1 mod blockhash;
2
3 use {BitSet, HashCtxt, Image};
4
5 use self::HashAlg::*;
6 use HashVals::*;
7 use CowImage::*;
8
9 /// Hash algorithms implemented by this crate.
10 ///
11 /// Implemented primarily based on the high-level descriptions on the blog Hacker Factor
12 /// written by Dr. Neal Krawetz: http://www.hackerfactor.com/
13 ///
14 /// Note that `hash_width` and `hash_height` in these docs refer to the parameters of
15 /// [`HasherConfig::hash_size()`](struct.HasherConfig.html#method.hash_size).
16 ///
17 /// ### Choosing an Algorithm
18 /// Each algorithm has different performance characteristics
19 #[derive(Clone, Copy, Debug, PartialEq, Eq, Serialize, Deserialize)]
20 pub enum HashAlg {
21 /// The Mean hashing algorithm.
22 ///
23 /// The image is converted to grayscale, scaled down to `hash_width x hash_height`,
24 /// the mean pixel value is taken, and then the hash bits are generated by comparing
25 /// the pixels of the descaled image to the mean.
26 ///
27 /// This is the most basic hash algorithm supported, resistant only to changes in
28 /// resolution, aspect ratio, and overall brightness.
29 ///
30 /// Further Reading:
31 /// http://www.hackerfactor.com/blog/?/archives/432-Looks-Like-It.html
32 Mean,
33
34 /// The Gradient hashing algorithm.
35 ///
36 /// The image is converted to grayscale, scaled down to `(hash_width + 1) x hash_height`,
37 /// and then in row-major order the pixels are compared with each other, setting bits
38 /// in the hash for each comparison. The extra pixel is needed to have `hash_width` comparisons
39 /// per row.
40 ///
41 /// This hash algorithm is as fast or faster than Mean (because it only traverses the
42 /// hash data once) and is more resistant to changes than Mean.
43 ///
44 /// Further Reading:
45 /// http://www.hackerfactor.com/blog/index.php?/archives/529-Kind-of-Like-That.html
46 Gradient,
47
48 /// The Vertical-Gradient hashing algorithm.
49 ///
50 /// Equivalent to [`Gradient`](#variant.Gradient) but operating on the columns of the image
51 /// instead of the rows.
52 VertGradient,
53
54 /// The Double-Gradient hashing algorithm.
55 ///
56 /// An advanced version of [`Gradient`](#variant.Gradient);
57 /// resizes the grayscaled image to `(width / 2 + 1) x (height / 2 + 1)` and compares columns
58 /// in addition to rows.
59 ///
60 /// This algorithm is slightly slower than `Gradient` (resizing the image dwarfs
61 /// the hash time in most cases) but the extra comparison direction may improve results (though
62 /// you might want to consider increasing
63 /// [`hash_size`](struct.HasherConfig.html#method.hash_size)
64 /// to accommodate the extra comparisons).
65 DoubleGradient,
66
67 /// The [Blockhash.io](https://blockhash.io) algorithm.
68 ///
69 /// Compared to the other algorithms, this does not require any preprocessing steps and so
70 /// may be significantly faster at the cost of some resilience.
71 ///
72 /// The algorithm is described in a high level here:
73 /// https://github.com/commonsmachinery/blockhash-rfc/blob/master/main.md
74 Blockhash,
75
76 /// EXHAUSTIVE MATCHING IS NOT RECOMMENDED FOR BACKWARDS COMPATIBILITY REASONS
77 /// New variants may be added in minor (x.[y + 1].z) releases
78 #[doc(hidden)]
79 #[serde(skip)]
80 __Nonexhaustive,
81 }
82
next_multiple_of_2(x: u32) -> u3283 fn next_multiple_of_2(x: u32) -> u32 { x + 1 & !1 }
next_multiple_of_4(x: u32) -> u3284 fn next_multiple_of_4(x: u32) -> u32 { x + 3 & !3 }
85
86 impl HashAlg {
hash_image<I, B>(&self, ctxt: &HashCtxt, image: &I) -> B where I: Image, B: BitSet87 pub (crate) fn hash_image<I, B>(&self, ctxt: &HashCtxt, image: &I) -> B
88 where I: Image, B: BitSet {
89 let post_gauss = ctxt.gauss_preproc(image);
90
91 let HashCtxt { width, height, .. } = *ctxt;
92
93 if *self == Blockhash {
94 return match post_gauss {
95 Borrowed(img) => blockhash::blockhash(img, width, height),
