1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10 
11 /*
12  * This file implements UBIFS superblock. The superblock is stored at the first
13  * LEB of the volume and is never changed by UBIFS. Only user-space tools may
14  * change it. The superblock node mostly contains geometry information.
15  */
16 
17 #include "ubifs.h"
18 #ifndef __UBOOT__
19 #include <log.h>
20 #include <dm/devres.h>
21 #include <linux/slab.h>
22 #include <linux/random.h>
23 #include <linux/math64.h>
24 #else
25 
26 #include <linux/compat.h>
27 #include <linux/err.h>
28 #include <ubi_uboot.h>
29 #include <linux/stat.h>
30 #endif
31 
32 /*
33  * Default journal size in logical eraseblocks as a percent of total
34  * flash size.
35  */
36 #define DEFAULT_JNL_PERCENT 5
37 
38 /* Default maximum journal size in bytes */
39 #define DEFAULT_MAX_JNL (32*1024*1024)
40 
41 /* Default indexing tree fanout */
42 #define DEFAULT_FANOUT 8
43 
44 /* Default number of data journal heads */
45 #define DEFAULT_JHEADS_CNT 1
46 
47 /* Default positions of different LEBs in the main area */
48 #define DEFAULT_IDX_LEB  0
49 #define DEFAULT_DATA_LEB 1
50 #define DEFAULT_GC_LEB   2
51 
52 /* Default number of LEB numbers in LPT's save table */
53 #define DEFAULT_LSAVE_CNT 256
54 
55 /* Default reserved pool size as a percent of maximum free space */
56 #define DEFAULT_RP_PERCENT 5
57 
58 /* The default maximum size of reserved pool in bytes */
59 #define DEFAULT_MAX_RP_SIZE (5*1024*1024)
60 
61 /* Default time granularity in nanoseconds */
62 #define DEFAULT_TIME_GRAN 1000000000
63 
64 #ifndef __UBOOT__
65 /**
66  * create_default_filesystem - format empty UBI volume.
67  * @c: UBIFS file-system description object
68  *
69  * This function creates default empty file-system. Returns zero in case of
70  * success and a negative error code in case of failure.
71  */
create_default_filesystem(struct ubifs_info * c)72 static int create_default_filesystem(struct ubifs_info *c)
73 {
74 	struct ubifs_sb_node *sup;
75 	struct ubifs_mst_node *mst;
76 	struct ubifs_idx_node *idx;
77 	struct ubifs_branch *br;
78 	struct ubifs_ino_node *ino;
79 	struct ubifs_cs_node *cs;
80 	union ubifs_key key;
81 	int err, tmp, jnl_lebs, log_lebs, max_buds, main_lebs, main_first;
82 	int lpt_lebs, lpt_first, orph_lebs, big_lpt, ino_waste, sup_flags = 0;
83 	int min_leb_cnt = UBIFS_MIN_LEB_CNT;
84 	long long tmp64, main_bytes;
85 	__le64 tmp_le64;
86 
87 	/* Some functions called from here depend on the @c->key_len filed */
88 	c->key_len = UBIFS_SK_LEN;
89 
90 	/*
91 	 * First of all, we have to calculate default file-system geometry -
92 	 * log size, journal size, etc.
93 	 */
94 	if (c->leb_cnt < 0x7FFFFFFF / DEFAULT_JNL_PERCENT)
95 		/* We can first multiply then divide and have no overflow */
96 		jnl_lebs = c->leb_cnt * DEFAULT_JNL_PERCENT / 100;
97 	else
98 		jnl_lebs = (c->leb_cnt / 100) * DEFAULT_JNL_PERCENT;
99 
100 	if (jnl_lebs < UBIFS_MIN_JNL_LEBS)
101 		jnl_lebs = UBIFS_MIN_JNL_LEBS;
102 	if (jnl_lebs * c->leb_size > DEFAULT_MAX_JNL)
103 		jnl_lebs = DEFAULT_MAX_JNL / c->leb_size;
104 
105 	/*
106 	 * The log should be large enough to fit reference nodes for all bud
107 	 * LEBs. Because buds do not have to start from the beginning of LEBs
108 	 * (half of the LEB may contain committed data), the log should
109 	 * generally be larger, make it twice as large.
