1// Copyright 2013 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package ir
6
7// This package defines a high-level intermediate representation for
8// Go programs using static single-information (SSI) form.
9
10import (
11	"fmt"
12	"go/ast"
13	"go/constant"
14	"go/token"
15	"go/types"
16	"sync"
17
18	"golang.org/x/tools/go/types/typeutil"
19)
20
21type ID int
22
23// A Program is a partial or complete Go program converted to IR form.
24type Program struct {
25	Fset       *token.FileSet              // position information for the files of this Program
26	PrintFunc  string                      // create ir.html for function specified in PrintFunc
27	imported   map[string]*Package         // all importable Packages, keyed by import path
28	packages   map[*types.Package]*Package // all loaded Packages, keyed by object
29	mode       BuilderMode                 // set of mode bits for IR construction
30	MethodSets typeutil.MethodSetCache     // cache of type-checker's method-sets
31
32	methodsMu    sync.Mutex                 // guards the following maps:
33	methodSets   typeutil.Map               // maps type to its concrete methodSet
34	runtimeTypes typeutil.Map               // types for which rtypes are needed
35	canon        typeutil.Map               // type canonicalization map
36	bounds       map[*types.Func]*Function  // bounds for curried x.Method closures
37	thunks       map[selectionKey]*Function // thunks for T.Method expressions
38}
39
40// A Package is a single analyzed Go package containing Members for
41// all package-level functions, variables, constants and types it
42// declares.  These may be accessed directly via Members, or via the
43// type-specific accessor methods Func, Type, Var and Const.
44//
45// Members also contains entries for "init" (the synthetic package
46// initializer) and "init#%d", the nth declared init function,
47// and unspecified other things too.
48//
49type Package struct {
50	Prog      *Program               // the owning program
51	Pkg       *types.Package         // the corresponding go/types.Package
52	Members   map[string]Member      // all package members keyed by name (incl. init and init#%d)
53	Functions []*Function            // all functions, excluding anonymous ones
54	values    map[types.Object]Value // package members (incl. types and methods), keyed by object
55	init      *Function              // Func("init"); the package's init function
56	debug     bool                   // include full debug info in this package
57	printFunc string                 // which function to print in HTML form
58
59	// The following fields are set transiently, then cleared
60	// after building.
61	buildOnce sync.Once   // ensures package building occurs once
62	ninit     int32       // number of init functions
63	info      *types.Info // package type information
64	files     []*ast.File // package ASTs
65}
66
67// A Member is a member of a Go package, implemented by *NamedConst,
68// *Global, *Function, or *Type; they are created by package-level
69// const, var, func and type declarations respectively.
70//
71type Member interface {
72	Name() string                    // declared name of the package member
73	String() string                  // package-qualified name of the package member
74	RelString(*types.Package) string // like String, but relative refs are unqualified
75	Object() types.Object            // typechecker's object for this member, if any
76	Type() types.Type                // type of the package member
77	Token() token.Token              // token.{VAR,FUNC,CONST,TYPE}
78	Package() *Package               // the containing package
79}
80
81// A Type is a Member of a Package representing a package-level named type.
82type Type struct {
83	object *types.TypeName
84	pkg    *Package
85}
86
87// A NamedConst is a Member of a Package representing a package-level
88// named constant.
89//
90// Pos() returns the position of the declaring ast.ValueSpec.Names[*]
91// identifier.
92//
93// NB: a NamedConst is not a Value; it contains a constant Value, which
94// it augments with the name and position of its 'const' declaration.
95//
96type NamedConst struct {
97	object *types.Const
98	Value  *Const
99	pkg    *Package
100}
101
102// A Value is an IR value that can be referenced by an instruction.
103type Value interface {
104	setID(ID)
105
106	// Name returns the name of this value, and determines how
107	// this Value appears when used as an operand of an
108	// Instruction.
109	//
110	// This is the same as the source name for Parameters,
111	// Builtins, Functions, FreeVars, Globals.
112	// For constants, it is a representation of the constant's value
113	// and type.  For all other Values this is the name of the
114	// virtual register defined by the instruction.
115	//
116	// The name of an IR Value is not semantically significant,
117	// and may not even be unique within a function.
118	Name() string
119
120	// ID returns the ID of this value. IDs are unique within a single
121	// function and are densely numbered, but may contain gaps.
122	// Values and other Instructions share the same ID space.
123	// Globally, values are identified by their addresses. However,
124	// IDs exist to facilitate efficient storage of mappings between
125	// values and data when analysing functions.
126	//
127	// NB: IDs are allocated late in the IR construction process and
128	// are not available to early stages of said process.
129	ID() ID
130
131	// If this value is an Instruction, String returns its
132	// disassembled form; otherwise it returns unspecified
133	// human-readable information about the Value, such as its
134	// kind, name and type.
135	String() string
136
137	// Type returns the type of this value.  Many instructions
138	// (e.g. IndexAddr) change their behaviour depending on the
139	// types of their operands.
140	Type() types.Type
141
142	// Parent returns the function to which this Value belongs.
143	// It returns nil for named Functions, Builtin and Global.
144	Parent() *Function
145
146	// Referrers returns the list of instructions that have this
147	// value as one of their operands; it may contain duplicates
148	// if an instruction has a repeated operand.
149	//
150	// Referrers actually returns a pointer through which the
151	// caller may perform mutations to the object's state.
152	//
153	// Referrers is currently only defined if Parent()!=nil,
154	// i.e. for the function-local values FreeVar, Parameter,
155	// Functions (iff anonymous) and all value-defining instructions.
156	// It returns nil for named Functions, Builtin and Global.
157	//
158	// Instruction.Operands contains the inverse of this relation.
159	Referrers() *[]Instruction
160
161	Operands(rands []*Value) []*Value // nil for non-Instructions
162
163	// Source returns the AST node responsible for creating this
164	// value. A single AST node may be responsible for more than one
165	// value, and not all values have an associated AST node.
166	//
167	// Do not use this method to find a Value given an ast.Expr; use
168	// ValueForExpr instead.
169	Source() ast.Node
170
171	// Pos returns Source().Pos() if Source is not nil, else it
172	// returns token.NoPos.
173	Pos() token.Pos
174}
175
176// An Instruction is an IR instruction that computes a new Value or
177// has some effect.
178//
179// An Instruction that defines a value (e.g. BinOp) also implements
180// the Value interface; an Instruction that only has an effect (e.g. Store)
181// does not.
182//
183type Instruction interface {
184	setSource(ast.Node)
185	setID(ID)
186
187	// String returns the disassembled form of this value.
188	//
189	// Examples of Instructions that are Values:
190	//       "BinOp <int> {+} t1 t2"  (BinOp)
191	//       "Call <int> len t1"      (Call)
192	// Note that the name of the Value is not printed.
193	//
194	// Examples of Instructions that are not Values:
195	//       "Return t1"              (Return)
196	//       "Store {int} t2 t1"      (Store)
197	//
198	// (The separation of Value.Name() from Value.String() is useful
199	// for some analyses which distinguish the operation from the
200	// value it defines, e.g., 'y = local int' is both an allocation
201	// of memory 'local int' and a definition of a pointer y.)
202	String() string
203
204	// ID returns the ID of this instruction. IDs are unique within a single
205	// function and are densely numbered, but may contain gaps.
206	// Globally, instructions are identified by their addresses. However,
207	// IDs exist to facilitate efficient storage of mappings between
208	// instructions and data when analysing functions.
209	//
210	// NB: IDs are allocated late in the IR construction process and
211	// are not available to early stages of said process.
212	ID() ID
213
214	// Parent returns the function to which this instruction
215	// belongs.
216	Parent() *Function
217
218	// Block returns the basic block to which this instruction
219	// belongs.
220	Block() *BasicBlock
221
222	// setBlock sets the basic block to which this instruction belongs.
223	setBlock(*BasicBlock)
224
225	// Operands returns the operands of this instruction: the
226	// set of Values it references.
