1 // Copyright 2018 Developers of the Rand project.
2 // Copyright 2013-2018 The Rust Project Developers.
3 //
4 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
5 // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
7 // option. This file may not be copied, modified, or distributed
8 // except according to those terms.
9 
10 //! The ISAAC-64 random number generator.
11 
12 use core::{fmt, slice};
13 use core::num::Wrapping as w;
14 use rand_core::{RngCore, SeedableRng, Error, le};
15 use rand_core::block::{BlockRngCore, BlockRng64};
16 use isaac_array::IsaacArray;
17 
18 #[allow(non_camel_case_types)]
19 type w64 = w<u64>;
20 
21 const RAND_SIZE_LEN: usize = 8;
22 const RAND_SIZE: usize = 1 << RAND_SIZE_LEN;
23 
24 /// A random number generator that uses ISAAC-64, the 64-bit variant of the
25 /// ISAAC algorithm.
26 ///
27 /// ISAAC stands for "Indirection, Shift, Accumulate, Add, and Count" which are
28 /// the principal bitwise operations employed. It is the most advanced of a
29 /// series of array based random number generator designed by Robert Jenkins
30 /// in 1996[^1].
31 ///
32 /// ISAAC-64 is mostly similar to ISAAC. Because it operates on 64-bit integers
33 /// instead of 32-bit, it uses twice as much memory to hold its state and
34 /// results. Also it uses different constants for shifts and indirect indexing,
35 /// optimized to give good results for 64bit arithmetic.
36 ///
37 /// ISAAC-64 is notably fast and produces excellent quality random numbers for
38 /// non-cryptographic applications.
39 ///
40 /// In spite of being designed with cryptographic security in mind, ISAAC hasn't
41 /// been stringently cryptanalyzed and thus cryptographers do not not
42 /// consensually trust it to be secure. When looking for a secure RNG, prefer
43 /// [`Hc128Rng`] instead, which, like ISAAC, is an array-based RNG and one of
44 /// the stream-ciphers selected the by eSTREAM contest.
45 ///
46 /// ## Overview of the ISAAC-64 algorithm:
47 /// (in pseudo-code)
48 ///
49 /// ```text
50 /// Input: a, b, c, s[256] // state
51 /// Output: r[256] // results
52 ///
53 /// mix(a,i) = !(a ^ a << 21)  if i = 0 mod 4
54 ///              a ^ a >>  5   if i = 1 mod 4
55 ///              a ^ a << 12   if i = 2 mod 4
56 ///              a ^ a >> 33   if i = 3 mod 4
57 ///
58 /// c = c + 1
59 /// b = b + c
60 ///
61 /// for i in 0..256 {
62 ///     x = s_[i]
63 ///     a = mix(a,i) + s[i+128 mod 256]
64 ///     y = a + b + s[x>>3 mod 256]
65 ///     s[i] = y
66 ///     b = x + s[y>>11 mod 256]
67 ///     r[i] = b
68 /// }
69 /// ```
70 ///
71 /// This implementation uses [`BlockRng64`] to implement the [`RngCore`] methods.
72 ///
73 /// See for more information the documentation of [`IsaacRng`].
