: Overallocate, manually align, and store the offset
4445  * to the original behind the returned pointer.
4446  *
4447  * Align must be a power of 2 and 8 <= align <= 128.
4448  */
XXH_alignedMalloc(size_t s,size_t align)4449 static void* XXH_alignedMalloc(size_t s, size_t align)
4450 {
4451     XXH_ASSERT(align <= 128 && align >= 8); /* range check */
4452     XXH_ASSERT((align & (align-1)) == 0);   /* power of 2 */
4453     XXH_ASSERT(s != 0 && s < (s + align));  /* empty/overflow */
4454     {   /* Overallocate to make room for manual realignment and an offset byte */
4455         xxh_u8* base = (xxh_u8*)XXH_malloc(s + align);
4456         if (base != NULL) {
4457             /*
4458              * Get the offset needed to align this pointer.
4459              *
4460              * Even if the returned pointer is aligned, there will always be
4461              * at least one byte to store the offset to the original pointer.
4462              */
4463             size_t offset = align - ((size_t)base & (align - 1)); /* base % align */
4464             /* Add the offset for the now-aligned pointer */
4465             xxh_u8* ptr = base + offset;
4466 
4467             XXH_ASSERT((size_t)ptr % align == 0);
4468 
4469             /* Store the offset immediately before the returned pointer. */
4470             ptr[-1] = (xxh_u8)offset;
4471             return ptr;
4472         }
4473         return NULL;
4474     }
4475 }
4476 /*
4477  * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass
4478  * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout.
4479  */
XXH_alignedFree(void * p)4480 static void XXH_alignedFree(void* p)
4481 {
4482     if (p != NULL) {
4483         xxh_u8* ptr = (xxh_u8*)p;
4484         /* Get the offset byte we added in XXH_malloc. */
4485         xxh_u8 offset = ptr[-1];
4486         /* Free the original malloc'd pointer */
4487         xxh_u8* base = ptr - offset;
4488         XXH_free(base);
4489     }
4490 }
4491 /*! @ingroup xxh3_family */
XXH3_createState(void)4492 XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void)
4493 {
4494     XXH3_state_t* const state = (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64);
4495     if (state==NULL) return NULL;
4496     XXH3_INITSTATE(state);
4497     return state;
4498 }
4499 
4500 /*! @ingroup xxh3_family */
XXH3_freeState(XXH3_state_t * statePtr)4501 XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr)
4502 {
4503     XXH_alignedFree(statePtr);
4504     return XXH_OK;
4505 }
4506 
4507 /*! @ingroup xxh3_family */
4508 XXH_PUBLIC_API void
XXH3_copyState(XXH3_state_t * dst_state,const XXH3_state_t * src_state)4509 XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state)
4510 {
4511     memcpy(dst_state, src_state, sizeof(*dst_state));
4512 }
4513 
4514 static void
XXH3_reset_internal(XXH3_state_t * statePtr,XXH64_hash_t seed,const void * secret,size_t secretSize)4515 XXH3_reset_internal(XXH3_state_t* statePtr,
4516                            XXH64_hash_t seed,
4517                            const void* secret, size_t secretSize)
4518 {
4519     size_t const initStart = offsetof(XXH3_state_t, bufferedSize);
4520     size_t const initLength = offsetof(XXH3_state_t, nbStripesPerBlock) - initStart;
4521     XXH_ASSERT(offsetof(XXH3_state_t, nbStripesPerBlock) > initStart);
4522     XXH_ASSERT(statePtr != NULL);
4523     /* set members from bufferedSize to nbStripesPerBlock (excluded) to 0 */
4524     memset((char*)statePtr + initStart, 0, initLength);
4525     statePtr->acc[0] = XXH_PRIME32_3;
4526     statePtr->acc[1] = XXH_PRIME64_1;
4527     statePtr->acc[2] = XXH_PRIME64_2;
4528     statePtr->acc[3] = XXH_PRIME64_3;
4529     statePtr->acc[4] = XXH_PRIME64_4;
4530     statePtr->acc[5] = XXH_PRIME32_2;
4531     statePtr->acc[6] = XXH_PRIME64_5;
4532     statePtr->acc[7] = XXH_PRIME32_1;
4533     statePtr->seed = seed;
4534     statePtr->extSecret = (const unsigned char*)secret;
4535     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
4536     statePtr->secretLimit = secretSize - XXH_STRIPE_LEN;
4537     statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE;
4538 }
4539 
4540 /*! @ingroup xxh3_family */
4541 XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset(XXH3_state_t * statePtr)4542 XXH3_64bits_reset(XXH3_state_t* statePtr)
4543 {
4544     if (statePtr == NULL) return XXH_ERROR;
4545     XXH3_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
4546     return XXH_OK;
4547 }
4548 