110 	 */
111 	tmp = 2 * (c->ref_node_alsz * jnl_lebs) + c->leb_size - 1;
112 	log_lebs = tmp / c->leb_size;
113 	/* Plus one LEB reserved for commit */
114 	log_lebs += 1;
115 	if (c->leb_cnt - min_leb_cnt > 8) {
116 		/* And some extra space to allow writes while committing */
117 		log_lebs += 1;
118 		min_leb_cnt += 1;
119 	}
120 
121 	max_buds = jnl_lebs - log_lebs;
122 	if (max_buds < UBIFS_MIN_BUD_LEBS)
123 		max_buds = UBIFS_MIN_BUD_LEBS;
124 
125 	/*
126 	 * Orphan nodes are stored in a separate area. One node can store a lot
127 	 * of orphan inode numbers, but when new orphan comes we just add a new
128 	 * orphan node. At some point the nodes are consolidated into one
129 	 * orphan node.
130 	 */
131 	orph_lebs = UBIFS_MIN_ORPH_LEBS;
132 	if (c->leb_cnt - min_leb_cnt > 1)
133 		/*
134 		 * For debugging purposes it is better to have at least 2
135 		 * orphan LEBs, because the orphan subsystem would need to do
136 		 * consolidations and would be stressed more.
137 		 */
138 		orph_lebs += 1;
139 
140 	main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - log_lebs;
141 	main_lebs -= orph_lebs;
142 
143 	lpt_first = UBIFS_LOG_LNUM + log_lebs;
144 	c->lsave_cnt = DEFAULT_LSAVE_CNT;
145 	c->max_leb_cnt = c->leb_cnt;
146 	err = ubifs_create_dflt_lpt(c, &main_lebs, lpt_first, &lpt_lebs,
147 				    &big_lpt);
148 	if (err)
149 		return err;
150 
151 	dbg_gen("LEB Properties Tree created (LEBs %d-%d)", lpt_first,
152 		lpt_first + lpt_lebs - 1);
153 
154 	main_first = c->leb_cnt - main_lebs;
155 
156 	/* Create default superblock */
157 	tmp = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
158 	sup = kzalloc(tmp, GFP_KERNEL);
159 	if (!sup)
160 		return -ENOMEM;
161 
162 	tmp64 = (long long)max_buds * c->leb_size;
163 	if (big_lpt)
164 		sup_flags |= UBIFS_FLG_BIGLPT;
165 
166 	sup->ch.node_type  = UBIFS_SB_NODE;
167 	sup->key_hash      = UBIFS_KEY_HASH_R5;
168 	sup->flags         = cpu_to_le32(sup_flags);
169 	sup->min_io_size   = cpu_to_le32(c->min_io_size);
170 	sup->leb_size      = cpu_to_le32(c->leb_size);
171 	sup->leb_cnt       = cpu_to_le32(c->leb_cnt);
172 	sup->max_leb_cnt   = cpu_to_le32(c->max_leb_cnt);
173 	sup->max_bud_bytes = cpu_to_le64(tmp64);
174 	sup->log_lebs      = cpu_to_le32(log_lebs);
175 	sup->lpt_lebs      = cpu_to_le32(lpt_lebs);
176 	sup->orph_lebs     = cpu_to_le32(orph_lebs);
177 	sup->jhead_cnt     = cpu_to_le32(DEFAULT_JHEADS_CNT);
178 	sup->fanout        = cpu_to_le32(DEFAULT_FANOUT);
179 	sup->lsave_cnt     = cpu_to_le32(c->lsave_cnt);
180 	sup->fmt_version   = cpu_to_le32(UBIFS_FORMAT_VERSION);
181 	sup->time_gran     = cpu_to_le32(DEFAULT_TIME_GRAN);
182 	if (c->mount_opts.override_compr)
183 		sup->default_compr = cpu_to_le16(c->mount_opts.compr_type);
184 	else
185 		sup->default_compr = cpu_to_le16(UBIFS_COMPR_LZO);
186 
187 	generate_random_uuid(sup->uuid);
188 
189 	main_bytes = (long long)main_lebs * c->leb_size;
190 	tmp64 = div_u64(main_bytes * DEFAULT_RP_PERCENT, 100);
191 	if (tmp64 > DEFAULT_MAX_RP_SIZE)
192 		tmp64 = DEFAULT_MAX_RP_SIZE;
193 	sup->rp_size = cpu_to_le64(tmp64);
194 	sup->ro_compat_version = cpu_to_le32(UBIFS_RO_COMPAT_VERSION);
195 
196 	err = ubifs_write_node(c, sup, UBIFS_SB_NODE_SZ, 0, 0);
197 	kfree(sup);
198 	if (err)
199 		return err;
200 
201 	dbg_gen("default superblock created at LEB 0:0");