227	//
228	// Specifically, it appends their addresses to rands, a
229	// user-provided slice, and returns the resulting slice,
230	// permitting avoidance of memory allocation.
231	//
232	// The operands are appended in undefined order, but the order
233	// is consistent for a given Instruction; the addresses are
234	// always non-nil but may point to a nil Value.  Clients may
235	// store through the pointers, e.g. to effect a value
236	// renaming.
237	//
238	// Value.Referrers is a subset of the inverse of this
239	// relation.  (Referrers are not tracked for all types of
240	// Values.)
241	Operands(rands []*Value) []*Value
242
243	Referrers() *[]Instruction // nil for non-Values
244
245	// Source returns the AST node responsible for creating this
246	// instruction. A single AST node may be responsible for more than
247	// one instruction, and not all instructions have an associated
248	// AST node.
249	Source() ast.Node
250
251	// Pos returns Source().Pos() if Source is not nil, else it
252	// returns token.NoPos.
253	Pos() token.Pos
254}
255
256// A Node is a node in the IR value graph.  Every concrete type that
257// implements Node is also either a Value, an Instruction, or both.
258//
259// Node contains the methods common to Value and Instruction, plus the
260// Operands and Referrers methods generalized to return nil for
261// non-Instructions and non-Values, respectively.
262//
263// Node is provided to simplify IR graph algorithms.  Clients should
264// use the more specific and informative Value or Instruction
265// interfaces where appropriate.
266//
267type Node interface {
268	setID(ID)
269
270	// Common methods:
271	ID() ID
272	String() string
273	Source() ast.Node
274	Pos() token.Pos
275	Parent() *Function
276
277	// Partial methods:
278	Operands(rands []*Value) []*Value // nil for non-Instructions
279	Referrers() *[]Instruction        // nil for non-Values
280}
281
282// Function represents the parameters, results, and code of a function
283// or method.
284//
285// If Blocks is nil, this indicates an external function for which no
286// Go source code is available.  In this case, FreeVars and Locals
287// are nil too.  Clients performing whole-program analysis must
288// handle external functions specially.
289//
290// Blocks contains the function's control-flow graph (CFG).
291// Blocks[0] is the function entry point; block order is not otherwise
292// semantically significant, though it may affect the readability of
293// the disassembly.
294// To iterate over the blocks in dominance order, use DomPreorder().
295//
296// A nested function (Parent()!=nil) that refers to one or more
297// lexically enclosing local variables ("free variables") has FreeVars.
298// Such functions cannot be called directly but require a
299// value created by MakeClosure which, via its Bindings, supplies
300// values for these parameters.
301//
302// If the function is a method (Signature.Recv() != nil) then the first
303// element of Params is the receiver parameter.
304//
305// A Go package may declare many functions called "init".
306// For each one, Object().Name() returns "init" but Name() returns
307// "init#1", etc, in declaration order.
308//
309// Pos() returns the declaring ast.FuncLit.Type.Func or the position
310// of the ast.FuncDecl.Name, if the function was explicit in the
311// source.  Synthetic wrappers, for which Synthetic != "", may share
312// the same position as the function they wrap.
313// Syntax.Pos() always returns the position of the declaring "func" token.
314//
315// Type() returns the function's Signature.
316//
317type Function struct {
318	node
319
320	name      string
321	object    types.Object     // a declared *types.Func or one of its wrappers
322	method    *types.Selection // info about provenance of synthetic methods
323	Signature *types.Signature
324
325	Synthetic  string        // provenance of synthetic function; "" for true source functions
326	parent     *Function     // enclosing function if anon; nil if global
327	Pkg        *Package      // enclosing package; nil for shared funcs (wrappers and error.Error)
328	Prog       *Program      // enclosing program
329	Params     []*Parameter  // function parameters; for methods, includes receiver
330	FreeVars   []*FreeVar    // free variables whose values must be supplied by closure
331	Locals     []*Alloc      // local variables of this function
332	Blocks     []*BasicBlock // basic blocks of the function; nil => external
333	Exit       *BasicBlock   // The function's exit block
334	AnonFuncs  []*Function   // anonymous functions directly beneath this one
335	referrers  []Instruction // referring instructions (iff Parent() != nil)
336	WillExit   bool          // Calling this function will always terminate the process
337	WillUnwind bool          // Calling this function will always unwind (it will call runtime.Goexit or panic)
338
339	*functionBody
340}
341
342type functionBody struct {
343	// The following fields are set transiently during building,
344	// then cleared.
345	currentBlock    *BasicBlock             // where to emit code
346	objects         map[types.Object]Value  // addresses of local variables
347	namedResults    []*Alloc                // tuple of named results
348	implicitResults []*Alloc                // tuple of results
349	targets         *targets                // linked stack of branch targets
350	lblocks         map[*ast.Object]*lblock // labelled blocks
351	consts          []*Const
352	wr              *HTMLWriter
353	fakeExits       BlockSet
354	blocksets       [5]BlockSet
355	hasDefer        bool
356}
357
358func (fn *Function) results() []*Alloc {
359	if len(fn.namedResults) > 0 {
360		return fn.namedResults
361	}
362	return fn.implicitResults
363}
364
365// BasicBlock represents an IR basic block.
366//
367// The final element of Instrs is always an explicit transfer of
368// control (If, Jump, Return, Panic, or Unreachable).
369//
370// A block may contain no Instructions only if it is unreachable,
371// i.e., Preds is nil.  Empty blocks are typically pruned.
372//
373// BasicBlocks and their Preds/Succs relation form a (possibly cyclic)
374// graph independent of the IR Value graph: the control-flow graph or
375// CFG.  It is illegal for multiple edges to exist between the same
376// pair of blocks.
377//
378// Each BasicBlock is also a node in the dominator tree of the CFG.
379// The tree may be navigated using Idom()/Dominees() and queried using
380// Dominates().
381//
382// The order of Preds and Succs is significant (to Phi and If
383// instructions, respectively).
384//
385type BasicBlock struct {
386	Index        int            // index of this block within Parent().Blocks
387	Comment      string         // optional label; no semantic significance
388	parent       *Function      // parent function
389	Instrs       []Instruction  // instructions in order
390	Preds, Succs []*BasicBlock  // predecessors and successors
391	succs2       [2]*BasicBlock // initial space for Succs
392	dom          domInfo        // dominator tree info
393	pdom         domInfo        // post-dominator tree info
394	post         int
395	gaps         int // number of nil Instrs (transient)
396	rundefers    int // number of rundefers (transient)
397}
398
399// Pure values ----------------------------------------
400
401// A FreeVar represents a free variable of the function to which it
402// belongs.
403//
404// FreeVars are used to implement anonymous functions, whose free
405// variables are lexically captured in a closure formed by
406// MakeClosure.  The value of such a free var is an Alloc or another
407// FreeVar and is considered a potentially escaping heap address, with
408// pointer type.
409//
410// FreeVars are also used to implement bound method closures.  Such a
411// free var represents the receiver value and may be of any type that
412// has concrete methods.
413//
414// Pos() returns the position of the value that was captured, which
415// belongs to an enclosing function.
416//
417type FreeVar struct {
418	node
419
420	name      string
421	typ       types.Type
422	parent    *Function
423	referrers []Instruction
424
425	// Transiently needed during building.
426	outer Value // the Value captured from the enclosing context.
427}
428
429// A Parameter represents an input parameter of a function.
430//
431type Parameter struct {
432	register
433
434	name   string
435	object types.Object // a *types.Var; nil for non-source locals
436}
437
438// A Const represents the value of a constant expression.
439//
440// The underlying type of a constant may be any boolean, numeric, or
441// string type.  In addition, a Const may represent the nil value of
442// any reference type---interface, map, channel, pointer, slice, or
443// function---but not "untyped nil".
444//
445// All source-level constant expressions are represented by a Const
446// of the same type and value.