4549 /*! @ingroup xxh3_family */
4550 XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset_withSecret(XXH3_state_t * statePtr,const void * secret,size_t secretSize)4551 XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
4552 {
4553     if (statePtr == NULL) return XXH_ERROR;
4554     XXH3_reset_internal(statePtr, 0, secret, secretSize);
4555     if (secret == NULL) return XXH_ERROR;
4556     if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
4557     return XXH_OK;
4558 }
4559 
4560 /*! @ingroup xxh3_family */
4561 XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset_withSeed(XXH3_state_t * statePtr,XXH64_hash_t seed)4562 XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
4563 {
4564     if (statePtr == NULL) return XXH_ERROR;
4565     if (seed==0) return XXH3_64bits_reset(statePtr);
4566     if (seed != statePtr->seed) XXH3_initCustomSecret(statePtr->customSecret, seed);
4567     XXH3_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE);
4568     return XXH_OK;
4569 }
4570 
4571 /* Note : when XXH3_consumeStripes() is invoked,
4572  * there must be a guarantee that at least one more byte must be consumed from input
4573  * so that the function can blindly consume all stripes using the "normal" secret segment */
4574 XXH_FORCE_INLINE void
XXH3_consumeStripes(xxh_u64 * XXH_RESTRICT acc,size_t * XXH_RESTRICT nbStripesSoFarPtr,size_t nbStripesPerBlock,const xxh_u8 * XXH_RESTRICT input,size_t nbStripes,const xxh_u8 * XXH_RESTRICT secret,size_t secretLimit,XXH3_f_accumulate_512 f_acc512,XXH3_f_scrambleAcc f_scramble)4575 XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc,
4576                     size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock,
4577                     const xxh_u8* XXH_RESTRICT input, size_t nbStripes,
4578                     const xxh_u8* XXH_RESTRICT secret, size_t secretLimit,
4579                     XXH3_f_accumulate_512 f_acc512,
4580                     XXH3_f_scrambleAcc f_scramble)
4581 {
4582     XXH_ASSERT(nbStripes <= nbStripesPerBlock);  /* can handle max 1 scramble per invocation */
4583     XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock);
4584     if (nbStripesPerBlock - *nbStripesSoFarPtr <= nbStripes) {
4585         /* need a scrambling operation */
4586         size_t const nbStripesToEndofBlock = nbStripesPerBlock - *nbStripesSoFarPtr;
4587         size_t const nbStripesAfterBlock = nbStripes - nbStripesToEndofBlock;
4588         XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripesToEndofBlock, f_acc512);
4589         f_scramble(acc, secret + secretLimit);
4590         XXH3_accumulate(acc, input + nbStripesToEndofBlock * XXH_STRIPE_LEN, secret, nbStripesAfterBlock, f_acc512);
4591         *nbStripesSoFarPtr = nbStripesAfterBlock;
4592     } else {
4593         XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripes, f_acc512);
4594         *nbStripesSoFarPtr += nbStripes;
4595     }
4596 }
4597 
4598 /*
4599  * Both XXH3_64bits_update and XXH3_128bits_update use this routine.
4600  */
4601 XXH_FORCE_INLINE XXH_errorcode
XXH3_update(XXH3_state_t * state,const xxh_u8 * input,size_t len,XXH3_f_accumulate_512 f_acc512,XXH3_f_scrambleAcc f_scramble)4602 XXH3_update(XXH3_state_t* state,
4603             const xxh_u8* input, size_t len,
4604             XXH3_f_accumulate_512 f_acc512,
4605             XXH3_f_scrambleAcc f_scramble)
4606 {
4607     if (input==NULL)
4608 #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
4609         return XXH_OK;
4610 #else
4611         return XXH_ERROR;
4612 #endif
4613 
4614     {   const xxh_u8* const bEnd = input + len;
4615         const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
4616 
4617         state->totalLen += len;
4618         XXH_ASSERT(state->bufferedSize <= XXH3_INTERNALBUFFER_SIZE);
4619 
4620         if (state->bufferedSize + len <= XXH3_INTERNALBUFFER_SIZE) {  /* fill in tmp buffer */
4621             XXH_memcpy(state->buffer + state->bufferedSize, input, len);
4622             state->bufferedSize += (XXH32_hash_t)len;
4623             return XXH_OK;
4624         }
4625         /* total input is now > XXH3_INTERNALBUFFER_SIZE */
4626 
4627         #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN)
4628         XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == 0);   /* clean multiple */
4629 
4630         /*
4631          * Internal buffer is partially filled (always, except at beginning)
4632          * Complete it, then consume it.