74 ///
75 /// [^1]: Bob Jenkins, [*ISAAC and RC4*](
76 ///       http://burtleburtle.net/bob/rand/isaac.html)
77 ///
78 /// [`IsaacRng`]: ../isaac/struct.IsaacRng.html
79 /// [`Hc128Rng`]: ../../rand_hc/struct.Hc128Rng.html
80 /// [`BlockRng64`]: ../../rand_core/block/struct.BlockRng64.html
81 /// [`RngCore`]: ../../rand_core/trait.RngCore.html
82 #[derive(Clone, Debug)]
83 #[cfg_attr(feature="serde1", derive(Serialize, Deserialize))]
84 pub struct Isaac64Rng(BlockRng64<Isaac64Core>);
85 
86 impl RngCore for Isaac64Rng {
87     #[inline(always)]
next_u32(&mut self) -> u3288     fn next_u32(&mut self) -> u32 {
89         self.0.next_u32()
90     }
91 
92     #[inline(always)]
next_u64(&mut self) -> u6493     fn next_u64(&mut self) -> u64 {
94         self.0.next_u64()
95     }
96 
fill_bytes(&mut self, dest: &mut [u8])97     fn fill_bytes(&mut self, dest: &mut [u8]) {
98         self.0.fill_bytes(dest)
99     }
100 
try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error>101     fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
102         self.0.try_fill_bytes(dest)
103     }
104 }
105 
106 impl SeedableRng for Isaac64Rng {
107     type Seed = <Isaac64Core as SeedableRng>::Seed;
108 
from_seed(seed: Self::Seed) -> Self109     fn from_seed(seed: Self::Seed) -> Self {
110         Isaac64Rng(BlockRng64::<Isaac64Core>::from_seed(seed))
111     }
112 
113     /// Create an ISAAC random number generator using an `u64` as seed.
114     /// If `seed == 0` this will produce the same stream of random numbers as
115     /// the reference implementation when used unseeded.
seed_from_u64(seed: u64) -> Self116     fn seed_from_u64(seed: u64) -> Self {
117         Isaac64Rng(BlockRng64::<Isaac64Core>::seed_from_u64(seed))
118     }
119 
from_rng<S: RngCore>(rng: S) -> Result<Self, Error>120     fn from_rng<S: RngCore>(rng: S) -> Result<Self, Error> {
121         BlockRng64::<Isaac64Core>::from_rng(rng).map(|rng| Isaac64Rng(rng))
122     }
123 }
124 
125 impl Isaac64Rng {
126     /// Create an ISAAC-64 random number generator using an `u64` as seed.
127     /// If `seed == 0` this will produce the same stream of random numbers as
128     /// the reference implementation when used unseeded.
129     #[deprecated(since="0.6.0", note="use SeedableRng::seed_from_u64 instead")]
new_from_u64(seed: u64) -> Self130     pub fn new_from_u64(seed: u64) -> Self {
131         Self::seed_from_u64(seed)
132     }
133 }
134 
135 /// The core of `Isaac64Rng`, used with `BlockRng`.
136 #[derive(Clone)]
137 #[cfg_attr(feature="serde1", derive(Serialize, Deserialize))]
138 pub struct Isaac64Core {
139     #[cfg_attr(feature="serde1",serde(with="super::isaac_array::isaac_array_serde"))]
140     mem: [w64; RAND_SIZE],
141     a: w64,
142     b: w64,
143     c: w64,
144 }
145 
146 // Custom Debug implementation that does not expose the internal state
147 impl fmt::Debug for Isaac64Core {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result148     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
149         write!(f, "Isaac64Core {{}}")
150     }
151 }
152 
153 impl BlockRngCore for Isaac64Core {
154     type Item = u64;
155     type Results = IsaacArray<Self::Item>;
156 
157     /// Refills the output buffer, `results`. See also the pseudocode desciption
158     /// of the algorithm in the [`Isaac64Rng`] documentation.
159     ///
160     /// Optimisations used (similar to the reference implementation):
161     ///
162     /// - The loop is unrolled 4 times, once for every constant of mix().
163     /// - The contents of the main loop are moved to a function `rngstep`, to
164     ///   reduce code duplication.
165     /// - We use local variables for a and b, which helps with optimisations.
166     /// - We split the main loop in two, one that operates over 0..128 and one
167     ///   over 128..256. This way we can optimise out the addition and modulus
168     ///   from `s[i+128 mod 256]`.
169     /// - We maintain one index `i` and add `m` or `m2` as base (m2 for the
170     ///   `s[i+128 mod 256]`), relying on the optimizer to turn it into pointer
171     ///   arithmetic.
