1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2007-2008
4  * Stelian Pop <stelian@popies.net>
5  * Lead Tech Design <www.leadtechdesign.com>
6  *
7  * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
8  *
9  * Add Programmable Multibit ECC support for various AT91 SoC
10  *     (C) Copyright 2012 ATMEL, Hong Xu
11  */
12 
13 #include <common.h>
14 #include <log.h>
15 #include <asm/gpio.h>
16 #include <asm/arch/gpio.h>
17 #include <dm/device_compat.h>
18 #include <dm/devres.h>
19 #include <linux/bitops.h>
20 #include <linux/bug.h>
21 #include <linux/delay.h>
22 
23 #include <malloc.h>
24 #include <nand.h>
25 #include <watchdog.h>
26 #include <linux/mtd/nand_ecc.h>
27 
28 #ifdef CONFIG_ATMEL_NAND_HWECC
29 
30 /* Register access macros */
31 #define ecc_readl(add, reg)				\
32 	readl(add + ATMEL_ECC_##reg)
33 #define ecc_writel(add, reg, value)			\
34 	writel((value), add + ATMEL_ECC_##reg)
35 
36 #include "atmel_nand_ecc.h"	/* Hardware ECC registers */
37 
38 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
39 
40 #ifdef CONFIG_SPL_BUILD
41 #undef CONFIG_SYS_NAND_ONFI_DETECTION
42 #endif
43 
44 struct atmel_nand_host {
45 	struct pmecc_regs __iomem *pmecc;
46 	struct pmecc_errloc_regs __iomem *pmerrloc;
47 	void __iomem		*pmecc_rom_base;
48 
49 	u8		pmecc_corr_cap;
50 	u16		pmecc_sector_size;
51 	u32		pmecc_index_table_offset;
52 	u32		pmecc_version;
53 
54 	int		pmecc_bytes_per_sector;
55 	int		pmecc_sector_number;
56 	int		pmecc_degree;	/* Degree of remainders */
57 	int		pmecc_cw_len;	/* Length of codeword */
58 
59 	/* lookup table for alpha_to and index_of */
60 	void __iomem	*pmecc_alpha_to;
61 	void __iomem	*pmecc_index_of;
62 
63 	/* data for pmecc computation */
64 	int16_t	*pmecc_smu;
65 	int16_t	*pmecc_partial_syn;
66 	int16_t	*pmecc_si;
67 	int16_t	*pmecc_lmu; /* polynomal order */
68 	int	*pmecc_mu;
69 	int	*pmecc_dmu;
70 	int	*pmecc_delta;
71 };
72 
73 static struct atmel_nand_host pmecc_host;
74 static struct nand_ecclayout atmel_pmecc_oobinfo;
75 
76 /*
77  * Return number of ecc bytes per sector according to sector size and
78  * correction capability
79  *
80  * Following table shows what at91 PMECC supported:
81  * Correction Capability	Sector_512_bytes	Sector_1024_bytes
82  * =====================	================	=================
83  *                2-bits                 4-bytes                  4-bytes
84  *                4-bits                 7-bytes                  7-bytes
85  *                8-bits                13-bytes                 14-bytes
86  *               12-bits                20-bytes                 21-bytes
87  *               24-bits                39-bytes                 42-bytes
88  *               32-bits                52-bytes                 56-bytes
89  */
pmecc_get_ecc_bytes(int cap,int sector_size)90 static int pmecc_get_ecc_bytes(int cap, int sector_size)
91 {
92 	int m = 12 + sector_size / 512;
93 	return (m * cap + 7) / 8;
94 }
95 
pmecc_config_ecc_layout(struct nand_ecclayout * layout,int oobsize,int ecc_len)96 static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
97 	int oobsize, int ecc_len)
98 {
99 	int i;
100 
101 	layout->eccbytes = ecc_len;
102 
103 	/* ECC will occupy the last ecc_len bytes continuously */
104 	for (i = 0; i < ecc_len; i++)
105 		layout->eccpos[i] = oobsize - ecc_len + i;
106 
107 	layout->oobfree[0].offset = 2;
108 	layout->oobfree[0].length =
109 		oobsize - ecc_len - layout->oobfree[0].offset;
110 }
111 
pmecc_get_alpha_to(struct atmel_nand_host * host)112 static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
113 {
114 	int table_size;
115 
116 	table_size = host->pmecc_sector_size == 512 ?
117 		PMECC_INDEX_TABLE_SIZE_512 : PMECC_INDEX_TABLE_SIZE_1024;
118 
119 	/* the ALPHA lookup table is right behind the INDEX lookup table. */
120 	return host->pmecc_rom_base + host->pmecc_index_table_offset +
121 			table_size * sizeof(int16_t);
122 }
123 
pmecc_data_free(struct atmel_nand_host * host)124 static void pmecc_data_free(struct atmel_nand_host *host)
125 {
126 	free(host->pmecc_partial_syn);
127 	free(host->pmecc_si);
128 	free(host->pmecc_lmu);
129 	free(host->pmecc_smu);
130 	free(host->pmecc_mu);
131 	free(host->pmecc_dmu);
132 	free(host->pmecc_delta);
133 }
134 
pmecc_data_alloc(struct atmel_nand_host * host)135 static int pmecc_data_alloc(struct atmel_nand_host *host)
136 {
137 	const int cap = host->pmecc_corr_cap;
138 	int size;
139 
140 	size = (2 * cap + 1) * sizeof(int16_t);
141 	host->pmecc_partial_syn = malloc(size);
142 	host->pmecc_si = malloc(size);
143 	host->pmecc_lmu = malloc((cap + 1) * sizeof(int16_t));
144 	host->pmecc_smu = malloc((cap + 2) * size);
145 
146 	size = (cap + 1) * sizeof(int);
147 	host->pmecc_mu = malloc(size);
148 	host->pmecc_dmu = malloc(size);
149 	host->pmecc_delta = malloc(size);
150 
151 	if (host->pmecc_partial_syn &&
152 			host->pmecc_si &&
153 			host->pmecc_lmu &&
154 			host->pmecc_smu &&
155 			host->pmecc_mu &&
156 			host->pmecc_dmu &&
157 			host->pmecc_delta)
158 		return 0;
159 
160 	/* error happened */
161 	pmecc_data_free(host);
162 	return -ENOMEM;
163 
164 }
165 
pmecc_gen_syndrome(struct mtd_info * mtd,int sector)166 static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
167 {
168 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
169 	struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
170 	int i;
171 	uint32_t value;
172 
173 	/* Fill odd syndromes */
174 	for (i = 0; i < host->pmecc_corr_cap; i++) {
175 		value = pmecc_readl(host->pmecc, rem_port[sector].rem[i / 2]);
176 		if (i & 1)
177 			value >>= 16;
178 		value &= 0xffff;
179 		host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
180 	}
181 }
182 
pmecc_substitute(struct mtd_info * mtd)183 static void pmecc_substitute(struct mtd_info *mtd)
184 {
185 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
186 	struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
187 	int16_t __iomem *alpha_to = host->pmecc_alpha_to;
188 	int16_t __iomem *index_of = host->pmecc_index_of;
189 	int16_t *partial_syn = host->pmecc_partial_syn;
190 	const int cap = host->pmecc_corr_cap;
191 	int16_t *si;
192 	int i, j;
193 
194 	/* si[] is a table that holds the current syndrome value,
195 	 * an element of that table belongs to the field
196 	 */
197 	si = host->pmecc_si;
198 
199 	memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
200 
201 	/* Computation 2t syndromes based on S(x) */
202 	/* Odd syndromes */
203 	for (i = 1; i < 2 * cap; i += 2) {
204 		for (j = 0; j < host->pmecc_degree; j++) {
205 			if (partial_syn[i] & (0x1 << j))
206 				si[i] = readw(alpha_to + i * j) ^ si[i];
207 		}
208 	}
209 	/* Even syndrome = (Odd syndrome) ** 2 */
210 	for (i = 2, j = 1; j <= cap; i = ++j << 1) {
211 		if (si[j] == 0) {
212 			si[i] = 0;
213 		} else {
214 			int16_t tmp;
215 
216 			tmp = readw(index_of + si[j]);
217 			tmp = (tmp * 2) % host->pmecc_cw_len;
218 			si[i] = readw(alpha_to + tmp);
219 		}
220 	}
221 }
222 
223 /*
224  * This function defines a Berlekamp iterative procedure for
225  * finding the value of the error location polynomial.
