1 /*
2  * Copyright 2021 NXP
3  * SPDX-License-Identifier: BSD-3-Clause
4  *
5  */
6 
7 #include <errno.h>
8 #include <stdint.h>
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <string.h>
12 
13 #include <common/debug.h>
14 #include "csr.h"
15 #include <ddr.h>
16 #include "ddr4fw.h"
17 #include <drivers/delay_timer.h>
18 #ifdef NXP_WARM_BOOT
19 #include <fspi_api.h>
20 #endif
21 #include "input.h"
22 #include <lib/mmio.h>
23 #include <lib/utils.h>
24 #include <lib/xlat_tables/xlat_tables_v2.h>
25 #ifdef DDR_PHY_DEBUG
26 #include "messages.h"
27 #endif
28 #ifdef NXP_WARM_BOOT
29 #include "phy.h"
30 #endif
31 #include "pie.h"
32 
33 #define TIMEOUTDEFAULT 500
34 #define MAP_PHY_ADDR(pstate, n, instance, offset, c) \
35 		((((pstate * n) + instance + c) << 12) + offset)
36 
map_phy_addr_space(uint32_t addr)37 static uint32_t map_phy_addr_space(uint32_t addr)
38 {
39 	/* 23 bit addressing */
40 	uint32_t pstate =     (addr & U(0x700000)) >> 20U; /* bit 22:20 */
41 	uint32_t block_type = (addr & U(0x0f0000)) >> 16U; /* bit 19:16 */
42 	uint32_t instance =   (addr & U(0x00f000)) >> 12U; /* bit 15:12 */
43 	uint32_t offset =     (addr & U(0x000fff));        /* bit 11:0 */
44 
45 	switch (block_type) {
46 	case 0x0: /* 0x0 : ANIB */
47 		return MAP_PHY_ADDR(pstate, 12, instance, offset, 0);
48 	case 0x1: /* 0x1 : DBYTE */
49 		return MAP_PHY_ADDR(pstate, 10, instance, offset, 0x30);
50 	case 0x2: /* 0x2 : MASTER */
51 		return MAP_PHY_ADDR(pstate, 1, 0, offset, 0x58);
52 	case 0x4: /* 0x4 : ACSM */
53 		return MAP_PHY_ADDR(pstate, 1, 0, offset, 0x5c);
54 	case 0x5: /* 0x5 : μCTL Memory */
55 		return MAP_PHY_ADDR(pstate, 0, instance, offset, 0x60);
56 	case 0x7: /* 0x7 : PPGC */
57 		return MAP_PHY_ADDR(pstate, 0, 0, offset, 0x68);
58 	case 0x9: /* 0x9 : INITENG */
59 		return MAP_PHY_ADDR(pstate, 1, 0, offset, 0x69);
60 	case 0xc: /* 0xC : DRTUB */
61 		return MAP_PHY_ADDR(pstate, 0, 0, offset, 0x6d);
62 	case 0xd: /* 0xD : APB Only */
63 		return MAP_PHY_ADDR(pstate, 0, 0, offset, 0x6e);
64 	default:
65 		printf("ERR: Invalid block_type = 0x%x\n", block_type);
66 		return 0;
67 	}
68 }
69 
phy_io_addr(void * phy,uint32_t addr)70 static inline uint16_t *phy_io_addr(void *phy, uint32_t addr)
71 {
72 	return phy + (map_phy_addr_space(addr) << 2);
73 }
74 
phy_io_write16(uint16_t * phy,uint32_t addr,uint16_t data)75 static inline void phy_io_write16(uint16_t *phy, uint32_t addr, uint16_t data)
76 {
77 	mmio_write_16((uintptr_t)phy_io_addr(phy, addr), data);
78 #ifdef DEBUG_PHY_IO
79 	printf("0x%06x,0x%x\n", addr, data);
80 #endif
81 }
82 
phy_io_read16(uint16_t * phy,uint32_t addr)83 static inline uint16_t phy_io_read16(uint16_t *phy, uint32_t addr)
84 {
85 	uint16_t reg = mmio_read_16((uintptr_t) phy_io_addr(phy, addr));
86 
87 #ifdef DEBUG_PHY_IO
88 	printf("R: 0x%06x,0x%x\n", addr, reg);
89 #endif
90 
91 	return reg;
92 }
93 
94 #ifdef NXP_APPLY_MAX_CDD
95 
96 #define CDD_VAL_READ_ADDR (0x054012)
97 #define CDD_DATA_LEN    (60)
98 
read_phy_reg(uint16_t * phy,uint32_t addr,uint16_t * buf,uint32_t len)99 static void read_phy_reg(uint16_t *phy, uint32_t addr,
100 		uint16_t *buf, uint32_t len)
101 {
102 	uint32_t i = 0U;
103 
104 	for (i = 0U; i < len/2; i++) {
105 		buf[i] = phy_io_read16(phy, (addr + i));
106 	}
107 }
108 
findrank(uint32_t cs_in_use)109 static uint32_t findrank(uint32_t cs_in_use)
110 {
111 	uint32_t val = 0U;
112 
113 	switch (cs_in_use) {
114 	case U(0xf):
115 		val = 4U;
116 		break;
117 	case U(0x3):
118 		val = 2U;
119 		break;
120 	case U(0x1):
121 		val = 1U;
122 		break;
123 	default:
124 		printf("Error - Invalid cs_in_use value\n");
125 	}
126 	return val;
127 }
128 
findmax(uint8_t * buf,uint32_t len)129 static uint8_t findmax(uint8_t *buf, uint32_t len)
130 {
131 	uint8_t max = 0U;
132 	uint32_t i = 0U;
133 
134 	for (i = 0U; i < len; i++) {
135 		if (buf[i] > max) {
136 			max = buf[i];
137 		}
138 	}
139 
140 	return max;
141 }
142 
get_cdd_val(uint16_t ** phy_ptr,uint32_t rank,uint32_t freq,uint32_t * tcfg0,uint32_t * tcfg4)143 static void get_cdd_val(uint16_t **phy_ptr, uint32_t rank, uint32_t freq,
144 		uint32_t *tcfg0, uint32_t *tcfg4)
145 {
146 	uint8_t cdd[CDD_DATA_LEN+4] = {0U};
147 	uint32_t i, val = 0U;
148 	uint16_t *phy;
149 	uint8_t buf[16] = {U(0x0)};
150 	uint8_t trr = 0U, tww = 0U, trw = 0U, twr = 0U;
151 	uint8_t rrmax = 0U, wwmax = 0U, rwmax = 0U, wrmax = 0U;
152 	uint8_t tmp = U(0x0);
153 	uint8_t *c =  NULL;
154 
155 	for (i = 0U; i < NUM_OF_DDRC; i++) {
156 
157 		phy = phy_ptr[i];
158 		if (phy == NULL) {
159 			continue;
160 		}
161 
162 		phy_io_write16(phy, t_apbonly |
163 				csr_micro_cont_mux_sel_addr, U(0x0));
164 
165 		read_phy_reg(phy, CDD_VAL_READ_ADDR,
166 				(uint16_t *)&cdd, CDD_DATA_LEN);
167 
168 		phy_io_write16(phy, t_apbonly |
169 				csr_micro_cont_mux_sel_addr, U(0x1));
170 
171 	/* CDD values and address
172 	 *
173 	 *   0x054012    0x24    cdd[0]  CDD[X][X]
174 	 *   0x054012    0x25    cdd[1]  RR[3][2]
175 	 *   0x054013    0x26    cdd[2]  RR[3][1]
176 	 *   0x054013    0x27    cdd[3]  RR[3][0]
177 	 *   0x054014    0x28    cdd[4]  RR[2][3]
178 	 *   0x054014    0x29    cdd[5]  RR[2][1]
179 	 *   0x054015    0x2a    cdd[6]  RR[2][0]
180 	 *   0x054015    0x2b    cdd[7]  RR[1][3]
181 	 *   0x054016    0x2c    cdd[8]  RR[1][2]
182 	 *   0x054016    0x2d    cdd[9]  RR[1][0]
183 	 *   0x054017    0x2e    cdd[10] RR[0][3]
184 	 *   0x054017    0x2f    cdd[11] RR[0][2]
185 	 *   0x054018    0x30    cdd[12] RR[0][1]
186 
187 	 *   0x054018    0x31    cdd[13] WW[3][2]
188 	 *   0x054019    0x32    cdd[14] WW[3][1]
189 	 *   0x054019    0x33    cdd[15] WW[3][0]
190 	 *   0x05401a    0x34    cdd[16] WW[2][3]
191 	 *   0x05401a    0x35    cdd[17] WW[2][1]
192 	 *   0x05401b    0x36    cdd[18] WW[2][0]
193 	 *   0x05401b    0x37    cdd[19] WW[1][3]
194 	 *   0x05401c    0x38    cdd[20] WW[1][2]
195 	 *   0x05401c    0x39    cdd[21] WW[1][0]
196 	 *   0x05401d    0x3a    cdd[22] WW[0][3]
197 	 *   0x05401d    0x3b    cdd[23] WW[0][2]
198 	 *   0x05401e    0x3c    cdd[24] WW[0][1]
199 
200 	 *   0x05401e    0x3d    cdd[25] RW[3][3]
201 	 *   0x05401f    0x3e    cdd[26] RW[3][2]
202 	 *   0x05401f    0x3f    cdd[27] RW[3][1]
203 	 *   0x054020    0x40    cdd[28] RW[3][0]
204 	 *   0x054020    0x41    cdd[29] RW[2][3]
205 	 *   0x054021    0x42    cdd[30] RW[2][2]
206 	 *   0x054021    0x43    cdd[31] RW[2][1]
207 	 *   0x054022    0x44    cdd[32] RW[2][0]
208 	 *   0x054022    0x45    cdd[33] RW[1][3]
209 	 *   0x054023    0x46    cdd[34] RW[1][2]
210 	 *   0x054023    0x47    cdd[35] RW[1][1]
211 	 *   0x054024    0x48    cdd[36] RW[1][0]
212 	 *   0x054024    0x49    cdd[37] RW[0][3]
213 	 *   0x054025    0x4a    cdd[38] RW[0][2]
214 	 *   0x054025    0x4b    cdd[39] RW[0][1]
215 	 *   0x054026    0x4c    cdd[40] RW[0][0]
216 
217 	 *   0x054026    0x4d    cdd[41] WR[3][3]
218 	 *   0x054027    0x4e    cdd[42] WR[3][2]
219 	 *   0x054027    0x4f    cdd[43] WR[3][1]
220 	 *   0x054028    0x50    cdd[44] WR[3][0]
221 	 *   0x054028    0x51    cdd[45] WR[2][3]
222 	 *   0x054029    0x52    cdd[46] WR[2][2]
223 	 *   0x054029    0x53    cdd[47] WR[2][1]
224 	 *   0x05402a    0x54    cdd[48] WR[2][0]
225 	 *   0x05402a    0x55    cdd[49] WR[1][3]
226 	 *   0x05402b    0x56    cdd[50] WR[1][2]
227 	 *   0x05402b    0x57    cdd[51] WR[1][1]
228 	 *   0x05402c    0x58    cdd[52] WR[1][0]
229 	 *   0x05402c    0x59    cdd[53] WR[0][3]
230 	 *   0x05402d    0x5a    cdd[54] WR[0][2]
231 	 *   0x05402d    0x5b    cdd[55] WR[0][1]
232 	 *   0x05402e    0x5c    cdd[56] WR[0][0]
233 	 *   0x05402e    0x5d    cdd[57] CDD[Y][Y]
234 	 */
235 
236 		switch (rank) {
237 		case 1U:
238 			tmp = rwmax;
239 			rwmax = cdd[40];
240 			if (tmp > rwmax) {
241 				rwmax = tmp;
242 			}
243 
244 			tmp = wrmax;
245 			wrmax = cdd[56];
246 			if (tmp > wrmax) {
247 				wrmax = tmp;
248 			}
249 
250 			break;
251 
252 		case 2U:
253 			buf[0] = cdd[12];
254 			buf[1] = cdd[9];
255 			tmp = rrmax;
256 			rrmax = findmax(buf, 2U);
257 			if (tmp > rrmax) {
258 				rrmax = tmp;
259 			}
260 
261 			buf[0] = cdd[24];
262 			buf[1] = cdd[21];
263 			tmp = wwmax;
264 			wwmax = findmax(buf, 2U);
265 			if (tmp > wwmax) {
266 				wwmax = tmp;
267 			}
268 
269 			buf[0] = cdd[40];
270 			buf[1] = cdd[39];
271 			buf[2] = cdd[36];
272 			buf[3] = cdd[35];
273 			tmp = rwmax;
274 			rwmax = findmax(buf, 4U);
275 			if (tmp > rwmax) {
276 				rwmax = tmp;
277 			}
278 
279 			buf[0] = cdd[56];
280 			buf[1] = cdd[55];
281 			buf[2] = cdd[52];
282 			buf[3] = cdd[51];
283 			tmp = wrmax;
284 			wrmax = findmax(buf, 4U);
285 			if (tmp > wrmax) {
286 				wrmax = tmp;
287 			}
288 
289 			break;
290 
291 		case 4U:
292 			tmp = rrmax;
293 			c = &cdd[1];
294 			rrmax = findmax(c, 12U);
295 			if (tmp > rrmax) {
296 				rrmax = tmp;
297 			}
298 
299 			tmp = wwmax;
300 			c = &cdd[13];
301 			wwmax = findmax(c, 12U);
302 			if (tmp > wwmax) {
303 				wwmax = tmp;
304 			}
305 
306 			tmp = rwmax;
307 			c = &cdd[25];
308 			rwmax = findmax(c, 16U);
309 			if (tmp > rwmax) {
310 				rwmax = tmp;
311 			}
312 
313 			tmp = wrmax;
314 			c = &cdd[41];
315 			wrmax = findmax(c, 16U);
316 			if (tmp > wrmax) {
317 				wrmax = tmp;
318 			}
319 
320 			break;
321 
322 		}
323 	}
324 
325 	rrmax += 3U;
326 	wwmax += 4U;
327 
328 	if (wwmax > 7U) {
329 		wwmax = 7U;
330 	}
331 
332 	if (rrmax > 7U) {
333 		rrmax = 7U;
334 	}
335 
336 	if (wrmax > U(0xf)) {
337 		wrmax = 0U;
338 	}
339 
340 	if (rwmax > U(0x7)) {
341 		rwmax = U(0x7);
342 	}
343 
344 	val = *tcfg0;
345 	tww = (val >> 24U) & U(0x3);
346 	trr = (val >> 26U) & U(0x3);
347 	twr = (val >> 28U) & U(0x3);
348 	trw = (val >> 30U) & U(0x3);
349 
350 	val = *tcfg4;
351 	tww = tww | (((val >> 8U) & U(0x1)) << 2U);
352 	trr = trr | (((val >> 10U) & U(0x1)) << 2U);
353 	twr = twr | (((val >> 12U) & U(0x1)) << 2U);
354 	trw = trw | (((val >> 14U) & U(0x3)) << 2U);
355 
356 	if (trr > rrmax) {
357 		rrmax = trr;
358 	}
359 
360 	if (tww > wwmax) {
361 		wwmax = tww;
362 	}
363 
364 	if (trw > rwmax) {
365 		rwmax = trw;
366 	}
367 
368 	if (twr > wrmax) {
369 		wrmax = twr;
370 	}
371 
372 	debug("CDD rrmax %x wwmax %x rwmax %x wrmax %x\n",
373 			rrmax, wwmax, rwmax, wrmax);
374 
375 	val = ((wwmax & U(0x3)) << 24U)
376 		| ((rrmax & U(0x3)) << 26U)
377 		| ((wrmax & U(0x3)) << 28U)
378 		| ((rwmax & U(0x3)) << 30U);
379 
380 	*tcfg0 = (*tcfg0 & U(0x00FFFFFF)) | (val);
381 
382 	val = (((wwmax >> 2U) & U(0x1)) << 8U)
383 		| (((rrmax >> 2U) & U(0x1)) << 10U)
384 		| (((wrmax >> 2U) & U(0x1)) << 12U)
385 		| (((rwmax >> 2U) & U(0x3)) << 14U);
386 
387 	*tcfg4 = (*tcfg4 & U(0xffff00ff)) | val;
388 }
389 #endif
390 
391 #ifdef NXP_WARM_BOOT
save_phy_training_values(uint16_t ** phy_ptr,uint32_t address_to_store,uint32_t num_of_phy,int train2d)392 int save_phy_training_values(uint16_t **phy_ptr, uint32_t address_to_store,
393 		uint32_t num_of_phy, int train2d)
394 {
395 	uint16_t *phy = NULL, value = 0x0;
396 	uint32_t size = 1U, num_of_regs = 1U, phy_store = 0U;
397 	int i = 0, j = 0, ret = -EINVAL;
398 
399 	ret = xspi_sector_erase(address_to_store, PHY_ERASE_SIZE);
400 	if (ret != 0) {
401 		return -EINVAL;
402 	}
403 
404 	for (j = 0; j < num_of_phy; j++) {
405 		/* Save training values of all PHYs */
406 		phy = phy_ptr[j];