172     /// - We fill `results` backwards. The reference implementation reads values
173     ///   from `results` in reverse. We read them in the normal direction, to
174     ///   make `fill_bytes` a memcopy. To maintain compatibility we fill in
175     ///   reverse.
176     ///
177     /// [`Isaac64Rng`]: struct.Isaac64Rng.html
generate(&mut self, results: &mut IsaacArray<Self::Item>)178     fn generate(&mut self, results: &mut IsaacArray<Self::Item>) {
179         self.c += w(1);
180         // abbreviations
181         let mut a = self.a;
182         let mut b = self.b + self.c;
183         const MIDPOINT: usize = RAND_SIZE / 2;
184 
185         #[inline]
186         fn ind(mem:&[w64; RAND_SIZE], v: w64, amount: usize) -> w64 {
187             let index = (v >> amount).0 as usize % RAND_SIZE;
188             mem[index]
189         }
190 
191         #[inline]
192         fn rngstep(mem: &mut [w64; RAND_SIZE],
193                    results: &mut [u64; RAND_SIZE],
194                    mix: w64,
195                    a: &mut w64,
196                    b: &mut w64,
197                    base: usize,
198                    m: usize,
199                    m2: usize) {
200             let x = mem[base + m];
201             *a = mix + mem[base + m2];
202             let y = *a + *b + ind(&mem, x, 3);
203             mem[base + m] = y;
204             *b = x + ind(&mem, y, 3 + RAND_SIZE_LEN);
205             results[RAND_SIZE - 1 - base - m] = (*b).0;
206         }
207 
208         let mut m = 0;
209         let mut m2 = MIDPOINT;
210         for i in (0..MIDPOINT/4).map(|i| i * 4) {
211             rngstep(&mut self.mem, results, !(a ^ (a << 21)), &mut a, &mut b, i + 0, m, m2);
212             rngstep(&mut self.mem, results,   a ^ (a >> 5 ),  &mut a, &mut b, i + 1, m, m2);
213             rngstep(&mut self.mem, results,   a ^ (a << 12),  &mut a, &mut b, i + 2, m, m2);
214             rngstep(&mut self.mem, results,   a ^ (a >> 33),  &mut a, &mut b, i + 3, m, m2);
215         }
216 
217         m = MIDPOINT;
218         m2 = 0;
219         for i in (0..MIDPOINT/4).map(|i| i * 4) {
220             rngstep(&mut self.mem, results, !(a ^ (a << 21)), &mut a, &mut b, i + 0, m, m2);
221             rngstep(&mut self.mem, results,   a ^ (a >> 5 ),  &mut a, &mut b, i + 1, m, m2);
222             rngstep(&mut self.mem, results,   a ^ (a << 12),  &mut a, &mut b, i + 2, m, m2);
223             rngstep(&mut self.mem, results,   a ^ (a >> 33),  &mut a, &mut b, i + 3, m, m2);
224         }
225 
226         self.a = a;
227         self.b = b;
228     }
229 }
230 
231 impl Isaac64Core {
232     /// Create a new ISAAC-64 random number generator.
init(mut mem: [w64; RAND_SIZE], rounds: u32) -> Self233     fn init(mut mem: [w64; RAND_SIZE], rounds: u32) -> Self {
mix(a: &mut w64, b: &mut w64, c: &mut w64, d: &mut w64, e: &mut w64, f: &mut w64, g: &mut w64, h: &mut w64)234         fn mix(a: &mut w64, b: &mut w64, c: &mut w64, d: &mut w64,
235                e: &mut w64, f: &mut w64, g: &mut w64, h: &mut w64) {
236             *a -= *e; *f ^= *h >> 9;  *h += *a;
237             *b -= *f; *g ^= *a << 9;  *a += *b;
238             *c -= *g; *h ^= *b >> 23; *b += *c;
239             *d -= *h; *a ^= *c << 15; *c += *d;
240             *e -= *a; *b ^= *d >> 14; *d += *e;
241             *f -= *b; *c ^= *e << 20; *e += *f;
242             *g -= *c; *d ^= *f >> 17; *f += *g;
243             *h -= *d; *e ^= *g << 14; *g += *h;
244         }
245 
246         // These numbers are the result of initializing a...h with the
247         // fractional part of the golden ratio in binary (0x9e3779b97f4a7c13)
248         // and applying mix() 4 times.