202 
203 	/* Create default master node */
204 	mst = kzalloc(c->mst_node_alsz, GFP_KERNEL);
205 	if (!mst)
206 		return -ENOMEM;
207 
208 	mst->ch.node_type = UBIFS_MST_NODE;
209 	mst->log_lnum     = cpu_to_le32(UBIFS_LOG_LNUM);
210 	mst->highest_inum = cpu_to_le64(UBIFS_FIRST_INO);
211 	mst->cmt_no       = 0;
212 	mst->root_lnum    = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
213 	mst->root_offs    = 0;
214 	tmp = ubifs_idx_node_sz(c, 1);
215 	mst->root_len     = cpu_to_le32(tmp);
216 	mst->gc_lnum      = cpu_to_le32(main_first + DEFAULT_GC_LEB);
217 	mst->ihead_lnum   = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
218 	mst->ihead_offs   = cpu_to_le32(ALIGN(tmp, c->min_io_size));
219 	mst->index_size   = cpu_to_le64(ALIGN(tmp, 8));
220 	mst->lpt_lnum     = cpu_to_le32(c->lpt_lnum);
221 	mst->lpt_offs     = cpu_to_le32(c->lpt_offs);
222 	mst->nhead_lnum   = cpu_to_le32(c->nhead_lnum);
223 	mst->nhead_offs   = cpu_to_le32(c->nhead_offs);
224 	mst->ltab_lnum    = cpu_to_le32(c->ltab_lnum);
225 	mst->ltab_offs    = cpu_to_le32(c->ltab_offs);
226 	mst->lsave_lnum   = cpu_to_le32(c->lsave_lnum);
227 	mst->lsave_offs   = cpu_to_le32(c->lsave_offs);
228 	mst->lscan_lnum   = cpu_to_le32(main_first);
229 	mst->empty_lebs   = cpu_to_le32(main_lebs - 2);
230 	mst->idx_lebs     = cpu_to_le32(1);
231 	mst->leb_cnt      = cpu_to_le32(c->leb_cnt);
232 
233 	/* Calculate lprops statistics */
234 	tmp64 = main_bytes;
235 	tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
236 	tmp64 -= ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
237 	mst->total_free = cpu_to_le64(tmp64);
238 
239 	tmp64 = ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
240 	ino_waste = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size) -
241 			  UBIFS_INO_NODE_SZ;
242 	tmp64 += ino_waste;
243 	tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), 8);
244 	mst->total_dirty = cpu_to_le64(tmp64);
245 
246 	/*  The indexing LEB does not contribute to dark space */
247 	tmp64 = ((long long)(c->main_lebs - 1) * c->dark_wm);
248 	mst->total_dark = cpu_to_le64(tmp64);
249 
250 	mst->total_used = cpu_to_le64(UBIFS_INO_NODE_SZ);
251 
252 	err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM, 0);
253 	if (err) {
254 		kfree(mst);
255 		return err;
256 	}
257 	err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM + 1,
258 			       0);
259 	kfree(mst);
260 	if (err)
261 		return err;
262 
263 	dbg_gen("default master node created at LEB %d:0", UBIFS_MST_LNUM);
264 
265 	/* Create the root indexing node */
266 	tmp = ubifs_idx_node_sz(c, 1);
267 	idx = kzalloc(ALIGN(tmp, c->min_io_size), GFP_KERNEL);
268 	if (!idx)
269 		return -ENOMEM;
270 
271 	c->key_fmt = UBIFS_SIMPLE_KEY_FMT;
272 	c->key_hash = key_r5_hash;
273 
274 	idx->ch.node_type = UBIFS_IDX_NODE;
275 	idx->child_cnt = cpu_to_le16(1);
276 	ino_key_init(c, &key, UBIFS_ROOT_INO);
277 	br = ubifs_idx_branch(c, idx, 0);
278 	key_write_idx(c, &key, &br->key);
279 	br->lnum = cpu_to_le32(main_first + DEFAULT_DATA_LEB);
280 	br->len  = cpu_to_le32(UBIFS_INO_NODE_SZ);
281 	err = ubifs_write_node(c, idx, tmp, main_first + DEFAULT_IDX_LEB, 0);
282 	kfree(idx);
283 	if (err)
284 		return err;
285 
286 	dbg_gen("default root indexing node created LEB %d:0",
287 		main_first + DEFAULT_IDX_LEB);
288 