4633          */
4634         if (state->bufferedSize) {
4635             size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize;
4636             XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize);
4637             input += loadSize;
4638             XXH3_consumeStripes(state->acc,
4639                                &state->nbStripesSoFar, state->nbStripesPerBlock,
4640                                 state->buffer, XXH3_INTERNALBUFFER_STRIPES,
4641                                 secret, state->secretLimit,
4642                                 f_acc512, f_scramble);
4643             state->bufferedSize = 0;
4644         }
4645         XXH_ASSERT(input < bEnd);
4646 
4647         /* Consume input by a multiple of internal buffer size */
4648         if (input+XXH3_INTERNALBUFFER_SIZE < bEnd) {
4649             const xxh_u8* const limit = bEnd - XXH3_INTERNALBUFFER_SIZE;
4650             do {
4651                 XXH3_consumeStripes(state->acc,
4652                                    &state->nbStripesSoFar, state->nbStripesPerBlock,
4653                                     input, XXH3_INTERNALBUFFER_STRIPES,
4654                                     secret, state->secretLimit,
4655                                     f_acc512, f_scramble);
4656                 input += XXH3_INTERNALBUFFER_SIZE;
4657             } while (input<limit);
4658             /* for last partial stripe */
4659             memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN);
4660         }
4661         XXH_ASSERT(input < bEnd);
4662 
4663         /* Some remaining input (always) : buffer it */
4664         XXH_memcpy(state->buffer, input, (size_t)(bEnd-input));
4665         state->bufferedSize = (XXH32_hash_t)(bEnd-input);
4666     }
4667 
4668     return XXH_OK;
4669 }
4670 
4671 /*! @ingroup xxh3_family */
4672 XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_update(XXH3_state_t * state,const void * input,size_t len)4673 XXH3_64bits_update(XXH3_state_t* state, const void* input, size_t len)
4674 {
4675     return XXH3_update(state, (const xxh_u8*)input, len,
4676                        XXH3_accumulate_512, XXH3_scrambleAcc);
4677 }
4678 
4679 
4680 XXH_FORCE_INLINE void
XXH3_digest_long(XXH64_hash_t * acc,const XXH3_state_t * state,const unsigned char * secret)4681 XXH3_digest_long (XXH64_hash_t* acc,
4682                   const XXH3_state_t* state,
4683                   const unsigned char* secret)
4684 {
4685     /*
4686      * Digest on a local copy. This way, the state remains unaltered, and it can
4687      * continue ingesting more input afterwards.
4688      */
4689     memcpy(acc, state->acc, sizeof(state->acc));
4690     if (state->bufferedSize >= XXH_STRIPE_LEN) {
4691         size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN;
4692         size_t nbStripesSoFar = state->nbStripesSoFar;
4693         XXH3_consumeStripes(acc,
4694                            &nbStripesSoFar, state->nbStripesPerBlock,
4695                             state->buffer, nbStripes,
4696                             secret, state->secretLimit,
4697                             XXH3_accumulate_512, XXH3_scrambleAcc);
4698         /* last stripe */
4699         XXH3_accumulate_512(acc,
4700                             state->buffer + state->bufferedSize - XXH_STRIPE_LEN,
4701                             secret + state->secretLimit - XXH_SECRET_LASTACC_START);
4702     } else {  /* bufferedSize < XXH_STRIPE_LEN */
4703         xxh_u8 lastStripe[XXH_STRIPE_LEN];
4704         size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize;
4705         XXH_ASSERT(state->bufferedSize > 0);  /* there is always some input buffered */
4706         memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize);
4707         memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize);
4708         XXH3_accumulate_512(acc,
4709                             lastStripe,
4710                             secret + state->secretLimit - XXH_SECRET_LASTACC_START);
4711     }
4712 }
4713 
4714 /*! @ingroup xxh3_family */
XXH3_64bits_digest(const XXH3_state_t * state)4715 XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* state)
4716 {
4717     const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
4718     if (state->totalLen > XXH3_MIDSIZE_MAX) {
4719         XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
4720         XXH3_digest_long(acc, state, secret);
4721         return XXH3_mergeAccs(acc,
4722                               secret + XXH_SECRET_MERGEACCS_START,
4723                               (xxh_u64)state->totalLen * XXH_PRIME64_1);
4724     }
4725     /* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */
4726     if (state->seed)
4727         return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
4728     return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen),
4729                                   secret, state->secretLimit + XXH_STRIPE_LEN);
4730 }
4731 
4732 
4733 #define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x))
4734 
4735 /*! @ingroup xxh3_family */
4736 XXH_PUBLIC_API void
XXH3_generateSecret(void * secretBuffer,const void * customSeed,size_t customSeedSize)4737 XXH3_generateSecret(void* secretBuffer, const void* customSeed, size_t customSeedSize)
4738 {
4739     XXH_ASSERT(secretBuffer != NULL);
4740     if (customSeedSize == 0) {
4741         memcpy(secretBuffer, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
4742         return;
4743     }
4744     XXH_ASSERT(customSeed != NULL);
4745 
4746     {   size_t const segmentSize = sizeof(XXH128_hash_t);
4747         size_t const nbSegments = XXH_SECRET_DEFAULT_SIZE / segmentSize;
4748         XXH128_canonical_t scrambler;
4749         XXH64_hash_t seeds[12];
4750         size_t segnb;
4751         XXH_ASSERT(nbSegments == 12);
4752         XXH_ASSERT(segmentSize * nbSegments == XXH_SECRET_DEFAULT_SIZE); /* exact multiple */
4753         XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0));
4754 
4755         /*
4756         * Copy customSeed to seeds[], truncating or repeating as necessary.