249         let mut a = w(0x647c4677a2884b7c);
250         let mut b = w(0xb9f8b322c73ac862);
251         let mut c = w(0x8c0ea5053d4712a0);
252         let mut d = w(0xb29b2e824a595524);
253         let mut e = w(0x82f053db8355e0ce);
254         let mut f = w(0x48fe4a0fa5a09315);
255         let mut g = w(0xae985bf2cbfc89ed);
256         let mut h = w(0x98f5704f6c44c0ab);
257 
258         // Normally this should do two passes, to make all of the seed effect
259         // all of `mem`
260         for _ in 0..rounds {
261             for i in (0..RAND_SIZE/8).map(|i| i * 8) {
262                 a += mem[i  ]; b += mem[i+1];
263                 c += mem[i+2]; d += mem[i+3];
264                 e += mem[i+4]; f += mem[i+5];
265                 g += mem[i+6]; h += mem[i+7];
266                 mix(&mut a, &mut b, &mut c, &mut d,
267                     &mut e, &mut f, &mut g, &mut h);
268                 mem[i  ] = a; mem[i+1] = b;
269                 mem[i+2] = c; mem[i+3] = d;
270                 mem[i+4] = e; mem[i+5] = f;
271                 mem[i+6] = g; mem[i+7] = h;
272             }
273         }
274 
275         Self { mem, a: w(0), b: w(0), c: w(0) }
276     }
277 
278     /// Create an ISAAC-64 random number generator using an `u64` as seed.
279     /// If `seed == 0` this will produce the same stream of random numbers as
280     /// the reference implementation when used unseeded.
281     #[deprecated(since="0.6.0", note="use SeedableRng::seed_from_u64 instead")]
new_from_u64(seed: u64) -> Self282     pub fn new_from_u64(seed: u64) -> Self {
283         Self::seed_from_u64(seed)
284     }
285 }
286 
287 impl SeedableRng for Isaac64Core {
288     type Seed = [u8; 32];
289 
from_seed(seed: Self::Seed) -> Self290     fn from_seed(seed: Self::Seed) -> Self {
291         let mut seed_u64 = [0u64; 4];
292         le::read_u64_into(&seed, &mut seed_u64);
293         // Convert the seed to `Wrapping<u64>` and zero-extend to `RAND_SIZE`.
294         let mut seed_extended = [w(0); RAND_SIZE];
295         for (x, y) in seed_extended.iter_mut().zip(seed_u64.iter()) {
296             *x = w(*y);
297         }
298         Self::init(seed_extended, 2)
299     }
300 
seed_from_u64(seed: u64) -> Self301     fn seed_from_u64(seed: u64) -> Self {
302         let mut key = [w(0); RAND_SIZE];
303         key[0] = w(seed);
304         // Initialize with only one pass.
305         // A second pass does not improve the quality here, because all of the
306         // seed was already available in the first round.
307         // Not doing the second pass has the small advantage that if
308         // `seed == 0` this method produces exactly the same state as the
309         // reference implementation when used unseeded.
310         Self::init(key, 1)
311     }
312 
from_rng<R: RngCore>(mut rng: R) -> Result<Self, Error>313     fn from_rng<R: RngCore>(mut rng: R) -> Result<Self, Error> {
314         // Custom `from_rng` implementation that fills a seed with the same size
315         // as the entire state.