407 		size = sizeof(training_1D_values);
408 		num_of_regs = ARRAY_SIZE(training_1D_values);
409 
410 		/* Enable access to the internal CSRs */
411 		phy_io_write16(phy, t_apbonly |
412 				csr_micro_cont_mux_sel_addr, 0x0);
413 		/* Enable clocks in case they were disabled. */
414 		phy_io_write16(phy, t_drtub |
415 				csr_ucclk_hclk_enables_addr, 0x3);
416 		if (train2d != 0) {
417 		/* Address to store training values is
418 		 * to be appended for next PHY
419 		 */
420 			phy_store = address_to_store + (j *
421 					(sizeof(training_1D_values) +
422 					 sizeof(training_2D_values)));
423 		} else {
424 			phy_store = address_to_store + (j *
425 					(sizeof(training_1D_values)));
426 		}
427 		debug("Saving 1D Training reg val at: %d\n", phy_store);
428 		for (i = 0; i < num_of_regs; i++) {
429 			value = phy_io_read16(phy, training_1D_values[i].addr);
430 #ifdef DEBUG_WARM_RESET
431 			debug("%d. Reg: %x, value: %x PHY: %p\n", i,
432 					training_1D_values[i].addr, value,
433 					phy_io_addr(phy,
434 						training_1D_values[i].addr));
435 #endif
436 			training_1D_values[i].data = value;
437 		}
438 		/* Storing 1D training values on flash */
439 		ret = xspi_write(phy_store, (void *)training_1D_values, size);
440 		if (train2d != 0) {
441 			phy_store = phy_store+size;
442 			size = sizeof(training_2D_values);
443 			num_of_regs = ARRAY_SIZE(training_2D_values);
444 			debug("Saving 2D Training reg val at:%d\n", phy_store);
445 			for (i = 0; i < num_of_regs; i++) {
446 				value = phy_io_read16(phy,
447 						training_2D_values[i].addr);
448 				training_2D_values[i].data = value;
449 #ifdef DEBUG_WARM_RESET
450 				debug("%d.2D addr:0x%x,val:0x%x,PHY:0x%p\n",
451 						i, training_2D_values[i].addr,
452 						value, phy_io_addr(phy,
453 						training_2D_values[i].addr));
454 #endif
455 			}
456 			/* Storing 2D training values on flash */
457 			ret = xspi_write(phy_store, training_2D_values,
458 					size);
459 		}
460 		/* Disable clocks in case they were disabled. */
461 		phy_io_write16(phy, t_drtub |
462 				csr_ucclk_hclk_enables_addr, 0x0);
463 		/* Disable access to the internal CSRs */
464 		phy_io_write16(phy, t_apbonly |
465 				csr_micro_cont_mux_sel_addr, 0x1);
466 	}
467 	if (ret != 0) {
468 		return -EINVAL;
469 	}
470 
471 	return 0;
472 }
473 
restore_phy_training_values(uint16_t ** phy_ptr,uint32_t address_to_restore,uint32_t num_of_phy,int train2d)474 int restore_phy_training_values(uint16_t **phy_ptr, uint32_t address_to_restore,
475 		uint32_t num_of_phy, int train2d)
476 {
477 	uint16_t *phy = NULL;
478 	uint32_t size = 1U, num_of_regs = 1U, phy_store = 0U;
479 	int i = 0, j = 0, ret = -EINVAL;
480 
481 	debug("Restoring Training register values\n");
482 	for (j = 0; j < num_of_phy; j++) {
483 		phy = phy_ptr[j];
484 		size = sizeof(training_1D_values);
485 		num_of_regs = ARRAY_SIZE(training_1D_values);
486 		if (train2d != 0) {
487 		/* The address to restore training values is
488 		 * to be appended for next PHY
489 		 */
490 			phy_store = address_to_restore + (j *
491 					(sizeof(training_1D_values) +
492 					 sizeof(training_2D_values)));
493 		} else {
494 			phy_store = address_to_restore + (j *
495 					(sizeof(training_1D_values)));
496 		}
497 		/* Enable access to the internal CSRs */
498 		phy_io_write16(phy, t_apbonly |
499 				csr_micro_cont_mux_sel_addr, 0x0);
500 		/* Enable clocks in case they were disabled. */
501 		phy_io_write16(phy, t_drtub |
502 				csr_ucclk_hclk_enables_addr, 0x3);
503 
504 		/* Reading 1D training values from flash*/
505 		ret = xspi_read(phy_store, (uint32_t *)training_1D_values,
506 				size);
507 		debug("Restoring 1D Training reg val at:%08x\n", phy_store);
508 		for (i = 0; i < num_of_regs; i++) {
509 			phy_io_write16(phy, training_1D_values[i].addr,
510 					training_1D_values[i].data);
511 #ifdef DEBUG_WARM_RESET
512 			debug("%d. Reg: %x, value: %x PHY: %p\n", i,
513 					training_1D_values[i].addr,
514 					training_1D_values[i].data,
515 					phy_io_addr(phy,
516 						training_1D_values[i].addr));
517 #endif
518 		}
519 		if (train2d != 0) {
520 			phy_store = phy_store + size;
521 			size = sizeof(training_2D_values);
522 			num_of_regs = ARRAY_SIZE(training_2D_values);
523 			/* Reading 2D training values from flash */
524 			ret = xspi_read(phy_store,
525 					(uint32_t *)training_2D_values,	size);
526 			debug("Restoring 2D Training reg val at:%08x\n",
527 					phy_store);
528 			for (i = 0; i < num_of_regs; i++) {
529 				phy_io_write16(phy, training_2D_values[i].addr,
530 						training_2D_values[i].data);
531 #ifdef DEBUG_WARM_RESET
532 				debug("%d. Reg: %x, value: %x PHY: %p\n", i,
533 						training_2D_values[i].addr,
534 						training_2D_values[i].data,
535 						phy_io_addr(phy,
536 						training_1D_values[i].addr));
537 #endif
538 			}
539 		}
540 		/* Disable clocks in case they were disabled. */
541 		phy_io_write16(phy, t_drtub |
542 				csr_ucclk_hclk_enables_addr, 0x0);
543 		/* Disable access to the internal CSRs */
544 		phy_io_write16(phy, t_apbonly |
545 				csr_micro_cont_mux_sel_addr, 0x1);
546 	}
547 	if (ret != 0) {
548 		return -EINVAL;
549 	}
550 	return 0;
551 }
552 #endif
553 
load_pieimage(uint16_t * phy,enum dimm_types dimm_type)554 static void load_pieimage(uint16_t *phy,
555 			  enum dimm_types dimm_type)
556 {
557 	int i;
558 	int size;
559 	const struct pie *image = NULL;
560 
561 	switch (dimm_type) {
562 	case UDIMM:
563 	case SODIMM:
564 	case NODIMM:
565 		image = pie_udimm;
566 		size = ARRAY_SIZE(pie_udimm);
567 		break;
568 	case RDIMM:
569 		image = pie_rdimm;
570 		size = ARRAY_SIZE(pie_rdimm);
571 		break;
572 	case LRDIMM:
573 		image = pie_lrdimm;
574 		size = ARRAY_SIZE(pie_lrdimm);
575 		break;
576 	default:
577 		printf("Unsupported DIMM type\n");
578 		break;
579 	}
580 
581 	if (image != NULL) {
582 		for (i = 0; i < size; i++)
583 			phy_io_write16(phy, image[i].addr, image[i].data);
584 	}
585 }
586 
prog_acsm_playback(uint16_t * phy,const struct input * input,const void * msg)587 static void prog_acsm_playback(uint16_t *phy,
588 			       const struct input *input, const void *msg)
589 {
590 	int vec;
591 	const struct ddr4r1d *msg_blk;
592 	uint16_t acsmplayback[2][3];
593 	uint32_t f0rc0a;
594 	uint32_t f0rc3x;
595 	uint32_t f0rc5x;
596 
597 	if (input->basic.dimm_type != RDIMM) {
598 		return;
599 	}
600 
601 	msg_blk = msg;
602 	f0rc0a = (msg_blk->f0rc0a_d0 & U(0xf)) | U(0xa0);
603 	f0rc3x = (msg_blk->f0rc3x_d0 & U(0xff)) | U(0x300);
604 	f0rc5x = (input->adv.phy_gen2_umctl_f0rc5x & U(0xff)) | U(0x500);
605 
606 	acsmplayback[0][0] = U(0x3ff) & f0rc0a;
607 	acsmplayback[1][0] = (U(0x1c00) & f0rc0a) >> 10U;
608 	acsmplayback[0][1] = U(0x3ff) & f0rc3x;
609 	acsmplayback[1][1] = (U(0x1c00) & f0rc3x) >> 10U;
610 	acsmplayback[0][2] = U(0x3ff) & f0rc5x;
611 	acsmplayback[1][2] = (U(0x1c00) & f0rc5x) >> 10U;
612 	for (vec = 0; vec < 3; vec++) {
613 		phy_io_write16(phy, t_acsm | (csr_acsm_playback0x0_addr +
614 			       (vec << 1)), acsmplayback[0][vec]);
615 		phy_io_write16(phy, t_acsm | (csr_acsm_playback1x0_addr +
616 			       (vec << 1)), acsmplayback[1][vec]);
617 	}
618 }
619 
prog_acsm_ctr(uint16_t * phy,const struct input * input)620 static void prog_acsm_ctr(uint16_t *phy,
621 			  const struct input *input)
622 {
623 	if (input->basic.dimm_type != RDIMM) {
624 		return;
625 	}
626 
627 	phy_io_write16(phy, t_acsm | csr_acsm_ctrl13_addr,
628 		       0xf << csr_acsm_cke_enb_lsb);
629 
630 	phy_io_write16(phy, t_acsm | csr_acsm_ctrl0_addr,
631 		       csr_acsm_par_mode_mask | csr_acsm_2t_mode_mask);
632 }
633 
prog_cal_rate_run(uint16_t * phy,const struct input * input)634 static void prog_cal_rate_run(uint16_t *phy,
635 			  const struct input *input)
636 {
637 	int cal_rate;
638 	int cal_interval;
639 	int cal_once;
640 	uint32_t addr;
641 
642 	cal_interval = input->adv.cal_interval;
643 	cal_once = input->adv.cal_once;
644 	cal_rate = 0x1 << csr_cal_run_lsb		|
645 			cal_once << csr_cal_once_lsb	|
646 			cal_interval << csr_cal_interval_lsb;
647 	addr = t_master | csr_cal_rate_addr;
648 	phy_io_write16(phy, addr, cal_rate);
649 }
650 
prog_seq0bdly0(uint16_t * phy,const struct input * input)651 static void prog_seq0bdly0(uint16_t *phy,
652 		    const struct input *input)
653 {
654 	int ps_count[4];
655 	int frq;
656 	uint32_t addr;
657 	int lower_freq_opt = 0;
658 
659 	__unused const soc_info_t *soc_info;
660 
661 	frq = input->basic.frequency >> 1;
662 	ps_count[0] = frq >> 3; /* 0.5 * frq / 4*/
663 	if (input->basic.frequency < 400) {
664 		lower_freq_opt = (input->basic.dimm_type == RDIMM) ? 7 : 3;
665 	} else if (input->basic.frequency < 533) {
666 		lower_freq_opt = (input->basic.dimm_type == RDIMM) ? 14 : 11;
667 	}
668 
669 	/* 1.0 * frq / 4 - lower_freq */
670 	ps_count[1] = (frq >> 2) - lower_freq_opt;
671 	ps_count[2] = (frq << 1) +  (frq >> 1); /* 10.0 * frq / 4 */
672 
673 #ifdef DDR_PLL_FIX
674 	soc_info = get_soc_info();
675 	if (soc_info->maj_ver == 1) {
676 		ps_count[0] = 0x520; /* seq0bdly0 */
677 		ps_count[1] = 0xa41; /* seq0bdly1 */
678 		ps_count[2] = 0x668a; /* seq0bdly2 */
679 	}
680 #endif
681 	if (frq > 266) {
682 		ps_count[3] = 44;
683 	} else if (frq > 200) {
684 		ps_count[3] = 33;
685 	} else {
686 		ps_count[3] = 16;
687 	}
688 
689 	addr = t_master | csr_seq0bdly0_addr;
690 	phy_io_write16(phy, addr, ps_count[0]);
691 
692 	debug("seq0bdly0 = 0x%x\n", phy_io_read16(phy, addr));
693 
694 	addr = t_master | csr_seq0bdly1_addr;
695 	phy_io_write16(phy, addr, ps_count[1]);
696 
697 	debug("seq0bdly1 = 0x%x\n", phy_io_read16(phy, addr));
698 
699 	addr = t_master | csr_seq0bdly2_addr;
700 	phy_io_write16(phy, addr, ps_count[2]);
701 
702 	debug("seq0bdly2 = 0x%x\n", phy_io_read16(phy, addr));
703 
704 	addr = t_master | csr_seq0bdly3_addr;
705 	phy_io_write16(phy, addr, ps_count[3]);
706 
707 	debug("seq0bdly3 = 0x%x\n", phy_io_read16(phy, addr));
708 }
709 
710 /* Only RDIMM requires msg_blk */
i_load_pie(uint16_t ** phy_ptr,const struct input * input,const void * msg)711 static void i_load_pie(uint16_t **phy_ptr,
712 		       const struct input *input,
713 		       const void *msg)
714 {
715 	int i;
716 	uint16_t *phy;
717 
718 	for (i = 0; i < NUM_OF_DDRC; i++) {
719 		phy = phy_ptr[i];
720 		if (phy == NULL) {
721 			continue;
722 		}
723 
724 		phy_io_write16(phy,
725 			       t_apbonly | csr_micro_cont_mux_sel_addr,
726 			       0U);
727 
728 		load_pieimage(phy, input->basic.dimm_type);
729 
730 		prog_seq0bdly0(phy, input);
731 		phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag0_addr,
732 			       U(0x0000));
733 		phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag1_addr,
734 			       U(0x0173));
735 		phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag2_addr,
736 			       U(0x0060));
737 		phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag3_addr,
738 			       U(0x6110));
739 		phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag4_addr,
740 			       U(0x2152));
741 		phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag5_addr,
742 			       U(0xdfbd));
743 		phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag6_addr,
744 			       input->basic.dimm_type == RDIMM &&
745 			       input->adv.phy_gen2_umctl_opt == 1U ?