96 Owned(img) => blockhash::blockhash(&img, width, height),
97 };
98 }
99
100 let grayscale = post_gauss.to_grayscale();
101 let (resize_width, resize_height) = self.resize_dimensions(width, height);
102
103 let hash_vals = ctxt.calc_hash_vals(&*grayscale, resize_width, resize_height);
104
105 let rowstride = resize_width as usize;
106
107 match (*self, hash_vals) {
108 (Mean, Floats(ref floats)) => B::from_bools(mean_hash_f32(floats)),
109 (Mean, Bytes(ref bytes)) => B::from_bools(mean_hash_u8(bytes)),
110 (Gradient, Floats(ref floats)) => B::from_bools(gradient_hash(floats, rowstride)),
111 (Gradient, Bytes(ref bytes)) => B::from_bools(gradient_hash(bytes, rowstride)),
112 (VertGradient, Floats(ref floats)) => B::from_bools(vert_gradient_hash(floats,
113 rowstride)),
114 (VertGradient, Bytes(ref bytes)) => B::from_bools(vert_gradient_hash(bytes, rowstride)),
115 (DoubleGradient, Floats(ref floats)) => B::from_bools(double_gradient_hash(floats,
116 rowstride)),
117 (DoubleGradient, Bytes(ref bytes)) => B::from_bools(double_gradient_hash(bytes,
118 rowstride)),
119 (Blockhash, _) | (__Nonexhaustive, _) => unreachable!(),
120 }
121 }
122
round_hash_size(&self, width: u32, height: u32) -> (u32, u32)123 pub (crate) fn round_hash_size(&self, width: u32, height: u32) -> (u32, u32) {
124 match *self {
125 DoubleGradient => (next_multiple_of_2(width), next_multiple_of_2(height)),
126 Blockhash => (next_multiple_of_4(width), next_multiple_of_4(height)),
127 _ => (width, height),
128 }
129 }
130
resize_dimensions(&self, width: u32, height: u32) -> (u32, u32)131 pub (crate) fn resize_dimensions(&self, width: u32, height: u32) -> (u32, u32) {
132 match *self {
133 Mean => (width, height),
134 Blockhash => panic!("Blockhash algorithm does not resize"),
135 Gradient => (width + 1, height),
136 VertGradient => (width, height + 1),
137 DoubleGradient => (width / 2 + 1, height / 2 + 1),
138 __Nonexhaustive => panic!("not a real hash algorithm"),
139 }
140 }
141 }
142
mean_hash_u8<'a>(luma: &'a [u8]) -> impl Iterator<Item = bool> + 'a143 fn mean_hash_u8<'a>(luma: &'a [u8]) -> impl Iterator<Item = bool> + 'a {
144 let mean = (luma.iter().map(|&l| l as u32).sum::<u32>() / luma.len() as u32) as u8;
145 luma.iter().map(move |&x| x >= mean)
146 }
147
mean_hash_f32<'a>(luma: &'a [f32]) -> impl Iterator<Item = bool> + 'a148 fn mean_hash_f32<'a>(luma: &'a [f32]) -> impl Iterator<Item = bool> + 'a {
149 let mean = luma.iter().sum::<f32>() / luma.len() as f32;
150 luma.iter().map(move |&x| x >= mean)
151 }
152
153 /// The guts of the gradient hash separated so we can reuse them
gradient_hash_impl<I>(luma: I) -> impl Iterator<Item = bool> where I: IntoIterator + Clone, <I as IntoIterator>::Item: PartialOrd154 fn gradient_hash_impl<I>(luma: I) -> impl Iterator<Item = bool>
155 where I: IntoIterator + Clone, <I as IntoIterator>::Item: PartialOrd {
156 luma.clone().into_iter().skip(1).zip(luma).map(|(this, last)| last < this)
157 }
158
gradient_hash<'a, T: PartialOrd>(luma: &'a [T], rowstride: usize) -> impl Iterator<Item = bool> + 'a159 fn gradient_hash<'a, T: PartialOrd>(luma: &'a [T], rowstride: usize) -> impl Iterator<Item = bool> + 'a {
160 luma.chunks(rowstride).flat_map(gradient_hash_impl)
161 }
162
vert_gradient_hash<'a, T: PartialOrd>(luma: &'a [T], rowstride: usize) -> impl Iterator<Item = bool> + 'a163 fn vert_gradient_hash<'a, T: PartialOrd>(luma: &'a [T], rowstride: usize) -> impl Iterator<Item = bool> + 'a {
164 (0 .. rowstride).map(move |col_start| luma[col_start..].iter().step_by(rowstride))
165 .flat_map(gradient_hash_impl)
166 }
167
double_gradient_hash<'a, T: PartialOrd>(luma: &'a [T], rowstride: usize) -> impl Iterator<Item = bool> + 'a168 fn double_gradient_hash<'a, T: PartialOrd>(luma: &'a [T], rowstride: usize) -> impl Iterator<Item = bool> + 'a {
169 gradient_hash(luma, rowstride).chain(vert_gradient_hash(luma, rowstride))
170 }
171