1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) International Business Machines Corp., 2006
4  *
5  * Author: Artem Bityutskiy (Битюцкий Артём)
6  */
7 
8 /*
9  * UBI attaching sub-system.
10  *
11  * This sub-system is responsible for attaching MTD devices and it also
12  * implements flash media scanning.
13  *
14  * The attaching information is represented by a &struct ubi_attach_info'
15  * object. Information about volumes is represented by &struct ubi_ainf_volume
16  * objects which are kept in volume RB-tree with root at the @volumes field.
17  * The RB-tree is indexed by the volume ID.
18  *
19  * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
20  * objects are kept in per-volume RB-trees with the root at the corresponding
21  * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
22  * per-volume objects and each of these objects is the root of RB-tree of
23  * per-LEB objects.
24  *
25  * Corrupted physical eraseblocks are put to the @corr list, free physical
26  * eraseblocks are put to the @free list and the physical eraseblock to be
27  * erased are put to the @erase list.
28  *
29  * About corruptions
30  * ~~~~~~~~~~~~~~~~~
31  *
32  * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
33  * whether the headers are corrupted or not. Sometimes UBI also protects the
34  * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
35  * when it moves the contents of a PEB for wear-leveling purposes.
36  *
37  * UBI tries to distinguish between 2 types of corruptions.
38  *
39  * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
40  * tries to handle them gracefully, without printing too many warnings and
41  * error messages. The idea is that we do not lose important data in these
42  * cases - we may lose only the data which were being written to the media just
43  * before the power cut happened, and the upper layers (e.g., UBIFS) are
44  * supposed to handle such data losses (e.g., by using the FS journal).
45  *
46  * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
47  * the reason is a power cut, UBI puts this PEB to the @erase list, and all
48  * PEBs in the @erase list are scheduled for erasure later.
49  *
50  * 2. Unexpected corruptions which are not caused by power cuts. During
51  * attaching, such PEBs are put to the @corr list and UBI preserves them.
52  * Obviously, this lessens the amount of available PEBs, and if at some  point
53  * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
54  * about such PEBs every time the MTD device is attached.
55  *
56  * However, it is difficult to reliably distinguish between these types of
57  * corruptions and UBI's strategy is as follows (in case of attaching by
58  * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
59  * the data area does not contain all 0xFFs, and there were no bit-flips or
60  * integrity errors (e.g., ECC errors in case of NAND) while reading the data
61  * area.  Otherwise UBI assumes corruption type 1. So the decision criteria
62  * are as follows.
63  *   o If the data area contains only 0xFFs, there are no data, and it is safe
64  *     to just erase this PEB - this is corruption type 1.
65  *   o If the data area has bit-flips or data integrity errors (ECC errors on
66  *     NAND), it is probably a PEB which was being erased when power cut
67  *     happened, so this is corruption type 1. However, this is just a guess,
68  *     which might be wrong.
69  *   o Otherwise this is corruption type 2.
70  */
71 
72 #ifndef __UBOOT__
73 #include <log.h>
74 #include <dm/devres.h>
75 #include <linux/err.h>
76 #include <linux/slab.h>
77 #include <linux/crc32.h>
78 #include <linux/random.h>
79 #include <u-boot/crc.h>
80 #else
81 #include <div64.h>
82 #include <linux/bug.h>
83 #include <linux/err.h>
84 #endif
85 
86 #include <linux/math64.h>
87 
88 #include <ubi_uboot.h>
89 #include "ubi.h"
90 
91 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
92 
93 /* Temporary variables used during scanning */
94 static struct ubi_ec_hdr *ech;
95 static struct ubi_vid_hdr *vidh;
96 
97 /**
98  * add_to_list - add physical eraseblock to a list.
99  * @ai: attaching information
100  * @pnum: physical eraseblock number to add
101  * @vol_id: the last used volume id for the PEB
102  * @lnum: the last used LEB number for the PEB
103  * @ec: erase counter of the physical eraseblock
104  * @to_head: if not zero, add to the head of the list
105  * @list: the list to add to
106  *
107  * This function allocates a 'struct ubi_ainf_peb' object for physical
108  * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
109  * It stores the @lnum and @vol_id alongside, which can both be
110  * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
111  * If @to_head is not zero, PEB will be added to the head of the list, which
112  * basically means it will be processed first later. E.g., we add corrupted
113  * PEBs (corrupted due to power cuts) to the head of the erase list to make
114  * sure we erase them first and get rid of corruptions ASAP. This function
115  * returns zero in case of success and a negative error code in case of
116  * failure.
117  */
add_to_list(struct ubi_attach_info * ai,int pnum,int vol_id,int lnum,int ec,int to_head,struct list_head * list)118 static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
119 		       int lnum, int ec, int to_head, struct list_head *list)
120 {
121 	struct ubi_ainf_peb *aeb;
122 
123 	if (list == &ai->free) {
124 		dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
125 	} else if (list == &ai->erase) {
126 		dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
127 	} else if (list == &ai->alien) {
128 		dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
129 		ai->alien_peb_count += 1;
130 	} else
131 		BUG();
132 
133 	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
134 	if (!aeb)
135 		return -ENOMEM;
136 
137 	aeb->pnum = pnum;
138 	aeb->vol_id = vol_id;
139 	aeb->lnum = lnum;
140 	aeb->ec = ec;
141 	if (to_head)
142 		list_add(&aeb->u.list, list);
143 	else
144 		list_add_tail(&aeb->u.list, list);
145 	return 0;
146 }
147 
148 /**
149  * add_corrupted - add a corrupted physical eraseblock.
150  * @ai: attaching information
151  * @pnum: physical eraseblock number to add
152  * @ec: erase counter of the physical eraseblock
153  *
154  * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
155  * physical eraseblock @pnum and adds it to the 'corr' list.  The corruption
156  * was presumably not caused by a power cut. Returns zero in case of success
157  * and a negative error code in case of failure.
158  */
add_corrupted(struct ubi_attach_info * ai,int pnum,int ec)159 static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
160 {
161 	struct ubi_ainf_peb *aeb;
162 
163 	dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
164 
165 	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
166 	if (!aeb)
167 		return -ENOMEM;
168 
169 	ai->corr_peb_count += 1;
170 	aeb->pnum = pnum;
171 	aeb->ec = ec;
172 	list_add(&aeb->u.list, &ai->corr);
173 	return 0;
174 }
175 
176 /**
177  * validate_vid_hdr - check volume identifier header.
178  * @ubi: UBI device description object
179  * @vid_hdr: the volume identifier header to check
180  * @av: information about the volume this logical eraseblock belongs to
181  * @pnum: physical eraseblock number the VID header came from
182  *
183  * This function checks that data stored in @vid_hdr is consistent. Returns
184  * non-zero if an inconsistency was found and zero if not.
185  *
186  * Note, UBI does sanity check of everything it reads from the flash media.
187  * Most of the checks are done in the I/O sub-system. Here we check that the
188  * information in the VID header is consistent to the information in other VID
189  * headers of the same volume.
190  */
validate_vid_hdr(const struct ubi_device * ubi,const struct ubi_vid_hdr * vid_hdr,const struct ubi_ainf_volume * av,int pnum)191 static int validate_vid_hdr(const struct ubi_device *ubi,
192 			    const struct ubi_vid_hdr *vid_hdr,
193 			    const struct ubi_ainf_volume *av, int pnum)
194 {
195 	int vol_type = vid_hdr->vol_type;
196 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
197 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
198 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
199 
200 	if (av->leb_count != 0) {
201 		int av_vol_type;
202 
203 		/*
204 		 * This is not the first logical eraseblock belonging to this
205 		 * volume. Ensure that the data in its VID header is consistent
206 		 * to the data in previous logical eraseblock headers.