316         let mut seed = [w(0u64); RAND_SIZE];
317         unsafe {
318             let ptr = seed.as_mut_ptr() as *mut u8;
319             let slice = slice::from_raw_parts_mut(ptr, RAND_SIZE * 8);
320             rng.try_fill_bytes(slice)?;
321         }
322         for i in seed.iter_mut() {
323             *i = w(i.0.to_le());
324         }
325 
326         Ok(Self::init(seed, 2))
327     }
328 }
329 
330 #[cfg(test)]
331 mod test {
332     use rand_core::{RngCore, SeedableRng};
333     use super::Isaac64Rng;
334 
335     #[test]
test_isaac64_construction()336     fn test_isaac64_construction() {
337         // Test that various construction techniques produce a working RNG.
338         let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0,
339                     0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0];
340         let mut rng1 = Isaac64Rng::from_seed(seed);
341         assert_eq!(rng1.next_u64(), 14964555543728284049);
342 
343         let mut rng2 = Isaac64Rng::from_rng(rng1).unwrap();
344         assert_eq!(rng2.next_u64(), 919595328260451758);
345     }
346 
347     #[test]
test_isaac64_true_values_64()348     fn test_isaac64_true_values_64() {
349         let seed = [1,0,0,0, 0,0,0,0, 23,0,0,0, 0,0,0,0,
350                     200,1,0,0, 0,0,0,0, 210,30,0,0, 0,0,0,0];
351         let mut rng1 = Isaac64Rng::from_seed(seed);
352         let mut results = [0u64; 10];
353         for i in results.iter_mut() { *i = rng1.next_u64(); }
354         let expected = [
355                    15071495833797886820, 7720185633435529318,
356                    10836773366498097981, 5414053799617603544,
357                    12890513357046278984, 17001051845652595546,
358                    9240803642279356310, 12558996012687158051,
359                    14673053937227185542, 1677046725350116783];
360         assert_eq!(results, expected);
361 
362         let seed = [57,48,0,0, 0,0,0,0, 50,9,1,0, 0,0,0,0,
363                     49,212,0,0, 0,0,0,0, 148,38,0,0, 0,0,0,0];
364         let mut rng2 = Isaac64Rng::from_seed(seed);
365         // skip forward to the 10000th number
366         for _ in 0..10000 { rng2.next_u64(); }
367 
368         for i in results.iter_mut() { *i = rng2.next_u64(); }
369         let expected = [
370             18143823860592706164, 8491801882678285927, 2699425367717515619,
371             17196852593171130876, 2606123525235546165, 15790932315217671084,
372             596345674630742204, 9947027391921273664, 11788097613744130851,
373             10391409374914919106];
374         assert_eq!(results, expected);
375     }
376 
377     #[test]
test_isaac64_true_values_32()378     fn test_isaac64_true_values_32() {
379         let seed = [1,0,0,0, 0,0,0,0, 23,0,0,0, 0,0,0,0,
380                     200,1,0,0, 0,0,0,0, 210,30,0,0, 0,0,0,0];
381         let mut rng = Isaac64Rng::from_seed(seed);
382         let mut results = [0u32; 12];
383         for i in results.iter_mut() { *i = rng.next_u32(); }
384         // Subset of above values, as an LE u32 sequence
385         let expected = [
386                     3477963620, 3509106075,
387                     687845478, 1797495790,
388                     227048253, 2523132918,
389                     4044335064, 1260557630,
390                     4079741768, 3001306521,
391                     69157722, 3958365844];
392         assert_eq!(results, expected);
393     }
394 
395     #[test]
test_isaac64_true_values_mixed()396     fn test_isaac64_true_values_mixed() {
397         let seed = [1,0,0,0, 0,0,0,0, 23,0,0,0, 0,0,0,0,
398                     200,1,0,0, 0,0,0,0, 210,30,0,0, 0,0,0,0];
399         let mut rng = Isaac64Rng::from_seed(seed);
400         // Test alternating between `next_u64` and `next_u32` works as expected.
401         // Values are the same as `test_isaac64_true_values` and
402         // `test_isaac64_true_values_32`.