4757         */
4758         {   size_t toFill = XXH_MIN(customSeedSize, sizeof(seeds));
4759             size_t filled = toFill;
4760             memcpy(seeds, customSeed, toFill);
4761             while (filled < sizeof(seeds)) {
4762                 toFill = XXH_MIN(filled, sizeof(seeds) - filled);
4763                 memcpy((char*)seeds + filled, seeds, toFill);
4764                 filled += toFill;
4765         }   }
4766 
4767         /* generate secret */
4768         memcpy(secretBuffer, &scrambler, sizeof(scrambler));
4769         for (segnb=1; segnb < nbSegments; segnb++) {
4770             size_t const segmentStart = segnb * segmentSize;
4771             XXH128_canonical_t segment;
4772             XXH128_canonicalFromHash(&segment,
4773                 XXH128(&scrambler, sizeof(scrambler), XXH_readLE64(seeds + segnb) + segnb) );
4774             memcpy((char*)secretBuffer + segmentStart, &segment, sizeof(segment));
4775     }   }
4776 }
4777 
4778 
4779 /* ==========================================
4780  * XXH3 128 bits (a.k.a XXH128)
4781  * ==========================================
4782  * XXH3's 128-bit variant has better mixing and strength than the 64-bit variant,
4783  * even without counting the significantly larger output size.
4784  *
4785  * For example, extra steps are taken to avoid the seed-dependent collisions
4786  * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B).
4787  *
4788  * This strength naturally comes at the cost of some speed, especially on short
4789  * lengths. Note that longer hashes are about as fast as the 64-bit version
4790  * due to it using only a slight modification of the 64-bit loop.
4791  *
4792  * XXH128 is also more oriented towards 64-bit machines. It is still extremely
4793  * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64).
4794  */
4795 
4796 XXH_FORCE_INLINE XXH128_hash_t
XXH3_len_1to3_128b(const xxh_u8 * input,size_t len,const xxh_u8 * secret,XXH64_hash_t seed)4797 XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
4798 {
4799     /* A doubled version of 1to3_64b with different constants. */
4800     XXH_ASSERT(input != NULL);
4801     XXH_ASSERT(1 <= len && len <= 3);
4802     XXH_ASSERT(secret != NULL);
4803     /*
4804      * len = 1: combinedl = { input[0], 0x01, input[0], input[0] }
4805      * len = 2: combinedl = { input[1], 0x02, input[0], input[1] }
4806      * len = 3: combinedl = { input[2], 0x03, input[0], input[1] }
4807      */
4808     {   xxh_u8 const c1 = input[0];
4809         xxh_u8 const c2 = input[len >> 1];
4810         xxh_u8 const c3 = input[len - 1];
4811         xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24)
4812                                 | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
4813         xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13);
4814         xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
4815         xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed;
4816         xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl;
4817         xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph;
4818         XXH128_hash_t h128;
4819         h128.low64  = XXH64_avalanche(keyed_lo);
4820         h128.high64 = XXH64_avalanche(keyed_hi);
4821         return h128;
4822     }
4823 }
4824 
4825 XXH_FORCE_INLINE XXH128_hash_t
XXH3_len_4to8_128b(const xxh_u8 * input,size_t len,const xxh_u8 * secret,XXH64_hash_t seed)4826 XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
4827 {
4828     XXH_ASSERT(input != NULL);
4829     XXH_ASSERT(secret != NULL);
4830     XXH_ASSERT(4 <= len && len <= 8);
4831     seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
4832     {   xxh_u32 const input_lo = XXH_readLE32(input);
4833         xxh_u32 const input_hi = XXH_readLE32(input + len - 4);
4834         xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32);
4835         xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed;
4836         xxh_u64 const keyed = input_64 ^ bitflip;
4837 
4838         /* Shift len to the left to ensure it is even, this avoids even multiplies. */
4839         XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2));
4840 
4841         m128.high64 += (m128.low64 << 1);
4842         m128.low64  ^= (m128.high64 >> 3);
4843 
4844         m128.low64   = XXH_xorshift64(m128.low64, 35);
4845         m128.low64  *= 0x9FB21C651E98DF25ULL;
4846         m128.low64   = XXH_xorshift64(m128.low64, 28);
4847         m128.high64  = XXH3_avalanche(m128.high64);
4848         return m128;
4849     }
4850 }
4851 
4852 XXH_FORCE_INLINE XXH128_hash_t
XXH3_len_9to16_128b(const xxh_u8 * input,size_t len,const xxh_u8 * secret,XXH64_hash_t seed)4853 XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
4854 {
4855     XXH_ASSERT(input != NULL);
4856     XXH_ASSERT(secret != NULL);
4857     XXH_ASSERT(9 <= len && len <= 16);
4858     {   xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed;
4859         xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed;
4860         xxh_u64 const input_lo = XXH_readLE64(input);
4861         xxh_u64       input_hi = XXH_readLE64(input + len - 8);
4862         XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1);
4863         /*
4864          * Put len in the middle of m128 to ensure that the length gets mixed to
4865          * both the low and high bits in the 128x64 multiply below.