226  * The input is si[], initialize by pmecc_substitute().
227  * The output is smu[][].
228  *
229  * This function is written according to chip datasheet Chapter:
230  * Find the Error Location Polynomial Sigma(x) of Section:
231  * Programmable Multibit ECC Control (PMECC).
232  */
pmecc_get_sigma(struct mtd_info * mtd)233 static void pmecc_get_sigma(struct mtd_info *mtd)
234 {
235 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
236 	struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
237 
238 	int16_t *lmu = host->pmecc_lmu;
239 	int16_t *si = host->pmecc_si;
240 	int *mu = host->pmecc_mu;
241 	int *dmu = host->pmecc_dmu;	/* Discrepancy */
242 	int *delta = host->pmecc_delta; /* Delta order */
243 	int cw_len = host->pmecc_cw_len;
244 	const int16_t cap = host->pmecc_corr_cap;
245 	const int num = 2 * cap + 1;
246 	int16_t __iomem	*index_of = host->pmecc_index_of;
247 	int16_t __iomem	*alpha_to = host->pmecc_alpha_to;
248 	int i, j, k;
249 	uint32_t dmu_0_count, tmp;
250 	int16_t *smu = host->pmecc_smu;
251 
252 	/* index of largest delta */
253 	int ro;
254 	int largest;
255 	int diff;
256 
257 	/* Init the Sigma(x) */
258 	memset(smu, 0, sizeof(int16_t) * num * (cap + 2));
259 
260 	dmu_0_count = 0;
261 
262 	/* First Row */
263 
264 	/* Mu */
265 	mu[0] = -1;
266 
267 	smu[0] = 1;
268 
269 	/* discrepancy set to 1 */
270 	dmu[0] = 1;
271 	/* polynom order set to 0 */
272 	lmu[0] = 0;
273 	/* delta[0] = (mu[0] * 2 - lmu[0]) >> 1; */
274 	delta[0] = -1;
275 
276 	/* Second Row */
277 
278 	/* Mu */
279 	mu[1] = 0;
280 	/* Sigma(x) set to 1 */
281 	smu[num] = 1;
282 
283 	/* discrepancy set to S1 */
284 	dmu[1] = si[1];
285 
286 	/* polynom order set to 0 */
287 	lmu[1] = 0;
288 
289 	/* delta[1] = (mu[1] * 2 - lmu[1]) >> 1; */
290 	delta[1] = 0;
291 
292 	for (i = 1; i <= cap; i++) {
293 		mu[i + 1] = i << 1;
294 		/* Begin Computing Sigma (Mu+1) and L(mu) */
295 		/* check if discrepancy is set to 0 */
296 		if (dmu[i] == 0) {
297 			dmu_0_count++;
298 
299 			tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
300 			if ((cap - (lmu[i] >> 1) - 1) & 0x1)
301 				tmp += 2;
302 			else
303 				tmp += 1;
304 
305 			if (dmu_0_count == tmp) {
306 				for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
307 					smu[(cap + 1) * num + j] =
308 							smu[i * num + j];
309 
310 				lmu[cap + 1] = lmu[i];
311 				return;
312 			}
313 
314 			/* copy polynom */
315 			for (j = 0; j <= lmu[i] >> 1; j++)
316 				smu[(i + 1) * num + j] = smu[i * num + j];
317 
318 			/* copy previous polynom order to the next */
319 			lmu[i + 1] = lmu[i];
320 		} else {
321 			ro = 0;
322 			largest = -1;
323 			/* find largest delta with dmu != 0 */
324 			for (j = 0; j < i; j++) {
325 				if ((dmu[j]) && (delta[j] > largest)) {
326 					largest = delta[j];
327 					ro = j;
328 				}
329 			}
330 
331 			/* compute difference */
332 			diff = (mu[i] - mu[ro]);
333 
334 			/* Compute degree of the new smu polynomial */
335 			if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
336 				lmu[i + 1] = lmu[i];
337 			else
338 				lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
339 
340 			/* Init smu[i+1] with 0 */
341 			for (k = 0; k < num; k++)
342 				smu[(i + 1) * num + k] = 0;
343 
344 			/* Compute smu[i+1] */
345 			for (k = 0; k <= lmu[ro] >> 1; k++) {
346 				int16_t a, b, c;
347 
348 				if (!(smu[ro * num + k] && dmu[i]))
349 					continue;
350 				a = readw(index_of + dmu[i]);
351 				b = readw(index_of + dmu[ro]);
352 				c = readw(index_of + smu[ro * num + k]);
353 				tmp = a + (cw_len - b) + c;
354 				a = readw(alpha_to + tmp % cw_len);
355 				smu[(i + 1) * num + (k + diff)] = a;
356 			}
357 
358 			for (k = 0; k <= lmu[i] >> 1; k++)
359 				smu[(i + 1) * num + k] ^= smu[i * num + k];
360 		}
361 
362 		/* End Computing Sigma (Mu+1) and L(mu) */
363 		/* In either case compute delta */
364 		delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
365 
366 		/* Do not compute discrepancy for the last iteration */
367 		if (i >= cap)
368 			continue;
369 
370 		for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
371 			tmp = 2 * (i - 1);
372 			if (k == 0) {
373 				dmu[i + 1] = si[tmp + 3];
374 			} else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
375 				int16_t a, b, c;
376 				a = readw(index_of +
377 						smu[(i + 1) * num + k]);
378 				b = si[2 * (i - 1) + 3 - k];
379 				c = readw(index_of + b);
380 				tmp = a + c;
381 				tmp %= cw_len;
382 				dmu[i + 1] = readw(alpha_to + tmp) ^
383 					dmu[i + 1];
384 			}
385 		}
386 	}
387 }
388 
pmecc_err_location(struct mtd_info * mtd)389 static int pmecc_err_location(struct mtd_info *mtd)
390 {
391 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
392 	struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
393 	const int cap = host->pmecc_corr_cap;
394 	const int num = 2 * cap + 1;
395 	int sector_size = host->pmecc_sector_size;
