1 /* @(#)strtod.c	1.5 10/08/21 joerg */
2 
3 /*	$NetBSD: strtod.c,v 1.23 1996/10/13 00:07:55 christos Exp $	*/
4 /*
5  *	The layout for this file was done by AT&T, we did not change it.
6  *	Switch off cstyle(1) checks for now.
7  */
8 /* BEGIN CSTYLED */
9 
10 /****************************************************************
11  *
12  * The author of this software is David M. Gay.
13  *
14  * Copyright (c) 1991 by AT&T.
15  *
16  * Permission to use, copy, modify, and distribute this software for any
17  * purpose without fee is hereby granted, provided that this entire notice
18  * is included in all copies of any software which is or includes a copy
19  * or modification of this software and in all copies of the supporting
20  * documentation for such software.
21  *
22  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
23  * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY
24  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
25  * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
26  *
27  ***************************************************************/
28 
29 /* Please send bug reports to
30 	David M. Gay
31 	AT&T Bell Laboratories, Room 2C-463
32 	600 Mountain Avenue
33 	Murray Hill, NJ 07974-2070
34 	U.S.A.
35 	dmg@research.att.com or research!dmg
36  */
37 
38 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
39  *
40  * This strtod returns a nearest machine number to the input decimal
41  * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
42  * broken by the IEEE round-even rule.  Otherwise ties are broken by
43  * biased rounding (add half and chop).
44  *
45  * Inspired loosely by William D. Clinger's paper "How to Read Floating
46  * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
47  *
48  * Modifications:
49  *
50  *	1. We only require IEEE, IBM, or VAX double-precision
51  *		arithmetic (not IEEE double-extended).
52  *	2. We get by with floating-point arithmetic in a case that
53  *		Clinger missed -- when we're computing d * 10^n
54  *		for a small integer d and the integer n is not too
55  *		much larger than 22 (the maximum integer k for which
56  *		we can represent 10^k exactly), we may be able to
57  *		compute (d*10^k) * 10^(e-k) with just one roundoff.
58  *	3. Rather than a bit-at-a-time adjustment of the binary
59  *		result in the hard case, we use floating-point
60  *		arithmetic to determine the adjustment to within
61  *		one bit; only in really hard cases do we need to
62  *		compute a second residual.
63  *	4. Because of 3., we don't need a large table of powers of 10
64  *		for ten-to-e (just some small tables, e.g. of 10^k
65  *		for 0 <= k <= 22).
66  */
67 
68 /*
69  * #define IEEE_LITTLE_ENDIAN for IEEE-arithmetic machines where the least
70  *	significant byte has the lowest address.
71  * #define IEEE_BIG_ENDIAN for IEEE-arithmetic machines where the most
72  *	significant byte has the lowest address.
73  * #define Long int on machines with 32-bit ints and 64-bit longs.
74  * #define Sudden_Underflow for IEEE-format machines without gradual
75  *	underflow (i.e., that flush to zero on underflow).
76  * #define IBM for IBM mainframe-style floating-point arithmetic.
77  * #define VAX for VAX-style floating-point arithmetic.
78  * #define Unsigned_Shifts if >> does treats its left operand as unsigned.
79  * #define No_leftright to omit left-right logic in fast floating-point
80  *	computation of dtoa.
81  * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
82  * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
83  *	that use extended-precision instructions to compute rounded
84  *	products and quotients) with IBM.
85  * #define ROUND_BIASED for IEEE-format with biased rounding.
86  * #define Inaccurate_Divide for IEEE-format with correctly rounded
87  *	products but inaccurate quotients, e.g., for Intel i860.
88  * #define Just_16 to store 16 bits per 32-bit Long when doing high-precision
89  *	integer arithmetic.  Whether this speeds things up or slows things
90  *	down depends on the machine and the number being converted.
91  * #define KR_headers for old-style C function headers.
92  * #define Bad_float_h if your system lacks a float.h or if it does not
93  *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
94  *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
95  * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
96  *	if memory is available and otherwise does something you deem
97  *	appropriate.  If MALLOC is undefined, malloc will be invoked
98  *	directly -- and assumed always to succeed.
99  */
100 
101 #if defined(LIBC_SCCS) && !defined(lint)
102 static char *rcsid = "$NetBSD: strtod.c,v 1.23 1996/10/13 00:07:55 christos Exp $";
103 #endif /* LIBC_SCCS and not lint */
104 
105 #include <schily/mconfig.h>
106 #include <schily/btorder.h>
107 
108 #ifdef	__OLD_NETBSD_DEFINES__
109 
110 #if defined(__m68k__) || defined(__sparc__) || defined(__i386__) || \
111     defined(__mips__) || defined(__ns32k__) || defined(__alpha__) || \
112     defined(__powerpc__)
113 #include <sys/types.h>
114 #if BYTE_ORDER == BIG_ENDIAN
115 #define IEEE_BIG_ENDIAN
116 #else
117 #define IEEE_LITTLE_ENDIAN
118 #endif
119 #endif
120 
121 #else	/* __OLD_NETBSD_DEFINES__ */
122 
123 #if !defined(__arm32__) && !defined(vax) && !defined(IBM)
124 
125 /*#ifdef	_BIG_ENDIAN*/
126 #ifdef	WORDS_BIGENDIAN
127 #define IEEE_BIG_ENDIAN
128 #else
129 #define IEEE_LITTLE_ENDIAN
130 #endif
131 
132 #endif	/* !defined(__arm32__) && !defined(vax) && !defined(IBM) */
133 
134 #endif	/* __OLD_NETBSD_DEFINES__ */
135 
136 #ifdef __arm32__
137 /*
138  * Although the CPU is little endian the FP has different
139  * byte and word endianness. The byte order is still little endian
140  * but the word order is big endian.
141  */
142 #define IEEE_BIG_ENDIAN
143 #endif
144 
145 #ifdef vax
146 #define VAX
147 #endif
148 
149 #include <schily/utypes.h>
150 #define Long	Int32_t
151 #define ULong	UInt32_t
152 
153 #ifdef DEBUG
154 #include <schily/stdio.h>
155 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
156 #endif
157 
158 #ifdef __cplusplus
159 #include "malloc.h"
160 #include "memory.h"
161 #else
162 #ifndef KR_headers
163 #include "stdlib.h"
164 #include "string.h"
165 #include "locale.h"
166 #else
167 #include "malloc.h"
168 #include "memory.h"
169 #endif
170 #endif
171 
172 #ifdef MALLOC
173 #ifdef KR_headers
174 extern char *MALLOC();
175 #else
176 extern void *MALLOC(size_t);
177 #endif
178 #else
179 #define MALLOC malloc
180 #endif
181 
182 #include <schily/ctype.h>
183 #include <schily/errno.h>
184 
185 #ifdef Bad_float_h
186 #undef __STDC__
187 #ifdef IEEE_BIG_ENDIAN
188 #define IEEE_ARITHMETIC
189 #endif
190 #ifdef IEEE_LITTLE_ENDIAN
191 #define IEEE_ARITHMETIC
192 #endif
193 
194 #ifdef IEEE_ARITHMETIC
195 #define DBL_DIG 15
196 #define DBL_MAX_10_EXP 308
197 #define DBL_MAX_EXP 1024
198 #define FLT_RADIX 2
199 #define FLT_ROUNDS 1
200 #define DBL_MAX 1.7976931348623157e+308
201 #endif
202 
203 #ifdef IBM
204 #define DBL_DIG 16
205 #define DBL_MAX_10_EXP 75
206 #define DBL_MAX_EXP 63
207 #define FLT_RADIX 16
208 #define FLT_ROUNDS 0
209 #define DBL_MAX 7.2370055773322621e+75
210 #endif
211 
212 #ifdef VAX
213 #define DBL_DIG 16
214 #define DBL_MAX_10_EXP 38
215 #define DBL_MAX_EXP 127
216 #define FLT_RADIX 2
217 #define FLT_ROUNDS 1
218 #define DBL_MAX 1.7014118346046923e+38
219 #endif
220 
221 #ifndef LONG_MAX
222 #define LONG_MAX 2147483647
223 #endif
224 
225 #else	/* Bad_float_h */
226 #include <schily/float.h>
227 #endif	/* Bad_float_h */
228 /*#ifndef __MATH_H__*/
229 #include <schily/math.h>
230 /*#endif*/
231 
232 #ifdef __cplusplus
233 extern "C" {
234 #endif
235 
236 #ifndef CONST
237 #ifdef KR_headers
238 #define CONST /* blank */
239 #else
240 #define CONST const
241 #endif
242 #endif
243 
244 #ifdef Unsigned_Shifts
245 #define Sign_Extend(a,b) if (b < 0) a |= 0xffff0000;
246 #else
247 #define Sign_Extend(a,b) /*no-op*/
248 #endif
249 
250 #if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN) + defined(VAX) + \
251     defined(IBM) != 1
252 Exactly one of IEEE_LITTLE_ENDIAN IEEE_BIG_ENDIAN, VAX, or
253 IBM should be defined.
254 #endif
255 
256 #ifdef IEEE_LITTLE_ENDIAN
257 #define word0(x) ((ULong *)&x)[1]
258 #define word1(x) ((ULong *)&x)[0]
259 #else
260 #define word0(x) ((ULong *)&x)[0]
261 #define word1(x) ((ULong *)&x)[1]
262 #endif
263 
264 /* The following definition of Storeinc is appropriate for MIPS processors.