4866          */
4867         m128.low64 += (xxh_u64)(len - 1) << 54;
4868         input_hi   ^= bitfliph;
4869         /*
4870          * Add the high 32 bits of input_hi to the high 32 bits of m128, then
4871          * add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to
4872          * the high 64 bits of m128.
4873          *
4874          * The best approach to this operation is different on 32-bit and 64-bit.
4875          */
4876         if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */
4877             /*
4878              * 32-bit optimized version, which is more readable.
4879              *
4880              * On 32-bit, it removes an ADC and delays a dependency between the two
4881              * halves of m128.high64, but it generates an extra mask on 64-bit.
4882              */
4883             m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2);
4884         } else {
4885             /*
4886              * 64-bit optimized (albeit more confusing) version.
4887              *
4888              * Uses some properties of addition and multiplication to remove the mask:
4889              *
4890              * Let:
4891              *    a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF)
4892              *    b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000)
4893              *    c = XXH_PRIME32_2
4894              *
4895              *    a + (b * c)
4896              * Inverse Property: x + y - x == y
4897              *    a + (b * (1 + c - 1))
4898              * Distributive Property: x * (y + z) == (x * y) + (x * z)
4899              *    a + (b * 1) + (b * (c - 1))
4900              * Identity Property: x * 1 == x
4901              *    a + b + (b * (c - 1))
4902              *
4903              * Substitute a, b, and c:
4904              *    input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
4905              *
4906              * Since input_hi.hi + input_hi.lo == input_hi, we get this:
4907              *    input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
4908              */
4909             m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1);
4910         }
4911         /* m128 ^= XXH_swap64(m128 >> 64); */
4912         m128.low64  ^= XXH_swap64(m128.high64);
4913 
4914         {   /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */
4915             XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2);
4916             h128.high64 += m128.high64 * XXH_PRIME64_2;
4917 
4918             h128.low64   = XXH3_avalanche(h128.low64);
4919             h128.high64  = XXH3_avalanche(h128.high64);
4920             return h128;
4921     }   }
4922 }
4923 
4924 /*
4925  * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN
4926  */
4927 XXH_FORCE_INLINE XXH128_hash_t
XXH3_len_0to16_128b(const xxh_u8 * input,size_t len,const xxh_u8 * secret,XXH64_hash_t seed)4928 XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
4929 {
4930     XXH_ASSERT(len <= 16);
4931     {   if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed);
4932         if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed);
4933         if (len) return XXH3_len_1to3_128b(input, len, secret, seed);
4934         {   XXH128_hash_t h128;
4935             xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72);
4936             xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88);
4937             h128.low64 = XXH64_avalanche(seed ^ bitflipl);
4938             h128.high64 = XXH64_avalanche( seed ^ bitfliph);
4939             return h128;
4940     }   }
4941 }
4942 
4943 /*
4944  * A bit slower than XXH3_mix16B, but handles multiply by zero better.
4945  */
4946 XXH_FORCE_INLINE XXH128_hash_t
XXH128_mix32B(XXH128_hash_t acc,const xxh_u8 * input_1,const xxh_u8 * input_2,const xxh_u8 * secret,XXH64_hash_t seed)4947 XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2,
4948               const xxh_u8* secret, XXH64_hash_t seed)
4949 {
4950     acc.low64  += XXH3_mix16B (input_1, secret+0, seed);
4951     acc.low64  ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8);
4952     acc.high64 += XXH3_mix16B (input_2, secret+16, seed);
4953     acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8);
4954     return acc;
4955 }
4956 
4957 
4958 XXH_FORCE_INLINE XXH128_hash_t
XXH3_len_17to128_128b(const xxh_u8 * XXH_RESTRICT input,size_t len,const xxh_u8 * XXH_RESTRICT secret,size_t secretSize,XXH64_hash_t seed)4959 XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
4960                       const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
4961                       XXH64_hash_t seed)
4962 {
4963     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
4964     XXH_ASSERT(16 < len && len <= 128);
4965 
4966     {   XXH128_hash_t acc;
4967         acc.low64 = len * XXH_PRIME64_1;
4968         acc.high64 = 0;
4969         if (len > 32) {
4970             if (len > 64) {
4971                 if (len > 96) {
4972                     acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed);
4973                 }
4974                 acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed);