207 		 */
208 
209 		if (vol_id != av->vol_id) {
210 			ubi_err(ubi, "inconsistent vol_id");
211 			goto bad;
212 		}
213 
214 		if (av->vol_type == UBI_STATIC_VOLUME)
215 			av_vol_type = UBI_VID_STATIC;
216 		else
217 			av_vol_type = UBI_VID_DYNAMIC;
218 
219 		if (vol_type != av_vol_type) {
220 			ubi_err(ubi, "inconsistent vol_type");
221 			goto bad;
222 		}
223 
224 		if (used_ebs != av->used_ebs) {
225 			ubi_err(ubi, "inconsistent used_ebs");
226 			goto bad;
227 		}
228 
229 		if (data_pad != av->data_pad) {
230 			ubi_err(ubi, "inconsistent data_pad");
231 			goto bad;
232 		}
233 	}
234 
235 	return 0;
236 
237 bad:
238 	ubi_err(ubi, "inconsistent VID header at PEB %d", pnum);
239 	ubi_dump_vid_hdr(vid_hdr);
240 	ubi_dump_av(av);
241 	return -EINVAL;
242 }
243 
244 /**
245  * add_volume - add volume to the attaching information.
246  * @ai: attaching information
247  * @vol_id: ID of the volume to add
248  * @pnum: physical eraseblock number
249  * @vid_hdr: volume identifier header
250  *
251  * If the volume corresponding to the @vid_hdr logical eraseblock is already
252  * present in the attaching information, this function does nothing. Otherwise
253  * it adds corresponding volume to the attaching information. Returns a pointer
254  * to the allocated "av" object in case of success and a negative error code in
255  * case of failure.
256  */
add_volume(struct ubi_attach_info * ai,int vol_id,int pnum,const struct ubi_vid_hdr * vid_hdr)257 static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
258 					  int vol_id, int pnum,
259 					  const struct ubi_vid_hdr *vid_hdr)
260 {
261 	struct ubi_ainf_volume *av;
262 	struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
263 
264 	ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
265 
266 	/* Walk the volume RB-tree to look if this volume is already present */
267 	while (*p) {
268 		parent = *p;
269 		av = rb_entry(parent, struct ubi_ainf_volume, rb);
270 
271 		if (vol_id == av->vol_id)
272 			return av;
273 
274 		if (vol_id > av->vol_id)
275 			p = &(*p)->rb_left;
276 		else
277 			p = &(*p)->rb_right;
278 	}
279 
280 	/* The volume is absent - add it */
281 	av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
282 	if (!av)
283 		return ERR_PTR(-ENOMEM);
284 
285 	av->highest_lnum = av->leb_count = 0;
286 	av->vol_id = vol_id;
287 	av->root = RB_ROOT;
288 	av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
289 	av->data_pad = be32_to_cpu(vid_hdr->data_pad);
290 	av->compat = vid_hdr->compat;
291 	av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
292 							    : UBI_STATIC_VOLUME;
293 	if (vol_id > ai->highest_vol_id)
294 		ai->highest_vol_id = vol_id;
295 
296 	rb_link_node(&av->rb, parent, p);
297 	rb_insert_color(&av->rb, &ai->volumes);
298 	ai->vols_found += 1;
299 	dbg_bld("added volume %d", vol_id);
300 	return av;
301 }
302 
303 /**
304  * ubi_compare_lebs - find out which logical eraseblock is newer.
305  * @ubi: UBI device description object
306  * @aeb: first logical eraseblock to compare
307  * @pnum: physical eraseblock number of the second logical eraseblock to
308  * compare
309  * @vid_hdr: volume identifier header of the second logical eraseblock
310  *
311  * This function compares 2 copies of a LEB and informs which one is newer. In
312  * case of success this function returns a positive value, in case of failure, a
313  * negative error code is returned. The success return codes use the following
314  * bits:
315  *     o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
316  *       second PEB (described by @pnum and @vid_hdr);
317  *     o bit 0 is set: the second PEB is newer;
318  *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
319  *     o bit 1 is set: bit-flips were detected in the newer LEB;
320  *     o bit 2 is cleared: the older LEB is not corrupted;
321  *     o bit 2 is set: the older LEB is corrupted.
322  */
ubi_compare_lebs(struct ubi_device * ubi,const struct ubi_ainf_peb * aeb,int pnum,const struct ubi_vid_hdr * vid_hdr)323 int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
324 			int pnum, const struct ubi_vid_hdr *vid_hdr)
325 {
326 	int len, err, second_is_newer, bitflips = 0, corrupted = 0;
327 	uint32_t data_crc, crc;
328 	struct ubi_vid_hdr *vh = NULL;
329 	unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
330 
331 	if (sqnum2 == aeb->sqnum) {
332 		/*
333 		 * This must be a really ancient UBI image which has been
334 		 * created before sequence numbers support has been added. At
335 		 * that times we used 32-bit LEB versions stored in logical
336 		 * eraseblocks. That was before UBI got into mainline. We do not
337 		 * support these images anymore. Well, those images still work,
338 		 * but only if no unclean reboots happened.
339 		 */
340 		ubi_err(ubi, "unsupported on-flash UBI format");
341 		return -EINVAL;
342 	}
343 
344 	/* Obviously the LEB with lower sequence counter is older */
345 	second_is_newer = (sqnum2 > aeb->sqnum);
346 
347 	/*
348 	 * Now we know which copy is newer. If the copy flag of the PEB with
349 	 * newer version is not set, then we just return, otherwise we have to
350 	 * check data CRC. For the second PEB we already have the VID header,
351 	 * for the first one - we'll need to re-read it from flash.
352 	 *
353 	 * Note: this may be optimized so that we wouldn't read twice.
354 	 */
355 
356 	if (second_is_newer) {
357 		if (!vid_hdr->copy_flag) {
358 			/* It is not a copy, so it is newer */
359 			dbg_bld("second PEB %d is newer, copy_flag is unset",
360 				pnum);
361 			return 1;
362 		}
363 	} else {
364 		if (!aeb->copy_flag) {
365 			/* It is not a copy, so it is newer */
366 			dbg_bld("first PEB %d is newer, copy_flag is unset",
367 				pnum);
368 			return bitflips << 1;
369 		}
370 
371 		vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
372 		if (!vh)
373 			return -ENOMEM;
374 
375 		pnum = aeb->pnum;
376 		err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
377 		if (err) {
378 			if (err == UBI_IO_BITFLIPS)
379 				bitflips = 1;
380 			else {
381 				ubi_err(ubi, "VID of PEB %d header is bad, but it was OK earlier, err %d",
382 					pnum, err);
383 				if (err > 0)
384 					err = -EIO;
385 
386 				goto out_free_vidh;
387 			}
388 		}
389 
390 		vid_hdr = vh;
391 	}
392 
393 	/* Read the data of the copy and check the CRC */
394 
395 	len = be32_to_cpu(vid_hdr->data_size);
396 
397 	mutex_lock(&ubi->buf_mutex);
398 	err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len);
399 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
400 		goto out_unlock;
401 
402 	data_crc = be32_to_cpu(vid_hdr->data_crc);
403 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len);
404 	if (crc != data_crc) {
405 		dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
406 			pnum, crc, data_crc);
407 		corrupted = 1;
408 		bitflips = 0;
409 		second_is_newer = !second_is_newer;
410 	} else {
411 		dbg_bld("PEB %d CRC is OK", pnum);
412 		bitflips |= !!err;
413 	}
414 	mutex_unlock(&ubi->buf_mutex);
415 
416 	ubi_free_vid_hdr(ubi, vh);
417 
418 	if (second_is_newer)
419 		dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
420 	else
421 		dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
422 
423 	return second_is_newer | (bitflips << 1) | (corrupted << 2);
424 
425 out_unlock:
426 	mutex_unlock(&ubi->buf_mutex);
427 out_free_vidh:
428 	ubi_free_vid_hdr(ubi, vh);
429 	return err;
430 }
431 
432 /**
433  * ubi_add_to_av - add used physical eraseblock to the attaching information.