265  * An alternative that might be better on some machines is
266  * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
267  */
268 #if defined(IEEE_LITTLE_ENDIAN) + defined(VAX) + defined(__arm32__)
269 #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
270 ((unsigned short *)a)[0] = (unsigned short)c, a++)
271 #else
272 #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
273 ((unsigned short *)a)[1] = (unsigned short)c, a++)
274 #endif
275 
276 /* #define P DBL_MANT_DIG */
277 /* Ten_pmax = floor(P*log(2)/log(5)) */
278 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
279 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
280 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
281 
282 #if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN)
283 #define Exp_shift  20
284 #define Exp_shift1 20
285 #define Exp_msk1    0x100000
286 #define Exp_msk11   0x100000
287 #define Exp_mask  0x7ff00000
288 #define P 53
289 #define Bias 1023
290 #define IEEE_Arith
291 #define Emin (-1022)
292 #define Exp_1  0x3ff00000
293 #define Exp_11 0x3ff00000
294 #define Ebits 11
295 #define Frac_mask  0xfffff
296 #define Frac_mask1 0xfffff
297 #define Ten_pmax 22
298 #define Bletch 0x10
299 #define Bndry_mask  0xfffff
300 #define Bndry_mask1 0xfffff
301 #define LSB 1
302 #define Sign_bit 0x80000000
303 #define Log2P 1
304 #define Tiny0 0
305 #define Tiny1 1
306 #define Quick_max 14
307 #define Int_max 14
308 #define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */
309 #else
310 #undef  Sudden_Underflow
311 #define Sudden_Underflow
312 #ifdef IBM
313 #define Exp_shift  24
314 #define Exp_shift1 24
315 #define Exp_msk1   0x1000000
316 #define Exp_msk11  0x1000000
317 #define Exp_mask  0x7f000000
318 #define P 14
319 #define Bias 65
320 #define Exp_1  0x41000000
321 #define Exp_11 0x41000000
322 #define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */
323 #define Frac_mask  0xffffff
324 #define Frac_mask1 0xffffff
325 #define Bletch 4
326 #define Ten_pmax 22
327 #define Bndry_mask  0xefffff
328 #define Bndry_mask1 0xffffff
329 #define LSB 1
330 #define Sign_bit 0x80000000
331 #define Log2P 4
332 #define Tiny0 0x100000
333 #define Tiny1 0
334 #define Quick_max 14
335 #define Int_max 15
336 #else /* VAX */
337 #define Exp_shift  23
338 #define Exp_shift1 7
339 #define Exp_msk1    0x80
340 #define Exp_msk11   0x800000
341 #define Exp_mask  0x7f80
342 #define P 56
343 #define Bias 129
344 #define Exp_1  0x40800000
345 #define Exp_11 0x4080
346 #define Ebits 8
347 #define Frac_mask  0x7fffff
348 #define Frac_mask1 0xffff007f
349 #define Ten_pmax 24
350 #define Bletch 2
351 #define Bndry_mask  0xffff007f
352 #define Bndry_mask1 0xffff007f
353 #define LSB 0x10000
354 #define Sign_bit 0x8000
355 #define Log2P 1
356 #define Tiny0 0x80
357 #define Tiny1 0
358 #define Quick_max 15
359 #define Int_max 15
360 #endif
361 #endif
362 
363 #ifndef IEEE_Arith
364 #define ROUND_BIASED
365 #endif
366 
367 #ifdef RND_PRODQUOT
368 #define rounded_product(a,b) a = rnd_prod(a, b)
369 #define rounded_quotient(a,b) a = rnd_quot(a, b)
370 #ifdef KR_headers
371 extern double rnd_prod(), rnd_quot();
372 #else
373 extern double rnd_prod(double, double), rnd_quot(double, double);
374 #endif
375 #else
376 #define rounded_product(a,b) a *= b
377 #define rounded_quotient(a,b) a /= b
378 #endif
379 
380 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
381 #define Big1 0xffffffff
382 
383 #ifndef Just_16
384 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
385  * This makes some inner loops simpler and sometimes saves work
386  * during multiplications, but it often seems to make things slightly
387  * slower.  Hence the default is now to store 32 bits per Long.
388  */
389 #ifndef Pack_32
390 #define Pack_32
391 #endif
392 #endif
393 
394 #define Kmax 15
395 
396 #ifdef __cplusplus
397 extern "C" double strtod(const char *s00, char **se);
398 extern "C" char *__dtoa(double d, int mode, int ndigits,
399 			int *decpt, int *sign, char **rve);
400 #endif
401 
402  struct
403 Bigint {
404 	struct Bigint *next;
405 	int k, maxwds, sign, wds;
406 	ULong x[1];
407 	};
408 
409  typedef struct Bigint Bigint;
410 
411  static Bigint *freelist[Kmax+1];
412 
413  static Bigint *
Balloc(k)414 Balloc
415 #ifdef KR_headers
416 	(k) int k;
417 #else
418 	(int k)
419 #endif
420 {
421 	int x;
422 	Bigint *rv;
423 
424 	if (rv = freelist[k]) {
425 		freelist[k] = rv->next;
426 		}
427 	else {
428 		x = 1 << k;
429 		rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(Long));
430 		rv->k = k;
431 		rv->maxwds = x;
432 		}
433 	rv->sign = rv->wds = 0;
434 	return rv;
435 	}
436 
437  static void
Bfree(v)438 Bfree
439 #ifdef KR_headers
440 	(v) Bigint *v;
441 #else
442 	(Bigint *v)
443 #endif
444 {
445 	if (v) {
446 		v->next = freelist[v->k];
447 		freelist[v->k] = v;
448 		}
449 	}
450 
451 #define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
452 y->wds*sizeof(Long) + 2*sizeof(int))
453 
454  static Bigint *
multadd(b,m,a)455 multadd
456 #ifdef KR_headers
457 	(b, m, a) Bigint *b; int m, a;
458 #else
459 	(Bigint *b, int m, int a)	/* multiply by m and add a */
460 #endif
461 {
462 	int i, wds;
463 	ULong *x, y;
464 #ifdef Pack_32
465 	ULong xi, z;
466 #endif
467 	Bigint *b1;
468 
469 	wds = b->wds;
470 	x = b->x;
471 	i = 0;
472 	do {
473 #ifdef Pack_32
474 		xi = *x;
475 		y = (xi & 0xffff) * m + a;
476 		z = (xi >> 16) * m + (y >> 16);
477 		a = (int)(z >> 16);
478 		*x++ = (z << 16) + (y & 0xffff);
479 #else
480 		y = *x * m + a;
481 		a = (int)(y >> 16);
482 		*x++ = y & 0xffff;
483 #endif
484 		}
485 		while(++i < wds);
486 	if (a) {
487 		if (wds >= b->maxwds) {
488 			b1 = Balloc(b->k+1);
489 			Bcopy(b1, b);
490 			Bfree(b);
491 			b = b1;
492 			}
493 		b->x[wds++] = a;
494 		b->wds = wds;
495 		}
496 	return b;
497 	}
498 
499  static Bigint *
s2b(s,nd0,nd,y9)500 s2b
501 #ifdef KR_headers
502 	(s, nd0, nd, y9) CONST char *s; int nd0, nd; ULong y9;
503 #else
504 	(CONST char *s, int nd0, int nd, ULong y9)
505 #endif
506 {
507 	Bigint *b;
508 	int i, k;
509 	Long x, y;
510 
511 	x = (nd + 8) / 9;
512 	for(k = 0, y = 1; x > y; y <<= 1, k++) ;
513 #ifdef Pack_32
514 	b = Balloc(k);
515 	b->x[0] = y9;
516 	b->wds = 1;
517 #else
518 	b = Balloc(k+1);
519 	b->x[0] = y9 & 0xffff;
520 	b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
521 #endif
522 
523 	i = 9;
524 	if (9 < nd0) {
525 		s += 9;
526 		do b = multadd(b, 10, *s++ - '0');
527 			while(++i < nd0);
528 		s++;
529 		}
530 	else
531 		s += 10;
532 	for(; i < nd; i++)
533 		b = multadd(b, 10, *s++ - '0');
534 	return b;
535 	}
536 
537  static int
hi0bits(x)538 hi0bits
539 #ifdef KR_headers
540 	(x) register ULong x;
541 #else
542 	(register ULong x)
543 #endif
544 {
545 	register int k = 0;
546 
547 	if (!(x & 0xffff0000)) {
548 		k = 16;
549 		x <<= 16;
550 		}
551 	if (!(x & 0xff000000)) {
552 		k += 8;
553 		x <<= 8;
554 		}
555 	if (!(x & 0xf0000000)) {
556 		k += 4;
557 		x <<= 4;
558 		}
559 	if (!(x & 0xc0000000)) {
560 		k += 2;
561 		x <<= 2;
562 		}
563 	if (!(x & 0x80000000)) {
564 		k++;
565 		if (!(x & 0x40000000))
566 			return 32;
567 		}
568 	return k;
569 	}
570 
571  static int
lo0bits(y)572 lo0bits
573 #ifdef KR_headers
574 	(y) ULong *y;
575 #else
576 	(ULong *y)
577 #endif
578 {
579 	register int k;
580 	register ULong x = *y;
581 
582 	if (x & 7) {
583 		if (x & 1)
584 			return 0;
585 		if (x & 2) {
586 			*y = x >> 1;
587 			return 1;
588 			}
589 		*y = x >> 2;
590 		return 2;
591 		}
592 	k = 0;
593 	if (!(x & 0xffff)) {
594 		k = 16;
595 		x >>= 16;
596 		}
597 	if (!(x & 0xff)) {
598 		k += 8;
599 		x >>= 8;
600 		}
601 	if (!(x & 0xf)) {
602 		k += 4;
603 		x >>= 4;
604 		}
605 	if (!(x & 0x3)) {
606 		k += 2;