746 			       U(0x6000) : U(0xffff));
747 		phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag7_addr,
748 			       U(0x6152));
749 		prog_acsm_playback(phy, input, msg);		/* rdimm */
750 		prog_acsm_ctr(phy, input);			/* rdimm */
751 
752 		phy_io_write16(phy, t_master | csr_cal_zap_addr, U(0x1));
753 		prog_cal_rate_run(phy, input);
754 
755 		phy_io_write16(phy, t_drtub | csr_ucclk_hclk_enables_addr,
756 			       input->basic.dimm_type == RDIMM ? U(0x2) : 0U);
757 
758 		phy_io_write16(phy, t_apbonly | csr_micro_cont_mux_sel_addr, 1U);
759 	}
760 }
761 
phy_gen2_init_input(struct input * input)762 static void phy_gen2_init_input(struct input *input)
763 {
764 	int i;
765 
766 	input->adv.dram_byte_swap		= 0;
767 	input->adv.ext_cal_res_val		= 0;
768 	input->adv.tx_slew_rise_dq		= 0xf;
769 	input->adv.tx_slew_fall_dq		= 0xf;
770 	input->adv.tx_slew_rise_ac		= 0xf;
771 	input->adv.tx_slew_fall_ac		= 0xf;
772 	input->adv.mem_alert_en			= 0;
773 	input->adv.mem_alert_puimp		= 5;
774 	input->adv.mem_alert_vref_level		= 0x29;
775 	input->adv.mem_alert_sync_bypass	= 0;
776 	input->adv.cal_interval			= 0x9;
777 	input->adv.cal_once			= 0;
778 	input->adv.dis_dyn_adr_tri		= 0;
779 	input->adv.is2ttiming			= 0;
780 	input->adv.d4rx_preamble_length		= 0;
781 	input->adv.d4tx_preamble_length		= 0;
782 
783 	for (i = 0; i < 7; i++) {
784 		debug("mr[%d] = 0x%x\n", i, input->mr[i]);
785 	}
786 
787 	debug("input->cs_d0 = 0x%x\n", input->cs_d0);
788 	debug("input->cs_d1 = 0x%x\n", input->cs_d1);
789 	debug("input->mirror = 0x%x\n", input->mirror);
790 	debug("PHY ODT impedance = %d ohm\n", input->adv.odtimpedance);
791 	debug("PHY DQ driver impedance = %d ohm\n", input->adv.tx_impedance);
792 	debug("PHY Addr driver impedance = %d ohm\n", input->adv.atx_impedance);
793 
794 	for (i = 0; i < 4; i++) {
795 		debug("odt[%d] = 0x%x\n", i, input->odt[i]);
796 	}
797 
798 	if (input->basic.dimm_type == RDIMM) {
799 		for (i = 0; i < 16; i++) {
800 			debug("input->rcw[%d] = 0x%x\n", i, input->rcw[i]);
801 		}
802 		debug("input->rcw3x = 0x%x\n", input->rcw3x);
803 	}
804 }
805 
806 /*
807  * All protocols share the same base structure of message block.
808  * RDIMM and LRDIMM have more entries defined than UDIMM.
809  * Create message blocks for 1D and 2D training.
810  * Update len with message block size.
811  */
phy_gen2_msg_init(void * msg_1d,void * msg_2d,const struct input * input)812 static int phy_gen2_msg_init(void *msg_1d,
813 			     void *msg_2d,
814 			     const struct input *input)
815 {
816 	struct ddr4u1d *msg_blk = msg_1d;
817 	struct ddr4u2d *msg_blk_2d = msg_2d;
818 	struct ddr4r1d *msg_blk_r;
819 	struct ddr4lr1d *msg_blk_lr;
820 
821 	switch (input->basic.dimm_type) {
822 	case UDIMM:
823 	case SODIMM:
824 	case NODIMM:
825 		msg_blk->dram_type	= U(0x2);
826 		break;
827 	case RDIMM:
828 		msg_blk->dram_type	= U(0x4);
829 		break;
830 	case LRDIMM:
831 		msg_blk->dram_type	= U(0x5);
832 		break;
833 	default:
834 		ERROR("Unsupported DIMM type\n");
835 		return -EINVAL;
836 	}
837 	msg_blk->pstate			= 0U;
838 
839 	/*Enable quickRd2D, a substage of read deskew, to 1D training.*/
840 	msg_blk->reserved00             = U(0x20);
841 
842 	/*Enable High-Effort WrDQ1D.*/
843 	msg_blk->reserved00             |= U(0x40);
844 
845 	/* Enable 1D extra effort training.*/
846 	msg_blk->reserved1c[3]		= U(0x3);
847 
848 	if (input->basic.dimm_type == LRDIMM) {
849 		msg_blk->sequence_ctrl	= U(0x3f1f);
850 	} else {
851 		msg_blk->sequence_ctrl	= U(0x031f);
852 	}
853 	msg_blk->phy_config_override	= 0U;
854 #ifdef DDR_PHY_DEBUG
855 	msg_blk->hdt_ctrl		= U(0x5);
856 #else
857 	msg_blk->hdt_ctrl		= U(0xc9);
858 #endif
859 	msg_blk->msg_misc		= U(0x0);
860 	msg_blk->dfimrlmargin		= U(0x1);
861 	msg_blk->phy_vref		= input->vref ? input->vref : U(0x61);
862 	msg_blk->cs_present		= input->cs_d0 | input->cs_d1;
863 	msg_blk->cs_present_d0		= input->cs_d0;
864 	msg_blk->cs_present_d1		= input->cs_d1;
865 	if (input->mirror != 0) {
866 		msg_blk->addr_mirror	= U(0x0a);	/* odd CS are mirrored */
867 	}
868 	msg_blk->share2dvref_result	= 1U;
869 
870 	msg_blk->acsm_odt_ctrl0		= input->odt[0];
871 	msg_blk->acsm_odt_ctrl1		= input->odt[1];
872 	msg_blk->acsm_odt_ctrl2		= input->odt[2];
873 	msg_blk->acsm_odt_ctrl3		= input->odt[3];
874 	msg_blk->enabled_dqs = (input->basic.num_active_dbyte_dfi0 +
875 				input->basic.num_active_dbyte_dfi1) * 8;
876 	msg_blk->x16present		= input->basic.dram_data_width == 0x10 ?
877 					  msg_blk->cs_present : 0;
878 	msg_blk->d4misc			= U(0x1);
879 	msg_blk->cs_setup_gddec		= U(0x1);
880 	msg_blk->rtt_nom_wr_park0	= 0U;
881 	msg_blk->rtt_nom_wr_park1	= 0U;
882 	msg_blk->rtt_nom_wr_park2	= 0U;
883 	msg_blk->rtt_nom_wr_park3	= 0U;
884 	msg_blk->rtt_nom_wr_park4	= 0U;
885 	msg_blk->rtt_nom_wr_park5	= 0U;
886 	msg_blk->rtt_nom_wr_park6	= 0U;
887 	msg_blk->rtt_nom_wr_park7	= 0U;
888 	msg_blk->mr0			= input->mr[0];
889 	msg_blk->mr1			= input->mr[1];
890 	msg_blk->mr2			= input->mr[2];
891 	msg_blk->mr3			= input->mr[3];
892 	msg_blk->mr4			= input->mr[4];
893 	msg_blk->mr5			= input->mr[5];
894 	msg_blk->mr6			= input->mr[6];
895 	if ((msg_blk->mr4 & U(0x1c0)) != 0U) {
896 		ERROR("Setting DRAM CAL mode is not supported\n");
897 	}
898 
899 	msg_blk->alt_cas_l		= 0U;
900 	msg_blk->alt_wcas_l		= 0U;
901 
902 	msg_blk->dramfreq		= input->basic.frequency * 2U;
903 	msg_blk->pll_bypass_en		= input->basic.pll_bypass;
904 	msg_blk->dfi_freq_ratio		= input->basic.dfi_freq_ratio == 0U ? 1U :
905 					  input->basic.dfi_freq_ratio == 1U ? 2U :
906 					  4U;
907 	msg_blk->bpznres_val		= input->adv.ext_cal_res_val;
908 	msg_blk->disabled_dbyte		= 0U;
909 
910 	debug("msg_blk->dram_type = 0x%x\n", msg_blk->dram_type);
911 	debug("msg_blk->sequence_ctrl = 0x%x\n", msg_blk->sequence_ctrl);
912 	debug("msg_blk->phy_cfg = 0x%x\n", msg_blk->phy_cfg);
913 	debug("msg_blk->x16present = 0x%x\n", msg_blk->x16present);
914 	debug("msg_blk->dramfreq = 0x%x\n", msg_blk->dramfreq);
915 	debug("msg_blk->pll_bypass_en = 0x%x\n", msg_blk->pll_bypass_en);
916 	debug("msg_blk->dfi_freq_ratio = 0x%x\n", msg_blk->dfi_freq_ratio);
917 	debug("msg_blk->phy_odt_impedance = 0x%x\n",
918 						msg_blk->phy_odt_impedance);
919 	debug("msg_blk->phy_drv_impedance = 0x%x\n",
920 						msg_blk->phy_drv_impedance);
921 	debug("msg_blk->bpznres_val = 0x%x\n", msg_blk->bpznres_val);
922 	debug("msg_blk->enabled_dqs = 0x%x\n", msg_blk->enabled_dqs);
923 	debug("msg_blk->acsm_odt_ctrl0 = 0x%x\n", msg_blk->acsm_odt_ctrl0);
924 	debug("msg_blk->acsm_odt_ctrl1 = 0x%x\n", msg_blk->acsm_odt_ctrl1);
925 	debug("msg_blk->acsm_odt_ctrl2 = 0x%x\n", msg_blk->acsm_odt_ctrl2);
926 	debug("msg_blk->acsm_odt_ctrl3 = 0x%x\n", msg_blk->acsm_odt_ctrl3);
927 
928 	/* RDIMM only */
929 	if (input->basic.dimm_type == RDIMM ||
930 	    input->basic.dimm_type == LRDIMM) {
931 		msg_blk_r = (struct ddr4r1d *)msg_blk;
932 		if (msg_blk_r->cs_present_d0 != 0U) {
933 			msg_blk_r->f0rc00_d0 = input->rcw[0];
934 			msg_blk_r->f0rc01_d0 = input->rcw[1];
935 			msg_blk_r->f0rc02_d0 = input->rcw[2];
936 			msg_blk_r->f0rc03_d0 = input->rcw[3];
937 			msg_blk_r->f0rc04_d0 = input->rcw[4];
938 			msg_blk_r->f0rc05_d0 = input->rcw[5];
939 			msg_blk_r->f0rc06_d0 = input->rcw[6];
940 			msg_blk_r->f0rc07_d0 = input->rcw[7];
941 			msg_blk_r->f0rc08_d0 = input->rcw[8];
942 			msg_blk_r->f0rc09_d0 = input->rcw[9];
943 			msg_blk_r->f0rc0a_d0 = input->rcw[10];
944 			msg_blk_r->f0rc0b_d0 = input->rcw[11];
945 			msg_blk_r->f0rc0c_d0 = input->rcw[12];
946 			msg_blk_r->f0rc0d_d0 = input->rcw[13];
947 			msg_blk_r->f0rc0e_d0 = input->rcw[14];
948 			msg_blk_r->f0rc0f_d0 = input->rcw[15];
949 			msg_blk_r->f0rc3x_d0 = input->rcw3x;
950 		}
951 		if (msg_blk_r->cs_present_d1 != 0) {
952 			msg_blk_r->f0rc00_d1 = input->rcw[0];
953 			msg_blk_r->f0rc01_d1 = input->rcw[1];
954 			msg_blk_r->f0rc02_d1 = input->rcw[2];
955 			msg_blk_r->f0rc03_d1 = input->rcw[3];
956 			msg_blk_r->f0rc04_d1 = input->rcw[4];
957 			msg_blk_r->f0rc05_d1 = input->rcw[5];
958 			msg_blk_r->f0rc06_d1 = input->rcw[6];
959 			msg_blk_r->f0rc07_d1 = input->rcw[7];
960 			msg_blk_r->f0rc08_d1 = input->rcw[8];
961 			msg_blk_r->f0rc09_d1 = input->rcw[9];
962 			msg_blk_r->f0rc0a_d1 = input->rcw[10];
963 			msg_blk_r->f0rc0b_d1 = input->rcw[11];
964 			msg_blk_r->f0rc0c_d1 = input->rcw[12];
965 			msg_blk_r->f0rc0d_d1 = input->rcw[13];
966 			msg_blk_r->f0rc0e_d1 = input->rcw[14];
967 			msg_blk_r->f0rc0f_d1 = input->rcw[15];
968 			msg_blk_r->f0rc3x_d1 = input->rcw3x;
969 		}
970 		if (input->basic.dimm_type == LRDIMM) {
971 			msg_blk_lr = (struct ddr4lr1d *)msg_blk;
972 			msg_blk_lr->bc0a_d0 = msg_blk_lr->f0rc0a_d0;
973 			msg_blk_lr->bc0a_d1 = msg_blk_lr->f0rc0a_d1;
974 			msg_blk_lr->f0bc6x_d0 = msg_blk_lr->f0rc3x_d0;
975 			msg_blk_lr->f0bc6x_d1 = msg_blk_lr->f0rc3x_d1;
976 		}
977 	}
978 
979 	/* below is different for 1D and 2D message block */
980 	if (input->basic.train2d != 0) {
981 		memcpy(msg_blk_2d, msg_blk, sizeof(struct ddr4u1d));
982 		/*High-Effort WrDQ1D is applicable to 2D traning also*/
983 		msg_blk_2d->reserved00          |= U(0x40);
984 		msg_blk_2d->sequence_ctrl	= U(0x0061);
985 		msg_blk_2d->rx2d_train_opt	= 0U;
986 		msg_blk_2d->tx2d_train_opt	= 0U;
987 		msg_blk_2d->share2dvref_result	= 1U;
988 		msg_blk_2d->delay_weight2d	= U(0x20);
989 		msg_blk_2d->voltage_weight2d	= U(0x80);
990 		debug("rx2d_train_opt %d, tx2d_train_opt %d\n",
991 				msg_blk_2d->rx2d_train_opt,
992 				msg_blk_2d->tx2d_train_opt);
993 	}
994 
995 	msg_blk->phy_cfg = (((msg_blk->mr3 & U(0x8)) != 0U) ||
996 				((msg_blk_2d->mr3 & 0x8) != 0U)) ? 0U
997 				: input->adv.is2ttiming;
998 
999 	return 0;
1000 }
1001 
prog_tx_pre_drv_mode(uint16_t * phy,const struct input * input)1002 static void prog_tx_pre_drv_mode(uint16_t *phy,
1003 				 const struct input *input)
1004 {
1005 	int lane, byte, b_addr, c_addr, p_addr;
1006 	int tx_slew_rate, tx_pre_p, tx_pre_n;
1007 	int tx_pre_drv_mode = 0x2;
1008 	uint32_t addr;
1009 
1010 	/* Program TxPreDrvMode with 0x2 */
1011 	/* FIXME: TxPreDrvMode depends on DramType? */
1012 	tx_pre_p = input->adv.tx_slew_rise_dq;
1013 	tx_pre_n = input->adv.tx_slew_fall_dq;
1014 	tx_slew_rate = tx_pre_drv_mode << csr_tx_pre_drv_mode_lsb	|
1015 		     tx_pre_p << csr_tx_pre_p_lsb			|
1016 		     tx_pre_n << csr_tx_pre_n_lsb;
1017 	p_addr = 0;
1018 	for (byte = 0; byte < input->basic.num_dbyte; byte++) {
1019 		c_addr = byte << 12;
1020 		for (lane = 0; lane <= 1; lane++) {
1021 			b_addr = lane << 8;
1022 			addr = p_addr | t_dbyte | c_addr | b_addr |
1023 					csr_tx_slew_rate_addr;
1024 			phy_io_write16(phy, addr, tx_slew_rate);
1025 		}
1026 	}
1027 }
1028 
prog_atx_pre_drv_mode(uint16_t * phy,const struct input * input)1029 static void prog_atx_pre_drv_mode(uint16_t *phy,
1030 				  const struct input *input)
1031 {
1032 	int anib, c_addr;
1033 	int atx_slew_rate, atx_pre_p, atx_pre_n, atx_pre_drv_mode,
1034 		ck_anib_inst[2];
1035 	uint32_t addr;
1036 
1037 	atx_pre_n = input->adv.tx_slew_fall_ac;
1038 	atx_pre_p = input->adv.tx_slew_rise_ac;
1039 
1040 	if (input->basic.num_anib == 8) {
1041 		ck_anib_inst[0] = 1;
1042 		ck_anib_inst[1] = 1;
1043 	} else if (input->basic.num_anib == 10 || input->basic.num_anib == 12 ||