396 	int err_nbr = 0;	/* number of error */
397 	int roots_nbr;		/* number of roots */
398 	int i;
399 	uint32_t val;
400 	int16_t *smu = host->pmecc_smu;
401 	int timeout = PMECC_MAX_TIMEOUT_US;
402 
403 	pmecc_writel(host->pmerrloc, eldis, PMERRLOC_DISABLE);
404 
405 	for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
406 		pmecc_writel(host->pmerrloc, sigma[i],
407 			     smu[(cap + 1) * num + i]);
408 		err_nbr++;
409 	}
410 
411 	val = PMERRLOC_ELCFG_NUM_ERRORS(err_nbr - 1);
412 	if (sector_size == 1024)
413 		val |= PMERRLOC_ELCFG_SECTOR_1024;
414 
415 	pmecc_writel(host->pmerrloc, elcfg, val);
416 	pmecc_writel(host->pmerrloc, elen,
417 		     sector_size * 8 + host->pmecc_degree * cap);
418 
419 	while (--timeout) {
420 		if (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_CALC_DONE)
421 			break;
422 		WATCHDOG_RESET();
423 		udelay(1);
424 	}
425 
426 	if (!timeout) {
427 		dev_err(mtd->dev,
428 			"Timeout to calculate PMECC error location\n");
429 		return -1;
430 	}
431 
432 	roots_nbr = (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_ERR_NUM_MASK)
433 			>> 8;
434 	/* Number of roots == degree of smu hence <= cap */
435 	if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
436 		return err_nbr - 1;
437 
438 	/* Number of roots does not match the degree of smu
439 	 * unable to correct error */
440 	return -1;
441 }
442 
pmecc_correct_data(struct mtd_info * mtd,uint8_t * buf,uint8_t * ecc,int sector_num,int extra_bytes,int err_nbr)443 static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
444 		int sector_num, int extra_bytes, int err_nbr)
445 {
446 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
447 	struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
448 	int i = 0;
449 	int byte_pos, bit_pos, sector_size, pos;
450 	uint32_t tmp;
451 	uint8_t err_byte;
452 
453 	sector_size = host->pmecc_sector_size;
454 
455 	while (err_nbr) {
456 		tmp = pmecc_readl(host->pmerrloc, el[i]) - 1;
457 		byte_pos = tmp / 8;
458 		bit_pos  = tmp % 8;
459 
460 		if (byte_pos >= (sector_size + extra_bytes))
461 			BUG();	/* should never happen */
462 
463 		if (byte_pos < sector_size) {
464 			err_byte = *(buf + byte_pos);
465 			*(buf + byte_pos) ^= (1 << bit_pos);
466 
467 			pos = sector_num * host->pmecc_sector_size + byte_pos;
468 			dev_dbg(mtd->dev,
469 				"Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
470 				pos, bit_pos, err_byte, *(buf + byte_pos));
471 		} else {
472 			/* Bit flip in OOB area */
473 			tmp = sector_num * host->pmecc_bytes_per_sector
474 					+ (byte_pos - sector_size);
475 			err_byte = ecc[tmp];
476 			ecc[tmp] ^= (1 << bit_pos);
477 
478 			pos = tmp + nand_chip->ecc.layout->eccpos[0];
479 			dev_dbg(mtd->dev,
480 				"Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
481 				pos, bit_pos, err_byte, ecc[tmp]);
482 		}
483 
484 		i++;
485 		err_nbr--;
486 	}
487 
488 	return;
489 }
490 
pmecc_correction(struct mtd_info * mtd,u32 pmecc_stat,uint8_t * buf,u8 * ecc)491 static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
492 	u8 *ecc)
493 {
494 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
495 	struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
496 	int i, err_nbr, eccbytes;
497 	uint8_t *buf_pos;
498 
499 	/* SAMA5D4 PMECC IP can correct errors for all 0xff page */
500 	if (host->pmecc_version >= PMECC_VERSION_SAMA5D4)
501 		goto normal_check;
502 
503 	eccbytes = nand_chip->ecc.bytes;
504 	for (i = 0; i < eccbytes; i++)
505 		if (ecc[i] != 0xff)
506 			goto normal_check;
507 	/* Erased page, return OK */
508 	return 0;
509 
510 normal_check:
511 	for (i = 0; i < host->pmecc_sector_number; i++) {
512 		err_nbr = 0;
513 		if (pmecc_stat & 0x1) {
514 			buf_pos = buf + i * host->pmecc_sector_size;
515 
516 			pmecc_gen_syndrome(mtd, i);
517 			pmecc_substitute(mtd);
518 			pmecc_get_sigma(mtd);
519 
520 			err_nbr = pmecc_err_location(mtd);
521 			if (err_nbr == -1) {
522 				dev_err(mtd->dev, "PMECC: Too many errors\n");
523 				mtd->ecc_stats.failed++;
524 				return -EBADMSG;
525 			} else {
526 				pmecc_correct_data(mtd, buf_pos, ecc, i,
527 					host->pmecc_bytes_per_sector, err_nbr);
528 				mtd->ecc_stats.corrected += err_nbr;
529 			}
530 		}
531 		pmecc_stat >>= 1;
532 	}
533 
534 	return 0;
535 }
536 
atmel_nand_pmecc_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)537 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
538 	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
539 {
540 	struct atmel_nand_host *host = nand_get_controller_data(chip);
541 	int eccsize = chip->ecc.size;
542 	uint8_t *oob = chip->oob_poi;
543 	uint32_t *eccpos = chip->ecc.layout->eccpos;
544 	uint32_t stat;
545 	int timeout = PMECC_MAX_TIMEOUT_US;
546 
547 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
548 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
549 	pmecc_writel(host->pmecc, cfg, ((pmecc_readl(host->pmecc, cfg))