289 	/* Create default root inode */
290 	tmp = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
291 	ino = kzalloc(tmp, GFP_KERNEL);
292 	if (!ino)
293 		return -ENOMEM;
294 
295 	ino_key_init_flash(c, &ino->key, UBIFS_ROOT_INO);
296 	ino->ch.node_type = UBIFS_INO_NODE;
297 	ino->creat_sqnum = cpu_to_le64(++c->max_sqnum);
298 	ino->nlink = cpu_to_le32(2);
299 	tmp_le64 = cpu_to_le64(CURRENT_TIME_SEC.tv_sec);
300 	ino->atime_sec   = tmp_le64;
301 	ino->ctime_sec   = tmp_le64;
302 	ino->mtime_sec   = tmp_le64;
303 	ino->atime_nsec  = 0;
304 	ino->ctime_nsec  = 0;
305 	ino->mtime_nsec  = 0;
306 	ino->mode = cpu_to_le32(S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO);
307 	ino->size = cpu_to_le64(UBIFS_INO_NODE_SZ);
308 
309 	/* Set compression enabled by default */
310 	ino->flags = cpu_to_le32(UBIFS_COMPR_FL);
311 
312 	err = ubifs_write_node(c, ino, UBIFS_INO_NODE_SZ,
313 			       main_first + DEFAULT_DATA_LEB, 0);
314 	kfree(ino);
315 	if (err)
316 		return err;
317 
318 	dbg_gen("root inode created at LEB %d:0",
319 		main_first + DEFAULT_DATA_LEB);
320 
321 	/*
322 	 * The first node in the log has to be the commit start node. This is
323 	 * always the case during normal file-system operation. Write a fake
324 	 * commit start node to the log.
325 	 */
326 	tmp = ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size);
327 	cs = kzalloc(tmp, GFP_KERNEL);
328 	if (!cs)
329 		return -ENOMEM;
330 
331 	cs->ch.node_type = UBIFS_CS_NODE;
332 	err = ubifs_write_node(c, cs, UBIFS_CS_NODE_SZ, UBIFS_LOG_LNUM, 0);
333 	kfree(cs);
334 	if (err)
335 		return err;
336 
337 	ubifs_msg(c, "default file-system created");
338 	return 0;
339 }
340 #endif
341 
342 /**
343  * validate_sb - validate superblock node.
344  * @c: UBIFS file-system description object
345  * @sup: superblock node
346  *
347  * This function validates superblock node @sup. Since most of data was read
348  * from the superblock and stored in @c, the function validates fields in @c
349  * instead. Returns zero in case of success and %-EINVAL in case of validation
350  * failure.
351  */
validate_sb(struct ubifs_info * c,struct ubifs_sb_node * sup)352 static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup)
353 {
354 	long long max_bytes;
355 	int err = 1, min_leb_cnt;
356 
357 	if (!c->key_hash) {
358 		err = 2;
359 		goto failed;
360 	}
361 
362 	if (sup->key_fmt != UBIFS_SIMPLE_KEY_FMT) {
363 		err = 3;
364 		goto failed;
365 	}
366 
367 	if (le32_to_cpu(sup->min_io_size) != c->min_io_size) {
368 		ubifs_err(c, "min. I/O unit mismatch: %d in superblock, %d real",
369 			  le32_to_cpu(sup->min_io_size), c->min_io_size);
370 		goto failed;
371 	}
372 
373 	if (le32_to_cpu(sup->leb_size) != c->leb_size) {
374 		ubifs_err(c, "LEB size mismatch: %d in superblock, %d real",
375 			  le32_to_cpu(sup->leb_size), c->leb_size);
376 		goto failed;
377 	}
378 
379 	if (c->log_lebs < UBIFS_MIN_LOG_LEBS ||
380 	    c->lpt_lebs < UBIFS_MIN_LPT_LEBS ||
381 	    c->orph_lebs < UBIFS_MIN_ORPH_LEBS ||
382 	    c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
383 		err = 4;
384 		goto failed;
385 	}
386 
387 	/*
388 	 * Calculate minimum allowed amount of main area LEBs. This is very
389 	 * similar to %UBIFS_MIN_LEB_CNT, but we take into account real what we
390 	 * have just read from the superblock.