1044 	    input->basic.num_anib == 13) {
1045 		ck_anib_inst[0] = 4;
1046 		ck_anib_inst[1] = 5;
1047 	} else {
1048 		ERROR("Invalid number of aNIBs: %d\n", input->basic.num_anib);
1049 		return;
1050 	}
1051 
1052 	for (anib = 0; anib < input->basic.num_anib; anib++) {
1053 		c_addr = anib << 12;
1054 		if (anib == ck_anib_inst[0] || anib == ck_anib_inst[1]) {
1055 			atx_pre_drv_mode = 0;
1056 		} else {
1057 			atx_pre_drv_mode = 3;
1058 		}
1059 		atx_slew_rate = atx_pre_drv_mode << csr_atx_pre_drv_mode_lsb |
1060 				atx_pre_n << csr_atx_pre_n_lsb		     |
1061 				atx_pre_p << csr_atx_pre_p_lsb;
1062 		addr = t_anib | c_addr | csr_atx_slew_rate_addr;
1063 		phy_io_write16(phy, addr, atx_slew_rate);
1064 	}
1065 }
1066 
prog_enable_cs_multicast(uint16_t * phy,const struct input * input)1067 static void prog_enable_cs_multicast(uint16_t *phy,
1068 				     const struct input *input)
1069 {
1070 	uint32_t addr = t_master | csr_enable_cs_multicast_addr;
1071 
1072 	if (input->basic.dimm_type != RDIMM &&
1073 	    input->basic.dimm_type != LRDIMM) {
1074 		return;
1075 	}
1076 
1077 	phy_io_write16(phy, addr, input->adv.cast_cs_to_cid);
1078 }
1079 
prog_dfi_rd_data_cs_dest_map(uint16_t * phy,unsigned int ip_rev,const struct input * input,const struct ddr4lr1d * msg)1080 static void prog_dfi_rd_data_cs_dest_map(uint16_t *phy,
1081 					 unsigned int ip_rev,
1082 					 const struct input *input,
1083 					 const struct ddr4lr1d *msg)
1084 {
1085 	const struct ddr4lr1d *msg_blk;
1086 	uint16_t dfi_xxdestm0 = 0U;
1087 	uint16_t dfi_xxdestm1 = 0U;
1088 	uint16_t dfi_xxdestm2 = 0U;
1089 	uint16_t dfi_xxdestm3 = 0U;
1090 	uint16_t dfi_rd_data_cs_dest_map;
1091 	uint16_t dfi_wr_data_cs_dest_map;
1092 	__unused const soc_info_t *soc_info;
1093 
1094 #ifdef ERRATA_DDR_A011396
1095 	/* Only apply to DDRC 5.05.00 */
1096 	soc_info = get_soc_info(NXP_DCFG_ADDR);
1097 	if ((soc_info->maj_ver == 1U) && (ip_rev == U(0x50500))) {
1098 		phy_io_write16(phy,
1099 				t_master | csr_dfi_rd_data_cs_dest_map_addr,
1100 				0U);
1101 		return;
1102 	}
1103 #endif
1104 
1105 	msg_blk = msg;
1106 
1107 	switch (input->basic.dimm_type) {
1108 	case UDIMM:
1109 	case SODIMM:
1110 	case NODIMM:
1111 		if ((msg_blk->msg_misc & U(0x40)) != 0U) {
1112 			dfi_rd_data_cs_dest_map = U(0xa0);
1113 			dfi_wr_data_cs_dest_map = U(0xa0);
1114 
1115 			phy_io_write16(phy,
1116 				t_master | csr_dfi_rd_data_cs_dest_map_addr,
1117 				dfi_rd_data_cs_dest_map);
1118 			phy_io_write16(phy,
1119 				t_master | csr_dfi_wr_data_cs_dest_map_addr,
1120 				dfi_wr_data_cs_dest_map);
1121 		}
1122 		break;
1123 	case LRDIMM:
1124 		if (msg->cs_present_d1 != 0U) {
1125 			dfi_xxdestm2 = 1U;
1126 			dfi_xxdestm3 = 1U;
1127 		}
1128 
1129 		dfi_rd_data_cs_dest_map =
1130 			dfi_xxdestm0 << csr_dfi_rd_destm0_lsb	|
1131 			dfi_xxdestm1 << csr_dfi_rd_destm1_lsb	|
1132 			dfi_xxdestm2 << csr_dfi_rd_destm2_lsb	|
1133 			dfi_xxdestm3 << csr_dfi_rd_destm3_lsb;
1134 		dfi_wr_data_cs_dest_map =
1135 			dfi_xxdestm0 << csr_dfi_wr_destm0_lsb	|
1136 			dfi_xxdestm1 << csr_dfi_wr_destm1_lsb	|
1137 			dfi_xxdestm2 << csr_dfi_wr_destm2_lsb	|
1138 			dfi_xxdestm3 << csr_dfi_wr_destm3_lsb;
1139 		phy_io_write16(phy, t_master | csr_dfi_rd_data_cs_dest_map_addr,
1140 				dfi_rd_data_cs_dest_map);
1141 		phy_io_write16(phy, t_master | csr_dfi_wr_data_cs_dest_map_addr,
1142 				dfi_wr_data_cs_dest_map);
1143 
1144 		break;
1145 	default:
1146 		break;
1147 	}
1148 }
1149 
prog_pll_ctrl(uint16_t * phy,const struct input * input)1150 static void prog_pll_ctrl(uint16_t *phy,
1151 			   const struct input *input)
1152 {
1153 	uint32_t addr;
1154 	int pll_ctrl1 = 0x21; /* 000100001b */
1155 	int pll_ctrl4 = 0x17f; /* 101111111b */
1156 	int pll_test_mode = 0x24; /* 00100100b */
1157 
1158 	addr = t_master | csr_pll_ctrl1_addr;
1159 	phy_io_write16(phy, addr, pll_ctrl1);
1160 
1161 	debug("pll_ctrl1 = 0x%x\n", phy_io_read16(phy, addr));
1162 
1163 	addr = t_master | csr_pll_test_mode_addr;
1164 	phy_io_write16(phy, addr, pll_test_mode);
1165 
1166 	debug("pll_test_mode = 0x%x\n", phy_io_read16(phy, addr));
1167 
1168 	addr = t_master | csr_pll_ctrl4_addr;
1169 	phy_io_write16(phy, addr, pll_ctrl4);
1170 
1171 	debug("pll_ctrl4 = 0x%x\n", phy_io_read16(phy, addr));
1172 }
1173 
prog_pll_ctrl2(uint16_t * phy,const struct input * input)1174 static void prog_pll_ctrl2(uint16_t *phy,
1175 			   const struct input *input)
1176 {
1177 	int pll_ctrl2;
1178 	uint32_t addr = t_master | csr_pll_ctrl2_addr;
1179 
1180 	if (input->basic.frequency / 2 < 235) {
1181 		pll_ctrl2 = 0x7;
1182 	} else if (input->basic.frequency / 2 < 313) {
1183 		pll_ctrl2 = 0x6;
1184 	} else if (input->basic.frequency / 2 < 469) {
1185 		pll_ctrl2 = 0xb;
1186 	} else if (input->basic.frequency / 2 < 625) {
1187 		pll_ctrl2 = 0xa;
1188 	} else if (input->basic.frequency / 2 < 938) {
1189 		pll_ctrl2 = 0x19;
1190 	} else if (input->basic.frequency / 2 < 1067) {
1191 		pll_ctrl2 = 0x18;
1192 	} else {
1193 		pll_ctrl2 = 0x19;
1194 	}
1195 
1196 	phy_io_write16(phy, addr, pll_ctrl2);
1197 
1198 	debug("pll_ctrl2 = 0x%x\n", phy_io_read16(phy, addr));
1199 }
1200 
prog_dll_lck_param(uint16_t * phy,const struct input * input)1201 static void prog_dll_lck_param(uint16_t *phy, const struct input *input)
1202 {
1203 	uint32_t addr = t_master | csr_dll_lockparam_addr;
1204 
1205 	phy_io_write16(phy, addr, U(0x212));
1206 	debug("dll_lck_param = 0x%x\n", phy_io_read16(phy, addr));
1207 }
1208 
prog_dll_gain_ctl(uint16_t * phy,const struct input * input)1209 static void prog_dll_gain_ctl(uint16_t *phy, const struct input *input)
1210 {
1211 	uint32_t addr = t_master | csr_dll_gain_ctl_addr;
1212 
1213 	phy_io_write16(phy, addr, U(0x61));
1214 	debug("dll_gain_ctl = 0x%x\n", phy_io_read16(phy, addr));
1215 }
1216 
prog_pll_pwr_dn(uint16_t * phy,const struct input * input)1217 static void prog_pll_pwr_dn(uint16_t *phy,
1218 			   const struct input *input)
1219 {
1220 	uint32_t addr;
1221 
1222 	addr = t_master | csr_pll_pwr_dn_addr;
1223 	phy_io_write16(phy, addr, 0U);
1224 
1225 	debug("pll_pwrdn = 0x%x\n", phy_io_read16(phy, addr));
1226 }
1227 
prog_ard_ptr_init_val(uint16_t * phy,const struct input * input)1228 static void prog_ard_ptr_init_val(uint16_t *phy,
1229 				  const struct input *input)
1230 {
1231 	int ard_ptr_init_val;
1232 	uint32_t addr = t_master | csr_ard_ptr_init_val_addr;
1233 
1234 	if (input->basic.frequency >= 933) {
1235 		ard_ptr_init_val = 0x2;
1236 	} else {
1237 		ard_ptr_init_val = 0x1;
1238 	}
1239 
1240 	phy_io_write16(phy, addr, ard_ptr_init_val);
1241 }
1242 
prog_dqs_preamble_control(uint16_t * phy,const struct input * input)1243 static void prog_dqs_preamble_control(uint16_t *phy,
1244 				      const struct input *input)
1245 {
1246 	int data;
1247 	uint32_t addr = t_master | csr_dqs_preamble_control_addr;
1248 	const int wdqsextension = 0;
1249 	const int lp4sttc_pre_bridge_rx_en = 0;
1250 	const int lp4postamble_ext = 0;
1251 	const int lp4tgl_two_tck_tx_dqs_pre = 0;
1252 	const int position_dfe_init = 2;
1253 	const int dll_rx_preamble_mode = 1;
1254 	int two_tck_tx_dqs_pre = input->adv.d4tx_preamble_length;
1255 	int two_tck_rx_dqs_pre = input->adv.d4rx_preamble_length;
1256 
1257 	data = wdqsextension << csr_wdqsextension_lsb			|
1258 	       lp4sttc_pre_bridge_rx_en << csr_lp4sttc_pre_bridge_rx_en_lsb |
1259 	       lp4postamble_ext << csr_lp4postamble_ext_lsb		|
1260 	       lp4tgl_two_tck_tx_dqs_pre << csr_lp4tgl_two_tck_tx_dqs_pre_lsb |
1261 	       position_dfe_init << csr_position_dfe_init_lsb		|
1262 	       two_tck_tx_dqs_pre << csr_two_tck_tx_dqs_pre_lsb		|
1263 	       two_tck_rx_dqs_pre << csr_two_tck_rx_dqs_pre_lsb;
1264 	phy_io_write16(phy, addr, data);
1265 
1266 	data = dll_rx_preamble_mode << csr_dll_rx_preamble_mode_lsb;
1267 	addr = t_master | csr_dbyte_dll_mode_cntrl_addr;
1268 	phy_io_write16(phy, addr, data);
1269 }
1270 
prog_proc_odt_time_ctl(uint16_t * phy,const struct input * input)1271 static void prog_proc_odt_time_ctl(uint16_t *phy,
1272 				   const struct input *input)
1273 {
1274 	int proc_odt_time_ctl;
1275 	uint32_t addr = t_master | csr_proc_odt_time_ctl_addr;
1276 
1277 	if (input->adv.wdqsext != 0) {
1278 		proc_odt_time_ctl = 0x3;
1279 	} else if (input->basic.frequency <= 933) {
1280 		proc_odt_time_ctl = 0xa;
1281 	} else if (input->basic.frequency <= 1200) {
1282 		if (input->adv.d4rx_preamble_length == 1) {
1283 			proc_odt_time_ctl = 0x2;
1284 		} else {
1285 			proc_odt_time_ctl = 0x6;
1286 		}
1287 	} else {
1288 		if (input->adv.d4rx_preamble_length == 1) {
1289 			proc_odt_time_ctl = 0x3;
1290 		} else {
1291 			proc_odt_time_ctl = 0x7;
1292 		}
1293 	}
1294 	phy_io_write16(phy, addr, proc_odt_time_ctl);
1295 }
1296 
1297 static const struct impedance_mapping map[] = {
1298 	{	29,	0x3f	},
1299 	{	31,	0x3e	},
1300 	{	33,	0x3b	},
1301 	{	36,	0x3a	},
1302 	{	39,	0x39	},
1303 	{	42,	0x38	},
1304 	{	46,	0x1b	},
1305 	{	51,	0x1a	},
1306 	{	57,	0x19	},
1307 	{	64,	0x18	},
1308 	{	74,	0x0b	},
1309 	{	88,	0x0a	},
1310 	{	108,	0x09	},
1311 	{	140,	0x08	},
1312 	{	200,	0x03	},
1313 	{	360,	0x02	},
1314 	{	481,	0x01	},
1315 	{}
1316 };
1317 
map_impedance(int strength)1318 static int map_impedance(int strength)
1319 {
1320 	const struct impedance_mapping *tbl = map;
1321 	int val = 0;
1322 
1323 	if (strength == 0) {
1324 		return 0;
1325 	}
1326 
1327 	while (tbl->ohm != 0U) {
1328 		if (strength < tbl->ohm) {
1329 			val = tbl->code;
1330 			break;
1331 		}
1332 		tbl++;
1333 	}
1334 
1335 	return val;
1336 }
1337 
map_odtstren_p(int strength,int hard_macro_ver)1338 static int map_odtstren_p(int strength, int hard_macro_ver)
1339 {
1340 	int val = -1;
1341 
1342 	if (hard_macro_ver == 4) {
1343 		if (strength == 0) {
1344 			val = 0;
1345 		} else if (strength == 120) {
1346 			val = 0x8;
1347 		} else if (strength == 60) {
1348 			val = 0x18;
1349 		} else if (strength == 40) {
1350 			val = 0x38;
1351 		} else {
1352 			printf("error: unsupported ODTStrenP %d\n", strength);
1353 		}
1354 	} else {
1355 		val = map_impedance(strength);
1356 	}
1357 
1358 	return val;
1359 }
1360 
prog_tx_odt_drv_stren(uint16_t * phy,const struct input * input)1361 static void prog_tx_odt_drv_stren(uint16_t *phy,
1362 				  const struct input *input)
1363 {
1364 	int lane, byte, b_addr, c_addr;
1365 	int tx_odt_drv_stren;
1366 	int odtstren_p, odtstren_n;
1367 	uint32_t addr;
1368 
1369 	odtstren_p = map_odtstren_p(input->adv.odtimpedance,
1370 				input->basic.hard_macro_ver);
1371 	if (odtstren_p < 0) {
1372 		return;
1373 	}
1374 
1375 	odtstren_n = 0;	/* always high-z */
1376 	tx_odt_drv_stren = odtstren_n << csr_odtstren_n_lsb | odtstren_p;
1377 	for (byte = 0; byte < input->basic.num_dbyte; byte++) {
1378 		c_addr = byte << 12;
1379 		for (lane = 0; lane <= 1; lane++) {
1380 			b_addr = lane << 8;
1381 			addr = t_dbyte | c_addr | b_addr |
1382 				csr_tx_odt_drv_stren_addr;
1383 			phy_io_write16(phy, addr, tx_odt_drv_stren);
1384 		}
1385 	}
1386 }
1387 
map_drvstren_fsdq_p(int strength,int hard_macro_ver)1388 static int map_drvstren_fsdq_p(int strength, int hard_macro_ver)
1389 {
1390 	int val = -1;
1391 
1392 	if (hard_macro_ver == 4) {
1393 		if (strength == 0) {