550 		& ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE);
551 
552 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
553 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
554 
555 	chip->read_buf(mtd, buf, eccsize);
556 	chip->read_buf(mtd, oob, mtd->oobsize);
557 
558 	while (--timeout) {
559 		if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
560 			break;
561 		WATCHDOG_RESET();
562 		udelay(1);
563 	}
564 
565 	if (!timeout) {
566 		dev_err(mtd->dev, "Timeout to read PMECC page\n");
567 		return -1;
568 	}
569 
570 	stat = pmecc_readl(host->pmecc, isr);
571 	if (stat != 0)
572 		if (pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]) != 0)
573 			return -EBADMSG;
574 
575 	return 0;
576 }
577 
atmel_nand_pmecc_write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)578 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
579 		struct nand_chip *chip, const uint8_t *buf,
580 		int oob_required, int page)
581 {
582 	struct atmel_nand_host *host = nand_get_controller_data(chip);
583 	uint32_t *eccpos = chip->ecc.layout->eccpos;
584 	int i, j;
585 	int timeout = PMECC_MAX_TIMEOUT_US;
586 
587 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
588 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
589 
590 	pmecc_writel(host->pmecc, cfg, (pmecc_readl(host->pmecc, cfg) |
591 		PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE);
592 
593 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
594 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
595 
596 	chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
597 
598 	while (--timeout) {
599 		if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
600 			break;
601 		WATCHDOG_RESET();
602 		udelay(1);
603 	}
604 
605 	if (!timeout) {
606 		dev_err(mtd->dev,
607 			"Timeout to read PMECC status, fail to write PMECC in oob\n");
608 		goto out;
609 	}
610 
611 	for (i = 0; i < host->pmecc_sector_number; i++) {
612 		for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
613 			int pos;
614 
615 			pos = i * host->pmecc_bytes_per_sector + j;
616 			chip->oob_poi[eccpos[pos]] =
617 				pmecc_readb(host->pmecc, ecc_port[i].ecc[j]);
618 		}
619 	}
620 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
621 out:
622 	return 0;
623 }
624 
atmel_pmecc_core_init(struct mtd_info * mtd)625 static void atmel_pmecc_core_init(struct mtd_info *mtd)
626 {
627 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
628 	struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
629 	uint32_t val = 0;
630 	struct nand_ecclayout *ecc_layout;
631 
632 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
633 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
634 
635 	switch (host->pmecc_corr_cap) {
636 	case 2:
637 		val = PMECC_CFG_BCH_ERR2;
638 		break;
639 	case 4:
640 		val = PMECC_CFG_BCH_ERR4;
641 		break;
642 	case 8:
643 		val = PMECC_CFG_BCH_ERR8;
644 		break;
645 	case 12:
646 		val = PMECC_CFG_BCH_ERR12;
647 		break;
648 	case 24:
649 		val = PMECC_CFG_BCH_ERR24;
650 		break;
651 	case 32:
652 		val = PMECC_CFG_BCH_ERR32;
653 		break;
654 	}
655 
656 	if (host->pmecc_sector_size == 512)
657 		val |= PMECC_CFG_SECTOR512;
658 	else if (host->pmecc_sector_size == 1024)
659 		val |= PMECC_CFG_SECTOR1024;
660 
661 	switch (host->pmecc_sector_number) {
662 	case 1:
663 		val |= PMECC_CFG_PAGE_1SECTOR;
664 		break;
665 	case 2:
666 		val |= PMECC_CFG_PAGE_2SECTORS;
667 		break;
668 	case 4:
669 		val |= PMECC_CFG_PAGE_4SECTORS;
670 		break;
671 	case 8:
672 		val |= PMECC_CFG_PAGE_8SECTORS;
673 		break;
674 	}
675 
676 	val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
677 		| PMECC_CFG_AUTO_DISABLE);
678 	pmecc_writel(host->pmecc, cfg, val);
679 
680 	ecc_layout = nand_chip->ecc.layout;
681 	pmecc_writel(host->pmecc, sarea, mtd->oobsize - 1);
682 	pmecc_writel(host->pmecc, saddr, ecc_layout->eccpos[0]);
683 	pmecc_writel(host->pmecc, eaddr,
684 			ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
685 	/* See datasheet about PMECC Clock Control Register */
686 	pmecc_writel(host->pmecc, clk, PMECC_CLK_133MHZ);
687 	pmecc_writel(host->pmecc, idr, 0xff);
688 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
689 }
690 
691 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
692 /*
693  * pmecc_choose_ecc - Get ecc requirement from ONFI parameters. If
694  *                    pmecc_corr_cap or pmecc_sector_size is 0, then set it as
695  *                    ONFI ECC parameters.
696  * @host: point to an atmel_nand_host structure.
697  *        if host->pmecc_corr_cap is 0 then set it as the ONFI ecc_bits.
698  *        if host->pmecc_sector_size is 0 then set it as the ONFI sector_size.
699  * @chip: point to an nand_chip structure.
700  * @cap: store the ONFI ECC correct bits capbility
701  * @sector_size: in how many bytes that ONFI require to correct @ecc_bits
702  *
703  * Return 0 if success. otherwise return the error code.