607 		x >>= 2;
608 		}
609 	if (!(x & 1)) {
610 		k++;
611 		x >>= 1;
612 		if (!x & 1)
613 			return 32;
614 		}
615 	*y = x;
616 	return k;
617 	}
618 
619  static Bigint *
i2b(i)620 i2b
621 #ifdef KR_headers
622 	(i) int i;
623 #else
624 	(int i)
625 #endif
626 {
627 	Bigint *b;
628 
629 	b = Balloc(1);
630 	b->x[0] = i;
631 	b->wds = 1;
632 	return b;
633 	}
634 
635  static Bigint *
mult(a,b)636 mult
637 #ifdef KR_headers
638 	(a, b) Bigint *a, *b;
639 #else
640 	(Bigint *a, Bigint *b)
641 #endif
642 {
643 	Bigint *c;
644 	int k, wa, wb, wc;
645 	ULong carry, y, z;
646 	ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
647 #ifdef Pack_32
648 	ULong z2;
649 #endif
650 
651 	if (a->wds < b->wds) {
652 		c = a;
653 		a = b;
654 		b = c;
655 		}
656 	k = a->k;
657 	wa = a->wds;
658 	wb = b->wds;
659 	wc = wa + wb;
660 	if (wc > a->maxwds)
661 		k++;
662 	c = Balloc(k);
663 	for(x = c->x, xa = x + wc; x < xa; x++)
664 		*x = 0;
665 	xa = a->x;
666 	xae = xa + wa;
667 	xb = b->x;
668 	xbe = xb + wb;
669 	xc0 = c->x;
670 #ifdef Pack_32
671 	for(; xb < xbe; xb++, xc0++) {
672 		if (y = *xb & 0xffff) {
673 			x = xa;
674 			xc = xc0;
675 			carry = 0;
676 			do {
677 				z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
678 				carry = z >> 16;
679 				z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
680 				carry = z2 >> 16;
681 				Storeinc(xc, z2, z);
682 				}
683 				while(x < xae);
684 			*xc = carry;
685 			}
686 		if (y = *xb >> 16) {
687 			x = xa;
688 			xc = xc0;
689 			carry = 0;
690 			z2 = *xc;
691 			do {
692 				z = (*x & 0xffff) * y + (*xc >> 16) + carry;
693 				carry = z >> 16;
694 				Storeinc(xc, z, z2);
695 				z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
696 				carry = z2 >> 16;
697 				}
698 				while(x < xae);
699 			*xc = z2;
700 			}
701 		}
702 #else
703 	for(; xb < xbe; xc0++) {
704 		if (y = *xb++) {
705 			x = xa;
706 			xc = xc0;
707 			carry = 0;
708 			do {
709 				z = *x++ * y + *xc + carry;
710 				carry = z >> 16;
711 				*xc++ = z & 0xffff;
712 				}
713 				while(x < xae);
714 			*xc = carry;
715 			}
716 		}
717 #endif
718 	for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
719 	c->wds = wc;
720 	return c;
721 	}
722 
723  static Bigint *p5s;
724 
725  static Bigint *
pow5mult(b,k)726 pow5mult
727 #ifdef KR_headers
728 	(b, k) Bigint *b; int k;
729 #else
730 	(Bigint *b, int k)
731 #endif
732 {
733 	Bigint *b1, *p5, *p51;
734 	int i;
735 	static int p05[3] = { 5, 25, 125 };
736 
737 	if (i = k & 3)
738 		b = multadd(b, p05[i-1], 0);
739 
740 	if (!(k >>= 2))
741 		return b;
742 	if (!(p5 = p5s)) {
743 		/* first time */
744 		p5 = p5s = i2b(625);
745 		p5->next = 0;
746 		}
747 	for(;;) {
748 		if (k & 1) {
749 			b1 = mult(b, p5);
750 			Bfree(b);
751 			b = b1;
752 			}
753 		if (!(k >>= 1))
754 			break;
755 		if (!(p51 = p5->next)) {
756 			p51 = p5->next = mult(p5,p5);
757 			p51->next = 0;
758 			}
759 		p5 = p51;
760 		}
761 	return b;
762 	}
763 
764  static Bigint *
lshift(b,k)765 lshift
766 #ifdef KR_headers
767 	(b, k) Bigint *b; int k;
768 #else
769 	(Bigint *b, int k)
770 #endif
771 {
772 	int i, k1, n, n1;
773 	Bigint *b1;
774 	ULong *x, *x1, *xe, z;
775 
776 #ifdef Pack_32
777 	n = k >> 5;
778 #else
779 	n = k >> 4;
780 #endif
781 	k1 = b->k;
782 	n1 = n + b->wds + 1;
783 	for(i = b->maxwds; n1 > i; i <<= 1)
784 		k1++;
785 	b1 = Balloc(k1);
786 	x1 = b1->x;
787 	for(i = 0; i < n; i++)
788 		*x1++ = 0;
789 	x = b->x;
790 	xe = x + b->wds;
791 #ifdef Pack_32
792 	if (k &= 0x1f) {
793 		k1 = 32 - k;
794 		z = 0;
795 		do {
796 			*x1++ = *x << k | z;
797 			z = *x++ >> k1;
798 			}
799 			while(x < xe);
800 		if (*x1 = z)
801 			++n1;
802 		}
803 #else
804 	if (k &= 0xf) {
805 		k1 = 16 - k;
806 		z = 0;
807 		do {
808 			*x1++ = *x << k  & 0xffff | z;
809 			z = *x++ >> k1;
810 			}
811 			while(x < xe);
812 		if (*x1 = z)
813 			++n1;
814 		}
815 #endif
816 	else do
817 		*x1++ = *x++;
818 		while(x < xe);
819 	b1->wds = n1 - 1;
820 	Bfree(b);
821 	return b1;
822 	}
823 
824  static int
cmp(a,b)825 cmp
826 #ifdef KR_headers
827 	(a, b) Bigint *a, *b;
828 #else
829 	(Bigint *a, Bigint *b)
830 #endif
831 {
832 	ULong *xa, *xa0, *xb, *xb0;
833 	int i, j;
834 
835 	i = a->wds;
836 	j = b->wds;
837 #ifdef DEBUG
838 	if (i > 1 && !a->x[i-1])
839 		Bug("cmp called with a->x[a->wds-1] == 0");
840 	if (j > 1 && !b->x[j-1])
841 		Bug("cmp called with b->x[b->wds-1] == 0");
842 #endif
843 	if (i -= j)
844 		return i;
845 	xa0 = a->x;
846 	xa = xa0 + j;
847 	xb0 = b->x;
848 	xb = xb0 + j;
849 	for(;;) {
850 		if (*--xa != *--xb)
851 			return *xa < *xb ? -1 : 1;
852 		if (xa <= xa0)
853 			break;
854 		}
855 	return 0;
856 	}
857 
858  static Bigint *
diff(a,b)859 diff
860 #ifdef KR_headers
861 	(a, b) Bigint *a, *b;
862 #else
863 	(Bigint *a, Bigint *b)
864 #endif
865 {
866 	Bigint *c;
867 	int i, wa, wb;
868 	Long borrow, y;	/* We need signed shifts here. */
869 	ULong *xa, *xae, *xb, *xbe, *xc;
870 #ifdef Pack_32
871 	Long z;
872 #endif
873 
874 	i = cmp(a,b);
875 	if (!i) {
876 		c = Balloc(0);
877 		c->wds = 1;
878 		c->x[0] = 0;
879 		return c;
880 		}
881 	if (i < 0) {
882 		c = a;
883 		a = b;
884 		b = c;
885 		i = 1;
886 		}
887 	else
888 		i = 0;
889 	c = Balloc(a->k);
890 	c->sign = i;
891 	wa = a->wds;
892 	xa = a->x;
893 	xae = xa + wa;
894 	wb = b->wds;
895 	xb = b->x;
896 	xbe = xb + wb;
897 	xc = c->x;
898 	borrow = 0;
899 #ifdef Pack_32
900 	do {
901 		y = (*xa & 0xffff) - (*xb & 0xffff) + borrow;
902 		borrow = y >> 16;
903 		Sign_Extend(borrow, y);
904 		z = (*xa++ >> 16) - (*xb++ >> 16) + borrow;
905 		borrow = z >> 16;
906 		Sign_Extend(borrow, z);
907 		Storeinc(xc, z, y);
908 		}
909 		while(xb < xbe);
910 	while(xa < xae) {
911 		y = (*xa & 0xffff) + borrow;
912 		borrow = y >> 16;
913 		Sign_Extend(borrow, y);
914 		z = (*xa++ >> 16) + borrow;
915 		borrow = z >> 16;
916 		Sign_Extend(borrow, z);
917 		Storeinc(xc, z, y);
918 		}
919 #else
920 	do {
921 		y = *xa++ - *xb++ + borrow;
922 		borrow = y >> 16;
923 		Sign_Extend(borrow, y);
924 		*xc++ = y & 0xffff;
925 		}
926 		while(xb < xbe);
927 	while(xa < xae) {
928 		y = *xa++ + borrow;
929 		borrow = y >> 16;
930 		Sign_Extend(borrow, y);
931 		*xc++ = y & 0xffff;
932 		}
933 #endif
934 	while(!*--xc)
935 		wa--;
936 	c->wds = wa;
937 	return c;
938 	}
939 
940  static double
ulp(x)941 ulp
942 #ifdef KR_headers
943 	(x) double x;
944 #else
945 	(double x)
946 #endif
947 {
948 	register Long L;
949 	double a;
950 
951 	L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
952 #ifndef Sudden_Underflow
953 	if (L > 0) {
954 #endif
955 #ifdef IBM
956 		L |= Exp_msk1 >> 4;
957 #endif
958 		word0(a) = L;
959 		word1(a) = 0;
960 #ifndef Sudden_Underflow
961 		}
962 	else {
963 		L = -L >> Exp_shift;
964 		if (L < Exp_shift) {
965 			word0(a) = 0x80000 >> L;
966 			word1(a) = 0;
967 			}
968 		else {
969 			word0(a) = 0;
970 			L -= Exp_shift;
971 			word1(a) = L >= 31 ? 1 : 1 << 31 - L;
972 			}
973 		}
974 #endif
975 	return a;
976 	}
977 
978  static double
b2d(a,e)979 b2d
980 #ifdef KR_headers
981 	(a, e) Bigint *a; int *e;
982 #else
983 	(Bigint *a, int *e)
984 #endif
985 {
986 	ULong *xa, *xa0, w, y, z;
987 	int k;
988 	double d;
989 #ifdef VAX
990 	ULong d0, d1;
991 #else
992 #define d0 word0(d)
993 #define d1 word1(d)
994 #endif
995 
996 	xa0 = a->x;
997 	xa = xa0 + a->wds;
998 	y = *--xa;
999 #ifdef DEBUG
1000 	if (!y) Bug("zero y in b2d");
1001 #endif
1002 	k = hi0bits(y);
1003 	*e = 32 - k;
1004 #ifdef Pack_32
1005 	if (k < Ebits) {
1006 		d0 = Exp_1 | y >> Ebits - k;
1007 		w = xa > xa0 ? *--xa : 0;
1008 		d1 = y << (32-Ebits) + k | w >> Ebits - k;
1009 		goto ret_d;
1010 		}
1011 	z = xa > xa0 ? *--xa : 0;
1012 	if (k -= Ebits) {