4975             }
4976             acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed);
4977         }
4978         acc = XXH128_mix32B(acc, input, input+len-16, secret, seed);
4979         {   XXH128_hash_t h128;
4980             h128.low64  = acc.low64 + acc.high64;
4981             h128.high64 = (acc.low64    * XXH_PRIME64_1)
4982                         + (acc.high64   * XXH_PRIME64_4)
4983                         + ((len - seed) * XXH_PRIME64_2);
4984             h128.low64  = XXH3_avalanche(h128.low64);
4985             h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
4986             return h128;
4987         }
4988     }
4989 }
4990 
4991 XXH_NO_INLINE XXH128_hash_t
XXH3_len_129to240_128b(const xxh_u8 * XXH_RESTRICT input,size_t len,const xxh_u8 * XXH_RESTRICT secret,size_t secretSize,XXH64_hash_t seed)4992 XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
4993                        const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
4994                        XXH64_hash_t seed)
4995 {
4996     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
4997     XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
4998 
4999     {   XXH128_hash_t acc;
5000         int const nbRounds = (int)len / 32;
5001         int i;
5002         acc.low64 = len * XXH_PRIME64_1;
5003         acc.high64 = 0;
5004         for (i=0; i<4; i++) {
5005             acc = XXH128_mix32B(acc,
5006                                 input  + (32 * i),
5007                                 input  + (32 * i) + 16,
5008                                 secret + (32 * i),
5009                                 seed);
5010         }
5011         acc.low64 = XXH3_avalanche(acc.low64);
5012         acc.high64 = XXH3_avalanche(acc.high64);
5013         XXH_ASSERT(nbRounds >= 4);
5014         for (i=4 ; i < nbRounds; i++) {
5015             acc = XXH128_mix32B(acc,
5016                                 input + (32 * i),
5017                                 input + (32 * i) + 16,
5018                                 secret + XXH3_MIDSIZE_STARTOFFSET + (32 * (i - 4)),
5019                                 seed);
5020         }
5021         /* last bytes */
5022         acc = XXH128_mix32B(acc,
5023                             input + len - 16,
5024                             input + len - 32,
5025                             secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16,
5026                             0ULL - seed);
5027 
5028         {   XXH128_hash_t h128;
5029             h128.low64  = acc.low64 + acc.high64;
5030             h128.high64 = (acc.low64    * XXH_PRIME64_1)
5031                         + (acc.high64   * XXH_PRIME64_4)
5032                         + ((len - seed) * XXH_PRIME64_2);
5033             h128.low64  = XXH3_avalanche(h128.low64);
5034             h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
5035             return h128;
5036         }
5037     }
5038 }
5039 
5040 XXH_FORCE_INLINE XXH128_hash_t
XXH3_hashLong_128b_internal(const void * XXH_RESTRICT input,size_t len,const xxh_u8 * XXH_RESTRICT secret,size_t secretSize,XXH3_f_accumulate_512 f_acc512,XXH3_f_scrambleAcc f_scramble)5041 XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len,
5042                             const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
5043                             XXH3_f_accumulate_512 f_acc512,
5044                             XXH3_f_scrambleAcc f_scramble)
5045 {
5046     XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
5047 
5048     XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc512, f_scramble);
5049 
5050     /* converge into final hash */
5051     XXH_STATIC_ASSERT(sizeof(acc) == 64);
5052     XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
5053     {   XXH128_hash_t h128;
5054         h128.low64  = XXH3_mergeAccs(acc,
5055                                      secret + XXH_SECRET_MERGEACCS_START,
5056                                      (xxh_u64)len * XXH_PRIME64_1);
5057         h128.high64 = XXH3_mergeAccs(acc,
5058                                      secret + secretSize
5059                                             - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
5060                                      ~((xxh_u64)len * XXH_PRIME64_2));
5061         return h128;
5062     }
5063 }
5064 
5065 /*
5066  * It's important for performance that XXH3_hashLong is not inlined.
5067  */
5068 XXH_NO_INLINE XXH128_hash_t
XXH3_hashLong_128b_default(const void * XXH_RESTRICT input,size_t len,XXH64_hash_t seed64,const void * XXH_RESTRICT secret,size_t secretLen)5069 XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len,
5070                            XXH64_hash_t seed64,
5071                            const void* XXH_RESTRICT secret, size_t secretLen)
5072 {
5073     (void)seed64; (void)secret; (void)secretLen;
5074     return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret),
5075                                        XXH3_accumulate_512, XXH3_scrambleAcc);
5076 }
5077 
5078 /*
5079  * It's important for performance that XXH3_hashLong is not inlined.