434  * @ubi: UBI device description object
435  * @ai: attaching information
436  * @pnum: the physical eraseblock number
437  * @ec: erase counter
438  * @vid_hdr: the volume identifier header
439  * @bitflips: if bit-flips were detected when this physical eraseblock was read
440  *
441  * This function adds information about a used physical eraseblock to the
442  * 'used' tree of the corresponding volume. The function is rather complex
443  * because it has to handle cases when this is not the first physical
444  * eraseblock belonging to the same logical eraseblock, and the newer one has
445  * to be picked, while the older one has to be dropped. This function returns
446  * zero in case of success and a negative error code in case of failure.
447  */
ubi_add_to_av(struct ubi_device * ubi,struct ubi_attach_info * ai,int pnum,int ec,const struct ubi_vid_hdr * vid_hdr,int bitflips)448 int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
449 		  int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
450 {
451 	int err, vol_id, lnum;
452 	unsigned long long sqnum;
453 	struct ubi_ainf_volume *av;
454 	struct ubi_ainf_peb *aeb;
455 	struct rb_node **p, *parent = NULL;
456 
457 	vol_id = be32_to_cpu(vid_hdr->vol_id);
458 	lnum = be32_to_cpu(vid_hdr->lnum);
459 	sqnum = be64_to_cpu(vid_hdr->sqnum);
460 
461 	dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
462 		pnum, vol_id, lnum, ec, sqnum, bitflips);
463 
464 	av = add_volume(ai, vol_id, pnum, vid_hdr);
465 	if (IS_ERR(av))
466 		return PTR_ERR(av);
467 
468 	if (ai->max_sqnum < sqnum)
469 		ai->max_sqnum = sqnum;
470 
471 	/*
472 	 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
473 	 * if this is the first instance of this logical eraseblock or not.
474 	 */
475 	p = &av->root.rb_node;
476 	while (*p) {
477 		int cmp_res;
478 
479 		parent = *p;
480 		aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
481 		if (lnum != aeb->lnum) {
482 			if (lnum < aeb->lnum)
483 				p = &(*p)->rb_left;
484 			else
485 				p = &(*p)->rb_right;
486 			continue;
487 		}
488 
489 		/*
490 		 * There is already a physical eraseblock describing the same
491 		 * logical eraseblock present.
492 		 */
493 
494 		dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
495 			aeb->pnum, aeb->sqnum, aeb->ec);
496 
497 		/*
498 		 * Make sure that the logical eraseblocks have different
499 		 * sequence numbers. Otherwise the image is bad.
500 		 *
501 		 * However, if the sequence number is zero, we assume it must
502 		 * be an ancient UBI image from the era when UBI did not have
503 		 * sequence numbers. We still can attach these images, unless
504 		 * there is a need to distinguish between old and new
505 		 * eraseblocks, in which case we'll refuse the image in
506 		 * 'ubi_compare_lebs()'. In other words, we attach old clean
507 		 * images, but refuse attaching old images with duplicated
508 		 * logical eraseblocks because there was an unclean reboot.
509 		 */
510 		if (aeb->sqnum == sqnum && sqnum != 0) {
511 			ubi_err(ubi, "two LEBs with same sequence number %llu",
512 				sqnum);
513 			ubi_dump_aeb(aeb, 0);
514 			ubi_dump_vid_hdr(vid_hdr);
515 			return -EINVAL;
516 		}
517 
518 		/*
519 		 * Now we have to drop the older one and preserve the newer
520 		 * one.
521 		 */
522 		cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
523 		if (cmp_res < 0)
524 			return cmp_res;
525 
526 		if (cmp_res & 1) {
527 			/*
528 			 * This logical eraseblock is newer than the one
529 			 * found earlier.
530 			 */
531 			err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
532 			if (err)
533 				return err;
534 
535 			err = add_to_list(ai, aeb->pnum, aeb->vol_id,
536 					  aeb->lnum, aeb->ec, cmp_res & 4,
537 					  &ai->erase);
538 			if (err)
539 				return err;
540 
541 			aeb->ec = ec;
542 			aeb->pnum = pnum;
543 			aeb->vol_id = vol_id;
544 			aeb->lnum = lnum;
545 			aeb->scrub = ((cmp_res & 2) || bitflips);
546 			aeb->copy_flag = vid_hdr->copy_flag;
547 			aeb->sqnum = sqnum;
548 
549 			if (av->highest_lnum == lnum)
550 				av->last_data_size =
551 					be32_to_cpu(vid_hdr->data_size);
552 
553 			return 0;
554 		} else {
555 			/*
556 			 * This logical eraseblock is older than the one found
557 			 * previously.
558 			 */
559 			return add_to_list(ai, pnum, vol_id, lnum, ec,
560 					   cmp_res & 4, &ai->erase);
561 		}
562 	}
563 
564 	/*
565 	 * We've met this logical eraseblock for the first time, add it to the
566 	 * attaching information.
567 	 */
568 
569 	err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
570 	if (err)
571 		return err;
572 
573 	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
574 	if (!aeb)
575 		return -ENOMEM;
576 
577 	aeb->ec = ec;
578 	aeb->pnum = pnum;
579 	aeb->vol_id = vol_id;
580 	aeb->lnum = lnum;
581 	aeb->scrub = bitflips;
582 	aeb->copy_flag = vid_hdr->copy_flag;
583 	aeb->sqnum = sqnum;
584 
585 	if (av->highest_lnum <= lnum) {
586 		av->highest_lnum = lnum;
587 		av->last_data_size = be32_to_cpu(vid_hdr->data_size);
588 	}
589 
590 	av->leb_count += 1;
591 	rb_link_node(&aeb->u.rb, parent, p);
592 	rb_insert_color(&aeb->u.rb, &av->root);
593 	return 0;
594 }
595 
596 /**
597  * ubi_find_av - find volume in the attaching information.
598  * @ai: attaching information
599  * @vol_id: the requested volume ID
600  *
601  * This function returns a pointer to the volume description or %NULL if there
602  * are no data about this volume in the attaching information.
603  */
ubi_find_av(const struct ubi_attach_info * ai,int vol_id)604 struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
605 				    int vol_id)
606 {
607 	struct ubi_ainf_volume *av;
608 	struct rb_node *p = ai->volumes.rb_node;
609 
610 	while (p) {
611 		av = rb_entry(p, struct ubi_ainf_volume, rb);
612 
613 		if (vol_id == av->vol_id)
614 			return av;
615 
616 		if (vol_id > av->vol_id)
617 			p = p->rb_left;
618 		else
619 			p = p->rb_right;
620 	}
621 
622 	return NULL;
623 }
624 
625 /**
626  * ubi_remove_av - delete attaching information about a volume.
627  * @ai: attaching information
628  * @av: the volume attaching information to delete
629  */
ubi_remove_av(struct ubi_attach_info * ai,struct ubi_ainf_volume * av)630 void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
631 {
632 	struct rb_node *rb;
633 	struct ubi_ainf_peb *aeb;
634 
635 	dbg_bld("remove attaching information about volume %d", av->vol_id);
636 
637 	while ((rb = rb_first(&av->root))) {
638 		aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
639 		rb_erase(&aeb->u.rb, &av->root);
640 		list_add_tail(&aeb->u.list, &ai->erase);
641 	}
642 
643 	rb_erase(&av->rb, &ai->volumes);
644 	kfree(av);
645 	ai->vols_found -= 1;
646 }
647 
648 /**
649  * early_erase_peb - erase a physical eraseblock.
650  * @ubi: UBI device description object
651  * @ai: attaching information
652  * @pnum: physical eraseblock number to erase;
653  * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
654  *
655  * This function erases physical eraseblock 'pnum', and writes the erase
656  * counter header to it. This function should only be used on UBI device
657  * initialization stages, when the EBA sub-system had not been yet initialized.