447//
448// Value holds the exact value of the constant, independent of its
449// Type(), using the same representation as package go/constant uses for
450// constants, or nil for a typed nil value.
451//
452// Pos() returns token.NoPos.
453//
454// Example printed form:
455// 	Const <int> {42}
456// 	Const <untyped string> {"test"}
457// 	Const <MyComplex> {(3 + 4i)}
458//
459type Const struct {
460	register
461
462	Value constant.Value
463}
464
465// A Global is a named Value holding the address of a package-level
466// variable.
467//
468// Pos() returns the position of the ast.ValueSpec.Names[*]
469// identifier.
470//
471type Global struct {
472	node
473
474	name   string
475	object types.Object // a *types.Var; may be nil for synthetics e.g. init$guard
476	typ    types.Type
477
478	Pkg *Package
479}
480
481// A Builtin represents a specific use of a built-in function, e.g. len.
482//
483// Builtins are immutable values.  Builtins do not have addresses.
484// Builtins can only appear in CallCommon.Func.
485//
486// Name() indicates the function: one of the built-in functions from the
487// Go spec (excluding "make" and "new") or one of these ir-defined
488// intrinsics:
489//
490//   // wrapnilchk returns ptr if non-nil, panics otherwise.
491//   // (For use in indirection wrappers.)
492//   func ir:wrapnilchk(ptr *T, recvType, methodName string) *T
493//
494// Object() returns a *types.Builtin for built-ins defined by the spec,
495// nil for others.
496//
497// Type() returns a *types.Signature representing the effective
498// signature of the built-in for this call.
499//
500type Builtin struct {
501	node
502
503	name string
504	sig  *types.Signature
505}
506
507// Value-defining instructions  ----------------------------------------
508
509// The Alloc instruction reserves space for a variable of the given type,
510// zero-initializes it, and yields its address.
511//
512// Alloc values are always addresses, and have pointer types, so the
513// type of the allocated variable is actually
514// Type().Underlying().(*types.Pointer).Elem().
515//
516// If Heap is false, Alloc allocates space in the function's
517// activation record (frame); we refer to an Alloc(Heap=false) as a
518// "stack" alloc.  Each stack Alloc returns the same address each time
519// it is executed within the same activation; the space is
520// re-initialized to zero.
521//
522// If Heap is true, Alloc allocates space in the heap; we
523// refer to an Alloc(Heap=true) as a "heap" alloc.  Each heap Alloc
524// returns a different address each time it is executed.
525//
526// When Alloc is applied to a channel, map or slice type, it returns
527// the address of an uninitialized (nil) reference of that kind; store
528// the result of MakeSlice, MakeMap or MakeChan in that location to
529// instantiate these types.
530//
531// Pos() returns the ast.CompositeLit.Lbrace for a composite literal,
532// or the ast.CallExpr.Rparen for a call to new() or for a call that
533// allocates a varargs slice.
534//
535// Example printed form:
536// 	t1 = StackAlloc <*int>
537// 	t2 = HeapAlloc <*int> (new)
538//
539type Alloc struct {
540	register
541	Heap  bool
542	index int // dense numbering; for lifting
543}
544
545var _ Instruction = (*Sigma)(nil)
546var _ Value = (*Sigma)(nil)
547
548// The Sigma instruction represents an SSI σ-node, which splits values
549// at branches in the control flow.
550//
551// Conceptually, σ-nodes exist at the end of blocks that branch and
552// constitute parallel assignments to one value per destination block.
553// However, such a representation would be awkward to work with, so
554// instead we place σ-nodes at the beginning of branch targets. The
555// From field denotes to which incoming edge the node applies.
556//
557// Within a block, all σ-nodes must appear before all non-σ nodes.
558//
559// Example printed form:
560// 	t2 = Sigma <int> [#0] t1 (x)
561//
562type Sigma struct {
563	register
564	From *BasicBlock
565	X    Value
566
567	live bool // used during lifting
568}
569
570// The Phi instruction represents an SSA φ-node, which combines values
571// that differ across incoming control-flow edges and yields a new
572// value.  Within a block, all φ-nodes must appear before all non-φ, non-σ
573// nodes.
574//
575// Pos() returns the position of the && or || for short-circuit
576// control-flow joins, or that of the *Alloc for φ-nodes inserted
577// during SSA renaming.
578//
579// Example printed form:
580// 	t3 = Phi <int> 2:t1 4:t2 (x)
581//
582type Phi struct {
583	register
584	Edges []Value // Edges[i] is value for Block().Preds[i]
585
586	live bool // used during lifting
587}
588
589// The Call instruction represents a function or method call.
590//
591// The Call instruction yields the function result if there is exactly
592// one.  Otherwise it returns a tuple, the components of which are
593// accessed via Extract.
594//
595// See CallCommon for generic function call documentation.
596//
597// Pos() returns the ast.CallExpr.Lparen, if explicit in the source.
598//
599// Example printed form:
600// 	t3 = Call <()> println t1 t2
601// 	t4 = Call <()> foo$1
602// 	t6 = Invoke <string> t5.String
603//
604type Call struct {
605	register
606	Call CallCommon
607}
608
609// The BinOp instruction yields the result of binary operation X Op Y.
610//
611// Pos() returns the ast.BinaryExpr.OpPos, if explicit in the source.
612//
613// Example printed form:
614// 	t3 = BinOp <int> {+} t2 t1
615//
616type BinOp struct {
617	register
618	// One of:
619	// ADD SUB MUL QUO REM          + - * / %
620	// AND OR XOR SHL SHR AND_NOT   & | ^ << >> &^
621	// EQL NEQ LSS LEQ GTR GEQ      == != < <= < >=
622	Op   token.Token
623	X, Y Value
624}
625
626// The UnOp instruction yields the result of Op X.
627// XOR is bitwise complement.
628// SUB is negation.
629// NOT is logical negation.
630//
631//
632// Example printed form:
633// 	t2 = UnOp <int> {^} t1
634//
635type UnOp struct {
636	register
637	Op token.Token // One of: NOT SUB XOR ! - ^
638	X  Value
639}
640
641// The Load instruction loads a value from a memory address.
642//
643// For implicit memory loads, Pos() returns the position of the
644// most closely associated source-level construct; the details are not
645// specified.
646//
647// Example printed form:
648// 	t2 = Load <int> t1
649//
650type Load struct {
651	register
652	X Value
653}
654
655// The ChangeType instruction applies to X a value-preserving type
656// change to Type().
657//
658// Type changes are permitted:
659//    - between a named type and its underlying type.
660//    - between two named types of the same underlying type.
661//    - between (possibly named) pointers to identical base types.
662//    - from a bidirectional channel to a read- or write-channel,
663//      optionally adding/removing a name.
664//
665// This operation cannot fail dynamically.
666//
667// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
668// from an explicit conversion in the source.
669//
670// Example printed form:
671// 	t2 = ChangeType <*T> t1
672//
673type ChangeType struct {
674	register
675	X Value
676}
677
678// The Convert instruction yields the conversion of value X to type
679// Type().  One or both of those types is basic (but possibly named).
680//
681// A conversion may change the value and representation of its operand.
682// Conversions are permitted:
683//    - between real numeric types.
684//    - between complex numeric types.
685//    - between string and []byte or []rune.
686//    - between pointers and unsafe.Pointer.
687//    - between unsafe.Pointer and uintptr.
688//    - from (Unicode) integer to (UTF-8) string.
689// A conversion may imply a type name change also.
690//
691// This operation cannot fail dynamically.
692//
693// Conversions of untyped string/number/bool constants to a specific
694// representation are eliminated during IR construction.
695//
696// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
697// from an explicit conversion in the source.
698//
699// Example printed form:
700// 	t2 = Convert <[]byte> t1
701//
702type Convert struct {
703	register
704	X Value
705}
706
707// ChangeInterface constructs a value of one interface type from a
708// value of another interface type known to be assignable to it.