704  */
pmecc_choose_ecc(struct atmel_nand_host * host,struct nand_chip * chip,int * cap,int * sector_size)705 static int pmecc_choose_ecc(struct atmel_nand_host *host,
706 		struct nand_chip *chip,
707 		int *cap, int *sector_size)
708 {
709 	/* Get ECC requirement from ONFI parameters */
710 	*cap = *sector_size = 0;
711 	if (chip->onfi_version) {
712 		*cap = chip->ecc_strength_ds;
713 		*sector_size = chip->ecc_step_ds;
714 		pr_debug("ONFI params, minimum required ECC: %d bits in %d bytes\n",
715 			 *cap, *sector_size);
716 	}
717 
718 	if (*cap == 0 && *sector_size == 0) {
719 		/* Non-ONFI compliant */
720 		dev_info(chip->mtd.dev,
721 			 "NAND chip is not ONFI compliant, assume ecc_bits is 2 in 512 bytes\n");
722 		*cap = 2;
723 		*sector_size = 512;
724 	}
725 
726 	/* If head file doesn't specify then use the one in ONFI parameters */
727 	if (host->pmecc_corr_cap == 0) {
728 		/* use the most fitable ecc bits (the near bigger one ) */
729 		if (*cap <= 2)
730 			host->pmecc_corr_cap = 2;
731 		else if (*cap <= 4)
732 			host->pmecc_corr_cap = 4;
733 		else if (*cap <= 8)
734 			host->pmecc_corr_cap = 8;
735 		else if (*cap <= 12)
736 			host->pmecc_corr_cap = 12;
737 		else if (*cap <= 24)
738 			host->pmecc_corr_cap = 24;
739 		else
740 #ifdef CONFIG_SAMA5D2
741 			host->pmecc_corr_cap = 32;
742 #else
743 			host->pmecc_corr_cap = 24;
744 #endif
745 	}
746 	if (host->pmecc_sector_size == 0) {
747 		/* use the most fitable sector size (the near smaller one ) */
748 		if (*sector_size >= 1024)
749 			host->pmecc_sector_size = 1024;
750 		else if (*sector_size >= 512)
751 			host->pmecc_sector_size = 512;
752 		else
753 			return -EINVAL;
754 	}
755 	return 0;
756 }
757 #endif
758 
759 #if defined(NO_GALOIS_TABLE_IN_ROM)
760 static uint16_t *pmecc_galois_table;
deg(unsigned int poly)761 static inline int deg(unsigned int poly)
762 {
763 	/* polynomial degree is the most-significant bit index */
764 	return fls(poly) - 1;
765 }
766 
build_gf_tables(int mm,unsigned int poly,int16_t * index_of,int16_t * alpha_to)767 static int build_gf_tables(int mm, unsigned int poly,
768 			   int16_t *index_of, int16_t *alpha_to)
769 {
770 	unsigned int i, x = 1;
771 	const unsigned int k = 1 << deg(poly);
772 	unsigned int nn = (1 << mm) - 1;
773 
774 	/* primitive polynomial must be of degree m */
775 	if (k != (1u << mm))
776 		return -EINVAL;
777 
778 	for (i = 0; i < nn; i++) {
779 		alpha_to[i] = x;
780 		index_of[x] = i;
781 		if (i && (x == 1))
782 			/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
783 			return -EINVAL;
784 		x <<= 1;
785 		if (x & k)
786 			x ^= poly;
787 	}
788 
789 	alpha_to[nn] = 1;
790 	index_of[0] = 0;
791 
792 	return 0;
793 }
794 
create_lookup_table(int sector_size)795 static uint16_t *create_lookup_table(int sector_size)
796 {
797 	int degree = (sector_size == 512) ?
798 			PMECC_GF_DIMENSION_13 :
799 			PMECC_GF_DIMENSION_14;
800 	unsigned int poly = (sector_size == 512) ?
801 			PMECC_GF_13_PRIMITIVE_POLY :
802 			PMECC_GF_14_PRIMITIVE_POLY;
803 	int table_size = (sector_size == 512) ?
804 			PMECC_INDEX_TABLE_SIZE_512 :
805 			PMECC_INDEX_TABLE_SIZE_1024;
806 
807 	int16_t *addr = kzalloc(2 * table_size * sizeof(uint16_t), GFP_KERNEL);
808 	if (addr && build_gf_tables(degree, poly, addr, addr + table_size))
809 		return NULL;
810 
811 	return (uint16_t *)addr;
812 }
813 #endif
814 
atmel_pmecc_nand_init_params(struct nand_chip * nand,struct mtd_info * mtd)815 static int atmel_pmecc_nand_init_params(struct nand_chip *nand,
816 		struct mtd_info *mtd)
817 {
818 	struct atmel_nand_host *host;
819 	int cap, sector_size;
820 
821 	host = &pmecc_host;
822 	nand_set_controller_data(nand, host);
823 
824 	nand->ecc.mode = NAND_ECC_HW;
825 	nand->ecc.calculate = NULL;
826 	nand->ecc.correct = NULL;
827 	nand->ecc.hwctl = NULL;
828 
829 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
830 	host->pmecc_corr_cap = host->pmecc_sector_size = 0;
831 
832 #ifdef CONFIG_PMECC_CAP
833 	host->pmecc_corr_cap = CONFIG_PMECC_CAP;
834 #endif
835 #ifdef CONFIG_PMECC_SECTOR_SIZE
836 	host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
837 #endif
838 	/* Get ECC requirement of ONFI parameters. And if CONFIG_PMECC_CAP or
839 	 * CONFIG_PMECC_SECTOR_SIZE not defined, then use ecc_bits, sector_size
840 	 * from ONFI.
841 	 */
842 	if (pmecc_choose_ecc(host, nand, &cap, &sector_size)) {
843 		dev_err(mtd->dev,
844 			"Required ECC %d bits in %d bytes not supported!\n",
845 			cap, sector_size);
846 		return -EINVAL;
847 	}
848 
849 	if (cap > host->pmecc_corr_cap)
850 		dev_info(mtd->dev,
851 			 "WARNING: Using different ecc correct bits(%d bit) from Nand ONFI ECC reqirement (%d bit).\n",
852 			 host->pmecc_corr_cap, cap);
853 	if (sector_size < host->pmecc_sector_size)
854 		dev_info(mtd->dev,
855 			 "WARNING: Using different ecc correct sector size (%d bytes) from Nand ONFI ECC reqirement (%d bytes).\n",
856 			 host->pmecc_sector_size, sector_size);
857 #else	/* CONFIG_SYS_NAND_ONFI_DETECTION */
858 	host->pmecc_corr_cap = CONFIG_PMECC_CAP;
859 	host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
860 #endif
861 
862 	cap = host->pmecc_corr_cap;
863 	sector_size = host->pmecc_sector_size;
864 
865 	/* TODO: need check whether cap & sector_size is validate */
866 #if defined(NO_GALOIS_TABLE_IN_ROM)
867 	/*
868 	 * As pmecc_rom_base is the begin of the gallois field table, So the
869 	 * index offset just set as 0.
870 	 */
871 	host->pmecc_index_table_offset = 0;
872 #else
873 	if (host->pmecc_sector_size == 512)
874 		host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_512;
875 	else
876 		host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_1024;
877 #endif
878 
879 	pr_debug("Initialize PMECC params, cap: %d, sector: %d\n",
880 		 cap, sector_size);
881 
882 	host->pmecc = (struct pmecc_regs __iomem *) ATMEL_BASE_PMECC;
883 	host->pmerrloc = (struct pmecc_errloc_regs __iomem *)
884 			ATMEL_BASE_PMERRLOC;
885 #if defined(NO_GALOIS_TABLE_IN_ROM)
886 	pmecc_galois_table = create_lookup_table(host->pmecc_sector_size);
887 	if (!pmecc_galois_table) {
888 		dev_err(mtd->dev, "out of memory\n");
889 		return -ENOMEM;
890 	}
891 
892 	host->pmecc_rom_base = (void __iomem *)pmecc_galois_table;
893 #else
894 	host->pmecc_rom_base = (void __iomem *) ATMEL_BASE_ROM;
895 #endif
896 
897 	/* ECC is calculated for the whole page (1 step) */
898 	nand->ecc.size = mtd->writesize;
899 
900 	/* set ECC page size and oob layout */
901 	switch (mtd->writesize) {
902 	case 2048:
903 	case 4096:
904 	case 8192:
905 		host->pmecc_degree = (sector_size == 512) ?