1394 			val = 0x07;
1395 		} else if (strength == 120) {
1396 			val = 0x0F;
1397 		} else if (strength == 60) {
1398 			val = 0x1F;
1399 		} else if (strength == 40) {
1400 			val = 0x3F;
1401 		} else {
1402 			printf("error: unsupported drv_stren_fSDq_p %d\n",
1403 			       strength);
1404 		}
1405 	} else {
1406 		val = map_impedance(strength);
1407 	}
1408 
1409 	return val;
1410 }
1411 
map_drvstren_fsdq_n(int strength,int hard_macro_ver)1412 static int map_drvstren_fsdq_n(int strength, int hard_macro_ver)
1413 {
1414 	int val = -1;
1415 
1416 	if (hard_macro_ver == 4) {
1417 		if (strength == 0) {
1418 			val = 0x00;
1419 		} else if (strength == 120) {
1420 			val = 0x08;
1421 		} else if (strength == 60) {
1422 			val = 0x18;
1423 		} else if (strength == 40) {
1424 			val = 0x38;
1425 		} else {
1426 			printf("error: unsupported drvStrenFSDqN %d\n",
1427 			       strength);
1428 		}
1429 	} else {
1430 		val = map_impedance(strength);
1431 	}
1432 
1433 	return val;
1434 }
1435 
prog_tx_impedance_ctrl1(uint16_t * phy,const struct input * input)1436 static void prog_tx_impedance_ctrl1(uint16_t *phy,
1437 				    const struct input *input)
1438 {
1439 	int lane, byte, b_addr, c_addr;
1440 	int tx_impedance_ctrl1;
1441 	int drv_stren_fsdq_p, drv_stren_fsdq_n;
1442 	uint32_t addr;
1443 
1444 	drv_stren_fsdq_p = map_drvstren_fsdq_p(input->adv.tx_impedance,
1445 					input->basic.hard_macro_ver);
1446 	drv_stren_fsdq_n = map_drvstren_fsdq_n(input->adv.tx_impedance,
1447 					input->basic.hard_macro_ver);
1448 	tx_impedance_ctrl1 = drv_stren_fsdq_n << csr_drv_stren_fsdq_n_lsb |
1449 			   drv_stren_fsdq_p << csr_drv_stren_fsdq_p_lsb;
1450 
1451 	for (byte = 0; byte < input->basic.num_dbyte; byte++) {
1452 		c_addr = byte << 12;
1453 		for (lane = 0; lane <= 1; lane++) {
1454 			b_addr = lane << 8;
1455 			addr = t_dbyte | c_addr | b_addr |
1456 				csr_tx_impedance_ctrl1_addr;
1457 			phy_io_write16(phy, addr, tx_impedance_ctrl1);
1458 		}
1459 	}
1460 }
1461 
map_adrv_stren_p(int strength,int hard_macro_ver)1462 static int map_adrv_stren_p(int strength, int hard_macro_ver)
1463 {
1464 	int val = -1;
1465 
1466 	if (hard_macro_ver == 4) {
1467 		if (strength == 120) {
1468 			val = 0x1c;
1469 		} else if (strength == 60) {
1470 			val = 0x1d;
1471 		} else if (strength == 40) {
1472 			val = 0x1f;
1473 		} else {
1474 			printf("error: unsupported aDrv_stren_p %d\n",
1475 			       strength);
1476 		}
1477 	} else {
1478 		if (strength == 120) {
1479 			val = 0x00;
1480 		} else if (strength == 60) {
1481 			val = 0x01;
1482 		} else if (strength == 40) {
1483 			val = 0x03;
1484 		} else if (strength == 30) {
1485 			val = 0x07;
1486 		} else if (strength == 24) {
1487 			val = 0x0f;
1488 		} else if (strength == 20) {
1489 			val = 0x1f;
1490 		} else {
1491 			printf("error: unsupported aDrv_stren_p %d\n",
1492 			       strength);
1493 		}
1494 	}
1495 
1496 	return val;
1497 }
1498 
map_adrv_stren_n(int strength,int hard_macro_ver)1499 static int map_adrv_stren_n(int strength, int hard_macro_ver)
1500 {
1501 	int val = -1;
1502 
1503 	if (hard_macro_ver == 4) {
1504 		if (strength == 120) {
1505 			val = 0x00;
1506 		} else if (strength == 60) {
1507 			val = 0x01;
1508 		} else if (strength == 40) {
1509 			val = 0x03;
1510 		} else {
1511 			printf("Error: unsupported ADrvStrenP %d\n", strength);
1512 		}
1513 	} else {
1514 		if (strength == 120) {
1515 			val = 0x00;
1516 		} else if (strength == 60) {
1517 			val = 0x01;
1518 		} else if (strength == 40) {
1519 			val = 0x03;
1520 		} else if (strength == 30) {
1521 			val = 0x07;
1522 		} else if (strength == 24) {
1523 			val = 0x0f;
1524 		} else if (strength == 20) {
1525 			val = 0x1f;
1526 		} else {
1527 			printf("Error: unsupported ADrvStrenP %d\n", strength);
1528 		}
1529 	}
1530 
1531 	return val;
1532 }
1533 
prog_atx_impedance(uint16_t * phy,const struct input * input)1534 static void prog_atx_impedance(uint16_t *phy,
1535 			       const struct input *input)
1536 {
1537 	int anib, c_addr;
1538 	int atx_impedance;
1539 	int adrv_stren_p;
1540 	int adrv_stren_n;
1541 	uint32_t addr;
1542 
1543 	if (input->basic.hard_macro_ver == 4 &&
1544 	    input->adv.atx_impedance == 20) {
1545 		printf("Error:ATxImpedance has to be 40 for HardMacroVer 4\n");
1546 		return;
1547 	}
1548 
1549 	adrv_stren_p = map_adrv_stren_p(input->adv.atx_impedance,
1550 					input->basic.hard_macro_ver);
1551 	adrv_stren_n = map_adrv_stren_n(input->adv.atx_impedance,
1552 					input->basic.hard_macro_ver);
1553 	atx_impedance = adrv_stren_n << csr_adrv_stren_n_lsb		|
1554 		       adrv_stren_p << csr_adrv_stren_p_lsb;
1555 	for (anib = 0; anib < input->basic.num_anib; anib++) {
1556 		c_addr = anib << 12;
1557 		addr = t_anib | c_addr | csr_atx_impedance_addr;
1558 		phy_io_write16(phy, addr, atx_impedance);
1559 	}
1560 }
1561 
prog_dfi_mode(uint16_t * phy,const struct input * input)1562 static void prog_dfi_mode(uint16_t *phy,
1563 			  const struct input *input)
1564 {
1565 	int dfi_mode;
1566 	uint32_t addr;
1567 
1568 	if (input->basic.dfi1exists == 1) {
1569 		dfi_mode = 0x5;	/* DFI1 exists but disabled */
1570 	} else {
1571 		dfi_mode = 0x1;	/* DFI1 does not physically exists */
1572 	}
1573 	addr = t_master | csr_dfi_mode_addr;
1574 	phy_io_write16(phy, addr, dfi_mode);
1575 }
1576 
prog_acx4_anib_dis(uint16_t * phy,const struct input * input)1577 static void prog_acx4_anib_dis(uint16_t *phy, const struct input *input)
1578 {
1579 	uint32_t addr;
1580 
1581 	addr = t_master | csr_acx4_anib_dis_addr;
1582 	phy_io_write16(phy, addr, 0x0);
1583 	debug("%s 0x%x\n", __func__, phy_io_read16(phy, addr));
1584 }
1585 
prog_dfi_camode(uint16_t * phy,const struct input * input)1586 static void prog_dfi_camode(uint16_t *phy,
1587 			    const struct input *input)
1588 {
1589 	int dfi_camode = 2;
1590 	uint32_t addr = t_master | csr_dfi_camode_addr;
1591 
1592 	phy_io_write16(phy, addr, dfi_camode);
1593 }
1594 
prog_cal_drv_str0(uint16_t * phy,const struct input * input)1595 static void prog_cal_drv_str0(uint16_t *phy,
1596 			      const struct input *input)
1597 {
1598 	int cal_drv_str0;
1599 	int cal_drv_str_pd50;
1600 	int cal_drv_str_pu50;
1601 	uint32_t addr;
1602 
1603 	cal_drv_str_pu50 = input->adv.ext_cal_res_val;
1604 	cal_drv_str_pd50 = cal_drv_str_pu50;
1605 	cal_drv_str0 = cal_drv_str_pu50 << csr_cal_drv_str_pu50_lsb |
1606 			cal_drv_str_pd50;
1607 	addr = t_master | csr_cal_drv_str0_addr;
1608 	phy_io_write16(phy, addr, cal_drv_str0);
1609 }
1610 
prog_cal_uclk_info(uint16_t * phy,const struct input * input)1611 static void prog_cal_uclk_info(uint16_t *phy,
1612 			       const struct input *input)
1613 {
1614 	int cal_uclk_ticks_per1u_s;
1615 	uint32_t addr;
1616 
1617 	cal_uclk_ticks_per1u_s = input->basic.frequency >> 1;
1618 	if (cal_uclk_ticks_per1u_s < 24) {
1619 		cal_uclk_ticks_per1u_s = 24;
1620 	}
1621 
1622 	addr = t_master | csr_cal_uclk_info_addr;
1623 	phy_io_write16(phy, addr, cal_uclk_ticks_per1u_s);
1624 }
1625 
prog_cal_rate(uint16_t * phy,const struct input * input)1626 static void prog_cal_rate(uint16_t *phy,
1627 			  const struct input *input)
1628 {
1629 	int cal_rate;
1630 	int cal_interval;
1631 	int cal_once;
1632 	uint32_t addr;
1633 
1634 	cal_interval = input->adv.cal_interval;
1635 	cal_once = input->adv.cal_once;
1636 	cal_rate = cal_once << csr_cal_once_lsb		|
1637 		  cal_interval << csr_cal_interval_lsb;
1638 	addr = t_master | csr_cal_rate_addr;
1639 	phy_io_write16(phy, addr, cal_rate);
1640 }
1641 
prog_vref_in_global(uint16_t * phy,const struct input * input,const struct ddr4u1d * msg)1642 static void prog_vref_in_global(uint16_t *phy,
1643 				const struct input *input,
1644 				const struct ddr4u1d *msg)
1645 {
1646 	int vref_in_global;
1647 	int global_vref_in_dac = 0;
1648 	int global_vref_in_sel = 0;
1649 	uint32_t addr;
1650 
1651 	/*
1652 	 * phy_vref_prcnt = msg->phy_vref / 128.0
1653 	 *  global_vref_in_dac = (phy_vref_prcnt - 0.345) / 0.005;
1654 	 */
1655 	global_vref_in_dac = (msg->phy_vref * 1000 - 345 * 128 + 320) /
1656 			     (5 * 128);
1657 
1658 	vref_in_global = global_vref_in_dac << csr_global_vref_in_dac_lsb |
1659 		       global_vref_in_sel;
1660 	addr = t_master | csr_vref_in_global_addr;
1661 	phy_io_write16(phy, addr, vref_in_global);
1662 }
1663 
prog_dq_dqs_rcv_cntrl(uint16_t * phy,const struct input * input)1664 static void prog_dq_dqs_rcv_cntrl(uint16_t *phy,
1665 				  const struct input *input)
1666 {
1667 	int lane, byte, b_addr, c_addr;
1668 	int dq_dqs_rcv_cntrl;
1669 	int gain_curr_adj_defval = 0xb;
1670 	int major_mode_dbyte = 3;
1671 	int dfe_ctrl_defval = 0;
1672 	int ext_vref_range_defval = 0;
1673 	int sel_analog_vref = 1;
1674 	uint32_t addr;
1675 
1676 	dq_dqs_rcv_cntrl = gain_curr_adj_defval << csr_gain_curr_adj_lsb |
1677 			major_mode_dbyte << csr_major_mode_dbyte_lsb	|
1678 			dfe_ctrl_defval << csr_dfe_ctrl_lsb		|
1679 			ext_vref_range_defval << csr_ext_vref_range_lsb	|
1680 			sel_analog_vref << csr_sel_analog_vref_lsb;
1681 	for (byte = 0; byte < input->basic.num_dbyte; byte++) {
1682 		c_addr = byte << 12;
1683 		for (lane = 0; lane <= 1; lane++) {
1684 			b_addr = lane << 8;
1685 			addr = t_dbyte | c_addr | b_addr |
1686 					csr_dq_dqs_rcv_cntrl_addr;
1687 			phy_io_write16(phy, addr, dq_dqs_rcv_cntrl);
1688 		}
1689 	}
1690 }
1691 
prog_mem_alert_control(uint16_t * phy,const struct input * input)1692 static void prog_mem_alert_control(uint16_t *phy,
1693 				   const struct input *input)
1694 {
1695 	int mem_alert_control;
1696 	int mem_alert_control2;
1697 	int malertpu_en;
1698 	int malertrx_en;
1699 	int malertvref_level;
1700 	int malertpu_stren;
1701 	int malertsync_bypass;
1702 	int malertdisable_val_defval = 1;
1703 	uint32_t addr;
1704 
1705 	if (input->basic.dram_type == DDR4 && input->adv.mem_alert_en == 1) {
1706 		malertpu_en = 1;
1707 		malertrx_en = 1;
1708 		malertpu_stren = input->adv.mem_alert_puimp;
1709 		malertvref_level = input->adv.mem_alert_vref_level;
1710 		malertsync_bypass = input->adv.mem_alert_sync_bypass;
1711 		mem_alert_control = malertdisable_val_defval << 14	|
1712 				  malertrx_en << 13		|
1713 				  malertpu_en << 12		|
1714 				  malertpu_stren << 8		|
1715 				  malertvref_level;
1716 		mem_alert_control2 = malertsync_bypass <<
1717 					csr_malertsync_bypass_lsb;
1718 		addr = t_master | csr_mem_alert_control_addr;
1719 		phy_io_write16(phy, addr, mem_alert_control);
1720 		addr = t_master | csr_mem_alert_control2_addr;
1721 		phy_io_write16(phy, addr, mem_alert_control2);
1722 	}
1723 }
1724 
prog_dfi_freq_ratio(uint16_t * phy,const struct input * input)1725 static void prog_dfi_freq_ratio(uint16_t *phy,
1726 				const struct input *input)
1727 {
1728 	int dfi_freq_ratio;
1729 	uint32_t addr = t_master | csr_dfi_freq_ratio_addr;
1730 
1731 	dfi_freq_ratio = input->basic.dfi_freq_ratio;
1732 	phy_io_write16(phy, addr, dfi_freq_ratio);
1733 }
1734 
prog_tristate_mode_ca(uint16_t * phy,const struct input * input)1735 static void prog_tristate_mode_ca(uint16_t *phy,
1736 				  const struct input *input)
1737 {
1738 	int tristate_mode_ca;
1739 	int dis_dyn_adr_tri;
1740 	int ddr2tmode;
1741 	int ck_dis_val_def = 1;