709// This operation cannot fail.
710//
711// Pos() returns the ast.CallExpr.Lparen if the instruction arose from
712// an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the
713// instruction arose from an explicit e.(T) operation; or token.NoPos
714// otherwise.
715//
716// Example printed form:
717// 	t2 = ChangeInterface <I1> t1
718//
719type ChangeInterface struct {
720	register
721	X Value
722}
723
724// MakeInterface constructs an instance of an interface type from a
725// value of a concrete type.
726//
727// Use Program.MethodSets.MethodSet(X.Type()) to find the method-set
728// of X, and Program.MethodValue(m) to find the implementation of a method.
729//
730// To construct the zero value of an interface type T, use:
731// 	NewConst(constant.MakeNil(), T, pos)
732//
733// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
734// from an explicit conversion in the source.
735//
736// Example printed form:
737// 	t2 = MakeInterface <interface{}> t1
738//
739type MakeInterface struct {
740	register
741	X Value
742}
743
744// The MakeClosure instruction yields a closure value whose code is
745// Fn and whose free variables' values are supplied by Bindings.
746//
747// Type() returns a (possibly named) *types.Signature.
748//
749// Pos() returns the ast.FuncLit.Type.Func for a function literal
750// closure or the ast.SelectorExpr.Sel for a bound method closure.
751//
752// Example printed form:
753// 	t1 = MakeClosure <func()> foo$1 t1 t2
754// 	t5 = MakeClosure <func(int)> (T).foo$bound t4
755//
756type MakeClosure struct {
757	register
758	Fn       Value   // always a *Function
759	Bindings []Value // values for each free variable in Fn.FreeVars
760}
761
762// The MakeMap instruction creates a new hash-table-based map object
763// and yields a value of kind map.
764//
765// Type() returns a (possibly named) *types.Map.
766//
767// Pos() returns the ast.CallExpr.Lparen, if created by make(map), or
768// the ast.CompositeLit.Lbrack if created by a literal.
769//
770// Example printed form:
771// 	t1 = MakeMap <map[string]int>
772// 	t2 = MakeMap <StringIntMap> t1
773//
774type MakeMap struct {
775	register
776	Reserve Value // initial space reservation; nil => default
777}
778
779// The MakeChan instruction creates a new channel object and yields a
780// value of kind chan.
781//
782// Type() returns a (possibly named) *types.Chan.
783//
784// Pos() returns the ast.CallExpr.Lparen for the make(chan) that
785// created it.
786//
787// Example printed form:
788// 	t3 = MakeChan <chan int> t1
789// 	t4 = MakeChan <chan IntChan> t2
790//
791type MakeChan struct {
792	register
793	Size Value // int; size of buffer; zero => synchronous.
794}
795
796// The MakeSlice instruction yields a slice of length Len backed by a
797// newly allocated array of length Cap.
798//
799// Both Len and Cap must be non-nil Values of integer type.
800//
801// (Alloc(types.Array) followed by Slice will not suffice because
802// Alloc can only create arrays of constant length.)
803//
804// Type() returns a (possibly named) *types.Slice.
805//
806// Pos() returns the ast.CallExpr.Lparen for the make([]T) that
807// created it.
808//
809// Example printed form:
810// 	t3 = MakeSlice <[]string> t1 t2
811// 	t4 = MakeSlice <StringSlice> t1 t2
812//
813type MakeSlice struct {
814	register
815	Len Value
816	Cap Value
817}
818
819// The Slice instruction yields a slice of an existing string, slice
820// or *array X between optional integer bounds Low and High.
821//
822// Dynamically, this instruction panics if X evaluates to a nil *array
823// pointer.
824//
825// Type() returns string if the type of X was string, otherwise a
826// *types.Slice with the same element type as X.
827//
828// Pos() returns the ast.SliceExpr.Lbrack if created by a x[:] slice
829// operation, the ast.CompositeLit.Lbrace if created by a literal, or
830// NoPos if not explicit in the source (e.g. a variadic argument slice).
831//
832// Example printed form:
833// 	t4 = Slice <[]int> t3 t2 t1 <nil>
834//
835type Slice struct {
836	register
837	X              Value // slice, string, or *array
838	Low, High, Max Value // each may be nil
839}
840
841// The FieldAddr instruction yields the address of Field of *struct X.
842//
843// The field is identified by its index within the field list of the
844// struct type of X.
845//
846// Dynamically, this instruction panics if X evaluates to a nil
847// pointer.
848//
849// Type() returns a (possibly named) *types.Pointer.
850//
851// Pos() returns the position of the ast.SelectorExpr.Sel for the
852// field, if explicit in the source.
853//
854// Example printed form:
855// 	t2 = FieldAddr <*int> [0] (X) t1
856//
857type FieldAddr struct {
858	register
859	X     Value // *struct
860	Field int   // field is X.Type().Underlying().(*types.Pointer).Elem().Underlying().(*types.Struct).Field(Field)
861}
862
863// The Field instruction yields the Field of struct X.
864//
865// The field is identified by its index within the field list of the
866// struct type of X; by using numeric indices we avoid ambiguity of
867// package-local identifiers and permit compact representations.
868//
869// Pos() returns the position of the ast.SelectorExpr.Sel for the
870// field, if explicit in the source.
871//
872// Example printed form:
873// 	t2 = FieldAddr <int> [0] (X) t1
874//
875type Field struct {
876	register
877	X     Value // struct
878	Field int   // index into X.Type().(*types.Struct).Fields
879}
880
881// The IndexAddr instruction yields the address of the element at
882// index Index of collection X.  Index is an integer expression.
883//
884// The elements of maps and strings are not addressable; use StringLookup, MapLookup or
885// MapUpdate instead.
886//
887// Dynamically, this instruction panics if X evaluates to a nil *array
888// pointer.
889//
890// Type() returns a (possibly named) *types.Pointer.
891//
892// Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
893// explicit in the source.
894//
895// Example printed form:
896// 	t3 = IndexAddr <*int> t2 t1
897//
898type IndexAddr struct {
899	register
900	X     Value // slice or *array,
901	Index Value // numeric index
902}
903
904// The Index instruction yields element Index of array X.
905//
906// Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
907// explicit in the source.
908//
909// Example printed form:
910// 	t3 = Index <int> t2 t1
911//
912type Index struct {
913	register
914	X     Value // array
915	Index Value // integer index
916}
917
918// The MapLookup instruction yields element Index of collection X, a map.
919//
920// If CommaOk, the result is a 2-tuple of the value above and a
921// boolean indicating the result of a map membership test for the key.
922// The components of the tuple are accessed using Extract.
923//
924// Pos() returns the ast.IndexExpr.Lbrack, if explicit in the source.
925//
926// Example printed form:
927// 	t4 = MapLookup <string> t3 t1
928// 	t6 = MapLookup <(string, bool)> t3 t2
929//
930type MapLookup struct {
931	register
932	X       Value // map
933	Index   Value // key-typed index
934	CommaOk bool  // return a value,ok pair
935}
936
937// The StringLookup instruction yields element Index of collection X, a string.
938// Index is an integer expression.
939//
940// Pos() returns the ast.IndexExpr.Lbrack, if explicit in the source.
941//
942// Example printed form:
943// 	t3 = StringLookup <uint8> t2 t1
944//
945type StringLookup struct {
946	register
947	X     Value // string
948	Index Value // numeric index
949}
950
951// SelectState is a helper for Select.
952// It represents one goal state and its corresponding communication.
953//
954type SelectState struct {
955	Dir       types.ChanDir // direction of case (SendOnly or RecvOnly)
956	Chan      Value         // channel to use (for send or receive)
957	Send      Value         // value to send (for send)
958	Pos       token.Pos     // position of token.ARROW
959	DebugNode ast.Node      // ast.SendStmt or ast.UnaryExpr(<-) [debug mode]
960}
961
962// The Select instruction tests whether (or blocks until) one
963// of the specified sent or received states is entered.