1013 		d0 = Exp_1 | y << k | z >> 32 - k;
1014 		y = xa > xa0 ? *--xa : 0;
1015 		d1 = z << k | y >> 32 - k;
1016 		}
1017 	else {
1018 		d0 = Exp_1 | y;
1019 		d1 = z;
1020 		}
1021 #else
1022 	if (k < Ebits + 16) {
1023 		z = xa > xa0 ? *--xa : 0;
1024 		d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
1025 		w = xa > xa0 ? *--xa : 0;
1026 		y = xa > xa0 ? *--xa : 0;
1027 		d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
1028 		goto ret_d;
1029 		}
1030 	z = xa > xa0 ? *--xa : 0;
1031 	w = xa > xa0 ? *--xa : 0;
1032 	k -= Ebits + 16;
1033 	d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
1034 	y = xa > xa0 ? *--xa : 0;
1035 	d1 = w << k + 16 | y << k;
1036 #endif
1037  ret_d:
1038 #ifdef VAX
1039 	word0(d) = d0 >> 16 | d0 << 16;
1040 	word1(d) = d1 >> 16 | d1 << 16;
1041 #else
1042 #undef d0
1043 #undef d1
1044 #endif
1045 	return d;
1046 	}
1047 
1048  static Bigint *
d2b(d,e,bits)1049 d2b
1050 #ifdef KR_headers
1051 	(d, e, bits) double d; int *e, *bits;
1052 #else
1053 	(double d, int *e, int *bits)
1054 #endif
1055 {
1056 	Bigint *b;
1057 	int de, i, k;
1058 	ULong *x, y, z;
1059 #ifdef VAX
1060 	ULong d0, d1;
1061 	d0 = word0(d) >> 16 | word0(d) << 16;
1062 	d1 = word1(d) >> 16 | word1(d) << 16;
1063 #else
1064 #define d0 word0(d)
1065 #define d1 word1(d)
1066 #endif
1067 
1068 #ifdef Pack_32
1069 	b = Balloc(1);
1070 #else
1071 	b = Balloc(2);
1072 #endif
1073 	x = b->x;
1074 
1075 	z = d0 & Frac_mask;
1076 	d0 &= 0x7fffffff;	/* clear sign bit, which we ignore */
1077 #ifdef Sudden_Underflow
1078 	de = (int)(d0 >> Exp_shift);
1079 #ifndef IBM
1080 	z |= Exp_msk11;
1081 #endif
1082 #else
1083 	if (de = (int)(d0 >> Exp_shift))
1084 		z |= Exp_msk1;
1085 #endif
1086 #ifdef Pack_32
1087 	if (y = d1) {
1088 		if (k = lo0bits(&y)) {
1089 			x[0] = y | z << 32 - k;
1090 			z >>= k;
1091 			}
1092 		else
1093 			x[0] = y;
1094 		i = b->wds = (x[1] = z) ? 2 : 1;
1095 		}
1096 	else {
1097 #ifdef DEBUG
1098 		if (!z)
1099 			Bug("Zero passed to d2b");
1100 #endif
1101 		k = lo0bits(&z);
1102 		x[0] = z;
1103 		i = b->wds = 1;
1104 		k += 32;
1105 		}
1106 #else
1107 	if (y = d1) {
1108 		if (k = lo0bits(&y))
1109 			if (k >= 16) {
1110 				x[0] = y | z << 32 - k & 0xffff;
1111 				x[1] = z >> k - 16 & 0xffff;
1112 				x[2] = z >> k;
1113 				i = 2;
1114 				}
1115 			else {
1116 				x[0] = y & 0xffff;
1117 				x[1] = y >> 16 | z << 16 - k & 0xffff;
1118 				x[2] = z >> k & 0xffff;
1119 				x[3] = z >> k+16;
1120 				i = 3;
1121 				}
1122 		else {
1123 			x[0] = y & 0xffff;
1124 			x[1] = y >> 16;
1125 			x[2] = z & 0xffff;
1126 			x[3] = z >> 16;
1127 			i = 3;
1128 			}
1129 		}
1130 	else {
1131 #ifdef DEBUG
1132 		if (!z)
1133 			Bug("Zero passed to d2b");
1134 #endif
1135 		k = lo0bits(&z);
1136 		if (k >= 16) {
1137 			x[0] = z;
1138 			i = 0;
1139 			}
1140 		else {
1141 			x[0] = z & 0xffff;
1142 			x[1] = z >> 16;
1143 			i = 1;
1144 			}
1145 		k += 32;
1146 		}
1147 	while(!x[i])
1148 		--i;
1149 	b->wds = i + 1;
1150 #endif
1151 #ifndef Sudden_Underflow
1152 	if (de) {
1153 #endif
1154 #ifdef IBM
1155 		*e = (de - Bias - (P-1) << 2) + k;
1156 		*bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
1157 #else
1158 		*e = de - Bias - (P-1) + k;
1159 		*bits = P - k;
1160 #endif
1161 #ifndef Sudden_Underflow
1162 		}
1163 	else {
1164 		*e = de - Bias - (P-1) + 1 + k;
1165 #ifdef Pack_32
1166 		*bits = 32*i - hi0bits(x[i-1]);
1167 #else
1168 		*bits = (i+2)*16 - hi0bits(x[i]);
1169 #endif
1170 		}
1171 #endif
1172 	return b;
1173 	}
1174 #undef d0
1175 #undef d1
1176 
1177  static double
ratio(a,b)1178 ratio
1179 #ifdef KR_headers
1180 	(a, b) Bigint *a, *b;
1181 #else
1182 	(Bigint *a, Bigint *b)
1183 #endif
1184 {
1185 	double da, db;
1186 	int k, ka, kb;
1187 
1188 	da = b2d(a, &ka);
1189 	db = b2d(b, &kb);
1190 #ifdef Pack_32
1191 	k = ka - kb + 32*(a->wds - b->wds);
1192 #else
1193 	k = ka - kb + 16*(a->wds - b->wds);
1194 #endif
1195 #ifdef IBM
1196 	if (k > 0) {
1197 		word0(da) += (k >> 2)*Exp_msk1;
1198 		if (k &= 3)
1199 			da *= 1 << k;
1200 		}
1201 	else {
1202 		k = -k;
1203 		word0(db) += (k >> 2)*Exp_msk1;
1204 		if (k &= 3)
1205 			db *= 1 << k;
1206 		}
1207 #else
1208 	if (k > 0)
1209 		word0(da) += k*Exp_msk1;
1210 	else {
1211 		k = -k;
1212 		word0(db) += k*Exp_msk1;
1213 		}
1214 #endif
1215 	return da / db;
1216 	}
1217 
1218 static CONST double
1219 tens[] = {
1220 		1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1221 		1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1222 		1e20, 1e21, 1e22
1223 #ifdef VAX
1224 		, 1e23, 1e24
1225 #endif
1226 		};
1227 
1228 #ifdef IEEE_Arith
1229 static CONST double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1230 static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, 1e-256 };
1231 #define n_bigtens 5
1232 #else
1233 #ifdef IBM
1234 static CONST double bigtens[] = { 1e16, 1e32, 1e64 };
1235 static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 };
1236 #define n_bigtens 3
1237 #else
1238 static CONST double bigtens[] = { 1e16, 1e32 };
1239 static CONST double tinytens[] = { 1e-16, 1e-32 };
1240 #define n_bigtens 2
1241 #endif
1242 #endif
1243 
1244  double
strtod(s00,se)1245 strtod
1246 #ifdef KR_headers
1247 	(s00, se) CONST char *s00; char **se;
1248 #else
1249 	(CONST char *s00, char **se)
1250 #endif
1251 {
1252 	int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
1253 		 e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
1254 	CONST char *s, *s0, *s1;
1255 	double aadj, aadj1, adj, rv, rv0;
1256 	Long L;
1257 	ULong y, z;
1258 	Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
1259 
1260 #ifndef KR_headers
1261 	CONST char decimal_point = localeconv()->decimal_point[0];
1262 #else
1263 	CONST char decimal_point = '.';
1264 #endif
1265 
1266 	sign = nz0 = nz = 0;
1267 	rv = 0.;
1268 
1269 
1270 	for(s = s00; isspace((unsigned char) *s); s++)
1271 		;
1272 
1273 	if (*s == '-') {
1274 		sign = 1;
1275 		s++;
1276 	} else if (*s == '+') {
1277 		s++;
1278 	}
1279 
1280 	if (*s == '\0') {
1281 		s = s00;
1282 		goto ret;
1283 	}
1284 
1285 	if (*s == '0') {
1286 		nz0 = 1;
1287 		while(*++s == '0') ;
1288 		if (!*s)
1289 			goto ret;
1290 		}
1291 	s0 = s;
1292 	y = z = 0;
1293 	for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
1294 		if (nd < 9)
1295 			y = 10*y + c - '0';
1296 		else if (nd < 16)
1297 			z = 10*z + c - '0';
1298 	nd0 = nd;
1299 	if (c == decimal_point) {
1300 		c = *++s;
1301 		if (!nd) {
1302 			for(; c == '0'; c = *++s)
1303 				nz++;
1304 			if (c > '0' && c <= '9') {
1305 				s0 = s;
1306 				nf += nz;
1307 				nz = 0;
1308 				goto have_dig;
1309 				}
1310 			goto dig_done;
1311 			}
1312 		for(; c >= '0' && c <= '9'; c = *++s) {
1313  have_dig:
1314 			nz++;
1315 			if (c -= '0') {
1316 				nf += nz;
1317 				for(i = 1; i < nz; i++)
1318 					if (nd++ < 9)
1319 						y *= 10;
1320 					else if (nd <= DBL_DIG + 1)
1321 						z *= 10;
1322 				if (nd++ < 9)
1323 					y = 10*y + c;
1324 				else if (nd <= DBL_DIG + 1)
1325 					z = 10*z + c;
1326 				nz = 0;
1327 				}
1328 			}
1329 		}
1330  dig_done:
1331 	e = 0;
1332 	if (c == 'e' || c == 'E') {
1333 		if (!nd && !nz && !nz0) {
1334 			s = s00;
1335 			goto ret;
1336 			}
1337 		s00 = s;
1338 		esign = 0;
1339 		switch(c = *++s) {
1340 			case '-':
1341 				esign = 1;
1342 			case '+':
1343 				c = *++s;
1344 			}
1345 		if (c >= '0' && c <= '9') {
1346 			while(c == '0')
1347 				c = *++s;
1348 			if (c > '0' && c <= '9') {
1349 				L = c - '0';
1350 				s1 = s;
1351 				while((c = *++s) >= '0' && c <= '9')
1352 					L = 10*L + c - '0';
1353 				if (s - s1 > 8 || L > 19999)
1354 					/* Avoid confusion from exponents
1355 					 * so large that e might overflow.