403         assert_eq!(rng.next_u64(), 15071495833797886820);
404         assert_eq!(rng.next_u32(), 687845478);
405         assert_eq!(rng.next_u32(), 1797495790);
406         assert_eq!(rng.next_u64(), 10836773366498097981);
407         assert_eq!(rng.next_u32(), 4044335064);
408         // Skip one u32
409         assert_eq!(rng.next_u64(), 12890513357046278984);
410         assert_eq!(rng.next_u32(), 69157722);
411     }
412 
413     #[test]
test_isaac64_true_bytes()414     fn test_isaac64_true_bytes() {
415         let seed = [1,0,0,0, 0,0,0,0, 23,0,0,0, 0,0,0,0,
416                     200,1,0,0, 0,0,0,0, 210,30,0,0, 0,0,0,0];
417         let mut rng = Isaac64Rng::from_seed(seed);
418         let mut results = [0u8; 32];
419         rng.fill_bytes(&mut results);
420         // Same as first values in test_isaac64_true_values as bytes in LE order
421         let expected = [100, 131, 77, 207, 155, 181, 40, 209,
422                         102, 176, 255, 40, 238, 155, 35, 107,
423                         61, 123, 136, 13, 246, 243, 99, 150,
424                         216, 167, 15, 241, 62, 149, 34, 75];
425         assert_eq!(results, expected);
426     }
427 
428     #[test]
test_isaac64_new_uninitialized()429     fn test_isaac64_new_uninitialized() {
430         // Compare the results from initializing `IsaacRng` with
431         // `seed_from_u64(0)`, to make sure it is the same as the reference
432         // implementation when used uninitialized.
433         // Note: We only test the first 16 integers, not the full 256 of the
434         // first block.
435         let mut rng = Isaac64Rng::seed_from_u64(0);
436         let mut results = [0u64; 16];
437         for i in results.iter_mut() { *i = rng.next_u64(); }
438         let expected: [u64; 16] = [
439             0xF67DFBA498E4937C, 0x84A5066A9204F380, 0xFEE34BD5F5514DBB,
440             0x4D1664739B8F80D6, 0x8607459AB52A14AA, 0x0E78BC5A98529E49,
441             0xFE5332822AD13777, 0x556C27525E33D01A, 0x08643CA615F3149F,
442             0xD0771FAF3CB04714, 0x30E86F68A37B008D, 0x3074EBC0488A3ADF,
443             0x270645EA7A2790BC, 0x5601A0A8D3763C6A, 0x2F83071F53F325DD,
444             0xB9090F3D42D2D2EA];
445         assert_eq!(results, expected);
446     }
447 
448     #[test]
test_isaac64_clone()449     fn test_isaac64_clone() {
450         let seed = [1,0,0,0, 0,0,0,0, 23,0,0,0, 0,0,0,0,
451                     200,1,0,0, 0,0,0,0, 210,30,0,0, 0,0,0,0];
452         let mut rng1 = Isaac64Rng::from_seed(seed);
453         let mut rng2 = rng1.clone();
454         for _ in 0..16 {
455             assert_eq!(rng1.next_u64(), rng2.next_u64());
456         }
457     }
458 
459     #[test]
460     #[cfg(feature="serde1")]
test_isaac64_serde()461     fn test_isaac64_serde() {
462         use bincode;
463         use std::io::{BufWriter, BufReader};
464 
465         let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0,
466                      57,48,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0];
467         let mut rng = Isaac64Rng::from_seed(seed);
468 
469         let buf: Vec<u8> = Vec::new();
470         let mut buf = BufWriter::new(buf);
471         bincode::serialize_into(&mut buf, &rng).expect("Could not serialize");
472 
473         let buf = buf.into_inner().unwrap();
474         let mut read = BufReader::new(&buf[..]);
475         let mut deserialized: Isaac64Rng = bincode::deserialize_from(&mut read).expect("Could not deserialize");
476 
477         for _ in 0..300 { // more than the 256 buffered results
478             assert_eq!(rng.next_u64(), deserialized.next_u64());
479         }
480     }
481 }
482