391 	 */
392 	min_leb_cnt = UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs;
393 	min_leb_cnt += c->lpt_lebs + c->orph_lebs + c->jhead_cnt + 6;
394 
395 	if (c->leb_cnt < min_leb_cnt || c->leb_cnt > c->vi.size) {
396 		ubifs_err(c, "bad LEB count: %d in superblock, %d on UBI volume, %d minimum required",
397 			  c->leb_cnt, c->vi.size, min_leb_cnt);
398 		goto failed;
399 	}
400 
401 	if (c->max_leb_cnt < c->leb_cnt) {
402 		ubifs_err(c, "max. LEB count %d less than LEB count %d",
403 			  c->max_leb_cnt, c->leb_cnt);
404 		goto failed;
405 	}
406 
407 	if (c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
408 		ubifs_err(c, "too few main LEBs count %d, must be at least %d",
409 			  c->main_lebs, UBIFS_MIN_MAIN_LEBS);
410 		goto failed;
411 	}
412 
413 	max_bytes = (long long)c->leb_size * UBIFS_MIN_BUD_LEBS;
414 	if (c->max_bud_bytes < max_bytes) {
415 		ubifs_err(c, "too small journal (%lld bytes), must be at least %lld bytes",
416 			  c->max_bud_bytes, max_bytes);
417 		goto failed;
418 	}
419 
420 	max_bytes = (long long)c->leb_size * c->main_lebs;
421 	if (c->max_bud_bytes > max_bytes) {
422 		ubifs_err(c, "too large journal size (%lld bytes), only %lld bytes available in the main area",
423 			  c->max_bud_bytes, max_bytes);
424 		goto failed;
425 	}
426 
427 	if (c->jhead_cnt < NONDATA_JHEADS_CNT + 1 ||
428 	    c->jhead_cnt > NONDATA_JHEADS_CNT + UBIFS_MAX_JHEADS) {
429 		err = 9;
430 		goto failed;
431 	}
432 
433 	if (c->fanout < UBIFS_MIN_FANOUT ||
434 	    ubifs_idx_node_sz(c, c->fanout) > c->leb_size) {
435 		err = 10;
436 		goto failed;
437 	}
438 
439 	if (c->lsave_cnt < 0 || (c->lsave_cnt > DEFAULT_LSAVE_CNT &&
440 	    c->lsave_cnt > c->max_leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS -
441 	    c->log_lebs - c->lpt_lebs - c->orph_lebs)) {
442 		err = 11;
443 		goto failed;
444 	}
445 
446 	if (UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs + c->lpt_lebs +
447 	    c->orph_lebs + c->main_lebs != c->leb_cnt) {
448 		err = 12;
449 		goto failed;
450 	}
451 
452 	if (c->default_compr >= UBIFS_COMPR_TYPES_CNT) {
453 		err = 13;
454 		goto failed;
455 	}
456 
457 	if (c->rp_size < 0 || max_bytes < c->rp_size) {
458 		err = 14;
459 		goto failed;
460 	}
461 
462 	if (le32_to_cpu(sup->time_gran) > 1000000000 ||
463 	    le32_to_cpu(sup->time_gran) < 1) {
464 		err = 15;
465 		goto failed;
466 	}
467 
468 	return 0;
469 
470 failed:
471 	ubifs_err(c, "bad superblock, error %d", err);
472 	ubifs_dump_node(c, sup);
473 	return -EINVAL;
474 }
475 
476 /**
477  * ubifs_read_sb_node - read superblock node.
478  * @c: UBIFS file-system description object
479  *
480  * This function returns a pointer to the superblock node or a negative error
481  * code. Note, the user of this function is responsible of kfree()'ing the
482  * returned superblock buffer.
483  */
ubifs_read_sb_node(struct ubifs_info * c)484 struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c)
485 {
486 	struct ubifs_sb_node *sup;
487 	int err;
488 
489 	sup = kmalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_NOFS);
490 	if (!sup)
491 		return ERR_PTR(-ENOMEM);
492 
493 	err = ubifs_read_node(c, sup, UBIFS_SB_NODE, UBIFS_SB_NODE_SZ,
494 			      UBIFS_SB_LNUM, 0);
495 	if (err) {
496 		kfree(sup);
497 		return ERR_PTR(err);
498 	}
499 
500 	return sup;
501 }
502 
503 /**
504  * ubifs_write_sb_node - write superblock node.