1356 					 */
1357 					e = 19999; /* safe for 16 bit ints */
1358 				else
1359 					e = (int)L;
1360 				if (esign)
1361 					e = -e;
1362 				}
1363 			else
1364 				e = 0;
1365 			}
1366 		else
1367 			s = s00;
1368 		}
1369 	if (!nd) {
1370 		if (!nz && !nz0)
1371 			s = s00;
1372 		goto ret;
1373 		}
1374 	e1 = e -= nf;
1375 
1376 	/* Now we have nd0 digits, starting at s0, followed by a
1377 	 * decimal point, followed by nd-nd0 digits.  The number we're
1378 	 * after is the integer represented by those digits times
1379 	 * 10**e */
1380 
1381 	if (!nd0)
1382 		nd0 = nd;
1383 	k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
1384 	rv = y;
1385 	if (k > 9)
1386 		rv = tens[k - 9] * rv + z;
1387 	bd0 = 0;
1388 	if (nd <= DBL_DIG
1389 #ifndef RND_PRODQUOT
1390 		&& FLT_ROUNDS == 1
1391 #endif
1392 			) {
1393 		if (!e)
1394 			goto ret;
1395 		if (e > 0) {
1396 			if (e <= Ten_pmax) {
1397 #ifdef VAX
1398 				goto vax_ovfl_check;
1399 #else
1400 				/* rv = */ rounded_product(rv, tens[e]);
1401 				goto ret;
1402 #endif
1403 				}
1404 			i = DBL_DIG - nd;
1405 			if (e <= Ten_pmax + i) {
1406 				/* A fancier test would sometimes let us do
1407 				 * this for larger i values.
1408 				 */
1409 				e -= i;
1410 				rv *= tens[i];
1411 #ifdef VAX
1412 				/* VAX exponent range is so narrow we must
1413 				 * worry about overflow here...
1414 				 */
1415  vax_ovfl_check:
1416 				word0(rv) -= P*Exp_msk1;
1417 				/* rv = */ rounded_product(rv, tens[e]);
1418 				if ((word0(rv) & Exp_mask)
1419 				 > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
1420 					goto ovfl;
1421 				word0(rv) += P*Exp_msk1;
1422 #else
1423 				/* rv = */ rounded_product(rv, tens[e]);
1424 #endif
1425 				goto ret;
1426 				}
1427 			}
1428 #ifndef Inaccurate_Divide
1429 		else if (e >= -Ten_pmax) {
1430 			/* rv = */ rounded_quotient(rv, tens[-e]);
1431 			goto ret;
1432 			}
1433 #endif
1434 		}
1435 	e1 += nd - k;
1436 
1437 	/* Get starting approximation = rv * 10**e1 */
1438 
1439 	if (e1 > 0) {
1440 		if (i = e1 & 15)
1441 			rv *= tens[i];
1442 		if (e1 &= ~15) {
1443 			if (e1 > DBL_MAX_10_EXP) {
1444  ovfl:
1445 				errno = ERANGE;
1446 #ifdef __STDC__
1447 				rv = HUGE_VAL;
1448 #else
1449 				/* Can't trust HUGE_VAL */
1450 #ifdef IEEE_Arith
1451 				word0(rv) = Exp_mask;
1452 				word1(rv) = 0;
1453 #else
1454 				word0(rv) = Big0;
1455 				word1(rv) = Big1;
1456 #endif
1457 #endif
1458 				if (bd0)
1459 					goto retfree;
1460 				goto ret;
1461 				}
1462 			if (e1 >>= 4) {
1463 				for(j = 0; e1 > 1; j++, e1 >>= 1)
1464 					if (e1 & 1)
1465 						rv *= bigtens[j];
1466 			/* The last multiplication could overflow. */
1467 				word0(rv) -= P*Exp_msk1;
1468 				rv *= bigtens[j];
1469 				if ((z = word0(rv) & Exp_mask)
1470 				 > Exp_msk1*(DBL_MAX_EXP+Bias-P))
1471 					goto ovfl;
1472 				if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
1473 					/* set to largest number */
1474 					/* (Can't trust DBL_MAX) */
1475 					word0(rv) = Big0;
1476 					word1(rv) = Big1;
1477 					}
1478 				else
1479 					word0(rv) += P*Exp_msk1;
1480 				}
1481 
1482 			}
1483 		}
1484 	else if (e1 < 0) {
1485 		e1 = -e1;
1486 		if (i = e1 & 15)
1487 			rv /= tens[i];
1488 		if (e1 &= ~15) {
1489 			e1 >>= 4;
1490 			if (e1 >= 1 << n_bigtens)
1491 				goto undfl;
1492 			for(j = 0; e1 > 1; j++, e1 >>= 1)
1493 				if (e1 & 1)
1494 					rv *= tinytens[j];
1495 			/* The last multiplication could underflow. */
1496 			rv0 = rv;
1497 			rv *= tinytens[j];
1498 			if (!rv) {
1499 				rv = 2.*rv0;
1500 				rv *= tinytens[j];
1501 				if (!rv) {
1502  undfl:
1503 					rv = 0.;
1504 					errno = ERANGE;
1505 					if (bd0)
1506 						goto retfree;
1507 					goto ret;
1508 					}
1509 				word0(rv) = Tiny0;
1510 				word1(rv) = Tiny1;
1511 				/* The refinement below will clean
1512 				 * this approximation up.
1513 				 */
1514 				}
1515 			}
1516 		}
1517 
1518 	/* Now the hard part -- adjusting rv to the correct value.*/
1519 
1520 	/* Put digits into bd: true value = bd * 10^e */
1521 
1522 	bd0 = s2b(s0, nd0, nd, y);
1523 
1524 	for(;;) {
1525 		bd = Balloc(bd0->k);
1526 		Bcopy(bd, bd0);
1527 		bb = d2b(rv, &bbe, &bbbits);	/* rv = bb * 2^bbe */
1528 		bs = i2b(1);
1529 
1530 		if (e >= 0) {
1531 			bb2 = bb5 = 0;
1532 			bd2 = bd5 = e;
1533 			}
1534 		else {
1535 			bb2 = bb5 = -e;
1536 			bd2 = bd5 = 0;
1537 			}
1538 		if (bbe >= 0)
1539 			bb2 += bbe;
1540 		else
1541 			bd2 -= bbe;
1542 		bs2 = bb2;
1543 #ifdef Sudden_Underflow
1544 #ifdef IBM
1545 		j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
1546 #else
1547 		j = P + 1 - bbbits;
1548 #endif
1549 #else
1550 		i = bbe + bbbits - 1;	/* logb(rv) */
1551 		if (i < Emin)	/* denormal */
1552 			j = bbe + (P-Emin);
1553 		else
1554 			j = P + 1 - bbbits;
1555 #endif
1556 		bb2 += j;
1557 		bd2 += j;
1558 		i = bb2 < bd2 ? bb2 : bd2;
1559 		if (i > bs2)
1560 			i = bs2;
1561 		if (i > 0) {
1562 			bb2 -= i;
1563 			bd2 -= i;
1564 			bs2 -= i;
1565 			}
1566 		if (bb5 > 0) {
1567 			bs = pow5mult(bs, bb5);
1568 			bb1 = mult(bs, bb);
1569 			Bfree(bb);
1570 			bb = bb1;
1571 			}
1572 		if (bb2 > 0)
1573 			bb = lshift(bb, bb2);
1574 		if (bd5 > 0)
1575 			bd = pow5mult(bd, bd5);
1576 		if (bd2 > 0)
1577 			bd = lshift(bd, bd2);
1578 		if (bs2 > 0)
1579 			bs = lshift(bs, bs2);
1580 		delta = diff(bb, bd);
1581 		dsign = delta->sign;
1582 		delta->sign = 0;
1583 		i = cmp(delta, bs);
1584 		if (i < 0) {
1585 			/* Error is less than half an ulp -- check for
1586 			 * special case of mantissa a power of two.