964//
965// Let n be the number of States for which Dir==RECV and Tᵢ (0 ≤ i < n)
966// be the element type of each such state's Chan.
967// Select returns an n+2-tuple
968//    (index int, recvOk bool, r₀ T₀, ... rₙ-1 Tₙ-1)
969// The tuple's components, described below, must be accessed via the
970// Extract instruction.
971//
972// If Blocking, select waits until exactly one state holds, i.e. a
973// channel becomes ready for the designated operation of sending or
974// receiving; select chooses one among the ready states
975// pseudorandomly, performs the send or receive operation, and sets
976// 'index' to the index of the chosen channel.
977//
978// If !Blocking, select doesn't block if no states hold; instead it
979// returns immediately with index equal to -1.
980//
981// If the chosen channel was used for a receive, the rᵢ component is
982// set to the received value, where i is the index of that state among
983// all n receive states; otherwise rᵢ has the zero value of type Tᵢ.
984// Note that the receive index i is not the same as the state
985// index index.
986//
987// The second component of the triple, recvOk, is a boolean whose value
988// is true iff the selected operation was a receive and the receive
989// successfully yielded a value.
990//
991// Pos() returns the ast.SelectStmt.Select.
992//
993// Example printed form:
994// 	t6 = SelectNonBlocking <(index int, ok bool, int)> [<-t4, t5<-t1]
995// 	t11 = SelectBlocking <(index int, ok bool)> []
996//
997type Select struct {
998	register
999	States   []*SelectState
1000	Blocking bool
1001}
1002
1003// The Range instruction yields an iterator over the domain and range
1004// of X, which must be a string or map.
1005//
1006// Elements are accessed via Next.
1007//
1008// Type() returns an opaque and degenerate "rangeIter" type.
1009//
1010// Pos() returns the ast.RangeStmt.For.
1011//
1012// Example printed form:
1013// 	t2 = Range <iter> t1
1014//
1015type Range struct {
1016	register
1017	X Value // string or map
1018}
1019
1020// The Next instruction reads and advances the (map or string)
1021// iterator Iter and returns a 3-tuple value (ok, k, v).  If the
1022// iterator is not exhausted, ok is true and k and v are the next
1023// elements of the domain and range, respectively.  Otherwise ok is
1024// false and k and v are undefined.
1025//
1026// Components of the tuple are accessed using Extract.
1027//
1028// The IsString field distinguishes iterators over strings from those
1029// over maps, as the Type() alone is insufficient: consider
1030// map[int]rune.
1031//
1032// Type() returns a *types.Tuple for the triple (ok, k, v).
1033// The types of k and/or v may be types.Invalid.
1034//
1035// Example printed form:
1036// 	t5 = Next <(ok bool, k int, v rune)> t2
1037// 	t5 = Next <(ok bool, k invalid type, v invalid type)> t2
1038//
1039type Next struct {
1040	register
1041	Iter     Value
1042	IsString bool // true => string iterator; false => map iterator.
1043}
1044
1045// The TypeAssert instruction tests whether interface value X has type
1046// AssertedType.
1047//
1048// If !CommaOk, on success it returns v, the result of the conversion
1049// (defined below); on failure it panics.
1050//
1051// If CommaOk: on success it returns a pair (v, true) where v is the
1052// result of the conversion; on failure it returns (z, false) where z
1053// is AssertedType's zero value.  The components of the pair must be
1054// accessed using the Extract instruction.
1055//
1056// If AssertedType is a concrete type, TypeAssert checks whether the
1057// dynamic type in interface X is equal to it, and if so, the result
1058// of the conversion is a copy of the value in the interface.
1059//
1060// If AssertedType is an interface, TypeAssert checks whether the
1061// dynamic type of the interface is assignable to it, and if so, the
1062// result of the conversion is a copy of the interface value X.
1063// If AssertedType is a superinterface of X.Type(), the operation will
1064// fail iff the operand is nil.  (Contrast with ChangeInterface, which
1065// performs no nil-check.)
1066//
1067// Type() reflects the actual type of the result, possibly a
1068// 2-types.Tuple; AssertedType is the asserted type.
1069//
1070// Pos() returns the ast.CallExpr.Lparen if the instruction arose from
1071// an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the
1072// instruction arose from an explicit e.(T) operation; or the
1073// ast.CaseClause.Case if the instruction arose from a case of a
1074// type-switch statement.
1075//
1076// Example printed form:
1077// 	t2 = TypeAssert <int> t1
1078// 	t4 = TypeAssert <(value fmt.Stringer, ok bool)> t1
1079//
1080type TypeAssert struct {
1081	register
1082	X            Value
1083	AssertedType types.Type
1084	CommaOk      bool
1085}
1086
1087// The Extract instruction yields component Index of Tuple.
1088//
1089// This is used to access the results of instructions with multiple
1090// return values, such as Call, TypeAssert, Next, Recv,
1091// MapLookup and others.
1092//
1093// Example printed form:
1094// 	t7 = Extract <bool> [1] (ok) t4
1095//
1096type Extract struct {
1097	register
1098	Tuple Value
1099	Index int
1100}
1101
1102// Instructions executed for effect.  They do not yield a value. --------------------
1103
1104// The Jump instruction transfers control to the sole successor of its
1105// owning block.
1106//
1107// A Jump must be the last instruction of its containing BasicBlock.
1108//
1109// Pos() returns NoPos.
1110//
1111// Example printed form:
1112// 	Jump → b1
1113//
1114type Jump struct {
1115	anInstruction
1116	Comment string
1117}
1118
1119// The Unreachable pseudo-instruction signals that execution cannot
1120// continue after the preceding function call because it terminates
1121// the process.
1122//
1123// The instruction acts as a control instruction, jumping to the exit
1124// block. However, this jump will never execute.
1125//
1126// An Unreachable instruction must be the last instruction of its
1127// containing BasicBlock.
1128//
1129// Example printed form:
1130// 	Unreachable → b1
1131//
1132type Unreachable struct {
1133	anInstruction
1134}
1135
1136// The If instruction transfers control to one of the two successors
1137// of its owning block, depending on the boolean Cond: the first if
1138// true, the second if false.
1139//
1140// An If instruction must be the last instruction of its containing
1141// BasicBlock.
1142//
1143// Pos() returns the *ast.IfStmt, if explicit in the source.
1144//
1145// Example printed form:
1146// 	If t2 → b1 b2
1147//
1148type If struct {
1149	anInstruction
1150	Cond Value
1151}
1152
1153type ConstantSwitch struct {
1154	anInstruction
1155	Tag Value
1156	// Constant branch conditions. A nil Value denotes the (implicit
1157	// or explicit) default branch.
1158	Conds []Value
1159}
1160
1161type TypeSwitch struct {
1162	register
1163	Tag   Value
1164	Conds []types.Type
1165}
1166
1167// The Return instruction returns values and control back to the calling
1168// function.
1169//
1170// len(Results) is always equal to the number of results in the
1171// function's signature.
1172//
1173// If len(Results) > 1, Return returns a tuple value with the specified
1174// components which the caller must access using Extract instructions.
1175//
1176// There is no instruction to return a ready-made tuple like those
1177// returned by a "value,ok"-mode TypeAssert, MapLookup or Recv or
1178// a tail-call to a function with multiple result parameters.
1179//
1180// Return must be the last instruction of its containing BasicBlock.
1181// Such a block has no successors.
1182//
1183// Pos() returns the ast.ReturnStmt.Return, if explicit in the source.
1184//
1185// Example printed form:
1186// 	Return
1187// 	Return t1 t2
1188//
1189type Return struct {
1190	anInstruction
1191	Results []Value
1192}
1193
1194// The RunDefers instruction pops and invokes the entire stack of
1195// procedure calls pushed by Defer instructions in this function.