1742 	uint32_t addr = t_master | csr_tristate_mode_ca_addr;
1743 
1744 	dis_dyn_adr_tri = input->adv.dis_dyn_adr_tri;
1745 	ddr2tmode = input->adv.is2ttiming;
1746 	tristate_mode_ca = ck_dis_val_def << csr_ck_dis_val_lsb	|
1747 			 ddr2tmode << csr_ddr2tmode_lsb		|
1748 			 dis_dyn_adr_tri << csr_dis_dyn_adr_tri_lsb;
1749 	phy_io_write16(phy, addr, tristate_mode_ca);
1750 }
1751 
prog_dfi_xlat(uint16_t * phy,const struct input * input)1752 static void prog_dfi_xlat(uint16_t *phy,
1753 			  const struct input *input)
1754 {
1755 	uint16_t loop_vector;
1756 	int dfifreqxlat_dat;
1757 	int pllbypass_dat;
1758 	uint32_t addr;
1759 
1760 	/* fIXME: Shall unused P1, P2, P3 be bypassed? */
1761 	pllbypass_dat = input->basic.pll_bypass; /* only [0] is used */
1762 	for (loop_vector = 0; loop_vector < 8; loop_vector++) {
1763 		if (loop_vector == 0) {
1764 			dfifreqxlat_dat = pllbypass_dat + 0x5555;
1765 		} else if (loop_vector == 7) {
1766 			dfifreqxlat_dat = 0xf000;
1767 		} else {
1768 			dfifreqxlat_dat = 0x5555;
1769 		}
1770 		addr = t_master | (csr_dfi_freq_xlat0_addr + loop_vector);
1771 		phy_io_write16(phy, addr, dfifreqxlat_dat);
1772 	}
1773 }
1774 
prog_dbyte_misc_mode(uint16_t * phy,const struct input * input,const struct ddr4u1d * msg)1775 static void prog_dbyte_misc_mode(uint16_t *phy,
1776 				 const struct input *input,
1777 				 const struct ddr4u1d *msg)
1778 {
1779 	int dbyte_misc_mode;
1780 	int dq_dqs_rcv_cntrl1;
1781 	int dq_dqs_rcv_cntrl1_1;
1782 	int byte, c_addr;
1783 	uint32_t addr;
1784 
1785 	dbyte_misc_mode = 0x1 << csr_dbyte_disable_lsb;
1786 	dq_dqs_rcv_cntrl1 = 0x1ff << csr_power_down_rcvr_lsb		|
1787 			 0x1 << csr_power_down_rcvr_dqs_lsb	|
1788 			 0x1 << csr_rx_pad_standby_en_lsb;
1789 	dq_dqs_rcv_cntrl1_1 = (0x100 << csr_power_down_rcvr_lsb |
1790 			csr_rx_pad_standby_en_mask);
1791 	for (byte = 0; byte < input->basic.num_dbyte; byte++) {
1792 		c_addr = byte << 12;
1793 		if (byte <= input->basic.num_active_dbyte_dfi0 - 1) {
1794 			/* disable RDBI lane if not used. */
1795 			if ((input->basic.dram_data_width != 4) &&
1796 				(((msg->mr5 >> 12) & 0x1) == 0)) {
1797 				addr = t_dbyte
1798 					| c_addr
1799 					| csr_dq_dqs_rcv_cntrl1_addr;
1800 				phy_io_write16(phy, addr, dq_dqs_rcv_cntrl1_1);
1801 			}
1802 		} else {
1803 			addr = t_dbyte | c_addr | csr_dbyte_misc_mode_addr;
1804 			phy_io_write16(phy, addr, dbyte_misc_mode);
1805 			addr = t_dbyte | c_addr | csr_dq_dqs_rcv_cntrl1_addr;
1806 			phy_io_write16(phy, addr, dq_dqs_rcv_cntrl1);
1807 		}
1808 	}
1809 }
1810 
prog_master_x4config(uint16_t * phy,const struct input * input)1811 static void prog_master_x4config(uint16_t *phy,
1812 				 const struct input *input)
1813 {
1814 	int master_x4config;
1815 	int x4tg;
1816 	uint32_t addr = t_master | csr_master_x4config_addr;
1817 
1818 	x4tg = input->basic.dram_data_width == 4 ? 0xf : 0;
1819 	master_x4config = x4tg << csr_x4tg_lsb;
1820 	phy_io_write16(phy, addr, master_x4config);
1821 }
1822 
prog_dmipin_present(uint16_t * phy,const struct input * input,const struct ddr4u1d * msg)1823 static void prog_dmipin_present(uint16_t *phy,
1824 				const struct input *input,
1825 				const struct ddr4u1d *msg)
1826 {
1827 	int dmipin_present;
1828 	uint32_t addr = t_master | csr_dmipin_present_addr;
1829 
1830 	dmipin_present = (msg->mr5 >> 12) & 0x1;
1831 	phy_io_write16(phy, addr, dmipin_present);
1832 }
1833 
prog_dfi_phyupd(uint16_t * phy,const struct input * input)1834 static void prog_dfi_phyupd(uint16_t *phy,
1835 			  const struct input *input)
1836 {
1837 	int dfiphyupd_dat;
1838 	uint32_t addr;
1839 
1840 	addr = t_master | (csr_dfiphyupd_addr);
1841 	dfiphyupd_dat = phy_io_read16(phy, addr) &
1842 				~csr_dfiphyupd_threshold_mask;
1843 
1844 	phy_io_write16(phy, addr, dfiphyupd_dat);
1845 }
1846 
prog_cal_misc2(uint16_t * phy,const struct input * input)1847 static void prog_cal_misc2(uint16_t *phy,
1848 			  const struct input *input)
1849 {
1850 	int cal_misc2_dat, cal_drv_pdth_data, cal_offsets_dat;
1851 	uint32_t addr;
1852 
1853 	addr = t_master | (csr_cal_misc2_addr);
1854 	cal_misc2_dat = phy_io_read16(phy, addr) |
1855 			(1 << csr_cal_misc2_err_dis);
1856 
1857 	phy_io_write16(phy, addr, cal_misc2_dat);
1858 
1859 	addr = t_master | (csr_cal_offsets_addr);
1860 
1861 	cal_drv_pdth_data = 0x9 << 6;
1862 	cal_offsets_dat = (phy_io_read16(phy, addr) & ~csr_cal_drv_pdth_mask)
1863 			| cal_drv_pdth_data;
1864 
1865 	phy_io_write16(phy, addr, cal_offsets_dat);
1866 }
1867 
c_init_phy_config(uint16_t ** phy_ptr,unsigned int ip_rev,const struct input * input,const void * msg)1868 static int c_init_phy_config(uint16_t **phy_ptr,
1869 			     unsigned int ip_rev,
1870 			     const struct input *input,
1871 			     const void *msg)
1872 {
1873 	int i;
1874 	uint16_t *phy;
1875 	__unused const soc_info_t *soc_info;
1876 
1877 	for (i = 0; i < NUM_OF_DDRC; i++) {
1878 		phy = phy_ptr[i];
1879 		if (phy == NULL) {
1880 			continue;
1881 		}
1882 
1883 		debug("Initialize PHY %d config\n", i);
1884 		prog_dfi_phyupd(phy, input);
1885 		prog_cal_misc2(phy, input);
1886 		prog_tx_pre_drv_mode(phy, input);
1887 		prog_atx_pre_drv_mode(phy, input);
1888 		prog_enable_cs_multicast(phy, input);	/* rdimm and lrdimm */
1889 		prog_dfi_rd_data_cs_dest_map(phy, ip_rev, input, msg);
1890 		prog_pll_ctrl2(phy, input);
1891 #ifdef DDR_PLL_FIX
1892 		soc_info = get_soc_info();
1893 		debug("SOC_SI_REV = %x\n", soc_info->maj_ver);
1894 		if (soc_info->maj_ver == 1) {
1895 			prog_pll_pwr_dn(phy, input);
1896 
1897 			/*Enable FFE aka TxEqualizationMode for rev1 SI*/
1898 			phy_io_write16(phy, 0x010048, 0x1);
1899 		}
1900 #endif
1901 		prog_ard_ptr_init_val(phy, input);
1902 		prog_dqs_preamble_control(phy, input);
1903 		prog_dll_lck_param(phy, input);
1904 		prog_dll_gain_ctl(phy, input);
1905 		prog_proc_odt_time_ctl(phy, input);
1906 		prog_tx_odt_drv_stren(phy, input);
1907 		prog_tx_impedance_ctrl1(phy, input);
1908 		prog_atx_impedance(phy, input);
1909 		prog_dfi_mode(phy, input);
1910 		prog_dfi_camode(phy, input);
1911 		prog_cal_drv_str0(phy, input);
1912 		prog_cal_uclk_info(phy, input);
1913 		prog_cal_rate(phy, input);
1914 		prog_vref_in_global(phy, input, msg);
1915 		prog_dq_dqs_rcv_cntrl(phy, input);
1916 		prog_mem_alert_control(phy, input);
1917 		prog_dfi_freq_ratio(phy, input);
1918 		prog_tristate_mode_ca(phy, input);
1919 		prog_dfi_xlat(phy, input);
1920 		prog_dbyte_misc_mode(phy, input, msg);
1921 		prog_master_x4config(phy, input);
1922 		prog_dmipin_present(phy, input, msg);
1923 		prog_acx4_anib_dis(phy, input);
1924 	}
1925 
1926 	return 0;
1927 }
1928 
get_mail(uint16_t * phy,int stream)1929 static uint32_t get_mail(uint16_t *phy, int stream)
1930 {
1931 	int timeout;
1932 	uint32_t mail = 0U;
1933 
1934 	timeout = TIMEOUTDEFAULT;
1935 	while (((--timeout) != 0) &&
1936 	       ((phy_io_read16(phy, t_apbonly | csr_uct_shadow_regs)
1937 		& uct_write_prot_shadow_mask) != 0)) {
1938 		mdelay(10);
1939 	}
1940 	if (timeout == 0) {
1941 		ERROR("Timeout getting mail from PHY\n");
1942 		return 0xFFFF;
1943 	}
1944 
1945 	mail = phy_io_read16(phy, t_apbonly |
1946 			     csr_uct_write_only_shadow);
1947 	if (stream != 0) {
1948 		mail |= phy_io_read16(phy, t_apbonly |
1949 				      csr_uct_dat_write_only_shadow) << 16;
1950 	}
1951 
1952 	/* Ack */
1953 	phy_io_write16(phy, t_apbonly | csr_dct_write_prot, 0);
1954 
1955 	timeout = TIMEOUTDEFAULT;
1956 	while (((--timeout) != 0) &&
1957 	       ((phy_io_read16(phy, t_apbonly | csr_uct_shadow_regs)
1958 		 & uct_write_prot_shadow_mask) == 0)) {
1959 		mdelay(1);
1960 	}
1961 	if (timeout == 0) {
1962 		ERROR("Timeout ack PHY mail\n");
1963 	}
1964 
1965 	/* completed */
1966 	phy_io_write16(phy, t_apbonly | csr_dct_write_prot, 1U);
1967 
1968 	return mail;
1969 }
1970 
1971 #ifdef DDR_PHY_DEBUG
lookup_msg(uint32_t index,int train2d)1972 static const char *lookup_msg(uint32_t index, int train2d)
1973 {
1974 	int i;
1975 	int size;
1976 	const struct phy_msg *messages;
1977 	const char *ptr = NULL;
1978 
1979 	if (train2d != 0) {
1980 		messages = messages_2d;
1981 		size = ARRAY_SIZE(messages_2d);
1982 	} else {
1983 		messages = messages_1d;
1984 		size = ARRAY_SIZE(messages_1d);
1985 	}
1986 	for (i = 0; i < size; i++) {
1987 		if (messages[i].index == index) {
1988 			ptr = messages[i].msg;
1989 			break;
1990 		}
1991 	}
1992 
1993 	return ptr;
1994 }
1995 #endif
1996 
1997 #define MAX_ARGS 32
decode_stream_message(uint16_t * phy,int train2d)1998 static void decode_stream_message(uint16_t *phy, int train2d)
1999 {
2000 	uint32_t index __unused;
2001 
2002 	__unused const char *format;
2003 	__unused uint32_t args[MAX_ARGS];
2004 	__unused int i;
2005 
2006 #ifdef DDR_PHY_DEBUG
2007 	index = get_mail(phy, 1);
2008 	if ((index & 0xffff) > MAX_ARGS) {	/* up to MAX_ARGS args so far */
2009 		printf("Program error in %s\n", __func__);
2010 	}
2011 	for (i = 0; i < (index & 0xffff) && i < MAX_ARGS; i++) {
2012 		args[i] = get_mail(phy, 1);
2013 	}
2014 
2015 	format = lookup_msg(index, train2d);
2016 	if (format != NULL) {
2017 		printf("0x%08x: ", index);
2018 		printf(format, args[0], args[1], args[2], args[3], args[4],
2019 		       args[5], args[6], args[7], args[8], args[9], args[10],
2020 		       args[11], args[12], args[13], args[14], args[15],
2021 		       args[16], args[17], args[18], args[19], args[20],
2022 		       args[21], args[22], args[23], args[24], args[25],
2023 		       args[26], args[27], args[28], args[29], args[30],
2024 		       args[31]);
2025 	}
2026 #endif
2027 }
2028 
wait_fw_done(uint16_t * phy,int train2d)2029 static int wait_fw_done(uint16_t *phy, int train2d)
2030 {
2031 	uint32_t mail = 0U;
2032 
2033 	while (mail == U(0x0)) {
2034 		mail = get_mail(phy, 0);
2035 		switch (mail) {
2036 		case U(0x7):
2037 			debug("%s Training completed\n", train2d ? "2D" : "1D");
2038 			break;
2039 		case U(0xff):
2040 			debug("%s Training failure\n", train2d ? "2D" : "1D");
2041 			break;
2042 		case U(0x0):
2043 			debug("End of initialization\n");
2044 			mail = 0U;
2045 			break;
2046 		case U(0x1):
2047 			debug("End of fine write leveling\n");
2048 			mail = 0U;
2049 			break;
2050 		case U(0x2):
2051 			debug("End of read enable training\n");
2052 			mail = 0U;
2053 			break;
2054 		case U(0x3):
2055 			debug("End of read delay center optimization\n");
2056 			mail = 0U;
2057 			break;
2058 		case U(0x4):
2059 			debug("End of write delay center optimization\n");
2060 			mail = 0U;
2061 			break;
2062 		case U(0x5):
2063 			debug("End of 2D read delay/voltage center optimztn\n");
2064 			mail = 0U;
2065 			break;
2066 		case U(0x6):
2067 			debug("End of 2D write delay/voltage center optmztn\n");
2068 			mail = 0U;
2069 			break;
2070 		case U(0x8):
2071 			decode_stream_message(phy, train2d);
2072 			mail = 0U;
2073 			break;
2074 		case U(0x9):
2075 			debug("End of max read latency training\n");
2076 			mail = 0U;
2077 			break;
2078 		case U(0xa):
2079 			debug("End of read dq deskew training\n");
2080 			mail = 0U;
2081 			break;
2082 		case U(0xc):
2083 			debug("End of LRDIMM Specific training, including:\n");
2084 			debug("/tDWL, MREP, MRD and MWD\n");
2085 			mail = 0U;
2086 			break;
2087 		case U(0xd):