906 			PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
907 		host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
908 		host->pmecc_sector_number = mtd->writesize / sector_size;
909 		host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
910 			cap, sector_size);
911 		host->pmecc_alpha_to = pmecc_get_alpha_to(host);
912 		host->pmecc_index_of = host->pmecc_rom_base +
913 			host->pmecc_index_table_offset;
914 
915 		nand->ecc.steps = 1;
916 		nand->ecc.bytes = host->pmecc_bytes_per_sector *
917 				       host->pmecc_sector_number;
918 
919 		if (nand->ecc.bytes > MTD_MAX_ECCPOS_ENTRIES_LARGE) {
920 			dev_err(mtd->dev,
921 				"too large eccpos entries. max support ecc.bytes is %d\n",
922 				MTD_MAX_ECCPOS_ENTRIES_LARGE);
923 			return -EINVAL;
924 		}
925 
926 		if (nand->ecc.bytes > mtd->oobsize - PMECC_OOB_RESERVED_BYTES) {
927 			dev_err(mtd->dev, "No room for ECC bytes\n");
928 			return -EINVAL;
929 		}
930 		pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
931 					mtd->oobsize,
932 					nand->ecc.bytes);
933 		nand->ecc.layout = &atmel_pmecc_oobinfo;
934 		break;
935 	case 512:
936 	case 1024:
937 		/* TODO */
938 		dev_err(mtd->dev,
939 			"Unsupported page size for PMECC, use Software ECC\n");
940 	default:
941 		/* page size not handled by HW ECC */
942 		/* switching back to soft ECC */
943 		nand->ecc.mode = NAND_ECC_SOFT;
944 		nand->ecc.read_page = NULL;
945 		nand->ecc.postpad = 0;
946 		nand->ecc.prepad = 0;
947 		nand->ecc.bytes = 0;
948 		return 0;
949 	}
950 
951 	/* Allocate data for PMECC computation */
952 	if (pmecc_data_alloc(host)) {
953 		dev_err(mtd->dev,
954 			"Cannot allocate memory for PMECC computation!\n");
955 		return -ENOMEM;
956 	}
957 
958 	nand->options |= NAND_NO_SUBPAGE_WRITE;
959 	nand->ecc.read_page = atmel_nand_pmecc_read_page;
960 	nand->ecc.write_page = atmel_nand_pmecc_write_page;
961 	nand->ecc.strength = cap;
962 
963 	/* Check the PMECC ip version */
964 	host->pmecc_version = pmecc_readl(host->pmerrloc, version);
965 	dev_dbg(mtd->dev, "PMECC IP version is: %x\n", host->pmecc_version);
966 
967 	atmel_pmecc_core_init(mtd);
968 
969 	return 0;
970 }
971 
972 #else
973 
974 /* oob layout for large page size
975  * bad block info is on bytes 0 and 1
976  * the bytes have to be consecutives to avoid
977  * several NAND_CMD_RNDOUT during read
978  */
979 static struct nand_ecclayout atmel_oobinfo_large = {
980 	.eccbytes = 4,
981 	.eccpos = {60, 61, 62, 63},
982 	.oobfree = {
983 		{2, 58}
984 	},
985 };
986 
987 /* oob layout for small page size
988  * bad block info is on bytes 4 and 5
989  * the bytes have to be consecutives to avoid
990  * several NAND_CMD_RNDOUT during read
991  */
992 static struct nand_ecclayout atmel_oobinfo_small = {
993 	.eccbytes = 4,
994 	.eccpos = {0, 1, 2, 3},
995 	.oobfree = {
996 		{6, 10}
997 	},
998 };
999 
1000 /*
1001  * Calculate HW ECC
1002  *
1003  * function called after a write
1004  *
1005  * mtd:        MTD block structure
1006  * dat:        raw data (unused)
1007  * ecc_code:   buffer for ECC
1008  */
atmel_nand_calculate(struct mtd_info * mtd,const u_char * dat,unsigned char * ecc_code)1009 static int atmel_nand_calculate(struct mtd_info *mtd,
1010 		const u_char *dat, unsigned char *ecc_code)
1011 {
1012 	unsigned int ecc_value;
1013 
1014 	/* get the first 2 ECC bytes */
1015 	ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR);
1016 
1017 	ecc_code[0] = ecc_value & 0xFF;
1018 	ecc_code[1] = (ecc_value >> 8) & 0xFF;
1019 
1020 	/* get the last 2 ECC bytes */
1021 	ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, NPR) & ATMEL_ECC_NPARITY;
1022 
1023 	ecc_code[2] = ecc_value & 0xFF;
1024 	ecc_code[3] = (ecc_value >> 8) & 0xFF;
1025 
1026 	return 0;
1027 }
1028 
1029 /*
1030  * HW ECC read page function
1031  *
1032  * mtd:        mtd info structure
1033  * chip:       nand chip info structure
1034  * buf:        buffer to store read data
1035  * oob_required:    caller expects OOB data read to chip->oob_poi
1036  */
atmel_nand_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1037 static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1038 				uint8_t *buf, int oob_required, int page)
1039 {
1040 	int eccsize = chip->ecc.size;
1041 	int eccbytes = chip->ecc.bytes;
1042 	uint32_t *eccpos = chip->ecc.layout->eccpos;
1043 	uint8_t *p = buf;
1044 	uint8_t *oob = chip->oob_poi;
1045 	uint8_t *ecc_pos;
1046 	int stat;
1047 
1048 	/* read the page */
1049 	chip->read_buf(mtd, p, eccsize);
1050 
1051 	/* move to ECC position if needed */
1052 	if (eccpos[0] != 0) {
1053 		/* This only works on large pages
1054 		 * because the ECC controller waits for
1055 		 * NAND_CMD_RNDOUTSTART after the
1056 		 * NAND_CMD_RNDOUT.