1196//
1197// It is legal to encounter multiple 'rundefers' instructions in a
1198// single control-flow path through a function; this is useful in
1199// the combined init() function, for example.
1200//
1201// Pos() returns NoPos.
1202//
1203// Example printed form:
1204// 	RunDefers
1205//
1206type RunDefers struct {
1207	anInstruction
1208}
1209
1210// The Panic instruction initiates a panic with value X.
1211//
1212// A Panic instruction must be the last instruction of its containing
1213// BasicBlock, which must have one successor, the exit block.
1214//
1215// NB: 'go panic(x)' and 'defer panic(x)' do not use this instruction;
1216// they are treated as calls to a built-in function.
1217//
1218// Pos() returns the ast.CallExpr.Lparen if this panic was explicit
1219// in the source.
1220//
1221// Example printed form:
1222// 	Panic t1
1223//
1224type Panic struct {
1225	anInstruction
1226	X Value // an interface{}
1227}
1228
1229// The Go instruction creates a new goroutine and calls the specified
1230// function within it.
1231//
1232// See CallCommon for generic function call documentation.
1233//
1234// Pos() returns the ast.GoStmt.Go.
1235//
1236// Example printed form:
1237// 	Go println t1
1238// 	Go t3
1239// 	GoInvoke t4.Bar t2
1240//
1241type Go struct {
1242	anInstruction
1243	Call CallCommon
1244}
1245
1246// The Defer instruction pushes the specified call onto a stack of
1247// functions to be called by a RunDefers instruction or by a panic.
1248//
1249// See CallCommon for generic function call documentation.
1250//
1251// Pos() returns the ast.DeferStmt.Defer.
1252//
1253// Example printed form:
1254// 	Defer println t1
1255// 	Defer t3
1256// 	DeferInvoke t4.Bar t2
1257//
1258type Defer struct {
1259	anInstruction
1260	Call CallCommon
1261}
1262
1263// The Send instruction sends X on channel Chan.
1264//
1265// Pos() returns the ast.SendStmt.Arrow, if explicit in the source.
1266//
1267// Example printed form:
1268// 	Send t2 t1
1269//
1270type Send struct {
1271	anInstruction
1272	Chan, X Value
1273}
1274
1275// The Recv instruction receives from channel Chan.
1276//
1277// If CommaOk, the result is a 2-tuple of the value above
1278// and a boolean indicating the success of the receive.  The
1279// components of the tuple are accessed using Extract.
1280//
1281// Pos() returns the ast.UnaryExpr.OpPos, if explicit in the source.
1282// For receive operations implicit in ranging over a channel,
1283// Pos() returns the ast.RangeStmt.For.
1284//
1285// Example printed form:
1286// 	t2 = Recv <int> t1
1287// 	t3 = Recv <(int, bool)> t1
1288type Recv struct {
1289	register
1290	Chan    Value
1291	CommaOk bool
1292}
1293
1294// The Store instruction stores Val at address Addr.
1295// Stores can be of arbitrary types.
1296//
1297// Pos() returns the position of the source-level construct most closely
1298// associated with the memory store operation.
1299// Since implicit memory stores are numerous and varied and depend upon
1300// implementation choices, the details are not specified.
1301//
1302// Example printed form:
1303// 	Store {int} t2 t1
1304//
1305type Store struct {
1306	anInstruction
1307	Addr Value
1308	Val  Value
1309}
1310
1311// The BlankStore instruction is emitted for assignments to the blank
1312// identifier.
1313//
1314// BlankStore is a pseudo-instruction: it has no dynamic effect.
1315//
1316// Pos() returns NoPos.
1317//
1318// Example printed form:
1319// 	BlankStore t1
1320//
1321type BlankStore struct {
1322	anInstruction
1323	Val Value
1324}
1325
1326// The MapUpdate instruction updates the association of Map[Key] to
1327// Value.
1328//
1329// Pos() returns the ast.KeyValueExpr.Colon or ast.IndexExpr.Lbrack,
1330// if explicit in the source.
1331//
1332// Example printed form:
1333// 	MapUpdate t3 t1 t2
1334//
1335type MapUpdate struct {
1336	anInstruction
1337	Map   Value
1338	Key   Value
1339	Value Value
1340}
1341
1342// A DebugRef instruction maps a source-level expression Expr to the
1343// IR value X that represents the value (!IsAddr) or address (IsAddr)
1344// of that expression.
1345//
1346// DebugRef is a pseudo-instruction: it has no dynamic effect.
1347//
1348// Pos() returns Expr.Pos(), the start position of the source-level
1349// expression.  This is not the same as the "designated" token as
1350// documented at Value.Pos(). e.g. CallExpr.Pos() does not return the
1351// position of the ("designated") Lparen token.
1352//
1353// DebugRefs are generated only for functions built with debugging
1354// enabled; see Package.SetDebugMode() and the GlobalDebug builder
1355// mode flag.
1356//
1357// DebugRefs are not emitted for ast.Idents referring to constants or
1358// predeclared identifiers, since they are trivial and numerous.
1359// Nor are they emitted for ast.ParenExprs.
1360//
1361// (By representing these as instructions, rather than out-of-band,
1362// consistency is maintained during transformation passes by the
1363// ordinary SSA renaming machinery.)
1364//
1365// Example printed form:
1366//      ; *ast.CallExpr @ 102:9 is t5
1367//      ; var x float64 @ 109:72 is x
1368//      ; address of *ast.CompositeLit @ 216:10 is t0
1369//
1370type DebugRef struct {
1371	anInstruction
1372	Expr   ast.Expr     // the referring expression (never *ast.ParenExpr)
1373	object types.Object // the identity of the source var/func
1374	IsAddr bool         // Expr is addressable and X is the address it denotes
1375	X      Value        // the value or address of Expr
1376}
1377
1378// Embeddable mix-ins and helpers for common parts of other structs. -----------
1379
1380// register is a mix-in embedded by all IR values that are also
1381// instructions, i.e. virtual registers, and provides a uniform
1382// implementation of most of the Value interface: Value.Name() is a
1383// numbered register (e.g. "t0"); the other methods are field accessors.
1384//
1385// Temporary names are automatically assigned to each register on
1386// completion of building a function in IR form.
1387//
1388type register struct {
1389	anInstruction
1390	typ       types.Type // type of virtual register
1391	referrers []Instruction
1392}
1393
1394type node struct {
1395	source ast.Node
1396	id     ID
1397}
1398
1399func (n *node) setID(id ID) { n.id = id }
1400func (n node) ID() ID       { return n.id }
1401
1402func (n *node) setSource(source ast.Node) { n.source = source }
1403func (n *node) Source() ast.Node          { return n.source }
1404
1405func (n *node) Pos() token.Pos {
1406	if n.source != nil {
1407		return n.source.Pos()
1408	}
1409	return token.NoPos
1410}
1411
1412// anInstruction is a mix-in embedded by all Instructions.
1413// It provides the implementations of the Block and setBlock methods.
1414type anInstruction struct {
1415	node
1416	block *BasicBlock // the basic block of this instruction
1417}
1418
1419// CallCommon is contained by Go, Defer and Call to hold the
1420// common parts of a function or method call.
1421//
1422// Each CallCommon exists in one of two modes, function call and
1423// interface method invocation, or "call" and "invoke" for short.
1424//
1425// 1. "call" mode: when Method is nil (!IsInvoke), a CallCommon
1426// represents an ordinary function call of the value in Value,
1427// which may be a *Builtin, a *Function or any other value of kind
1428// 'func'.
1429//
1430// Value may be one of:
1431//    (a) a *Function, indicating a statically dispatched call
1432//        to a package-level function, an anonymous function, or
1433//        a method of a named type.
1434//    (b) a *MakeClosure, indicating an immediately applied
1435//        function literal with free variables.
1436//    (c) a *Builtin, indicating a statically dispatched call
1437//        to a built-in function.