2088 			debug("End of CA training\n");
2089 			mail = 0U;
2090 			break;
2091 		case U(0xfd):
2092 			debug("End of MPR read delay center optimization\n");
2093 			mail = 0U;
2094 			break;
2095 		case U(0xfe):
2096 			debug("End of Write leveling coarse delay\n");
2097 			mail = 0U;
2098 			break;
2099 		case U(0xffff):
2100 			debug("Timed out\n");
2101 			break;
2102 		default:
2103 			mail = 0U;
2104 			break;
2105 		}
2106 	}
2107 
2108 	if (mail == U(0x7)) {
2109 		return 0;
2110 	} else if (mail == U(0xff)) {
2111 		return -EIO;
2112 	} else if (mail == U(0xffff)) {
2113 		return -ETIMEDOUT;
2114 	}
2115 
2116 	debug("PHY_GEN2 FW: Unxpected mail = 0x%x\n", mail);
2117 
2118 	return -EINVAL;
2119 }
2120 
g_exec_fw(uint16_t ** phy_ptr,int train2d,struct input * input)2121 static int g_exec_fw(uint16_t **phy_ptr, int train2d, struct input *input)
2122 {
2123 	int ret = -EINVAL;
2124 	int i;
2125 	uint16_t *phy;
2126 
2127 	for (i = 0; i < NUM_OF_DDRC; i++) {
2128 		phy = phy_ptr[i];
2129 		if (phy == NULL) {
2130 			continue;
2131 		}
2132 		debug("Applying PLL optimal settings\n");
2133 		prog_pll_ctrl2(phy, input);
2134 		prog_pll_ctrl(phy, input);
2135 		phy_io_write16(phy,
2136 			       t_apbonly | csr_micro_cont_mux_sel_addr,
2137 			       0x1);
2138 		phy_io_write16(phy,
2139 			       t_apbonly | csr_micro_reset_addr,
2140 			       csr_reset_to_micro_mask |
2141 			       csr_stall_to_micro_mask);
2142 		phy_io_write16(phy,
2143 			       t_apbonly | csr_micro_reset_addr,
2144 			       csr_stall_to_micro_mask);
2145 		phy_io_write16(phy,
2146 			       t_apbonly | csr_micro_reset_addr,
2147 			       0);
2148 
2149 		ret = wait_fw_done(phy, train2d);
2150 		if (ret == -ETIMEDOUT) {
2151 			ERROR("Wait timed out: Firmware execution on PHY %d\n",
2152 			      i);
2153 		}
2154 	}
2155 	return ret;
2156 }
2157 
send_fw(uint16_t * phy,uint32_t dst,uint16_t * img,uint32_t size)2158 static inline int send_fw(uint16_t *phy,
2159 			   uint32_t dst,
2160 			   uint16_t *img,
2161 			   uint32_t size)
2162 {
2163 	uint32_t i;
2164 
2165 	if ((size % 2U) != 0U) {
2166 		ERROR("Wrong image size 0x%x\n", size);
2167 		return -EINVAL;
2168 	}
2169 
2170 	for (i = 0U; i < size / 2; i++) {
2171 		phy_io_write16(phy, dst + i, *(img + i));
2172 	}
2173 
2174 	return 0;
2175 }
2176 
load_fw(uint16_t ** phy_ptr,struct input * input,int train2d,void * msg,size_t len,uintptr_t phy_gen2_fw_img_buf,int (* img_loadr)(unsigned int,uintptr_t *,uint32_t *),uint32_t warm_boot_flag)2177 static int load_fw(uint16_t **phy_ptr,
2178 		   struct input *input,
2179 		   int train2d,
2180 		   void *msg,
2181 		   size_t len,
2182 		   uintptr_t phy_gen2_fw_img_buf,
2183 		   int (*img_loadr)(unsigned int, uintptr_t *, uint32_t *),
2184 		   uint32_t warm_boot_flag)
2185 {
2186 	uint32_t imem_id, dmem_id;
2187 	uintptr_t image_buf;
2188 	uint32_t size;
2189 	int ret;
2190 	int i;
2191 	uint16_t *phy;
2192 
2193 	switch (input->basic.dimm_type) {
2194 	case UDIMM:
2195 	case SODIMM:
2196 	case NODIMM:
2197 		imem_id = train2d ? DDR_IMEM_UDIMM_2D_IMAGE_ID :
2198 			  DDR_IMEM_UDIMM_1D_IMAGE_ID;
2199 		dmem_id = train2d ? DDR_DMEM_UDIMM_2D_IMAGE_ID :
2200 			  DDR_DMEM_UDIMM_1D_IMAGE_ID;
2201 		break;
2202 	case RDIMM:
2203 		imem_id = train2d ? DDR_IMEM_RDIMM_2D_IMAGE_ID :
2204 			  DDR_IMEM_RDIMM_1D_IMAGE_ID;
2205 		dmem_id = train2d ? DDR_DMEM_RDIMM_2D_IMAGE_ID :
2206 			  DDR_DMEM_RDIMM_1D_IMAGE_ID;
2207 		break;
2208 	default:
2209 		ERROR("Unsupported DIMM type\n");
2210 		return -EINVAL;
2211 	}
2212 
2213 	size = PHY_GEN2_MAX_IMAGE_SIZE;
2214 	image_buf = (uintptr_t)phy_gen2_fw_img_buf;
2215 	mmap_add_dynamic_region(phy_gen2_fw_img_buf,
2216 			phy_gen2_fw_img_buf,
2217 			PHY_GEN2_MAX_IMAGE_SIZE,
2218 			MT_MEMORY | MT_RW | MT_SECURE);
2219 	ret = img_loadr(imem_id, &image_buf, &size);
2220 	if (ret != 0) {
2221 		ERROR("Failed to load %d firmware.\n", imem_id);
2222 		return ret;
2223 	}
2224 	debug("Loaded Imaged id %d of size %x at address %lx\n",
2225 						imem_id, size, image_buf);
2226 
2227 	for (i = 0; i < NUM_OF_DDRC; i++) {
2228 		phy = phy_ptr[i];
2229 		if (phy == NULL) {
2230 			continue;
2231 		}
2232 
2233 		if (warm_boot_flag != DDR_WARM_BOOT) {
2234 			if (train2d == 0) {
2235 				phy_io_write16(phy, t_master |
2236 						csr_mem_reset_l_addr,
2237 						csr_protect_mem_reset_mask);
2238 			}
2239 		}
2240 		/* Enable access to the internal CSRs */
2241 		phy_io_write16(phy, t_apbonly | csr_micro_cont_mux_sel_addr, 0);
2242 
2243 		ret = send_fw(phy, PHY_GEN2_IMEM_ADDR,
2244 			      (uint16_t *)image_buf, size);
2245 		if (ret != 0) {
2246 			return ret;
2247 		}
2248 	}
2249 
2250 	size = PHY_GEN2_MAX_IMAGE_SIZE;
2251 	image_buf = (uintptr_t)phy_gen2_fw_img_buf;
2252 	ret = img_loadr(dmem_id, &image_buf, &size);
2253 	if (ret != 0) {
2254 		ERROR("Failed to load %d firmware.\n", dmem_id);
2255 		return ret;
2256 	}
2257 	debug("Loaded Imaged id %d of size %x at address %lx\n",
2258 						dmem_id, size, image_buf);
2259 	image_buf += len;
2260 	size -= len;
2261 
2262 	for (i = 0; i < NUM_OF_DDRC; i++) {
2263 		phy = phy_ptr[i];
2264 		if (phy == NULL) {
2265 			continue;
2266 		}
2267 
2268 		ret = send_fw(phy, PHY_GEN2_DMEM_ADDR, msg, len);
2269 		if (ret != 0) {
2270 			return ret;
2271 		}
2272 
2273 		ret = send_fw(phy, PHY_GEN2_DMEM_ADDR + len / 2,
2274 			      (uint16_t *)image_buf, size);
2275 		if (ret != 0) {
2276 			return ret;
2277 		}
2278 	}
2279 
2280 	return ret;
2281 }
2282 
parse_odt(const unsigned int val,const int read,const int i,const unsigned int cs_d0,const unsigned int cs_d1,unsigned int * odt)2283 static void parse_odt(const unsigned int val,
2284 		       const int read,
2285 		       const int i,
2286 		       const unsigned int cs_d0,
2287 		       const unsigned int cs_d1,
2288 		       unsigned int *odt)
2289 {
2290 	int shift = read ? 4 : 0;
2291 	int j;
2292 
2293 	if (i < 0 || i > 3) {
2294 		printf("Error: invalid chip-select value\n");
2295 	}
2296 	switch (val) {
2297 	case DDR_ODT_CS:
2298 		odt[i] |= (1 << i) << shift;
2299 		break;
2300 	case DDR_ODT_ALL_OTHER_CS:
2301 		for (j = 0; j < DDRC_NUM_CS; j++) {
2302 			if (i == j) {
2303 				continue;
2304 			}
2305 			if (((cs_d0 | cs_d1) & (1 << j)) == 0) {
2306 				continue;
2307 			}
2308 			odt[j] |= (1 << i) << shift;
2309 		}
2310 		break;
2311 	case DDR_ODT_CS_AND_OTHER_DIMM:
2312 		odt[i] |= (1 << i) << 4;
2313 		/* fallthrough */
2314 	case DDR_ODT_OTHER_DIMM:
2315 		for (j = 0; j < DDRC_NUM_CS; j++) {
2316 			if ((((cs_d0 & (1 << i)) != 0) &&
2317 						((cs_d1 & (1 << j)) != 0)) ||
2318 			    (((cs_d1 & (1 << i)) != 0) &&
2319 						((cs_d0 & (1 << j)) != 0))) {
2320 				odt[j] |= (1 << i) << shift;
2321 			}
2322 		}
2323 		break;
2324 	case DDR_ODT_ALL:
2325 		for (j = 0; j < DDRC_NUM_CS; j++) {
2326 			if (((cs_d0 | cs_d1) & (1 << j)) == 0) {
2327 				continue;
2328 			}
2329 			odt[j] |= (1 << i) << shift;
2330 		}
2331 		break;
2332 	case DDR_ODT_SAME_DIMM:
2333 		for (j = 0; j < DDRC_NUM_CS; j++) {
2334 			if ((((cs_d0 & (1 << i)) != 0) &&
2335 						((cs_d0 & (1 << j)) != 0)) ||
2336 			    (((cs_d1 & (1 << i)) != 0) &&
2337 						((cs_d1 & (1 << j)) != 0))) {
2338 				odt[j] |= (1 << i) << shift;
2339 			}
2340 		}
2341 		break;
2342 	case DDR_ODT_OTHER_CS_ONSAMEDIMM:
2343 		for (j = 0; j < DDRC_NUM_CS; j++) {
2344 			if (i == j) {
2345 				continue;
2346 			}
2347 			if ((((cs_d0 & (1 << i)) != 0) &&
2348 						((cs_d0 & (1 << j)) != 0)) ||
2349 			    (((cs_d1 & (1 << i)) != 0) &&
2350 						((cs_d1 & (1 << j)) != 0))) {
2351 				odt[j] |= (1 << i) << shift;
2352 			}
2353 		}
2354 		break;
2355 	case DDR_ODT_NEVER:
2356 		break;
2357 	default:
2358 		break;
2359 	}
2360 }
2361 
2362 #ifdef DEBUG_DDR_INPUT_CONFIG
2363 char *dram_types_str[] = {
2364 		"DDR4",
2365 		"DDR3",
2366 		"LDDDR4",
2367 		"LPDDR3",
2368 		"LPDDR2",
2369 		"DDR5"
2370 };
2371 
2372 char *dimm_types_str[] = {
2373 		"UDIMM",
2374 		"SODIMM",
2375 		"RDIMM",
2376 		"LRDIMM",
2377 		"NODIMM",
2378 };
2379 
2380 
print_jason_format(struct input * input,struct ddr4u1d * msg_1d,struct ddr4u2d * msg_2d)2381 static void print_jason_format(struct input *input,
2382 			       struct ddr4u1d *msg_1d,
2383 			       struct ddr4u2d *msg_2d)
2384 {
2385 
2386 	printf("\n{");
2387 	printf("\n    \"dram_type\": \"%s\",", dram_types_str[input->basic.dram_type]);
2388 	printf("\n    \"dimm_type\": \"%s\",", dimm_types_str[input->basic.dimm_type]);
2389 	printf("\n    \"hard_macro_ver\": \"%d\",", input->basic.hard_macro_ver);
2390 	printf("\n    \"num_dbyte\": \"0x%04x\",", (unsigned int)input->basic.num_dbyte);
2391 	printf("\n    \"num_active_dbyte_dfi0\": \"0x%04x\",", (unsigned int)input->basic.num_active_dbyte_dfi0);
2392 	printf("\n    \"num_anib\": \"0x%04x\",", (unsigned int)input->basic.num_anib);
2393 	printf("\n    \"num_rank_dfi0\": \"0x%04x\",", (unsigned int)input->basic.num_rank_dfi0);
2394 	printf("\n    \"num_pstates\": \"0x%04x\",", (unsigned int)input->basic.num_pstates);
2395 	printf("\n    \"frequency\": \"%d\",", input->basic.frequency);
2396 	printf("\n    \"pll_bypass\": \"0x%04x\",", (unsigned int)input->basic.dfi_freq_ratio);
2397 	printf("\n    \"dfi_freq_ratio\": \"0x%04x\",", (unsigned int)input->basic.dfi_freq_ratio);
2398 	printf("\n    \"dfi1_exists\":  \"0x%04x\",", (unsigned int)input->basic.dfi1exists);
2399 	printf("\n    \"dram_data_width\": \"0x%04x\",", (unsigned int)input->basic.dram_data_width);
2400 	printf("\n    \"dram_byte_swap\": \"0x%04x\",", (unsigned int)input->adv.dram_byte_swap);
2401 	printf("\n    \"ext_cal_res_val\": \"0x%04x\",", (unsigned int)input->adv.ext_cal_res_val);
2402 	printf("\n    \"tx_slew_rise_dq\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_rise_dq);
2403 	printf("\n    \"tx_slew_fall_dq\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_fall_dq);
2404 	printf("\n    \"tx_slew_rise_ac\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_rise_ac);
2405 	printf("\n    \"tx_slew_fall_ac\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_fall_ac);
2406 	printf("\n    \"odt_impedance\": \"%d\",", input->adv.odtimpedance);
2407 	printf("\n    \"tx_impedance\": \"%d\",", input->adv.tx_impedance);
2408 	printf("\n    \"atx_impedance\": \"%d\",", input->adv.atx_impedance);
2409 	printf("\n    \"mem_alert_en\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_en);
2410 	printf("\n    \"mem_alert_pu_imp\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_puimp);
2411 	printf("\n    \"mem_alert_vref_level\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_vref_level);
2412 	printf("\n    \"mem_alert_sync_bypass\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_sync_bypass);
2413 	printf("\n    \"cal_interval\": \"0x%04x\",", (unsigned int)input->adv.cal_interval);
2414 	printf("\n    \"cal_once\": \"0x%04x\",", (unsigned int)input->adv.cal_once);
2415 	printf("\n    \"dis_dyn_adr_tri\": \"0x%04x\",", (unsigned int)input->adv.dis_dyn_adr_tri);
2416 	printf("\n    \"is2t_timing\": \"0x%04x\",", (unsigned int)input->adv.is2ttiming);
2417 	printf("\n    \"d4rx_preabmle_length\": \"0x%04x\",", (unsigned int)input->adv.d4rx_preamble_length);