505  * @c: UBIFS file-system description object
506  * @sup: superblock node read with 'ubifs_read_sb_node()'
507  *
508  * This function returns %0 on success and a negative error code on failure.
509  */
ubifs_write_sb_node(struct ubifs_info * c,struct ubifs_sb_node * sup)510 int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup)
511 {
512 	int len = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
513 
514 	ubifs_prepare_node(c, sup, UBIFS_SB_NODE_SZ, 1);
515 	return ubifs_leb_change(c, UBIFS_SB_LNUM, sup, len);
516 }
517 
518 /**
519  * ubifs_read_superblock - read superblock.
520  * @c: UBIFS file-system description object
521  *
522  * This function finds, reads and checks the superblock. If an empty UBI volume
523  * is being mounted, this function creates default superblock. Returns zero in
524  * case of success, and a negative error code in case of failure.
525  */
ubifs_read_superblock(struct ubifs_info * c)526 int ubifs_read_superblock(struct ubifs_info *c)
527 {
528 	int err, sup_flags;
529 	struct ubifs_sb_node *sup;
530 
531 	if (c->empty) {
532 #ifndef __UBOOT__
533 		err = create_default_filesystem(c);
534 		if (err)
535 			return err;
536 #else
537 		printf("No UBIFS filesystem found!\n");
538 		return -1;
539 #endif
540 	}
541 
542 	sup = ubifs_read_sb_node(c);
543 	if (IS_ERR(sup))
544 		return PTR_ERR(sup);
545 
546 	c->fmt_version = le32_to_cpu(sup->fmt_version);
547 	c->ro_compat_version = le32_to_cpu(sup->ro_compat_version);
548 
549 	/*
550 	 * The software supports all previous versions but not future versions,
551 	 * due to the unavailability of time-travelling equipment.
552 	 */
553 	if (c->fmt_version > UBIFS_FORMAT_VERSION) {
554 		ubifs_assert(!c->ro_media || c->ro_mount);
555 		if (!c->ro_mount ||
556 		    c->ro_compat_version > UBIFS_RO_COMPAT_VERSION) {
557 			ubifs_err(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
558 				  c->fmt_version, c->ro_compat_version,
559 				  UBIFS_FORMAT_VERSION,
560 				  UBIFS_RO_COMPAT_VERSION);
561 			if (c->ro_compat_version <= UBIFS_RO_COMPAT_VERSION) {
562 				ubifs_msg(c, "only R/O mounting is possible");
563 				err = -EROFS;
564 			} else
565 				err = -EINVAL;
566 			goto out;
567 		}
568 
569 		/*
570 		 * The FS is mounted R/O, and the media format is
571 		 * R/O-compatible with the UBIFS implementation, so we can
572 		 * mount.
573 		 */
574 		c->rw_incompat = 1;
575 	}
576 
577 	if (c->fmt_version < 3) {
578 		ubifs_err(c, "on-flash format version %d is not supported",
579 			  c->fmt_version);
580 		err = -EINVAL;
581 		goto out;
582 	}
583 
584 	switch (sup->key_hash) {
585 	case UBIFS_KEY_HASH_R5:
586 		c->key_hash = key_r5_hash;
587 		c->key_hash_type = UBIFS_KEY_HASH_R5;
588 		break;
589 
590 	case UBIFS_KEY_HASH_TEST:
591 		c->key_hash = key_test_hash;
592 		c->key_hash_type = UBIFS_KEY_HASH_TEST;
593 		break;
594 	};
595 
596 	c->key_fmt = sup->key_fmt;
597 
598 	switch (c->key_fmt) {
599 	case UBIFS_SIMPLE_KEY_FMT:
600 		c->key_len = UBIFS_SK_LEN;
601 		break;
602 	default:
603 		ubifs_err(c, "unsupported key format");
604 		err = -EINVAL;
605 		goto out;
606 	}
607 
608 	c->leb_cnt       = le32_to_cpu(sup->leb_cnt);
609 	c->max_leb_cnt   = le32_to_cpu(sup->max_leb_cnt);
610 	c->max_bud_bytes = le64_to_cpu(sup->max_bud_bytes);
611 	c->log_lebs      = le32_to_cpu(sup->log_lebs);
612 	c->lpt_lebs      = le32_to_cpu(sup->lpt_lebs);