1587 			 */
1588 			if (dsign || word1(rv) || word0(rv) & Bndry_mask)
1589 				break;
1590 			delta = lshift(delta,Log2P);
1591 			if (cmp(delta, bs) > 0)
1592 				goto drop_down;
1593 			break;
1594 			}
1595 		if (i == 0) {
1596 			/* exactly half-way between */
1597 			if (dsign) {
1598 				if ((word0(rv) & Bndry_mask1) == Bndry_mask1
1599 				 &&  word1(rv) == 0xffffffff) {
1600 					/*boundary case -- increment exponent*/
1601 					word0(rv) = (word0(rv) & Exp_mask)
1602 						+ Exp_msk1
1603 #ifdef IBM
1604 						| Exp_msk1 >> 4
1605 #endif
1606 						;
1607 					word1(rv) = 0;
1608 					break;
1609 					}
1610 				}
1611 			else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
1612  drop_down:
1613 				/* boundary case -- decrement exponent */
1614 #ifdef Sudden_Underflow
1615 				L = word0(rv) & Exp_mask;
1616 #ifdef IBM
1617 				if (L <  Exp_msk1)
1618 #else
1619 				if (L <= Exp_msk1)
1620 #endif
1621 					goto undfl;
1622 				L -= Exp_msk1;
1623 #else
1624 				L = (word0(rv) & Exp_mask) - Exp_msk1;
1625 #endif
1626 				word0(rv) = L | Bndry_mask1;
1627 				word1(rv) = 0xffffffff;
1628 #ifdef IBM
1629 				goto cont;
1630 #else
1631 				break;
1632 #endif
1633 				}
1634 #ifndef ROUND_BIASED
1635 			if (!(word1(rv) & LSB))
1636 				break;
1637 #endif
1638 			if (dsign)
1639 				rv += ulp(rv);
1640 #ifndef ROUND_BIASED
1641 			else {
1642 				rv -= ulp(rv);
1643 #ifndef Sudden_Underflow
1644 				if (!rv)
1645 					goto undfl;
1646 #endif
1647 				}
1648 #endif
1649 			break;
1650 			}
1651 		if ((aadj = ratio(delta, bs)) <= 2.) {
1652 			if (dsign)
1653 				aadj = aadj1 = 1.;
1654 			else if (word1(rv) || word0(rv) & Bndry_mask) {
1655 #ifndef Sudden_Underflow
1656 				if (word1(rv) == Tiny1 && !word0(rv))
1657 					goto undfl;
1658 #endif
1659 				aadj = 1.;
1660 				aadj1 = -1.;
1661 				}
1662 			else {
1663 				/* special case -- power of FLT_RADIX to be */
1664 				/* rounded down... */
1665 
1666 				if (aadj < 2./FLT_RADIX)
1667 					aadj = 1./FLT_RADIX;
1668 				else
1669 					aadj *= 0.5;
1670 				aadj1 = -aadj;
1671 				}
1672 			}
1673 		else {
1674 			aadj *= 0.5;
1675 			aadj1 = dsign ? aadj : -aadj;
1676 #ifdef Check_FLT_ROUNDS
1677 			switch(FLT_ROUNDS) {
1678 				case 2: /* towards +infinity */
1679 					aadj1 -= 0.5;
1680 					break;
1681 				case 0: /* towards 0 */
1682 				case 3: /* towards -infinity */
1683 					aadj1 += 0.5;
1684 				}
1685 #else
1686 			if (FLT_ROUNDS == 0)
1687 				aadj1 += 0.5;
1688 #endif
1689 			}
1690 		y = word0(rv) & Exp_mask;
1691 
1692 		/* Check for overflow */
1693 
1694 		if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
1695 			rv0 = rv;
1696 			word0(rv) -= P*Exp_msk1;
1697 			adj = aadj1 * ulp(rv);
1698 			rv += adj;
1699 			if ((word0(rv) & Exp_mask) >=
1700 					Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
1701 				if (word0(rv0) == Big0 && word1(rv0) == Big1)
1702 					goto ovfl;
1703 				word0(rv) = Big0;
1704 				word1(rv) = Big1;
1705 				goto cont;
1706 				}
1707 			else
1708 				word0(rv) += P*Exp_msk1;
1709 			}
1710 		else {
1711 #ifdef Sudden_Underflow
1712 			if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
1713 				rv0 = rv;
1714 				word0(rv) += P*Exp_msk1;
1715 				adj = aadj1 * ulp(rv);
1716 				rv += adj;
1717 #ifdef IBM
1718 				if ((word0(rv) & Exp_mask) <  P*Exp_msk1)
1719 #else
1720 				if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
1721 #endif
1722 					{
1723 					if (word0(rv0) == Tiny0
1724 					 && word1(rv0) == Tiny1)
1725 						goto undfl;
1726 					word0(rv) = Tiny0;
1727 					word1(rv) = Tiny1;
1728 					goto cont;
1729 					}
1730 				else
1731 					word0(rv) -= P*Exp_msk1;
1732 				}
1733 			else {
1734 				adj = aadj1 * ulp(rv);
1735 				rv += adj;
1736 				}
1737 #else
1738 			/* Compute adj so that the IEEE rounding rules will
1739 			 * correctly round rv + adj in some half-way cases.
1740 			 * If rv * ulp(rv) is denormalized (i.e.,
1741 			 * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
1742 			 * trouble from bits lost to denormalization;
1743 			 * example: 1.2e-307 .
1744 			 */
1745 			if (y <= (P-1)*Exp_msk1 && aadj >= 1.) {
1746 				aadj1 = (double)(int)(aadj + 0.5);
1747 				if (!dsign)
1748 					aadj1 = -aadj1;
1749 				}
1750 			adj = aadj1 * ulp(rv);
1751 			rv += adj;
1752 #endif
1753 			}
1754 		z = word0(rv) & Exp_mask;
1755 		if (y == z) {
1756 			/* Can we stop now? */
1757 			L = aadj;
1758 			aadj -= L;
1759 			/* The tolerances below are conservative. */
1760 			if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
1761 				if (aadj < .4999999 || aadj > .5000001)
1762 					break;
1763 				}
1764 			else if (aadj < .4999999/FLT_RADIX)
1765 				break;
1766 			}
1767  cont:
1768 		Bfree(bb);
1769 		Bfree(bd);
1770 		Bfree(bs);
1771 		Bfree(delta);
1772 		}
1773  retfree:
1774 	Bfree(bb);
1775 	Bfree(bd);
1776 	Bfree(bs);
1777 	Bfree(bd0);
1778 	Bfree(delta);
1779  ret:
1780 	if (se)
1781 		*se = (char *)s;
1782 	return sign ? -rv : rv;
1783 	}
1784 
1785  static int
quorem(b,S)1786 quorem
1787 #ifdef KR_headers
1788 	(b, S) Bigint *b, *S;
1789 #else
1790 	(Bigint *b, Bigint *S)
1791 #endif
1792 {
1793 	int n;
1794 	Long borrow, y;
1795 	ULong carry, q, ys;
1796 	ULong *bx, *bxe, *sx, *sxe;
1797 #ifdef Pack_32
1798 	Long z;
1799 	ULong si, zs;
1800 #endif
1801 
1802 	n = S->wds;
1803 #ifdef DEBUG
1804 	/*debug*/ if (b->wds > n)
1805 	/*debug*/	Bug("oversize b in quorem");
1806 #endif
1807 	if (b->wds < n)
1808 		return 0;
1809 	sx = S->x;
1810 	sxe = sx + --n;
1811 	bx = b->x;
1812 	bxe = bx + n;
1813 	q = *bxe / (*sxe + 1);	/* ensure q <= true quotient */
1814 #ifdef DEBUG
1815 	/*debug*/ if (q > 9)
1816 	/*debug*/	Bug("oversized quotient in quorem");
1817 #endif
1818 	if (q) {
1819 		borrow = 0;
1820 		carry = 0;
1821 		do {
1822 #ifdef Pack_32
1823 			si = *sx++;
1824 			ys = (si & 0xffff) * q + carry;
1825 			zs = (si >> 16) * q + (ys >> 16);
1826 			carry = zs >> 16;
1827 			y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
1828 			borrow = y >> 16;
1829 			Sign_Extend(borrow, y);
1830 			z = (*bx >> 16) - (zs & 0xffff) + borrow;
1831 			borrow = z >> 16;
1832 			Sign_Extend(borrow, z);
1833 			Storeinc(bx, z, y);
1834 #else
1835 			ys = *sx++ * q + carry;
1836 			carry = ys >> 16;
1837 			y = *bx - (ys & 0xffff) + borrow;
1838 			borrow = y >> 16;
1839 			Sign_Extend(borrow, y);
1840 			*bx++ = y & 0xffff;
1841 #endif
1842 			}
1843 			while(sx <= sxe);
1844 		if (!*bxe) {
1845 			bx = b->x;
1846 			while(--bxe > bx && !*bxe)
1847 				--n;
1848 			b->wds = n;
1849 			}
1850 		}
1851 	if (cmp(b, S) >= 0) {
1852 		q++;
1853 		borrow = 0;
1854 		carry = 0;
1855 		bx = b->x;
1856 		sx = S->x;
1857 		do {
1858 #ifdef Pack_32
1859 			si = *sx++;
1860 			ys = (si & 0xffff) + carry;
1861 			zs = (si >> 16) + (ys >> 16);
1862 			carry = zs >> 16;
1863 			y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
1864 			borrow = y >> 16;
1865 			Sign_Extend(borrow, y);
1866 			z = (*bx >> 16) - (zs & 0xffff) + borrow;
1867 			borrow = z >> 16;
1868 			Sign_Extend(borrow, z);
1869 			Storeinc(bx, z, y);
1870 #else
1871 			ys = *sx++ + carry;
1872 			carry = ys >> 16;
1873 			y = *bx - (ys & 0xffff) + borrow;
1874 			borrow = y >> 16;
1875 			Sign_Extend(borrow, y);
1876 			*bx++ = y & 0xffff;
1877 #endif
1878 			}
1879 			while(sx <= sxe);
1880 		bx = b->x;
1881 		bxe = bx + n;
1882 		if (!*bxe) {
1883 			while(--bxe > bx && !*bxe)
1884 				--n;
1885 			b->wds = n;
1886 			}
1887 		}
1888 	return q;
1889 	}
1890 
1891 /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
1892  *
1893  * Inspired by "How to Print Floating-Point Numbers Accurately" by
1894  * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].
1895  *
1896  * Modifications:
1897  *	1. Rather than iterating, we use a simple numeric overestimate
1898  *	   to determine k = floor(log10(d)).  We scale relevant
1899  *	   quantities using O(log2(k)) rather than O(k) multiplications.
1900  *	2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
1901  *	   try to generate digits strictly left to right.  Instead, we
1902  *	   compute with fewer bits and propagate the carry if necessary
1903  *	   when rounding the final digit up.  This is often faster.
1904  *	3. Under the assumption that input will be rounded nearest,
1905  *	   mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
1906  *	   That is, we allow equality in stopping tests when the
1907  *	   round-nearest rule will give the same floating-point value
1908  *	   as would satisfaction of the stopping test with strict
1909  *	   inequality.
1910  *	4. We remove common factors of powers of 2 from relevant
1911  *	   quantities.
1912  *	5. When converting floating-point integers less than 1e16,
1913  *	   we use floating-point arithmetic rather than resorting
1914  *	   to multiple-precision integers.
1915  *	6. When asked to produce fewer than 15 digits, we first try
1916  *	   to get by with floating-point arithmetic; we resort to
1917  *	   multiple-precision integer arithmetic only if we cannot
1918  *	   guarantee that the floating-point calculation has given
1919  *	   the correctly rounded result.  For k requested digits and
1920  *	   "uniformly" distributed input, the probability is
1921  *	   something like 10^(k-15) that we must resort to the Long
1922  *	   calculation.