658  * This function returns zero in case of success and a negative error code in
659  * case of failure.
660  */
early_erase_peb(struct ubi_device * ubi,const struct ubi_attach_info * ai,int pnum,int ec)661 static int early_erase_peb(struct ubi_device *ubi,
662 			   const struct ubi_attach_info *ai, int pnum, int ec)
663 {
664 	int err;
665 	struct ubi_ec_hdr *ec_hdr;
666 
667 	if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
668 		/*
669 		 * Erase counter overflow. Upgrade UBI and use 64-bit
670 		 * erase counters internally.
671 		 */
672 		ubi_err(ubi, "erase counter overflow at PEB %d, EC %d",
673 			pnum, ec);
674 		return -EINVAL;
675 	}
676 
677 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
678 	if (!ec_hdr)
679 		return -ENOMEM;
680 
681 	ec_hdr->ec = cpu_to_be64(ec);
682 
683 	err = ubi_io_sync_erase(ubi, pnum, 0);
684 	if (err < 0)
685 		goto out_free;
686 
687 	err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
688 
689 out_free:
690 	kfree(ec_hdr);
691 	return err;
692 }
693 
694 /**
695  * ubi_early_get_peb - get a free physical eraseblock.
696  * @ubi: UBI device description object
697  * @ai: attaching information
698  *
699  * This function returns a free physical eraseblock. It is supposed to be
700  * called on the UBI initialization stages when the wear-leveling sub-system is
701  * not initialized yet. This function picks a physical eraseblocks from one of
702  * the lists, writes the EC header if it is needed, and removes it from the
703  * list.
704  *
705  * This function returns a pointer to the "aeb" of the found free PEB in case
706  * of success and an error code in case of failure.
707  */
ubi_early_get_peb(struct ubi_device * ubi,struct ubi_attach_info * ai)708 struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
709 				       struct ubi_attach_info *ai)
710 {
711 	int err = 0;
712 	struct ubi_ainf_peb *aeb, *tmp_aeb;
713 
714 	if (!list_empty(&ai->free)) {
715 		aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
716 		list_del(&aeb->u.list);
717 		dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
718 		return aeb;
719 	}
720 
721 	/*
722 	 * We try to erase the first physical eraseblock from the erase list
723 	 * and pick it if we succeed, or try to erase the next one if not. And
724 	 * so forth. We don't want to take care about bad eraseblocks here -
725 	 * they'll be handled later.
726 	 */
727 	list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
728 		if (aeb->ec == UBI_UNKNOWN)
729 			aeb->ec = ai->mean_ec;
730 
731 		err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
732 		if (err)
733 			continue;
734 
735 		aeb->ec += 1;
736 		list_del(&aeb->u.list);
737 		dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
738 		return aeb;
739 	}
740 
741 	ubi_err(ubi, "no free eraseblocks");
742 	return ERR_PTR(-ENOSPC);
743 }
744 
745 /**
746  * check_corruption - check the data area of PEB.
747  * @ubi: UBI device description object
748  * @vid_hdr: the (corrupted) VID header of this PEB
749  * @pnum: the physical eraseblock number to check
750  *
751  * This is a helper function which is used to distinguish between VID header
752  * corruptions caused by power cuts and other reasons. If the PEB contains only
753  * 0xFF bytes in the data area, the VID header is most probably corrupted
754  * because of a power cut (%0 is returned in this case). Otherwise, it was
755  * probably corrupted for some other reasons (%1 is returned in this case). A
756  * negative error code is returned if a read error occurred.
757  *
758  * If the corruption reason was a power cut, UBI can safely erase this PEB.
759  * Otherwise, it should preserve it to avoid possibly destroying important
760  * information.
761  */
check_corruption(struct ubi_device * ubi,struct ubi_vid_hdr * vid_hdr,int pnum)762 static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
763 			    int pnum)
764 {
765 	int err;
766 
767 	mutex_lock(&ubi->buf_mutex);
768 	memset(ubi->peb_buf, 0x00, ubi->leb_size);
769 
770 	err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
771 			  ubi->leb_size);
772 	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
773 		/*
774 		 * Bit-flips or integrity errors while reading the data area.
775 		 * It is difficult to say for sure what type of corruption is
776 		 * this, but presumably a power cut happened while this PEB was
777 		 * erased, so it became unstable and corrupted, and should be
778 		 * erased.
779 		 */
780 		err = 0;
781 		goto out_unlock;
782 	}
783 
784 	if (err)
785 		goto out_unlock;
786 
787 	if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
788 		goto out_unlock;
789 
790 	ubi_err(ubi, "PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
791 		pnum);
792 	ubi_err(ubi, "this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
793 	ubi_dump_vid_hdr(vid_hdr);
794 	pr_err("hexdump of PEB %d offset %d, length %d",
795 	       pnum, ubi->leb_start, ubi->leb_size);
796 	ubi_dbg_print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1,
797 			       ubi->peb_buf, ubi->leb_size, 1);
798 	err = 1;
799 
800 out_unlock:
801 	mutex_unlock(&ubi->buf_mutex);
802 	return err;
803 }
804 
805 /**
806  * scan_peb - scan and process UBI headers of a PEB.
807  * @ubi: UBI device description object
808  * @ai: attaching information
809  * @pnum: the physical eraseblock number
810  * @vid: The volume ID of the found volume will be stored in this pointer
811  * @sqnum: The sqnum of the found volume will be stored in this pointer
812  *
813  * This function reads UBI headers of PEB @pnum, checks them, and adds
814  * information about this PEB to the corresponding list or RB-tree in the
815  * "attaching info" structure. Returns zero if the physical eraseblock was
816  * successfully handled and a negative error code in case of failure.
817  */
scan_peb(struct ubi_device * ubi,struct ubi_attach_info * ai,int pnum,int * vid,unsigned long long * sqnum)818 static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
819 		    int pnum, int *vid, unsigned long long *sqnum)
820 {
821 	long long uninitialized_var(ec);
822 	int err, bitflips = 0, vol_id = -1, ec_err = 0;
823 
824 	dbg_bld("scan PEB %d", pnum);
825 
826 	/* Skip bad physical eraseblocks */
827 	err = ubi_io_is_bad(ubi, pnum);
828 	if (err < 0)
829 		return err;
830 	else if (err) {
831 		ai->bad_peb_count += 1;
832 		return 0;
833 	}
834 
835 	err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
836 	if (err < 0)
837 		return err;
838 	switch (err) {
839 	case 0:
840 		break;
841 	case UBI_IO_BITFLIPS:
842 		bitflips = 1;
843 		break;
844 	case UBI_IO_FF:
845 		ai->empty_peb_count += 1;
846 		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
847 				   UBI_UNKNOWN, 0, &ai->erase);
848 	case UBI_IO_FF_BITFLIPS:
849 		ai->empty_peb_count += 1;
850 		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
851 				   UBI_UNKNOWN, 1, &ai->erase);
852 	case UBI_IO_BAD_HDR_EBADMSG:
853 	case UBI_IO_BAD_HDR:
854 		/*
855 		 * We have to also look at the VID header, possibly it is not
856 		 * corrupted. Set %bitflips flag in order to make this PEB be
857 		 * moved and EC be re-created.