1057 		 * anyway, for small pages, the eccpos[0] == 0
1058 		 */
1059 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1060 				mtd->writesize + eccpos[0], -1);
1061 	}
1062 
1063 	/* the ECC controller needs to read the ECC just after the data */
1064 	ecc_pos = oob + eccpos[0];
1065 	chip->read_buf(mtd, ecc_pos, eccbytes);
1066 
1067 	/* check if there's an error */
1068 	stat = chip->ecc.correct(mtd, p, oob, NULL);
1069 
1070 	if (stat < 0)
1071 		mtd->ecc_stats.failed++;
1072 	else
1073 		mtd->ecc_stats.corrected += stat;
1074 
1075 	/* get back to oob start (end of page) */
1076 	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1077 
1078 	/* read the oob */
1079 	chip->read_buf(mtd, oob, mtd->oobsize);
1080 
1081 	return 0;
1082 }
1083 
1084 /*
1085  * HW ECC Correction
1086  *
1087  * function called after a read
1088  *
1089  * mtd:        MTD block structure
1090  * dat:        raw data read from the chip
1091  * read_ecc:   ECC from the chip (unused)
1092  * isnull:     unused
1093  *
1094  * Detect and correct a 1 bit error for a page
1095  */
atmel_nand_correct(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * isnull)1096 static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1097 		u_char *read_ecc, u_char *isnull)
1098 {
1099 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1100 	unsigned int ecc_status;
1101 	unsigned int ecc_word, ecc_bit;
1102 
1103 	/* get the status from the Status Register */
1104 	ecc_status = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, SR);
1105 
1106 	/* if there's no error */
1107 	if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1108 		return 0;
1109 
1110 	/* get error bit offset (4 bits) */
1111 	ecc_bit = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_BITADDR;
1112 	/* get word address (12 bits) */
1113 	ecc_word = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_WORDADDR;
1114 	ecc_word >>= 4;
1115 
1116 	/* if there are multiple errors */
1117 	if (ecc_status & ATMEL_ECC_MULERR) {
1118 		/* check if it is a freshly erased block
1119 		 * (filled with 0xff) */
1120 		if ((ecc_bit == ATMEL_ECC_BITADDR)
1121 				&& (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1122 			/* the block has just been erased, return OK */
1123 			return 0;
1124 		}
1125 		/* it doesn't seems to be a freshly
1126 		 * erased block.
1127 		 * We can't correct so many errors */
1128 		dev_warn(mtd->dev,
1129 			 "multiple errors detected. Unable to correct.\n");
1130 		return -EBADMSG;
1131 	}
1132 
1133 	/* if there's a single bit error : we can correct it */
1134 	if (ecc_status & ATMEL_ECC_ECCERR) {
1135 		/* there's nothing much to do here.
1136 		 * the bit error is on the ECC itself.
1137 		 */
1138 		dev_warn(mtd->dev,
1139 			 "one bit error on ECC code. Nothing to correct\n");
1140 		return 0;
1141 	}
1142 
1143 	dev_warn(mtd->dev,
1144 		 "one bit error on data. (word offset in the page : 0x%x bit offset : 0x%x)\n",
1145 		 ecc_word, ecc_bit);
1146 	/* correct the error */
1147 	if (nand_chip->options & NAND_BUSWIDTH_16) {
1148 		/* 16 bits words */
1149 		((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1150 	} else {
1151 		/* 8 bits words */
1152 		dat[ecc_word] ^= (1 << ecc_bit);
1153 	}
1154 	dev_warn(mtd->dev, "error corrected\n");
1155 	return 1;
1156 }
1157 
1158 /*
1159  * Enable HW ECC : unused on most chips
1160  */
atmel_nand_hwctl(struct mtd_info * mtd,int mode)1161 static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1162 {
1163 }
1164 
atmel_hwecc_nand_init_param(struct nand_chip * nand,struct mtd_info * mtd)1165 int atmel_hwecc_nand_init_param(struct nand_chip *nand, struct mtd_info *mtd)
1166 {
1167 	nand->ecc.mode = NAND_ECC_HW;
1168 	nand->ecc.calculate = atmel_nand_calculate;
1169 	nand->ecc.correct = atmel_nand_correct;
1170 	nand->ecc.hwctl = atmel_nand_hwctl;
1171 	nand->ecc.read_page = atmel_nand_read_page;
1172 	nand->ecc.bytes = 4;
1173 	nand->ecc.strength = 4;
1174 
1175 	if (nand->ecc.mode == NAND_ECC_HW) {
1176 		/* ECC is calculated for the whole page (1 step) */
1177 		nand->ecc.size = mtd->writesize;
1178 
1179 		/* set ECC page size and oob layout */
1180 		switch (mtd->writesize) {
1181 		case 512:
1182 			nand->ecc.layout = &atmel_oobinfo_small;
1183 			ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1184 					ATMEL_ECC_PAGESIZE_528);
1185 			break;
1186 		case 1024:
1187 			nand->ecc.layout = &atmel_oobinfo_large;
1188 			ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1189 					ATMEL_ECC_PAGESIZE_1056);
1190 			break;
1191 		case 2048:
1192 			nand->ecc.layout = &atmel_oobinfo_large;
1193 			ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1194 					ATMEL_ECC_PAGESIZE_2112);
1195 			break;
1196 		case 4096:
1197 			nand->ecc.layout = &atmel_oobinfo_large;
1198 			ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1199 					ATMEL_ECC_PAGESIZE_4224);
1200 			break;
1201 		default:
1202 			/* page size not handled by HW ECC */
1203 			/* switching back to soft ECC */
1204 			nand->ecc.mode = NAND_ECC_SOFT;
1205 			nand->ecc.calculate = NULL;
1206 			nand->ecc.correct = NULL;
1207 			nand->ecc.hwctl = NULL;
1208 			nand->ecc.read_page = NULL;
1209 			nand->ecc.postpad = 0;
1210 			nand->ecc.prepad = 0;
1211 			nand->ecc.bytes = 0;
1212 			break;
1213 		}
1214 	}
1215 
1216 	return 0;
1217 }
1218 
1219 #endif /* CONFIG_ATMEL_NAND_HW_PMECC */
1220 
1221 #endif /* CONFIG_ATMEL_NAND_HWECC */
1222 
at91_nand_hwcontrol(struct mtd_info * mtd,int cmd,unsigned int ctrl)1223 static void at91_nand_hwcontrol(struct mtd_info *mtd,
1224 					 int cmd, unsigned int ctrl)
1225 {
1226 	struct nand_chip *this = mtd_to_nand(mtd);
1227 
1228 	if (ctrl & NAND_CTRL_CHANGE) {
1229 		ulong IO_ADDR_W = (ulong) this->IO_ADDR_W;
1230 		IO_ADDR_W &= ~(CONFIG_SYS_NAND_MASK_ALE
1231 			     | CONFIG_SYS_NAND_MASK_CLE);
1232 
1233 		if (ctrl & NAND_CLE)
1234 			IO_ADDR_W |= CONFIG_SYS_NAND_MASK_CLE;