1923  */
1924 
1925  char *
__dtoa(d,mode,ndigits,decpt,sign,rve)1926 __dtoa
1927 #ifdef KR_headers
1928 	(d, mode, ndigits, decpt, sign, rve)
1929 	double d; int mode, ndigits, *decpt, *sign; char **rve;
1930 #else
1931 	(double d, int mode, int ndigits, int *decpt, int *sign, char **rve)
1932 #endif
1933 {
1934  /*	Arguments ndigits, decpt, sign are similar to those
1935 	of ecvt and fcvt; trailing zeros are suppressed from
1936 	the returned string.  If not null, *rve is set to point
1937 	to the end of the return value.  If d is +-Infinity or NaN,
1938 	then *decpt is set to 9999.
1939 
1940 	mode:
1941 		0 ==> shortest string that yields d when read in
1942 			and rounded to nearest.
1943 		1 ==> like 0, but with Steele & White stopping rule;
1944 			e.g. with IEEE P754 arithmetic , mode 0 gives
1945 			1e23 whereas mode 1 gives 9.999999999999999e22.
1946 		2 ==> max(1,ndigits) significant digits.  This gives a
1947 			return value similar to that of ecvt, except
1948 			that trailing zeros are suppressed.
1949 		3 ==> through ndigits past the decimal point.  This
1950 			gives a return value similar to that from fcvt,
1951 			except that trailing zeros are suppressed, and
1952 			ndigits can be negative.
1953 		4-9 should give the same return values as 2-3, i.e.,
1954 			4 <= mode <= 9 ==> same return as mode
1955 			2 + (mode & 1).  These modes are mainly for
1956 			debugging; often they run slower but sometimes
1957 			faster than modes 2-3.
1958 		4,5,8,9 ==> left-to-right digit generation.
1959 		6-9 ==> don't try fast floating-point estimate
1960 			(if applicable).
1961 
1962 		Values of mode other than 0-9 are treated as mode 0.
1963 
1964 		Sufficient space is allocated to the return value
1965 		to hold the suppressed trailing zeros.
1966 	*/
1967 
1968 	int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
1969 		j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
1970 		spec_case, try_quick;
1971 	Long L;
1972 #ifndef Sudden_Underflow
1973 	int denorm;
1974 	ULong x;
1975 #endif
1976 	Bigint *b, *b1, *delta, *mlo, *mhi, *S;
1977 	double d2, ds, eps;
1978 	char *s, *s0;
1979 	static Bigint *result;
1980 	static int result_k;
1981 
1982 	if (result) {
1983 		result->k = result_k;
1984 		result->maxwds = 1 << result_k;
1985 		Bfree(result);
1986 		result = 0;
1987 		}
1988 
1989 	if (word0(d) & Sign_bit) {
1990 		/* set sign for everything, including 0's and NaNs */
1991 		*sign = 1;
1992 		word0(d) &= ~Sign_bit;	/* clear sign bit */
1993 		}
1994 	else
1995 		*sign = 0;
1996 
1997 #if defined(IEEE_Arith) + defined(VAX)
1998 #ifdef IEEE_Arith
1999 	if ((word0(d) & Exp_mask) == Exp_mask)
2000 #else
2001 	if (word0(d)  == 0x8000)
2002 #endif
2003 		{
2004 		/* Infinity or NaN */
2005 		*decpt = 9999;
2006 		s =
2007 #ifdef IEEE_Arith
2008 			!word1(d) && !(word0(d) & 0xfffff) ? "Infinity" :
2009 #endif
2010 				"NaN";
2011 		if (rve)
2012 			*rve =
2013 #ifdef IEEE_Arith
2014 				s[3] ? s + 8 :
2015 #endif
2016 						s + 3;
2017 		return s;
2018 		}
2019 #endif
2020 #ifdef IBM
2021 	d += 0; /* normalize */
2022 #endif
2023 	if (!d) {
2024 		*decpt = 1;
2025 		s = "0";
2026 		if (rve)
2027 			*rve = s + 1;
2028 		return s;
2029 		}
2030 
2031 	b = d2b(d, &be, &bbits);
2032 #ifdef Sudden_Underflow
2033 	i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
2034 #else
2035 	if (i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) {
2036 #endif
2037 		d2 = d;
2038 		word0(d2) &= Frac_mask1;
2039 		word0(d2) |= Exp_11;
2040 #ifdef IBM
2041 		if (j = 11 - hi0bits(word0(d2) & Frac_mask))
2042 			d2 /= 1 << j;
2043 #endif
2044 
2045 		/* log(x)	~=~ log(1.5) + (x-1.5)/1.5
2046 		 * log10(x)	 =  log(x) / log(10)
2047 		 *		~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
2048 		 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
2049 		 *
2050 		 * This suggests computing an approximation k to log10(d) by
2051 		 *
2052 		 * k = (i - Bias)*0.301029995663981
2053 		 *	+ ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
2054 		 *
2055 		 * We want k to be too large rather than too small.
2056 		 * The error in the first-order Taylor series approximation
2057 		 * is in our favor, so we just round up the constant enough
2058 		 * to compensate for any error in the multiplication of
2059 		 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
2060 		 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
2061 		 * adding 1e-13 to the constant term more than suffices.
2062 		 * Hence we adjust the constant term to 0.1760912590558.
2063 		 * (We could get a more accurate k by invoking log10,
2064 		 *  but this is probably not worthwhile.)
2065 		 */
2066 
2067 		i -= Bias;
2068 #ifdef IBM
2069 		i <<= 2;
2070 		i += j;
2071 #endif
2072 #ifndef Sudden_Underflow
2073 		denorm = 0;
2074 		}
2075 	else {
2076 		/* d is denormalized */
2077 
2078 		i = bbits + be + (Bias + (P-1) - 1);
2079 		x = i > 32  ? word0(d) << 64 - i | word1(d) >> i - 32
2080 			    : word1(d) << 32 - i;
2081 		d2 = x;
2082 		word0(d2) -= 31*Exp_msk1; /* adjust exponent */
2083 		i -= (Bias + (P-1) - 1) + 1;
2084 		denorm = 1;
2085 		}
2086 #endif
2087 	ds = (d2-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
2088 	k = (int)ds;
2089 	if (ds < 0. && ds != k)
2090 		k--;	/* want k = floor(ds) */
2091 	k_check = 1;
2092 	if (k >= 0 && k <= Ten_pmax) {
2093 		if (d < tens[k])
2094 			k--;
2095 		k_check = 0;
2096 		}
2097 	j = bbits - i - 1;
2098 	if (j >= 0) {
2099 		b2 = 0;
2100 		s2 = j;
2101 		}
2102 	else {
2103 		b2 = -j;
2104 		s2 = 0;
2105 		}
2106 	if (k >= 0) {
2107 		b5 = 0;
2108 		s5 = k;
2109 		s2 += k;
2110 		}
2111 	else {
2112 		b2 -= k;
2113 		b5 = -k;
2114 		s5 = 0;
2115 		}
2116 	if (mode < 0 || mode > 9)
2117 		mode = 0;
2118 	try_quick = 1;
2119 	if (mode > 5) {
2120 		mode -= 4;
2121 		try_quick = 0;
2122 		}
2123 	leftright = 1;
2124 	switch(mode) {
2125 		case 0:
2126 		case 1:
2127 			ilim = ilim1 = -1;
2128 			i = 18;
2129 			ndigits = 0;
2130 			break;
2131 		case 2:
2132 			leftright = 0;
2133 			/* no break */
2134 		case 4:
2135 			if (ndigits <= 0)
2136 				ndigits = 1;
2137 			ilim = ilim1 = i = ndigits;
2138 			break;
2139 		case 3:
2140 			leftright = 0;
2141 			/* no break */
2142 		case 5:
2143 			i = ndigits + k + 1;
2144 			ilim = i;
2145 			ilim1 = i - 1;
2146 			if (i <= 0)
2147 				i = 1;
2148 		}
2149 	j = sizeof(ULong);
2150 	for(result_k = 0; sizeof(Bigint) - sizeof(ULong) + j <= i;
2151 		j <<= 1) result_k++;
2152 	result = Balloc(result_k);
2153 	s = s0 = (char *)result;
2154 
2155 	if (ilim >= 0 && ilim <= Quick_max && try_quick) {
2156 
2157 		/* Try to get by with floating-point arithmetic. */
2158 
2159 		i = 0;
2160 		d2 = d;
2161 		k0 = k;
2162 		ilim0 = ilim;
2163 		ieps = 2; /* conservative */
2164 		if (k > 0) {
2165 			ds = tens[k&0xf];
2166 			j = k >> 4;
2167 			if (j & Bletch) {
2168 				/* prevent overflows */
2169 				j &= Bletch - 1;
2170 				d /= bigtens[n_bigtens-1];
2171 				ieps++;
2172 				}
2173 			for(; j; j >>= 1, i++)
2174 				if (j & 1) {
2175 					ieps++;
2176 					ds *= bigtens[i];
2177 					}
2178 			d /= ds;
2179 			}
2180 		else if (j1 = -k) {
2181 			d *= tens[j1 & 0xf];
2182 			for(j = j1 >> 4; j; j >>= 1, i++)
2183 				if (j & 1) {
2184 					ieps++;
2185 					d *= bigtens[i];
2186 					}
2187 			}
2188 		if (k_check && d < 1. && ilim > 0) {
2189 			if (ilim1 <= 0)
2190 				goto fast_failed;
2191 			ilim = ilim1;
2192 			k--;
2193 			d *= 10.;
2194 			ieps++;
2195 			}
2196 		eps = ieps*d + 7.;
2197 		word0(eps) -= (P-1)*Exp_msk1;
2198 		if (ilim == 0) {
2199 			S = mhi = 0;
2200 			d -= 5.;
2201 			if (d > eps)
2202 				goto one_digit;
2203 			if (d < -eps)
2204 				goto no_digits;
2205 			goto fast_failed;
2206 			}
2207 #ifndef No_leftright
2208 		if (leftright) {
2209 			/* Use Steele & White method of only
2210 			 * generating digits needed.