858 		 */
859 		ec_err = err;
860 		ec = UBI_UNKNOWN;
861 		bitflips = 1;
862 		break;
863 	default:
864 		ubi_err(ubi, "'ubi_io_read_ec_hdr()' returned unknown code %d",
865 			err);
866 		return -EINVAL;
867 	}
868 
869 	if (!ec_err) {
870 		int image_seq;
871 
872 		/* Make sure UBI version is OK */
873 		if (ech->version != UBI_VERSION) {
874 			ubi_err(ubi, "this UBI version is %d, image version is %d",
875 				UBI_VERSION, (int)ech->version);
876 			return -EINVAL;
877 		}
878 
879 		ec = be64_to_cpu(ech->ec);
880 		if (ec > UBI_MAX_ERASECOUNTER) {
881 			/*
882 			 * Erase counter overflow. The EC headers have 64 bits
883 			 * reserved, but we anyway make use of only 31 bit
884 			 * values, as this seems to be enough for any existing
885 			 * flash. Upgrade UBI and use 64-bit erase counters
886 			 * internally.
887 			 */
888 			ubi_err(ubi, "erase counter overflow, max is %d",
889 				UBI_MAX_ERASECOUNTER);
890 			ubi_dump_ec_hdr(ech);
891 			return -EINVAL;
892 		}
893 
894 		/*
895 		 * Make sure that all PEBs have the same image sequence number.
896 		 * This allows us to detect situations when users flash UBI
897 		 * images incorrectly, so that the flash has the new UBI image
898 		 * and leftovers from the old one. This feature was added
899 		 * relatively recently, and the sequence number was always
900 		 * zero, because old UBI implementations always set it to zero.
901 		 * For this reasons, we do not panic if some PEBs have zero
902 		 * sequence number, while other PEBs have non-zero sequence
903 		 * number.
904 		 */
905 		image_seq = be32_to_cpu(ech->image_seq);
906 		if (!ubi->image_seq)
907 			ubi->image_seq = image_seq;
908 		if (image_seq && ubi->image_seq != image_seq) {
909 			ubi_err(ubi, "bad image sequence number %d in PEB %d, expected %d",
910 				image_seq, pnum, ubi->image_seq);
911 			ubi_dump_ec_hdr(ech);
912 			return -EINVAL;
913 		}
914 	}
915 
916 	/* OK, we've done with the EC header, let's look at the VID header */
917 
918 	err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
919 	if (err < 0)
920 		return err;
921 	switch (err) {
922 	case 0:
923 		break;
924 	case UBI_IO_BITFLIPS:
925 		bitflips = 1;
926 		break;
927 	case UBI_IO_BAD_HDR_EBADMSG:
928 		if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
929 			/*
930 			 * Both EC and VID headers are corrupted and were read
931 			 * with data integrity error, probably this is a bad
932 			 * PEB, bit it is not marked as bad yet. This may also
933 			 * be a result of power cut during erasure.
934 			 */
935 			ai->maybe_bad_peb_count += 1;
936 	case UBI_IO_BAD_HDR:
937 		if (ec_err)
938 			/*
939 			 * Both headers are corrupted. There is a possibility
940 			 * that this a valid UBI PEB which has corresponding
941 			 * LEB, but the headers are corrupted. However, it is
942 			 * impossible to distinguish it from a PEB which just
943 			 * contains garbage because of a power cut during erase
944 			 * operation. So we just schedule this PEB for erasure.
945 			 *
946 			 * Besides, in case of NOR flash, we deliberately
947 			 * corrupt both headers because NOR flash erasure is
948 			 * slow and can start from the end.
949 			 */
950 			err = 0;
951 		else
952 			/*
953 			 * The EC was OK, but the VID header is corrupted. We
954 			 * have to check what is in the data area.
955 			 */
956 			err = check_corruption(ubi, vidh, pnum);
957 
958 		if (err < 0)
959 			return err;
960 		else if (!err)
961 			/* This corruption is caused by a power cut */
962 			err = add_to_list(ai, pnum, UBI_UNKNOWN,
963 					  UBI_UNKNOWN, ec, 1, &ai->erase);
964 		else
965 			/* This is an unexpected corruption */
966 			err = add_corrupted(ai, pnum, ec);
967 		if (err)
968 			return err;
969 		goto adjust_mean_ec;
970 	case UBI_IO_FF_BITFLIPS:
971 		err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
972 				  ec, 1, &ai->erase);
973 		if (err)
974 			return err;
975 		goto adjust_mean_ec;
976 	case UBI_IO_FF:
977 		if (ec_err || bitflips)
978 			err = add_to_list(ai, pnum, UBI_UNKNOWN,
979 					  UBI_UNKNOWN, ec, 1, &ai->erase);
980 		else
981 			err = add_to_list(ai, pnum, UBI_UNKNOWN,
982 					  UBI_UNKNOWN, ec, 0, &ai->free);
983 		if (err)
984 			return err;
985 		goto adjust_mean_ec;
986 	default:
987 		ubi_err(ubi, "'ubi_io_read_vid_hdr()' returned unknown code %d",
988 			err);
989 		return -EINVAL;
990 	}
991 
992 	vol_id = be32_to_cpu(vidh->vol_id);
993 	if (vid)
994 		*vid = vol_id;
995 	if (sqnum)
996 		*sqnum = be64_to_cpu(vidh->sqnum);
997 	if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
998 		int lnum = be32_to_cpu(vidh->lnum);
999 
1000 		/* Unsupported internal volume */
1001 		switch (vidh->compat) {
1002 		case UBI_COMPAT_DELETE:
1003 			if (vol_id != UBI_FM_SB_VOLUME_ID
1004 			    && vol_id != UBI_FM_DATA_VOLUME_ID) {
1005 				ubi_msg(ubi, "\"delete\" compatible internal volume %d:%d found, will remove it",
1006 					vol_id, lnum);
1007 			}
1008 			err = add_to_list(ai, pnum, vol_id, lnum,
1009 					  ec, 1, &ai->erase);
1010 			if (err)
1011 				return err;
1012 			return 0;
1013 
1014 		case UBI_COMPAT_RO:
1015 			ubi_msg(ubi, "read-only compatible internal volume %d:%d found, switch to read-only mode",
1016 				vol_id, lnum);
1017 			ubi->ro_mode = 1;
1018 			break;
1019 
1020 		case UBI_COMPAT_PRESERVE:
1021 			ubi_msg(ubi, "\"preserve\" compatible internal volume %d:%d found",
1022 				vol_id, lnum);
1023 			err = add_to_list(ai, pnum, vol_id, lnum,
1024 					  ec, 0, &ai->alien);
1025 			if (err)
1026 				return err;
1027 			return 0;
1028 
1029 		case UBI_COMPAT_REJECT:
1030 			ubi_err(ubi, "incompatible internal volume %d:%d found",
1031 				vol_id, lnum);
1032 			return -EINVAL;
1033 		}
1034 	}
1035 
1036 	if (ec_err)
1037 		ubi_warn(ubi, "valid VID header but corrupted EC header at PEB %d",
1038 			 pnum);
1039 	err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
1040 	if (err)
1041 		return err;
1042 
1043 adjust_mean_ec:
1044 	if (!ec_err) {
1045 		ai->ec_sum += ec;
1046 		ai->ec_count += 1;
1047 		if (ec > ai->max_ec)
1048 			ai->max_ec = ec;
1049 		if (ec < ai->min_ec)
1050 			ai->min_ec = ec;
1051 	}
1052 
1053 	return 0;
1054 }
1055 
1056 /**
1057  * late_analysis - analyze the overall situation with PEB.
1058  * @ubi: UBI device description object
1059  * @ai: attaching information
1060  *
1061  * This is a helper function which takes a look what PEBs we have after we
1062  * gather information about all of them ("ai" is compete). It decides whether
1063  * the flash is empty and should be formatted of whether there are too many
1064  * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1065  * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1066  */
late_analysis(struct ubi_device * ubi,struct ubi_attach_info * ai)1067 static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
1068 {
1069 	struct ubi_ainf_peb *aeb;
1070 	int max_corr, peb_count;
1071 
1072 	peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1073 	max_corr = peb_count / 20 ?: 8;
1074 
1075 	/*
1076 	 * Few corrupted PEBs is not a problem and may be just a result of
1077 	 * unclean reboots. However, many of them may indicate some problems
1078 	 * with the flash HW or driver.