2418 	printf("\n    \"d4tx_preamble_length\": \"0x%04x\",", (unsigned int)input->adv.d4tx_preamble_length);
2419 	printf("\n    \"msg_misc\": \"0x%02x\",", (unsigned int)msg_1d->msg_misc);
2420 	printf("\n    \"reserved00\": \"0x%01x\",", (unsigned int)msg_1d->reserved00);
2421 	printf("\n    \"hdt_ctrl\": \"0x%02x\",", (unsigned int)msg_1d->hdt_ctrl);
2422 	printf("\n    \"cs_present\": \"0x%02x\",", (unsigned int)msg_1d->cs_present);
2423 	printf("\n    \"phy_vref\": \"0x%02x\",", (unsigned int)msg_1d->phy_vref);
2424 	printf("\n    \"dfi_mrl_margin\": \"0x%02x\",", (unsigned int)msg_1d->dfimrlmargin);
2425 	printf("\n    \"addr_mirror\": \"0x%02x\",", (unsigned int)msg_1d->addr_mirror);
2426 	printf("\n    \"wr_odt_pat_rank0\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl0 & 0x0f));
2427 	printf("\n    \"wr_odt_pat_rank1\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl1 & 0x0f));
2428 	printf("\n    \"wr_odt_pat_rank2\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl2 & 0x0f));
2429 	printf("\n    \"wr_odt_pat_rank3\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl3 & 0x0f));
2430 	printf("\n    \"rd_odt_pat_rank0\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl0 & 0xf0));
2431 	printf("\n    \"rd_odt_pat_rank1\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl1 & 0xf0));
2432 	printf("\n    \"rd_odt_pat_rank2\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl2 & 0xf0));
2433 	printf("\n    \"rd_odt_pat_rank3\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl3 & 0xf0));
2434 	printf("\n    \"d4_misc\": \"0x%01x\",", (unsigned int)msg_1d->d4misc);
2435 	printf("\n    \"share_2d_vref_results\": \"0x%01x\",", (unsigned int)msg_1d->share2dvref_result);
2436 	printf("\n    \"sequence_ctrl\": \"0x%04x\",", (unsigned int)msg_1d->sequence_ctrl);
2437 	printf("\n    \"mr0\": \"0x%04x\",", (unsigned int)msg_1d->mr0);
2438 	printf("\n    \"mr1\": \"0x%04x\",", (unsigned int)msg_1d->mr1);
2439 	printf("\n    \"mr2\": \"0x%04x\",", (unsigned int)msg_1d->mr2);
2440 	printf("\n    \"mr3\": \"0x%04x\",", (unsigned int)msg_1d->mr3);
2441 	printf("\n    \"mr4\": \"0x%04x\",", (unsigned int)msg_1d->mr4);
2442 	printf("\n    \"mr5\": \"0x%04x\",", (unsigned int)msg_1d->mr5);
2443 	printf("\n    \"mr6\": \"0x%04x\",", (unsigned int)msg_1d->mr6);
2444 	printf("\n    \"alt_cal_l\": \"0x%04x\",", (unsigned int)msg_1d->alt_cas_l);
2445 	printf("\n    \"alt_wcal_l\": \"0x%04x\",", (unsigned int)msg_1d->alt_wcas_l);
2446 	printf("\n    \"sequence_ctrl_2d\": \"0x%04x\",", (unsigned int)msg_2d->sequence_ctrl);
2447 	printf("\n    \"rtt_nom_wr_park0\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park0);
2448 	printf("\n    \"rtt_nom_wr_park1\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park1);
2449 	printf("\n    \"rtt_nom_wr_park2\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park2);
2450 	printf("\n    \"rtt_nom_wr_park3\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park3);
2451 	printf("\n    \"rtt_nom_wr_park4\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park4);
2452 	printf("\n    \"rtt_nom_wr_park5\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park5);
2453 	printf("\n    \"rtt_nom_wr_park6\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park6);
2454 	printf("\n    \"rtt_nom_wr_park7\": \"0x%01x\"", (unsigned int)msg_1d->rtt_nom_wr_park7);
2455 	printf("\n}");
2456 	printf("\n");
2457 }
2458 #endif
2459 
compute_ddr_phy(struct ddr_info * priv)2460 int compute_ddr_phy(struct ddr_info *priv)
2461 {
2462 	const unsigned long clk = priv->clk;
2463 	const struct memctl_opt *popts = &priv->opt;
2464 	const struct ddr_conf *conf = &priv->conf;
2465 	const struct dimm_params *dimm_param = &priv->dimm;
2466 	struct ddr_cfg_regs *regs = &priv->ddr_reg;
2467 	int ret;
2468 	static struct input input;
2469 	static struct ddr4u1d msg_1d;
2470 	static struct ddr4u2d msg_2d;
2471 	unsigned int i;
2472 	unsigned int odt_rd, odt_wr;
2473 	__unused const soc_info_t *soc_info;
2474 #ifdef NXP_APPLY_MAX_CDD
2475 	unsigned int tcfg0, tcfg4, rank;
2476 #endif
2477 
2478 	if (dimm_param == NULL) {
2479 		ERROR("Empty DIMM parameters.\n");
2480 		return -EINVAL;
2481 	}
2482 
2483 	zeromem(&input, sizeof(input));
2484 	zeromem(&msg_1d, sizeof(msg_1d));
2485 	zeromem(&msg_2d, sizeof(msg_2d));
2486 
2487 	input.basic.dram_type = DDR4;
2488 	/* FIXME: Add condition for LRDIMM */
2489 	input.basic.dimm_type = (dimm_param->rdimm != 0) ? RDIMM : UDIMM;
2490 	input.basic.num_dbyte = dimm_param->primary_sdram_width / 8 +
2491 				 dimm_param->ec_sdram_width / 8;
2492 	input.basic.num_active_dbyte_dfi0 = input.basic.num_dbyte;
2493 	input.basic.num_rank_dfi0 = dimm_param->n_ranks;
2494 	input.basic.dram_data_width = dimm_param->device_width;
2495 	input.basic.hard_macro_ver	= 0xa;
2496 	input.basic.num_pstates	= 1;
2497 	input.basic.dfi_freq_ratio	= 1;
2498 	input.basic.num_anib		= 0xc;
2499 	input.basic.train2d		= popts->skip2d ? 0 : 1;
2500 	input.basic.frequency = (int) (clk / 2000000ul);
2501 	debug("frequency = %dMHz\n", input.basic.frequency);
2502 	input.cs_d0 = conf->cs_on_dimm[0];
2503 #if DDRC_NUM_DIMM > 1
2504 	input.cs_d1 = conf->cs_on_dimm[1];
2505 #endif
2506 	input.mirror = dimm_param->mirrored_dimm;
2507 	input.mr[0] = regs->sdram_mode[0] & U(0xffff);
2508 	input.mr[1] = regs->sdram_mode[0] >> 16U;
2509 	input.mr[2] = regs->sdram_mode[1] >> 16U;
2510 	input.mr[3] = regs->sdram_mode[1] & U(0xffff);
2511 	input.mr[4] = regs->sdram_mode[8] >> 16U;
2512 	input.mr[5] = regs->sdram_mode[8] & U(0xffff);
2513 	input.mr[6] = regs->sdram_mode[9] >> 16U;
2514 	input.vref = popts->vref_phy;
2515 	debug("Vref_phy = %d percent\n", (input.vref * 100U) >> 7U);
2516 	for (i = 0U; i < DDRC_NUM_CS; i++) {
2517 		if ((regs->cs[i].config & SDRAM_CS_CONFIG_EN) == 0U) {
2518 			continue;
2519 		}
2520 		odt_rd = (regs->cs[i].config >> 20U) & U(0x7);
2521 		odt_wr = (regs->cs[i].config >> 16U) & U(0x7);
2522 		parse_odt(odt_rd, true, i, input.cs_d0, input.cs_d1,
2523 			   input.odt);
2524 		parse_odt(odt_wr, false, i, input.cs_d0, input.cs_d1,
2525 			   input.odt);
2526 	}
2527 
2528 	/* Do not set sdram_cfg[RD_EN] or sdram_cfg2[RCW_EN] for RDIMM */
2529 	if (dimm_param->rdimm != 0U) {
2530 		regs->sdram_cfg[0] &= ~(1 << 28U);
2531 		regs->sdram_cfg[1] &= ~(1 << 2U);
2532 		input.rcw[0] = (regs->sdram_rcw[0] >> 28U) & U(0xf);
2533 		input.rcw[1] = (regs->sdram_rcw[0] >> 24U) & U(0xf);
2534 		input.rcw[2] = (regs->sdram_rcw[0] >> 20U) & U(0xf);
2535 		input.rcw[3] = (regs->sdram_rcw[0] >> 16U) & U(0xf);
2536 		input.rcw[4] = (regs->sdram_rcw[0] >> 12U) & U(0xf);
2537 		input.rcw[5] = (regs->sdram_rcw[0] >> 8U) & U(0xf);
2538 		input.rcw[6] = (regs->sdram_rcw[0] >> 4U) & U(0xf);
2539 		input.rcw[7] = (regs->sdram_rcw[0] >> 0U) & U(0xf);
2540 		input.rcw[8] = (regs->sdram_rcw[1] >> 28U) & U(0xf);
2541 		input.rcw[9] = (regs->sdram_rcw[1] >> 24U) & U(0xf);
2542 		input.rcw[10] = (regs->sdram_rcw[1] >> 20U) & U(0xf);
2543 		input.rcw[11] = (regs->sdram_rcw[1] >> 16U) & U(0xf);
2544 		input.rcw[12] = (regs->sdram_rcw[1] >> 12U) & U(0xf);
2545 		input.rcw[13] = (regs->sdram_rcw[1] >> 8U) & U(0xf);
2546 		input.rcw[14] = (regs->sdram_rcw[1] >> 4U) & U(0xf);
2547 		input.rcw[15] = (regs->sdram_rcw[1] >> 0U) & U(0xf);
2548 		input.rcw3x = (regs->sdram_rcw[2] >> 8U) & U(0xff);
2549 	}
2550 
2551 	input.adv.odtimpedance = popts->odt ? popts->odt : 60;
2552 	input.adv.tx_impedance = popts->phy_tx_impedance ?
2553 					popts->phy_tx_impedance : 28;
2554 	input.adv.atx_impedance = popts->phy_atx_impedance ?
2555 					popts->phy_atx_impedance : 30;
2556 
2557 	debug("Initializing input adv data structure\n");
2558 	phy_gen2_init_input(&input);
2559 
2560 	debug("Initializing message block\n");
2561 	ret = phy_gen2_msg_init(&msg_1d, &msg_2d, &input);
2562 	if (ret != 0) {
2563 		ERROR("Init msg failed (error code %d)\n", ret);
2564 		return ret;
2565 	}
2566 
2567 	ret = c_init_phy_config(priv->phy, priv->ip_rev, &input, &msg_1d);
2568 	if (ret != 0) {
2569 		ERROR("Init PHY failed (error code %d)\n", ret);
2570 		return ret;
2571 	}
2572 #ifdef NXP_WARM_BOOT
2573 	debug("Warm boot flag value %0x\n", priv->warm_boot_flag);
2574 	if (priv->warm_boot_flag == DDR_WARM_BOOT) {
2575 		debug("Restoring the Phy training data\n");
2576 		// Restore the training data
2577 		ret = restore_phy_training_values(priv->phy,
2578 						  PHY_TRAINING_REGS_ON_FLASH,
2579 						  priv->num_ctlrs,
2580 						  input.basic.train2d);
2581 		if (ret != 0) {
2582 			ERROR("Restoring of training data failed %d\n", ret);
2583 			return ret;
2584 		}
2585 	} else {
2586 #endif
2587 
2588 		debug("Load 1D firmware\n");
2589 		ret = load_fw(priv->phy, &input, 0, &msg_1d,
2590 			      sizeof(struct ddr4u1d), priv->phy_gen2_fw_img_buf,
2591 					priv->img_loadr, priv->warm_boot_flag);
2592 		if (ret != 0) {
2593 			ERROR("Loading firmware failed (error code %d)\n", ret);
2594 			return ret;
2595 		}
2596 
2597 		debug("Execute firmware\n");
2598 		ret = g_exec_fw(priv->phy, 0, &input);
2599 		if (ret != 0) {
2600 			ERROR("Execution FW failed (error code %d)\n", ret);
2601 		}
2602 
2603 #ifdef NXP_APPLY_MAX_CDD
2604 		soc_info = get_soc_info(NXP_DCFG_ADDR);
2605 		if (soc_info->maj_ver == 2) {
2606 			tcfg0 = regs->timing_cfg[0];
2607 			tcfg4 = regs->timing_cfg[4];
2608 			rank = findrank(conf->cs_in_use);
2609 			get_cdd_val(priv->phy, rank, input.basic.frequency,
2610 					&tcfg0, &tcfg4);
2611 			regs->timing_cfg[0] = tcfg0;
2612 			regs->timing_cfg[4] = tcfg4;
2613 		}
2614 #endif
2615 
2616 		if ((ret == 0) && (input.basic.train2d != 0)) {
2617 			/* 2D training starts here */
2618 			debug("Load 2D firmware\n");
2619 			ret = load_fw(priv->phy, &input, 1, &msg_2d,
2620 				      sizeof(struct ddr4u2d),
2621 				      priv->phy_gen2_fw_img_buf,
2622 				      priv->img_loadr,
2623 				      priv->warm_boot_flag);
2624 			if (ret != 0) {
2625 				ERROR("Loading fw failed (err code %d)\n", ret);
2626 			} else {
2627 				debug("Execute 2D firmware\n");
2628 				ret = g_exec_fw(priv->phy, 1, &input);
2629 				if (ret != 0) {
2630 					ERROR("Execution FW failed (err %d)\n",
2631 					       ret);
2632 				}
2633 			}
2634 		}
2635 #ifdef NXP_WARM_BOOT
2636 		if (priv->warm_boot_flag != DDR_WRM_BOOT_NT_SUPPORTED &&
2637 		    ret == 0) {
2638 			debug("save the phy training data\n");
2639 			//Save training data TBD
2640 			ret = save_phy_training_values(priv->phy,
2641 						PHY_TRAINING_REGS_ON_FLASH,
2642 						priv->num_ctlrs,
2643 						input.basic.train2d);
2644 			if (ret != 0) {
2645 				ERROR("Saving training data failed.");
2646 				ERROR("Warm boot will fail. Error=%d.\n", ret);
2647 			}
2648 		}
2649 	} /* else */
2650 #endif
2651 
2652 	if (ret == 0) {
2653 		debug("Load PIE\n");
2654 		i_load_pie(priv->phy, &input, &msg_1d);
2655 
2656 		NOTICE("DDR4 %s with %d-rank %d-bit bus (x%d)\n",
2657 		       input.basic.dimm_type == RDIMM ? "RDIMM" :
2658 		       input.basic.dimm_type == LRDIMM ? "LRDIMM" :
2659 		       "UDIMM",
2660 		       dimm_param->n_ranks,
2661 		       dimm_param->primary_sdram_width,
2662 		       dimm_param->device_width);
2663 	}
2664 #ifdef DEBUG_DDR_INPUT_CONFIG
2665 	print_jason_format(&input, &msg_1d, &msg_2d);
2666 #endif
2667 
2668 	return ret;
2669 }
2670