2211 			 */
2212 			eps = 0.5/tens[ilim-1] - eps;
2213 			for(i = 0;;) {
2214 				L = d;
2215 				d -= L;
2216 				*s++ = '0' + (int)L;
2217 				if (d < eps)
2218 					goto ret1;
2219 				if (1. - d < eps)
2220 					goto bump_up;
2221 				if (++i >= ilim)
2222 					break;
2223 				eps *= 10.;
2224 				d *= 10.;
2225 				}
2226 			}
2227 		else {
2228 #endif
2229 			/* Generate ilim digits, then fix them up. */
2230 			eps *= tens[ilim-1];
2231 			for(i = 1;; i++, d *= 10.) {
2232 				L = d;
2233 				d -= L;
2234 				*s++ = '0' + (int)L;
2235 				if (i == ilim) {
2236 					if (d > 0.5 + eps)
2237 						goto bump_up;
2238 					else if (d < 0.5 - eps) {
2239 						while(*--s == '0');
2240 						s++;
2241 						goto ret1;
2242 						}
2243 					break;
2244 					}
2245 				}
2246 #ifndef No_leftright
2247 			}
2248 #endif
2249  fast_failed:
2250 		s = s0;
2251 		d = d2;
2252 		k = k0;
2253 		ilim = ilim0;
2254 		}
2255 
2256 	/* Do we have a "small" integer? */
2257 
2258 	if (be >= 0 && k <= Int_max) {
2259 		/* Yes. */
2260 		ds = tens[k];
2261 		if (ndigits < 0 && ilim <= 0) {
2262 			S = mhi = 0;
2263 			if (ilim < 0 || d <= 5*ds)
2264 				goto no_digits;
2265 			goto one_digit;
2266 			}
2267 		for(i = 1;; i++) {
2268 			L = d / ds;
2269 			d -= L*ds;
2270 #ifdef Check_FLT_ROUNDS
2271 			/* If FLT_ROUNDS == 2, L will usually be high by 1 */
2272 			if (d < 0) {
2273 				L--;
2274 				d += ds;
2275 				}
2276 #endif
2277 			*s++ = '0' + (int)L;
2278 			if (i == ilim) {
2279 				d += d;
2280 				if (d > ds || d == ds && L & 1) {
2281  bump_up:
2282 					while(*--s == '9')
2283 						if (s == s0) {
2284 							k++;
2285 							*s = '0';
2286 							break;
2287 							}
2288 					++*s++;
2289 					}
2290 				break;
2291 				}
2292 			if (!(d *= 10.))
2293 				break;
2294 			}
2295 		goto ret1;
2296 		}
2297 
2298 	m2 = b2;
2299 	m5 = b5;
2300 	mhi = mlo = 0;
2301 	if (leftright) {
2302 		if (mode < 2) {
2303 			i =
2304 #ifndef Sudden_Underflow
2305 				denorm ? be + (Bias + (P-1) - 1 + 1) :
2306 #endif
2307 #ifdef IBM
2308 				1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
2309 #else
2310 				1 + P - bbits;
2311 #endif
2312 			}
2313 		else {
2314 			j = ilim - 1;
2315 			if (m5 >= j)
2316 				m5 -= j;
2317 			else {
2318 				s5 += j -= m5;
2319 				b5 += j;
2320 				m5 = 0;
2321 				}
2322 			if ((i = ilim) < 0) {
2323 				m2 -= i;
2324 				i = 0;
2325 				}
2326 			}
2327 		b2 += i;
2328 		s2 += i;
2329 		mhi = i2b(1);
2330 		}
2331 	if (m2 > 0 && s2 > 0) {
2332 		i = m2 < s2 ? m2 : s2;
2333 		b2 -= i;
2334 		m2 -= i;
2335 		s2 -= i;
2336 		}
2337 	if (b5 > 0) {
2338 		if (leftright) {
2339 			if (m5 > 0) {
2340 				mhi = pow5mult(mhi, m5);
2341 				b1 = mult(mhi, b);
2342 				Bfree(b);
2343 				b = b1;
2344 				}
2345 			if (j = b5 - m5)
2346 				b = pow5mult(b, j);
2347 			}
2348 		else
2349 			b = pow5mult(b, b5);
2350 		}
2351 	S = i2b(1);
2352 	if (s5 > 0)
2353 		S = pow5mult(S, s5);
2354 
2355 	/* Check for special case that d is a normalized power of 2. */
2356 
2357 	if (mode < 2) {
2358 		if (!word1(d) && !(word0(d) & Bndry_mask)
2359 #ifndef Sudden_Underflow
2360 		 && word0(d) & Exp_mask
2361 #endif
2362 				) {
2363 			/* The special case */
2364 			b2 += Log2P;
2365 			s2 += Log2P;
2366 			spec_case = 1;
2367 			}
2368 		else
2369 			spec_case = 0;
2370 		}
2371 
2372 	/* Arrange for convenient computation of quotients:
2373 	 * shift left if necessary so divisor has 4 leading 0 bits.
2374 	 *
2375 	 * Perhaps we should just compute leading 28 bits of S once
2376 	 * and for all and pass them and a shift to quorem, so it
2377 	 * can do shifts and ors to compute the numerator for q.
2378 	 */
2379 #ifdef Pack_32
2380 	if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f)
2381 		i = 32 - i;
2382 #else
2383 	if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf)
2384 		i = 16 - i;
2385 #endif
2386 	if (i > 4) {
2387 		i -= 4;
2388 		b2 += i;
2389 		m2 += i;
2390 		s2 += i;
2391 		}
2392 	else if (i < 4) {
2393 		i += 28;
2394 		b2 += i;
2395 		m2 += i;
2396 		s2 += i;
2397 		}
2398 	if (b2 > 0)
2399 		b = lshift(b, b2);
2400 	if (s2 > 0)
2401 		S = lshift(S, s2);
2402 	if (k_check) {
2403 		if (cmp(b,S) < 0) {
2404 			k--;
2405 			b = multadd(b, 10, 0);	/* we botched the k estimate */
2406 			if (leftright)
2407 				mhi = multadd(mhi, 10, 0);
2408 			ilim = ilim1;
2409 			}
2410 		}
2411 	if (ilim <= 0 && mode > 2) {
2412 		if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
2413 			/* no digits, fcvt style */
2414  no_digits:
2415 			k = -1 - ndigits;
2416 			goto ret;
2417 			}
2418  one_digit:
2419 		*s++ = '1';
2420 		k++;
2421 		goto ret;
2422 		}
2423 	if (leftright) {
2424 		if (m2 > 0)
2425 			mhi = lshift(mhi, m2);
2426 
2427 		/* Compute mlo -- check for special case
2428 		 * that d is a normalized power of 2.
2429 		 */
2430 
2431 		mlo = mhi;
2432 		if (spec_case) {
2433 			mhi = Balloc(mhi->k);
2434 			Bcopy(mhi, mlo);
2435 			mhi = lshift(mhi, Log2P);
2436 			}
2437 
2438 		for(i = 1;;i++) {
2439 			dig = quorem(b,S) + '0';
2440 			/* Do we yet have the shortest decimal string
2441 			 * that will round to d?
2442 			 */
2443 			j = cmp(b, mlo);
2444 			delta = diff(S, mhi);
2445 			j1 = delta->sign ? 1 : cmp(b, delta);
2446 			Bfree(delta);
2447 #ifndef ROUND_BIASED
2448 			if (j1 == 0 && !mode && !(word1(d) & 1)) {
2449 				if (dig == '9')
2450 					goto round_9_up;
2451 				if (j > 0)
2452 					dig++;
2453 				*s++ = dig;
2454 				goto ret;
2455 				}
2456 #endif
2457 			if (j < 0 || j == 0 && !mode
2458 #ifndef ROUND_BIASED
2459 							&& !(word1(d) & 1)
2460 #endif
2461 					) {
2462 				if (j1 > 0) {
2463 					b = lshift(b, 1);
2464 					j1 = cmp(b, S);
2465 					if ((j1 > 0 || j1 == 0 && dig & 1)
2466 					&& dig++ == '9')
2467 						goto round_9_up;
2468 					}
2469 				*s++ = dig;
2470 				goto ret;
2471 				}
2472 			if (j1 > 0) {
2473 				if (dig == '9') { /* possible if i == 1 */
2474  round_9_up:
2475 					*s++ = '9';
2476 					goto roundoff;
2477 					}
2478 				*s++ = dig + 1;
2479 				goto ret;
2480 				}
2481 			*s++ = dig;
2482 			if (i == ilim)
2483 				break;
2484 			b = multadd(b, 10, 0);
2485 			if (mlo == mhi)
2486 				mlo = mhi = multadd(mhi, 10, 0);
2487 			else {
2488 				mlo = multadd(mlo, 10, 0);
2489 				mhi = multadd(mhi, 10, 0);
2490 				}
2491 			}
2492 		}
2493 	else
2494 		for(i = 1;; i++) {
2495 			*s++ = dig = quorem(b,S) + '0';
2496 			if (i >= ilim)
2497 				break;
2498 			b = multadd(b, 10, 0);
2499 			}
2500 
2501 	/* Round off last digit */
2502 
2503 	b = lshift(b, 1);
2504 	j = cmp(b, S);
2505 	if (j > 0 || j == 0 && dig & 1) {
2506  roundoff:
2507 		while(*--s == '9')
2508 			if (s == s0) {
2509 				k++;
2510 				*s++ = '1';
2511 				goto ret;
2512 				}
2513 		++*s++;
2514 		}
2515 	else {
2516 		while(*--s == '0');
2517 		s++;
2518 		}
2519  ret:
2520 	Bfree(S);
2521 	if (mhi) {
2522 		if (mlo && mlo != mhi)
2523 			Bfree(mlo);
2524 		Bfree(mhi);
2525 		}
2526  ret1:
2527 	Bfree(b);
2528 	if (s == s0) {				/* don't return empty string */
2529 		*s++ = '0';
2530 		k = 0;
2531 	}
2532 	*s = 0;
2533 	*decpt = k + 1;
2534 	if (rve)
2535 		*rve = s;
2536 	return s0;
2537 	}
2538 #ifdef __cplusplus
2539 }
2540 #endif
2541