613 	c->orph_lebs     = le32_to_cpu(sup->orph_lebs);
614 	c->jhead_cnt     = le32_to_cpu(sup->jhead_cnt) + NONDATA_JHEADS_CNT;
615 	c->fanout        = le32_to_cpu(sup->fanout);
616 	c->lsave_cnt     = le32_to_cpu(sup->lsave_cnt);
617 	c->rp_size       = le64_to_cpu(sup->rp_size);
618 #ifndef __UBOOT__
619 	c->rp_uid        = make_kuid(&init_user_ns, le32_to_cpu(sup->rp_uid));
620 	c->rp_gid        = make_kgid(&init_user_ns, le32_to_cpu(sup->rp_gid));
621 #else
622 	c->rp_uid.val    = le32_to_cpu(sup->rp_uid);
623 	c->rp_gid.val    = le32_to_cpu(sup->rp_gid);
624 #endif
625 	sup_flags        = le32_to_cpu(sup->flags);
626 	if (!c->mount_opts.override_compr)
627 		c->default_compr = le16_to_cpu(sup->default_compr);
628 
629 	c->vfs_sb->s_time_gran = le32_to_cpu(sup->time_gran);
630 	memcpy(&c->uuid, &sup->uuid, 16);
631 	c->big_lpt = !!(sup_flags & UBIFS_FLG_BIGLPT);
632 	c->space_fixup = !!(sup_flags & UBIFS_FLG_SPACE_FIXUP);
633 
634 	/* Automatically increase file system size to the maximum size */
635 	c->old_leb_cnt = c->leb_cnt;
636 	if (c->leb_cnt < c->vi.size && c->leb_cnt < c->max_leb_cnt) {
637 		c->leb_cnt = min_t(int, c->max_leb_cnt, c->vi.size);
638 		if (c->ro_mount)
639 			dbg_mnt("Auto resizing (ro) from %d LEBs to %d LEBs",
640 				c->old_leb_cnt,	c->leb_cnt);
641 #ifndef __UBOOT__
642 		else {
643 			dbg_mnt("Auto resizing (sb) from %d LEBs to %d LEBs",
644 				c->old_leb_cnt, c->leb_cnt);
645 			sup->leb_cnt = cpu_to_le32(c->leb_cnt);
646 			err = ubifs_write_sb_node(c, sup);
647 			if (err)
648 				goto out;
649 			c->old_leb_cnt = c->leb_cnt;
650 		}
651 #endif
652 	}
653 
654 	c->log_bytes = (long long)c->log_lebs * c->leb_size;
655 	c->log_last = UBIFS_LOG_LNUM + c->log_lebs - 1;
656 	c->lpt_first = UBIFS_LOG_LNUM + c->log_lebs;
657 	c->lpt_last = c->lpt_first + c->lpt_lebs - 1;
658 	c->orph_first = c->lpt_last + 1;
659 	c->orph_last = c->orph_first + c->orph_lebs - 1;
660 	c->main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS;
661 	c->main_lebs -= c->log_lebs + c->lpt_lebs + c->orph_lebs;
662 	c->main_first = c->leb_cnt - c->main_lebs;
663 
664 	err = validate_sb(c, sup);
665 out:
666 	kfree(sup);
667 	return err;
668 }
669 
670 /**
671  * fixup_leb - fixup/unmap an LEB containing free space.
672  * @c: UBIFS file-system description object
673  * @lnum: the LEB number to fix up
674  * @len: number of used bytes in LEB (starting at offset 0)
675  *
676  * This function reads the contents of the given LEB number @lnum, then fixes
677  * it up, so that empty min. I/O units in the end of LEB are actually erased on
678  * flash (rather than being just all-0xff real data). If the LEB is completely
679  * empty, it is simply unmapped.
680  */
fixup_leb(struct ubifs_info * c,int lnum,int len)681 static int fixup_leb(struct ubifs_info *c, int lnum, int len)
682 {
683 	int err;
684 
685 	ubifs_assert(len >= 0);
686 	ubifs_assert(len % c->min_io_size == 0);
687 	ubifs_assert(len < c->leb_size);
688 
689 	if (len == 0) {
690 		dbg_mnt("unmap empty LEB %d", lnum);
691 		return ubifs_leb_unmap(c, lnum);
692 	}
693 
694 	dbg_mnt("fixup LEB %d, data len %d", lnum, len);
695 	err = ubifs_leb_read(c, lnum, c->sbuf, 0, len, 1);
696 	if (err)
697 		return err;
698 
699 	return ubifs_leb_change(c, lnum, c->sbuf, len);
700 }
701 
702 /**
703  * fixup_free_space - find & remap all LEBs containing free space.