5080  */
5081 XXH_NO_INLINE XXH128_hash_t
XXH3_hashLong_128b_withSecret(const void * XXH_RESTRICT input,size_t len,XXH64_hash_t seed64,const void * XXH_RESTRICT secret,size_t secretLen)5082 XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len,
5083                               XXH64_hash_t seed64,
5084                               const void* XXH_RESTRICT secret, size_t secretLen)
5085 {
5086     (void)seed64;
5087     return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen,
5088                                        XXH3_accumulate_512, XXH3_scrambleAcc);
5089 }
5090 
5091 XXH_FORCE_INLINE XXH128_hash_t
XXH3_hashLong_128b_withSeed_internal(const void * XXH_RESTRICT input,size_t len,XXH64_hash_t seed64,XXH3_f_accumulate_512 f_acc512,XXH3_f_scrambleAcc f_scramble,XXH3_f_initCustomSecret f_initSec)5092 XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len,
5093                                 XXH64_hash_t seed64,
5094                                 XXH3_f_accumulate_512 f_acc512,
5095                                 XXH3_f_scrambleAcc f_scramble,
5096                                 XXH3_f_initCustomSecret f_initSec)
5097 {
5098     if (seed64 == 0)
5099         return XXH3_hashLong_128b_internal(input, len,
5100                                            XXH3_kSecret, sizeof(XXH3_kSecret),
5101                                            f_acc512, f_scramble);
5102     {   XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
5103         f_initSec(secret, seed64);
5104         return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret),
5105                                            f_acc512, f_scramble);
5106     }
5107 }
5108 
5109 /*
5110  * It's important for performance that XXH3_hashLong is not inlined.
5111  */
5112 XXH_NO_INLINE XXH128_hash_t
XXH3_hashLong_128b_withSeed(const void * input,size_t len,XXH64_hash_t seed64,const void * XXH_RESTRICT secret,size_t secretLen)5113 XXH3_hashLong_128b_withSeed(const void* input, size_t len,
5114                             XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen)
5115 {
5116     (void)secret; (void)secretLen;
5117     return XXH3_hashLong_128b_withSeed_internal(input, len, seed64,
5118                 XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret);
5119 }
5120 
5121 typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t,
5122                                             XXH64_hash_t, const void* XXH_RESTRICT, size_t);
5123 
5124 XXH_FORCE_INLINE XXH128_hash_t
XXH3_128bits_internal(const void * input,size_t len,XXH64_hash_t seed64,const void * XXH_RESTRICT secret,size_t secretLen,XXH3_hashLong128_f f_hl128)5125 XXH3_128bits_internal(const void* input, size_t len,
5126                       XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
5127                       XXH3_hashLong128_f f_hl128)
5128 {
5129     XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
5130     /*
5131      * If an action is to be taken if `secret` conditions are not respected,
5132      * it should be done here.
5133      * For now, it's a contract pre-condition.
5134      * Adding a check and a branch here would cost performance at every hash.
5135      */
5136     if (len <= 16)
5137         return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
5138     if (len <= 128)
5139         return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
5140     if (len <= XXH3_MIDSIZE_MAX)
5141         return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
5142     return f_hl128(input, len, seed64, secret, secretLen);
5143 }
5144 
5145 
5146 /* ===   Public XXH128 API   === */
5147 
5148 /*! @ingroup xxh3_family */
XXH3_128bits(const void * input,size_t len)5149 XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* input, size_t len)
5150 {
5151     return XXH3_128bits_internal(input, len, 0,
5152                                  XXH3_kSecret, sizeof(XXH3_kSecret),
5153                                  XXH3_hashLong_128b_default);
5154 }
5155 
5156 /*! @ingroup xxh3_family */
5157 XXH_PUBLIC_API XXH128_hash_t
XXH3_128bits_withSecret(const void * input,size_t len,const void * secret,size_t secretSize)5158 XXH3_128bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
5159 {
5160     return XXH3_128bits_internal(input, len, 0,
5161                                  (const xxh_u8*)secret, secretSize,
5162                                  XXH3_hashLong_128b_withSecret);
5163 }
5164 
5165 /*! @ingroup xxh3_family */
5166 XXH_PUBLIC_API XXH128_hash_t
XXH3_128bits_withSeed(const void * input,size_t len,XXH64_hash_t seed)5167 XXH3_128bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
5168 {
5169     return XXH3_128bits_internal(input, len, seed,
5170                                  XXH3_kSecret, sizeof(XXH3_kSecret),
5171                                  XXH3_hashLong_128b_withSeed);
5172 }
5173 
5174 /*! @ingroup xxh3_family */
5175 XXH_PUBLIC_API XXH128_hash_t
XXH128(const void * input,size_t len,XXH64_hash_t seed)5176 XXH128(const void* input, size_t len, XXH64_hash_t seed)
5177 {
5178     return XXH3_128bits_withSeed(input, len, seed);
5179 }
5180 
5181 
5182 /* ===   XXH3 128-bit streaming   === */
5183 
5184 /*
5185  * All the functions are actually the same as for 64-bit streaming variant.
5186  * The only difference is the finalization routine.