1438//    (d) any other value, indicating a dynamically dispatched
1439//        function call.
1440// StaticCallee returns the identity of the callee in cases
1441// (a) and (b), nil otherwise.
1442//
1443// Args contains the arguments to the call.  If Value is a method,
1444// Args[0] contains the receiver parameter.
1445//
1446// Example printed form:
1447// 	t3 = Call <()> println t1 t2
1448// 	Go t3
1449// 	Defer t3
1450//
1451// 2. "invoke" mode: when Method is non-nil (IsInvoke), a CallCommon
1452// represents a dynamically dispatched call to an interface method.
1453// In this mode, Value is the interface value and Method is the
1454// interface's abstract method.  Note: an abstract method may be
1455// shared by multiple interfaces due to embedding; Value.Type()
1456// provides the specific interface used for this call.
1457//
1458// Value is implicitly supplied to the concrete method implementation
1459// as the receiver parameter; in other words, Args[0] holds not the
1460// receiver but the first true argument.
1461//
1462// Example printed form:
1463// 	t6 = Invoke <string> t5.String
1464// 	GoInvoke t4.Bar t2
1465// 	DeferInvoke t4.Bar t2
1466//
1467// For all calls to variadic functions (Signature().Variadic()),
1468// the last element of Args is a slice.
1469//
1470type CallCommon struct {
1471	Value   Value       // receiver (invoke mode) or func value (call mode)
1472	Method  *types.Func // abstract method (invoke mode)
1473	Args    []Value     // actual parameters (in static method call, includes receiver)
1474	Results Value
1475}
1476
1477// IsInvoke returns true if this call has "invoke" (not "call") mode.
1478func (c *CallCommon) IsInvoke() bool {
1479	return c.Method != nil
1480}
1481
1482// Signature returns the signature of the called function.
1483//
1484// For an "invoke"-mode call, the signature of the interface method is
1485// returned.
1486//
1487// In either "call" or "invoke" mode, if the callee is a method, its
1488// receiver is represented by sig.Recv, not sig.Params().At(0).
1489//
1490func (c *CallCommon) Signature() *types.Signature {
1491	if c.Method != nil {
1492		return c.Method.Type().(*types.Signature)
1493	}
1494	return c.Value.Type().Underlying().(*types.Signature)
1495}
1496
1497// StaticCallee returns the callee if this is a trivially static
1498// "call"-mode call to a function.
1499func (c *CallCommon) StaticCallee() *Function {
1500	switch fn := c.Value.(type) {
1501	case *Function:
1502		return fn
1503	case *MakeClosure:
1504		return fn.Fn.(*Function)
1505	}
1506	return nil
1507}
1508
1509// Description returns a description of the mode of this call suitable
1510// for a user interface, e.g., "static method call".
1511func (c *CallCommon) Description() string {
1512	switch fn := c.Value.(type) {
1513	case *Builtin:
1514		return "built-in function call"
1515	case *MakeClosure:
1516		return "static function closure call"
1517	case *Function:
1518		if fn.Signature.Recv() != nil {
1519			return "static method call"
1520		}
1521		return "static function call"
1522	}
1523	if c.IsInvoke() {
1524		return "dynamic method call" // ("invoke" mode)
1525	}
1526	return "dynamic function call"
1527}
1528
1529// The CallInstruction interface, implemented by *Go, *Defer and *Call,
1530// exposes the common parts of function-calling instructions,
1531// yet provides a way back to the Value defined by *Call alone.
1532//
1533type CallInstruction interface {
1534	Instruction
1535	Common() *CallCommon // returns the common parts of the call
1536	Value() *Call
1537}
1538
1539func (s *Call) Common() *CallCommon  { return &s.Call }
1540func (s *Defer) Common() *CallCommon { return &s.Call }
1541func (s *Go) Common() *CallCommon    { return &s.Call }
1542
1543func (s *Call) Value() *Call  { return s }
1544func (s *Defer) Value() *Call { return nil }
1545func (s *Go) Value() *Call    { return nil }
1546
1547func (v *Builtin) Type() types.Type        { return v.sig }
1548func (v *Builtin) Name() string            { return v.name }
1549func (*Builtin) Referrers() *[]Instruction { return nil }
1550func (v *Builtin) Pos() token.Pos          { return token.NoPos }
1551func (v *Builtin) Object() types.Object    { return types.Universe.Lookup(v.name) }
1552func (v *Builtin) Parent() *Function       { return nil }
1553
1554func (v *FreeVar) Type() types.Type          { return v.typ }
1555func (v *FreeVar) Name() string              { return v.name }
1556func (v *FreeVar) Referrers() *[]Instruction { return &v.referrers }
1557func (v *FreeVar) Parent() *Function         { return v.parent }
1558
1559func (v *Global) Type() types.Type                     { return v.typ }
1560func (v *Global) Name() string                         { return v.name }
1561func (v *Global) Parent() *Function                    { return nil }
1562func (v *Global) Referrers() *[]Instruction            { return nil }
1563func (v *Global) Token() token.Token                   { return token.VAR }
1564func (v *Global) Object() types.Object                 { return v.object }
1565func (v *Global) String() string                       { return v.RelString(nil) }
1566func (v *Global) Package() *Package                    { return v.Pkg }
1567func (v *Global) RelString(from *types.Package) string { return relString(v, from) }
1568
1569func (v *Function) Name() string         { return v.name }
1570func (v *Function) Type() types.Type     { return v.Signature }
1571func (v *Function) Token() token.Token   { return token.FUNC }
1572func (v *Function) Object() types.Object { return v.object }
1573func (v *Function) String() string       { return v.RelString(nil) }
1574func (v *Function) Package() *Package    { return v.Pkg }
1575func (v *Function) Parent() *Function    { return v.parent }
1576func (v *Function) Referrers() *[]Instruction {
1577	if v.parent != nil {
1578		return &v.referrers
1579	}
1580	return nil
1581}
1582
1583func (v *Parameter) Object() types.Object { return v.object }
1584
1585func (v *Alloc) Type() types.Type          { return v.typ }
1586func (v *Alloc) Referrers() *[]Instruction { return &v.referrers }
1587
1588func (v *register) Type() types.Type          { return v.typ }
1589func (v *register) setType(typ types.Type)    { v.typ = typ }
1590func (v *register) Name() string              { return fmt.Sprintf("t%d", v.id) }
1591func (v *register) Referrers() *[]Instruction { return &v.referrers }
1592
1593func (v *anInstruction) Parent() *Function          { return v.block.parent }
1594func (v *anInstruction) Block() *BasicBlock         { return v.block }
1595func (v *anInstruction) setBlock(block *BasicBlock) { v.block = block }
1596func (v *anInstruction) Referrers() *[]Instruction  { return nil }
1597
1598func (t *Type) Name() string                         { return t.object.Name() }
1599func (t *Type) Pos() token.Pos                       { return t.object.Pos() }
1600func (t *Type) Type() types.Type                     { return t.object.Type() }
1601func (t *Type) Token() token.Token                   { return token.TYPE }
1602func (t *Type) Object() types.Object                 { return t.object }
1603func (t *Type) String() string                       { return t.RelString(nil) }
1604func (t *Type) Package() *Package                    { return t.pkg }
1605func (t *Type) RelString(from *types.Package) string { return relString(t, from) }
1606
1607func (c *NamedConst) Name() string                         { return c.object.Name() }
1608func (c *NamedConst) Pos() token.Pos                       { return c.object.Pos() }
1609func (c *NamedConst) String() string                       { return c.RelString(nil) }
1610func (c *NamedConst) Type() types.Type                     { return c.object.Type() }
1611func (c *NamedConst) Token() token.Token                   { return token.CONST }
1612func (c *NamedConst) Object() types.Object                 { return c.object }
1613func (c *NamedConst) Package() *Package                    { return c.pkg }
1614func (c *NamedConst) RelString(from *types.Package) string { return relString(c, from) }
1615
1616// Func returns the package-level function of the specified name,
1617// or nil if not found.