1079 	 */
1080 	if (ai->corr_peb_count) {
1081 		ubi_err(ubi, "%d PEBs are corrupted and preserved",
1082 			ai->corr_peb_count);
1083 		pr_err("Corrupted PEBs are:");
1084 		list_for_each_entry(aeb, &ai->corr, u.list)
1085 			pr_cont(" %d", aeb->pnum);
1086 		pr_cont("\n");
1087 
1088 		/*
1089 		 * If too many PEBs are corrupted, we refuse attaching,
1090 		 * otherwise, only print a warning.
1091 		 */
1092 		if (ai->corr_peb_count >= max_corr) {
1093 			ubi_err(ubi, "too many corrupted PEBs, refusing");
1094 			return -EINVAL;
1095 		}
1096 	}
1097 
1098 	if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1099 		/*
1100 		 * All PEBs are empty, or almost all - a couple PEBs look like
1101 		 * they may be bad PEBs which were not marked as bad yet.
1102 		 *
1103 		 * This piece of code basically tries to distinguish between
1104 		 * the following situations:
1105 		 *
1106 		 * 1. Flash is empty, but there are few bad PEBs, which are not
1107 		 *    marked as bad so far, and which were read with error. We
1108 		 *    want to go ahead and format this flash. While formatting,
1109 		 *    the faulty PEBs will probably be marked as bad.
1110 		 *
1111 		 * 2. Flash contains non-UBI data and we do not want to format
1112 		 *    it and destroy possibly important information.
1113 		 */
1114 		if (ai->maybe_bad_peb_count <= 2) {
1115 			ai->is_empty = 1;
1116 			ubi_msg(ubi, "empty MTD device detected");
1117 			get_random_bytes(&ubi->image_seq,
1118 					 sizeof(ubi->image_seq));
1119 		} else {
1120 			ubi_err(ubi, "MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
1121 			return -EINVAL;
1122 		}
1123 
1124 	}
1125 
1126 	return 0;
1127 }
1128 
1129 /**
1130  * destroy_av - free volume attaching information.
1131  * @av: volume attaching information
1132  * @ai: attaching information
1133  *
1134  * This function destroys the volume attaching information.
1135  */
destroy_av(struct ubi_attach_info * ai,struct ubi_ainf_volume * av)1136 static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
1137 {
1138 	struct ubi_ainf_peb *aeb;
1139 	struct rb_node *this = av->root.rb_node;
1140 
1141 	while (this) {
1142 		if (this->rb_left)
1143 			this = this->rb_left;
1144 		else if (this->rb_right)
1145 			this = this->rb_right;
1146 		else {
1147 			aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1148 			this = rb_parent(this);
1149 			if (this) {
1150 				if (this->rb_left == &aeb->u.rb)
1151 					this->rb_left = NULL;
1152 				else
1153 					this->rb_right = NULL;
1154 			}
1155 
1156 			kmem_cache_free(ai->aeb_slab_cache, aeb);
1157 		}
1158 	}
1159 	kfree(av);
1160 }
1161 
1162 /**
1163  * destroy_ai - destroy attaching information.
1164  * @ai: attaching information
1165  */
destroy_ai(struct ubi_attach_info * ai)1166 static void destroy_ai(struct ubi_attach_info *ai)
1167 {
1168 	struct ubi_ainf_peb *aeb, *aeb_tmp;
1169 	struct ubi_ainf_volume *av;
1170 	struct rb_node *rb;
1171 
1172 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1173 		list_del(&aeb->u.list);
1174 		kmem_cache_free(ai->aeb_slab_cache, aeb);
1175 	}
1176 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1177 		list_del(&aeb->u.list);
1178 		kmem_cache_free(ai->aeb_slab_cache, aeb);
1179 	}
1180 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1181 		list_del(&aeb->u.list);
1182 		kmem_cache_free(ai->aeb_slab_cache, aeb);
1183 	}
1184 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1185 		list_del(&aeb->u.list);
1186 		kmem_cache_free(ai->aeb_slab_cache, aeb);
1187 	}
1188 
1189 	/* Destroy the volume RB-tree */
1190 	rb = ai->volumes.rb_node;
1191 	while (rb) {
1192 		if (rb->rb_left)
1193 			rb = rb->rb_left;
1194 		else if (rb->rb_right)
1195 			rb = rb->rb_right;
1196 		else {
1197 			av = rb_entry(rb, struct ubi_ainf_volume, rb);
1198 
1199 			rb = rb_parent(rb);
1200 			if (rb) {
1201 				if (rb->rb_left == &av->rb)
1202 					rb->rb_left = NULL;
1203 				else
1204 					rb->rb_right = NULL;
1205 			}
1206 
1207 			destroy_av(ai, av);
1208 		}
1209 	}
1210 
1211 	kmem_cache_destroy(ai->aeb_slab_cache);
1212 
1213 	kfree(ai);
1214 }
1215 
1216 /**
1217  * scan_all - scan entire MTD device.
1218  * @ubi: UBI device description object
1219  * @ai: attach info object
1220  * @start: start scanning at this PEB
1221  *
1222  * This function does full scanning of an MTD device and returns complete
1223  * information about it in form of a "struct ubi_attach_info" object. In case
1224  * of failure, an error code is returned.
1225  */
scan_all(struct ubi_device * ubi,struct ubi_attach_info * ai,int start)1226 static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
1227 		    int start)
1228 {
1229 	int err, pnum;
1230 	struct rb_node *rb1, *rb2;
1231 	struct ubi_ainf_volume *av;
1232 	struct ubi_ainf_peb *aeb;
1233 
1234 	err = -ENOMEM;
1235 
1236 	ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1237 	if (!ech)
1238 		return err;
1239 
1240 	vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1241 	if (!vidh)
1242 		goto out_ech;
1243 
1244 	for (pnum = start; pnum < ubi->peb_count; pnum++) {
1245 		cond_resched();
1246 
1247 		dbg_gen("process PEB %d", pnum);
1248 		err = scan_peb(ubi, ai, pnum, NULL, NULL);
1249 		if (err < 0)
1250 			goto out_vidh;
1251 	}
1252 
1253 	ubi_msg(ubi, "scanning is finished");
1254 
1255 	/* Calculate mean erase counter */
1256 	if (ai->ec_count)
1257 		ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1258 
1259 	err = late_analysis(ubi, ai);
1260 	if (err)
1261 		goto out_vidh;
1262 
1263 	/*
1264 	 * In case of unknown erase counter we use the mean erase counter
1265 	 * value.
1266 	 */
1267 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1268 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1269 			if (aeb->ec == UBI_UNKNOWN)
1270 				aeb->ec = ai->mean_ec;
1271 	}
1272 
1273 	list_for_each_entry(aeb, &ai->free, u.list) {
1274 		if (aeb->ec == UBI_UNKNOWN)
1275 			aeb->ec = ai->mean_ec;
1276 	}
1277 
1278 	list_for_each_entry(aeb, &ai->corr, u.list)
1279 		if (aeb->ec == UBI_UNKNOWN)
1280 			aeb->ec = ai->mean_ec;
1281 
1282 	list_for_each_entry(aeb, &ai->erase, u.list)
1283 		if (aeb->ec == UBI_UNKNOWN)
1284 			aeb->ec = ai->mean_ec;
1285 
1286 	err = self_check_ai(ubi, ai);
1287 	if (err)
1288 		goto out_vidh;
1289 
1290 	ubi_free_vid_hdr(ubi, vidh);
1291 	kfree(ech);
1292 
1293 	return 0;
1294 
1295 out_vidh:
1296 	ubi_free_vid_hdr(ubi, vidh);
1297 out_ech:
1298 	kfree(ech);
1299 	return err;
1300 }
1301 
alloc_ai(void)1302 static struct ubi_attach_info *alloc_ai(void)
1303 {
1304 	struct ubi_attach_info *ai;
1305 
1306 	ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1307 	if (!ai)
1308 		return ai;
1309 
1310 	INIT_LIST_HEAD(&ai->corr);
1311 	INIT_LIST_HEAD(&ai->free);
1312 	INIT_LIST_HEAD(&ai->erase);
1313 	INIT_LIST_HEAD(&ai->alien);
1314 	ai->volumes = RB_ROOT;
1315 	ai->aeb_slab_cache = kmem_cache_create("ubi_aeb_slab_cache",
1316 					       sizeof(struct ubi_ainf_peb),
1317 					       0, 0, NULL);
1318 	if (!ai->aeb_slab_cache) {
1319 		kfree(ai);
1320 		ai = NULL;
1321 	}
1322 
1323 	return ai;
1324 }
1325 
1326 #ifdef CONFIG_MTD_UBI_FASTMAP
1327 
1328 /**
1329  * scan_fastmap - try to find a fastmap and attach from it.