704  * @c: UBIFS file-system description object
705  *
706  * This function walks through all LEBs in the filesystem and fiexes up those
707  * containing free/empty space.
708  */
fixup_free_space(struct ubifs_info * c)709 static int fixup_free_space(struct ubifs_info *c)
710 {
711 	int lnum, err = 0;
712 	struct ubifs_lprops *lprops;
713 
714 	ubifs_get_lprops(c);
715 
716 	/* Fixup LEBs in the master area */
717 	for (lnum = UBIFS_MST_LNUM; lnum < UBIFS_LOG_LNUM; lnum++) {
718 		err = fixup_leb(c, lnum, c->mst_offs + c->mst_node_alsz);
719 		if (err)
720 			goto out;
721 	}
722 
723 	/* Unmap unused log LEBs */
724 	lnum = ubifs_next_log_lnum(c, c->lhead_lnum);
725 	while (lnum != c->ltail_lnum) {
726 		err = fixup_leb(c, lnum, 0);
727 		if (err)
728 			goto out;
729 		lnum = ubifs_next_log_lnum(c, lnum);
730 	}
731 
732 	/*
733 	 * Fixup the log head which contains the only a CS node at the
734 	 * beginning.
735 	 */
736 	err = fixup_leb(c, c->lhead_lnum,
737 			ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size));
738 	if (err)
739 		goto out;
740 
741 	/* Fixup LEBs in the LPT area */
742 	for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
743 		int free = c->ltab[lnum - c->lpt_first].free;
744 
745 		if (free > 0) {
746 			err = fixup_leb(c, lnum, c->leb_size - free);
747 			if (err)
748 				goto out;
749 		}
750 	}
751 
752 	/* Unmap LEBs in the orphans area */
753 	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
754 		err = fixup_leb(c, lnum, 0);
755 		if (err)
756 			goto out;
757 	}
758 
759 	/* Fixup LEBs in the main area */
760 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
761 		lprops = ubifs_lpt_lookup(c, lnum);
762 		if (IS_ERR(lprops)) {
763 			err = PTR_ERR(lprops);
764 			goto out;
765 		}
766 
767 		if (lprops->free > 0) {
768 			err = fixup_leb(c, lnum, c->leb_size - lprops->free);
769 			if (err)
770 				goto out;
771 		}
772 	}
773 
774 out:
775 	ubifs_release_lprops(c);
776 	return err;
777 }
778 
779 /**
780  * ubifs_fixup_free_space - find & fix all LEBs with free space.
781  * @c: UBIFS file-system description object
782  *
783  * This function fixes up LEBs containing free space on first mount, if the
784  * appropriate flag was set when the FS was created. Each LEB with one or more
785  * empty min. I/O unit (i.e. free-space-count > 0) is re-written, to make sure
786  * the free space is actually erased. E.g., this is necessary for some NAND
787  * chips, since the free space may have been programmed like real "0xff" data
788  * (generating a non-0xff ECC), causing future writes to the not-really-erased
789  * NAND pages to behave badly. After the space is fixed up, the superblock flag
790  * is cleared, so that this is skipped for all future mounts.
791  */
ubifs_fixup_free_space(struct ubifs_info * c)792 int ubifs_fixup_free_space(struct ubifs_info *c)
793 {
794 	int err;
795 	struct ubifs_sb_node *sup;
796 
797 	ubifs_assert(c->space_fixup);
798 	ubifs_assert(!c->ro_mount);
799 
800 	ubifs_msg(c, "start fixing up free space");
801 
802 	err = fixup_free_space(c);
803 	if (err)
804 		return err;
805 
806 	sup = ubifs_read_sb_node(c);
807 	if (IS_ERR(sup))
808 		return PTR_ERR(sup);
809 
810 	/* Free-space fixup is no longer required */
811 	c->space_fixup = 0;
812 	sup->flags &= cpu_to_le32(~UBIFS_FLG_SPACE_FIXUP);
813 
814 	err = ubifs_write_sb_node(c, sup);
815 	kfree(sup);
816 	if (err)
817 		return err;
818 
819 	ubifs_msg(c, "free space fixup complete");
820 	return err;
821 }
822