1618//
1619func (p *Package) Func(name string) (f *Function) {
1620	f, _ = p.Members[name].(*Function)
1621	return
1622}
1623
1624// Var returns the package-level variable of the specified name,
1625// or nil if not found.
1626//
1627func (p *Package) Var(name string) (g *Global) {
1628	g, _ = p.Members[name].(*Global)
1629	return
1630}
1631
1632// Const returns the package-level constant of the specified name,
1633// or nil if not found.
1634//
1635func (p *Package) Const(name string) (c *NamedConst) {
1636	c, _ = p.Members[name].(*NamedConst)
1637	return
1638}
1639
1640// Type returns the package-level type of the specified name,
1641// or nil if not found.
1642//
1643func (p *Package) Type(name string) (t *Type) {
1644	t, _ = p.Members[name].(*Type)
1645	return
1646}
1647
1648func (s *DebugRef) Pos() token.Pos { return s.Expr.Pos() }
1649
1650// Operands.
1651
1652func (v *Alloc) Operands(rands []*Value) []*Value {
1653	return rands
1654}
1655
1656func (v *BinOp) Operands(rands []*Value) []*Value {
1657	return append(rands, &v.X, &v.Y)
1658}
1659
1660func (c *CallCommon) Operands(rands []*Value) []*Value {
1661	rands = append(rands, &c.Value)
1662	for i := range c.Args {
1663		rands = append(rands, &c.Args[i])
1664	}
1665	return rands
1666}
1667
1668func (s *Go) Operands(rands []*Value) []*Value {
1669	return s.Call.Operands(rands)
1670}
1671
1672func (s *Call) Operands(rands []*Value) []*Value {
1673	return s.Call.Operands(rands)
1674}
1675
1676func (s *Defer) Operands(rands []*Value) []*Value {
1677	return s.Call.Operands(rands)
1678}
1679
1680func (v *ChangeInterface) Operands(rands []*Value) []*Value {
1681	return append(rands, &v.X)
1682}
1683
1684func (v *ChangeType) Operands(rands []*Value) []*Value {
1685	return append(rands, &v.X)
1686}
1687
1688func (v *Convert) Operands(rands []*Value) []*Value {
1689	return append(rands, &v.X)
1690}
1691
1692func (s *DebugRef) Operands(rands []*Value) []*Value {
1693	return append(rands, &s.X)
1694}
1695
1696func (v *Extract) Operands(rands []*Value) []*Value {
1697	return append(rands, &v.Tuple)
1698}
1699
1700func (v *Field) Operands(rands []*Value) []*Value {
1701	return append(rands, &v.X)
1702}
1703
1704func (v *FieldAddr) Operands(rands []*Value) []*Value {
1705	return append(rands, &v.X)
1706}
1707
1708func (s *If) Operands(rands []*Value) []*Value {
1709	return append(rands, &s.Cond)
1710}
1711
1712func (s *ConstantSwitch) Operands(rands []*Value) []*Value {
1713	rands = append(rands, &s.Tag)
1714	for i := range s.Conds {
1715		rands = append(rands, &s.Conds[i])
1716	}
1717	return rands
1718}
1719
1720func (s *TypeSwitch) Operands(rands []*Value) []*Value {
1721	rands = append(rands, &s.Tag)
1722	return rands
1723}
1724
1725func (v *Index) Operands(rands []*Value) []*Value {
1726	return append(rands, &v.X, &v.Index)
1727}
1728
1729func (v *IndexAddr) Operands(rands []*Value) []*Value {
1730	return append(rands, &v.X, &v.Index)
1731}
1732
1733func (*Jump) Operands(rands []*Value) []*Value {
1734	return rands
1735}
1736
1737func (*Unreachable) Operands(rands []*Value) []*Value {
1738	return rands
1739}
1740
1741func (v *MapLookup) Operands(rands []*Value) []*Value {
1742	return append(rands, &v.X, &v.Index)
1743}
1744
1745func (v *StringLookup) Operands(rands []*Value) []*Value {
1746	return append(rands, &v.X, &v.Index)
1747}
1748
1749func (v *MakeChan) Operands(rands []*Value) []*Value {
1750	return append(rands, &v.Size)
1751}
1752
1753func (v *MakeClosure) Operands(rands []*Value) []*Value {
1754	rands = append(rands, &v.Fn)
1755	for i := range v.Bindings {
1756		rands = append(rands, &v.Bindings[i])
1757	}
1758	return rands
1759}
1760
1761func (v *MakeInterface) Operands(rands []*Value) []*Value {
1762	return append(rands, &v.X)
1763}
1764
1765func (v *MakeMap) Operands(rands []*Value) []*Value {
1766	return append(rands, &v.Reserve)
1767}
1768
1769func (v *MakeSlice) Operands(rands []*Value) []*Value {
1770	return append(rands, &v.Len, &v.Cap)
1771}
1772
1773func (v *MapUpdate) Operands(rands []*Value) []*Value {
1774	return append(rands, &v.Map, &v.Key, &v.Value)
1775}
1776
1777func (v *Next) Operands(rands []*Value) []*Value {
1778	return append(rands, &v.Iter)
1779}
1780
1781func (s *Panic) Operands(rands []*Value) []*Value {
1782	return append(rands, &s.X)
1783}
1784
1785func (v *Sigma) Operands(rands []*Value) []*Value {
1786	return append(rands, &v.X)
1787}
1788
1789func (v *Phi) Operands(rands []*Value) []*Value {
1790	for i := range v.Edges {
1791		rands = append(rands, &v.Edges[i])
1792	}
1793	return rands
1794}
1795
1796func (v *Range) Operands(rands []*Value) []*Value {
1797	return append(rands, &v.X)
1798}
1799
1800func (s *Return) Operands(rands []*Value) []*Value {
1801	for i := range s.Results {
1802		rands = append(rands, &s.Results[i])
1803	}
1804	return rands
1805}
1806
1807func (*RunDefers) Operands(rands []*Value) []*Value {
1808	return rands
1809}
1810
1811func (v *Select) Operands(rands []*Value) []*Value {
1812	for i := range v.States {
1813		rands = append(rands, &v.States[i].Chan, &v.States[i].Send)
1814	}
1815	return rands
1816}
1817
1818func (s *Send) Operands(rands []*Value) []*Value {
1819	return append(rands, &s.Chan, &s.X)
1820}
1821
1822func (recv *Recv) Operands(rands []*Value) []*Value {
1823	return append(rands, &recv.Chan)
1824}
1825
1826func (v *Slice) Operands(rands []*Value) []*Value {
1827	return append(rands, &v.X, &v.Low, &v.High, &v.Max)
1828}
1829
1830func (s *Store) Operands(rands []*Value) []*Value {
1831	return append(rands, &s.Addr, &s.Val)
1832}
1833
1834func (s *BlankStore) Operands(rands []*Value) []*Value {
1835	return append(rands, &s.Val)
1836}
1837
1838func (v *TypeAssert) Operands(rands []*Value) []*Value {
1839	return append(rands, &v.X)
1840}
1841
1842func (v *UnOp) Operands(rands []*Value) []*Value {
1843	return append(rands, &v.X)
1844}
1845
1846func (v *Load) Operands(rands []*Value) []*Value {
1847	return append(rands, &v.X)
1848}
1849
1850// Non-Instruction Values:
1851func (v *Builtin) Operands(rands []*Value) []*Value   { return rands }
1852func (v *FreeVar) Operands(rands []*Value) []*Value   { return rands }
1853func (v *Const) Operands(rands []*Value) []*Value     { return rands }
1854func (v *Function) Operands(rands []*Value) []*Value  { return rands }
1855func (v *Global) Operands(rands []*Value) []*Value    { return rands }
1856func (v *Parameter) Operands(rands []*Value) []*Value { return rands }
1857