1330  * @ubi: UBI device description object
1331  * @ai: attach info object
1332  *
1333  * Returns 0 on success, negative return values indicate an internal
1334  * error.
1335  * UBI_NO_FASTMAP denotes that no fastmap was found.
1336  * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1337  */
scan_fast(struct ubi_device * ubi,struct ubi_attach_info ** ai)1338 static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info **ai)
1339 {
1340 	int err, pnum, fm_anchor = -1;
1341 	unsigned long long max_sqnum = 0;
1342 
1343 	err = -ENOMEM;
1344 
1345 	ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1346 	if (!ech)
1347 		goto out;
1348 
1349 	vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1350 	if (!vidh)
1351 		goto out_ech;
1352 
1353 	for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
1354 		int vol_id = -1;
1355 		unsigned long long sqnum = -1;
1356 		cond_resched();
1357 
1358 		dbg_gen("process PEB %d", pnum);
1359 		err = scan_peb(ubi, *ai, pnum, &vol_id, &sqnum);
1360 		if (err < 0)
1361 			goto out_vidh;
1362 
1363 		if (vol_id == UBI_FM_SB_VOLUME_ID && sqnum > max_sqnum) {
1364 			max_sqnum = sqnum;
1365 			fm_anchor = pnum;
1366 		}
1367 	}
1368 
1369 	ubi_free_vid_hdr(ubi, vidh);
1370 	kfree(ech);
1371 
1372 	if (fm_anchor < 0)
1373 		return UBI_NO_FASTMAP;
1374 
1375 	destroy_ai(*ai);
1376 	*ai = alloc_ai();
1377 	if (!*ai)
1378 		return -ENOMEM;
1379 
1380 	return ubi_scan_fastmap(ubi, *ai, fm_anchor);
1381 
1382 out_vidh:
1383 	ubi_free_vid_hdr(ubi, vidh);
1384 out_ech:
1385 	kfree(ech);
1386 out:
1387 	return err;
1388 }
1389 
1390 #endif
1391 
1392 /**
1393  * ubi_attach - attach an MTD device.
1394  * @ubi: UBI device descriptor
1395  * @force_scan: if set to non-zero attach by scanning
1396  *
1397  * This function returns zero in case of success and a negative error code in
1398  * case of failure.
1399  */
ubi_attach(struct ubi_device * ubi,int force_scan)1400 int ubi_attach(struct ubi_device *ubi, int force_scan)
1401 {
1402 	int err;
1403 	struct ubi_attach_info *ai;
1404 
1405 	ai = alloc_ai();
1406 	if (!ai)
1407 		return -ENOMEM;
1408 
1409 #ifdef CONFIG_MTD_UBI_FASTMAP
1410 	/* On small flash devices we disable fastmap in any case. */
1411 	if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
1412 		ubi->fm_disabled = 1;
1413 		force_scan = 1;
1414 	}
1415 
1416 	if (force_scan)
1417 		err = scan_all(ubi, ai, 0);
1418 	else {
1419 		err = scan_fast(ubi, &ai);
1420 		if (err > 0 || mtd_is_eccerr(err)) {
1421 			if (err != UBI_NO_FASTMAP) {
1422 				destroy_ai(ai);
1423 				ai = alloc_ai();
1424 				if (!ai)
1425 					return -ENOMEM;
1426 
1427 				err = scan_all(ubi, ai, 0);
1428 			} else {
1429 				err = scan_all(ubi, ai, UBI_FM_MAX_START);
1430 			}
1431 		}
1432 	}
1433 #else
1434 	err = scan_all(ubi, ai, 0);
1435 #endif
1436 	if (err)
1437 		goto out_ai;
1438 
1439 	ubi->bad_peb_count = ai->bad_peb_count;
1440 	ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1441 	ubi->corr_peb_count = ai->corr_peb_count;
1442 	ubi->max_ec = ai->max_ec;
1443 	ubi->mean_ec = ai->mean_ec;
1444 	dbg_gen("max. sequence number:       %llu", ai->max_sqnum);
1445 
1446 	err = ubi_read_volume_table(ubi, ai);
1447 	if (err)
1448 		goto out_ai;
1449 
1450 	err = ubi_wl_init(ubi, ai);
1451 	if (err)
1452 		goto out_vtbl;
1453 
1454 	err = ubi_eba_init(ubi, ai);
1455 	if (err)
1456 		goto out_wl;
1457 
1458 #ifdef CONFIG_MTD_UBI_FASTMAP
1459 	if (ubi->fm && ubi_dbg_chk_fastmap(ubi)) {
1460 		struct ubi_attach_info *scan_ai;
1461 
1462 		scan_ai = alloc_ai();
1463 		if (!scan_ai) {
1464 			err = -ENOMEM;
1465 			goto out_wl;
1466 		}
1467 
1468 		err = scan_all(ubi, scan_ai, 0);
1469 		if (err) {
1470 			destroy_ai(scan_ai);
1471 			goto out_wl;
1472 		}
1473 
1474 		err = self_check_eba(ubi, ai, scan_ai);
1475 		destroy_ai(scan_ai);
1476 
1477 		if (err)
1478 			goto out_wl;
1479 	}
1480 #endif
1481 
1482 	destroy_ai(ai);
1483 	return 0;
1484 
1485 out_wl:
1486 	ubi_wl_close(ubi);
1487 out_vtbl:
1488 	ubi_free_internal_volumes(ubi);
1489 	vfree(ubi->vtbl);
1490 out_ai:
1491 	destroy_ai(ai);
1492 	return err;
1493 }
1494 
1495 /**
1496  * self_check_ai - check the attaching information.
1497  * @ubi: UBI device description object
1498  * @ai: attaching information
1499  *
1500  * This function returns zero if the attaching information is all right, and a
1501  * negative error code if not or if an error occurred.
1502  */
self_check_ai(struct ubi_device * ubi,struct ubi_attach_info * ai)1503 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1504 {
1505 	int pnum, err, vols_found = 0;
1506 	struct rb_node *rb1, *rb2;
1507 	struct ubi_ainf_volume *av;
1508 	struct ubi_ainf_peb *aeb, *last_aeb;
1509 	uint8_t *buf;
1510 
1511 	if (!ubi_dbg_chk_gen(ubi))
1512 		return 0;
1513 
1514 	/*
1515 	 * At first, check that attaching information is OK.