5187  */
5188 
5189 /*! @ingroup xxh3_family */
5190 XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_reset(XXH3_state_t * statePtr)5191 XXH3_128bits_reset(XXH3_state_t* statePtr)
5192 {
5193     if (statePtr == NULL) return XXH_ERROR;
5194     XXH3_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
5195     return XXH_OK;
5196 }
5197 
5198 /*! @ingroup xxh3_family */
5199 XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_reset_withSecret(XXH3_state_t * statePtr,const void * secret,size_t secretSize)5200 XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
5201 {
5202     if (statePtr == NULL) return XXH_ERROR;
5203     XXH3_reset_internal(statePtr, 0, secret, secretSize);
5204     if (secret == NULL) return XXH_ERROR;
5205     if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
5206     return XXH_OK;
5207 }
5208 
5209 /*! @ingroup xxh3_family */
5210 XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_reset_withSeed(XXH3_state_t * statePtr,XXH64_hash_t seed)5211 XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
5212 {
5213     if (statePtr == NULL) return XXH_ERROR;
5214     if (seed==0) return XXH3_128bits_reset(statePtr);
5215     if (seed != statePtr->seed) XXH3_initCustomSecret(statePtr->customSecret, seed);
5216     XXH3_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE);
5217     return XXH_OK;
5218 }
5219 
5220 /*! @ingroup xxh3_family */
5221 XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_update(XXH3_state_t * state,const void * input,size_t len)5222 XXH3_128bits_update(XXH3_state_t* state, const void* input, size_t len)
5223 {
5224     return XXH3_update(state, (const xxh_u8*)input, len,
5225                        XXH3_accumulate_512, XXH3_scrambleAcc);
5226 }
5227 
5228 /*! @ingroup xxh3_family */
XXH3_128bits_digest(const XXH3_state_t * state)5229 XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* state)
5230 {
5231     const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
5232     if (state->totalLen > XXH3_MIDSIZE_MAX) {
5233         XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
5234         XXH3_digest_long(acc, state, secret);
5235         XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
5236         {   XXH128_hash_t h128;
5237             h128.low64  = XXH3_mergeAccs(acc,
5238                                          secret + XXH_SECRET_MERGEACCS_START,
5239                                          (xxh_u64)state->totalLen * XXH_PRIME64_1);
5240             h128.high64 = XXH3_mergeAccs(acc,
5241                                          secret + state->secretLimit + XXH_STRIPE_LEN
5242                                                 - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
5243                                          ~((xxh_u64)state->totalLen * XXH_PRIME64_2));
5244             return h128;
5245         }
5246     }
5247     /* len <= XXH3_MIDSIZE_MAX : short code */
5248     if (state->seed)
5249         return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
5250     return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen),
5251                                    secret, state->secretLimit + XXH_STRIPE_LEN);
5252 }
5253 
5254 /* 128-bit utility functions */
5255 
5256 #include <string.h>   /* memcmp, memcpy */
5257 
5258 /* return : 1 is equal, 0 if different */
5259 /*! @ingroup xxh3_family */
XXH128_isEqual(XXH128_hash_t h1,XXH128_hash_t h2)5260 XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2)
5261 {
5262     /* note : XXH128_hash_t is compact, it has no padding byte */
5263     return !(memcmp(&h1, &h2, sizeof(h1)));
5264 }
5265 
5266 /* This prototype is compatible with stdlib's qsort().
5267  * return : >0 if *h128_1  > *h128_2
5268  *          <0 if *h128_1  < *h128_2
5269  *          =0 if *h128_1 == *h128_2  */
5270 /*! @ingroup xxh3_family */
XXH128_cmp(const void * h128_1,const void * h128_2)5271 XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2)
5272 {
5273     XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1;
5274     XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2;
5275     int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64);
5276     /* note : bets that, in most cases, hash values are different */
5277     if (hcmp) return hcmp;
5278     return (h1.low64 > h2.low64) - (h2.low64 > h1.low64);
5279 }
5280 
5281 
5282 /*======   Canonical representation   ======*/
5283 /*! @ingroup xxh3_family */
5284 XXH_PUBLIC_API void
XXH128_canonicalFromHash(XXH128_canonical_t * dst,XXH128_hash_t hash)5285 XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash)
5286 {
5287     XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t));
5288     if (XXH_CPU_LITTLE_ENDIAN) {
5289         hash.high64 = XXH_swap64(hash.high64);
5290         hash.low64  = XXH_swap64(hash.low64);
5291     }
5292     memcpy(dst, &hash.high64, sizeof(hash.high64));
5293     memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64));
5294 }
5295 
5296 /*! @ingroup xxh3_family */
5297 XXH_PUBLIC_API XXH128_hash_t
XXH128_hashFromCanonical(const XXH128_canonical_t * src)5298 XXH128_hashFromCanonical(const XXH128_canonical_t* src)
5299 {
5300     XXH128_hash_t h;
5301     h.high64 = XXH_readBE64(src);
5302     h.low64  = XXH_readBE64(src->digest + 8);
5303     return h;
5304 }
5305 
5306 /* Pop our optimization override from above */
5307 #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
5308   && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
5309   && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
5310 #  pragma GCC pop_options
5311 #endif
5312 
5313 #endif  /* XXH_NO_LONG_LONG */
5314 
5315 #endif  /* XXH_NO_XXH3 */
5316 
5317 /*!
5318  * @}
5319  */
5320 #endif  /* XXH_IMPLEMENTATION */
5321 
5322 
5323 #if defined (__cplusplus)
5324 }
5325 #endif
5326