1516 	 */
1517 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1518 		int leb_count = 0;
1519 
1520 		cond_resched();
1521 
1522 		vols_found += 1;
1523 
1524 		if (ai->is_empty) {
1525 			ubi_err(ubi, "bad is_empty flag");
1526 			goto bad_av;
1527 		}
1528 
1529 		if (av->vol_id < 0 || av->highest_lnum < 0 ||
1530 		    av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1531 		    av->data_pad < 0 || av->last_data_size < 0) {
1532 			ubi_err(ubi, "negative values");
1533 			goto bad_av;
1534 		}
1535 
1536 		if (av->vol_id >= UBI_MAX_VOLUMES &&
1537 		    av->vol_id < UBI_INTERNAL_VOL_START) {
1538 			ubi_err(ubi, "bad vol_id");
1539 			goto bad_av;
1540 		}
1541 
1542 		if (av->vol_id > ai->highest_vol_id) {
1543 			ubi_err(ubi, "highest_vol_id is %d, but vol_id %d is there",
1544 				ai->highest_vol_id, av->vol_id);
1545 			goto out;
1546 		}
1547 
1548 		if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1549 		    av->vol_type != UBI_STATIC_VOLUME) {
1550 			ubi_err(ubi, "bad vol_type");
1551 			goto bad_av;
1552 		}
1553 
1554 		if (av->data_pad > ubi->leb_size / 2) {
1555 			ubi_err(ubi, "bad data_pad");
1556 			goto bad_av;
1557 		}
1558 
1559 		last_aeb = NULL;
1560 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1561 			cond_resched();
1562 
1563 			last_aeb = aeb;
1564 			leb_count += 1;
1565 
1566 			if (aeb->pnum < 0 || aeb->ec < 0) {
1567 				ubi_err(ubi, "negative values");
1568 				goto bad_aeb;
1569 			}
1570 
1571 			if (aeb->ec < ai->min_ec) {
1572 				ubi_err(ubi, "bad ai->min_ec (%d), %d found",
1573 					ai->min_ec, aeb->ec);
1574 				goto bad_aeb;
1575 			}
1576 
1577 			if (aeb->ec > ai->max_ec) {
1578 				ubi_err(ubi, "bad ai->max_ec (%d), %d found",
1579 					ai->max_ec, aeb->ec);
1580 				goto bad_aeb;
1581 			}
1582 
1583 			if (aeb->pnum >= ubi->peb_count) {
1584 				ubi_err(ubi, "too high PEB number %d, total PEBs %d",
1585 					aeb->pnum, ubi->peb_count);
1586 				goto bad_aeb;
1587 			}
1588 
1589 			if (av->vol_type == UBI_STATIC_VOLUME) {
1590 				if (aeb->lnum >= av->used_ebs) {
1591 					ubi_err(ubi, "bad lnum or used_ebs");
1592 					goto bad_aeb;
1593 				}
1594 			} else {
1595 				if (av->used_ebs != 0) {
1596 					ubi_err(ubi, "non-zero used_ebs");
1597 					goto bad_aeb;
1598 				}
1599 			}
1600 
1601 			if (aeb->lnum > av->highest_lnum) {
1602 				ubi_err(ubi, "incorrect highest_lnum or lnum");
1603 				goto bad_aeb;
1604 			}
1605 		}
1606 
1607 		if (av->leb_count != leb_count) {
1608 			ubi_err(ubi, "bad leb_count, %d objects in the tree",
1609 				leb_count);
1610 			goto bad_av;
1611 		}
1612 
1613 		if (!last_aeb)
1614 			continue;
1615 
1616 		aeb = last_aeb;
1617 
1618 		if (aeb->lnum != av->highest_lnum) {
1619 			ubi_err(ubi, "bad highest_lnum");
1620 			goto bad_aeb;
1621 		}
1622 	}
1623 
1624 	if (vols_found != ai->vols_found) {
1625 		ubi_err(ubi, "bad ai->vols_found %d, should be %d",
1626 			ai->vols_found, vols_found);
1627 		goto out;
1628 	}
1629 
1630 	/* Check that attaching information is correct */
1631 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1632 		last_aeb = NULL;
1633 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1634 			int vol_type;
1635 
1636 			cond_resched();
1637 
1638 			last_aeb = aeb;
1639 
1640 			err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
1641 			if (err && err != UBI_IO_BITFLIPS) {
1642 				ubi_err(ubi, "VID header is not OK (%d)",
1643 					err);
1644 				if (err > 0)
1645 					err = -EIO;
1646 				return err;
1647 			}
1648 
1649 			vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1650 				   UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1651 			if (av->vol_type != vol_type) {
1652 				ubi_err(ubi, "bad vol_type");
1653 				goto bad_vid_hdr;
1654 			}
1655 
1656 			if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1657 				ubi_err(ubi, "bad sqnum %llu", aeb->sqnum);
1658 				goto bad_vid_hdr;
1659 			}
1660 
1661 			if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1662 				ubi_err(ubi, "bad vol_id %d", av->vol_id);
1663 				goto bad_vid_hdr;
1664 			}
1665 
1666 			if (av->compat != vidh->compat) {
1667 				ubi_err(ubi, "bad compat %d", vidh->compat);
1668 				goto bad_vid_hdr;
1669 			}
1670 
1671 			if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1672 				ubi_err(ubi, "bad lnum %d", aeb->lnum);
1673 				goto bad_vid_hdr;
1674 			}
1675 
1676 			if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1677 				ubi_err(ubi, "bad used_ebs %d", av->used_ebs);
1678 				goto bad_vid_hdr;
1679 			}
1680 
1681 			if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1682 				ubi_err(ubi, "bad data_pad %d", av->data_pad);
1683 				goto bad_vid_hdr;
1684 			}
1685 		}
1686 
1687 		if (!last_aeb)
1688 			continue;
1689 
1690 		if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1691 			ubi_err(ubi, "bad highest_lnum %d", av->highest_lnum);
1692 			goto bad_vid_hdr;
1693 		}
1694 
1695 		if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1696 			ubi_err(ubi, "bad last_data_size %d",
1697 				av->last_data_size);
1698 			goto bad_vid_hdr;
1699 		}
1700 	}
1701 
1702 	/*
1703 	 * Make sure that all the physical eraseblocks are in one of the lists
1704 	 * or trees.
1705 	 */
1706 	buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1707 	if (!buf)
1708 		return -ENOMEM;
1709 
1710 	for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1711 		err = ubi_io_is_bad(ubi, pnum);
1712 		if (err < 0) {
1713 			kfree(buf);
1714 			return err;
1715 		} else if (err)
1716 			buf[pnum] = 1;
1717 	}
1718 
1719 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1720 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1721 			buf[aeb->pnum] = 1;
1722 
1723 	list_for_each_entry(aeb, &ai->free, u.list)
1724 		buf[aeb->pnum] = 1;
1725 
1726 	list_for_each_entry(aeb, &ai->corr, u.list)
1727 		buf[aeb->pnum] = 1;
1728 
1729 	list_for_each_entry(aeb, &ai->erase, u.list)
1730 		buf[aeb->pnum] = 1;
1731 
1732 	list_for_each_entry(aeb, &ai->alien, u.list)
1733 		buf[aeb->pnum] = 1;
1734 
1735 	err = 0;
1736 	for (pnum = 0; pnum < ubi->peb_count; pnum++)
1737 		if (!buf[pnum]) {
1738 			ubi_err(ubi, "PEB %d is not referred", pnum);
1739 			err = 1;
1740 		}
1741 
1742 	kfree(buf);
1743 	if (err)
1744 		goto out;
1745 	return 0;
1746 
1747 bad_aeb:
1748 	ubi_err(ubi, "bad attaching information about LEB %d", aeb->lnum);
1749 	ubi_dump_aeb(aeb, 0);
1750 	ubi_dump_av(av);
1751 	goto out;
1752 
1753 bad_av:
1754 	ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1755 	ubi_dump_av(av);
1756 	goto out;
1757 
1758 bad_vid_hdr:
1759 	ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1760 	ubi_dump_av(av);
1761 	ubi_dump_vid_hdr(vidh);
1762 
1763 out:
1764 	dump_stack();
1765 	return -EINVAL;
1766 }
1767