1235 		if (ctrl & NAND_ALE)
1236 			IO_ADDR_W |= CONFIG_SYS_NAND_MASK_ALE;
1237 
1238 #ifdef CONFIG_SYS_NAND_ENABLE_PIN
1239 		at91_set_gpio_value(CONFIG_SYS_NAND_ENABLE_PIN,
1240 				    !(ctrl & NAND_NCE));
1241 #endif
1242 		this->IO_ADDR_W = (void *) IO_ADDR_W;
1243 	}
1244 
1245 	if (cmd != NAND_CMD_NONE)
1246 		writeb(cmd, this->IO_ADDR_W);
1247 }
1248 
1249 #ifdef CONFIG_SYS_NAND_READY_PIN
at91_nand_ready(struct mtd_info * mtd)1250 static int at91_nand_ready(struct mtd_info *mtd)
1251 {
1252 	return at91_get_gpio_value(CONFIG_SYS_NAND_READY_PIN);
1253 }
1254 #endif
1255 
1256 #ifdef CONFIG_SPL_BUILD
1257 /* The following code is for SPL */
1258 static struct mtd_info *mtd;
1259 static struct nand_chip nand_chip;
1260 
nand_command(int block,int page,uint32_t offs,u8 cmd)1261 static int nand_command(int block, int page, uint32_t offs, u8 cmd)
1262 {
1263 	struct nand_chip *this = mtd_to_nand(mtd);
1264 	int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
1265 	void (*hwctrl)(struct mtd_info *mtd, int cmd,
1266 			unsigned int ctrl) = this->cmd_ctrl;
1267 
1268 	while (!this->dev_ready(mtd))
1269 		;
1270 
1271 	if (cmd == NAND_CMD_READOOB) {
1272 		offs += CONFIG_SYS_NAND_PAGE_SIZE;
1273 		cmd = NAND_CMD_READ0;
1274 	}
1275 
1276 	hwctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1277 
1278 	if ((this->options & NAND_BUSWIDTH_16) && !nand_opcode_8bits(cmd))
1279 		offs >>= 1;
1280 
1281 	hwctrl(mtd, offs & 0xff, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1282 	hwctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE);
1283 	hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE);
1284 	hwctrl(mtd, ((page_addr >> 8) & 0xff), NAND_CTRL_ALE);
1285 #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
1286 	hwctrl(mtd, (page_addr >> 16) & 0x0f, NAND_CTRL_ALE);
1287 #endif
1288 	hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
1289 
1290 	hwctrl(mtd, NAND_CMD_READSTART, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1291 	hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
1292 
1293 	while (!this->dev_ready(mtd))
1294 		;
1295 
1296 	return 0;
1297 }
1298 
nand_is_bad_block(int block)1299 static int nand_is_bad_block(int block)
1300 {
1301 	struct nand_chip *this = mtd_to_nand(mtd);
1302 
1303 	nand_command(block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
1304 
1305 	if (this->options & NAND_BUSWIDTH_16) {
1306 		if (readw(this->IO_ADDR_R) != 0xffff)
1307 			return 1;
1308 	} else {
1309 		if (readb(this->IO_ADDR_R) != 0xff)
1310 			return 1;
1311 	}
1312 
1313 	return 0;
1314 }
1315 
1316 #ifdef CONFIG_SPL_NAND_ECC
1317 static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
1318 #define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / \
1319 		  CONFIG_SYS_NAND_ECCSIZE)
1320 #define ECCTOTAL (ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES)
1321 
nand_read_page(int block,int page,void * dst)1322 static int nand_read_page(int block, int page, void *dst)
1323 {
1324 	struct nand_chip *this = mtd_to_nand(mtd);
1325 	u_char ecc_calc[ECCTOTAL];
1326 	u_char ecc_code[ECCTOTAL];
1327 	u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
1328 	int eccsize = CONFIG_SYS_NAND_ECCSIZE;
1329 	int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
1330 	int eccsteps = ECCSTEPS;
1331 	int i;
1332 	uint8_t *p = dst;
1333 	nand_command(block, page, 0, NAND_CMD_READ0);
1334 
1335 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1336 		if (this->ecc.mode != NAND_ECC_SOFT)
1337 			this->ecc.hwctl(mtd, NAND_ECC_READ);
1338 		this->read_buf(mtd, p, eccsize);
1339 		this->ecc.calculate(mtd, p, &ecc_calc[i]);
1340 	}
1341 	this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
1342 
1343 	for (i = 0; i < ECCTOTAL; i++)
1344 		ecc_code[i] = oob_data[nand_ecc_pos[i]];
1345 
1346 	eccsteps = ECCSTEPS;
1347 	p = dst;
1348 
1349 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1350 		this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1351 
1352 	return 0;
1353 }
1354 
spl_nand_erase_one(int block,int page)1355 int spl_nand_erase_one(int block, int page)
1356 {
1357 	struct nand_chip *this = mtd_to_nand(mtd);
1358 	void (*hwctrl)(struct mtd_info *mtd, int cmd,
1359 			unsigned int ctrl) = this->cmd_ctrl;
1360 	int page_addr;
1361 
1362 	if (nand_chip.select_chip)
1363 		nand_chip.select_chip(mtd, 0);
1364 
1365 	page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
1366 	hwctrl(mtd, NAND_CMD_ERASE1, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1367 	/* Row address */
1368 	hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1369 	hwctrl(mtd, ((page_addr >> 8) & 0xff),
1370 	       NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1371 #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
1372 	/* One more address cycle for devices > 128MiB */
1373 	hwctrl(mtd, (page_addr >> 16) & 0x0f,
1374 	       NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1375 #endif
1376 	hwctrl(mtd, NAND_CMD_ERASE2, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1377 
1378 	while (!this->dev_ready(mtd))
1379 		;
1380 
1381 	nand_deselect();
1382 
1383 	return 0;
1384 }
1385 #else
nand_read_page(int block,int page,void * dst)1386 static int nand_read_page(int block, int page, void *dst)
1387 {
1388 	struct nand_chip *this = mtd_to_nand(mtd);
1389 
1390 	nand_command(block, page, 0, NAND_CMD_READ0);
1391 	atmel_nand_pmecc_read_page(mtd, this, dst, 0, page);
1392 
1393 	return 0;
1394 }
1395 #endif /* CONFIG_SPL_NAND_ECC */
1396 
at91_nand_wait_ready(struct mtd_info * mtd)1397 int at91_nand_wait_ready(struct mtd_info *mtd)
1398 {
1399 	struct nand_chip *this = mtd_to_nand(mtd);
1400 
1401 	udelay(this->chip_delay);
1402 
1403 	return 1;
1404 }
1405 
board_nand_init(struct nand_chip * nand)1406 int board_nand_init(struct nand_chip *nand)
1407 {
1408 	int ret = 0;
1409 
1410 	nand->ecc.mode = NAND_ECC_SOFT;
1411 #ifdef CONFIG_SYS_NAND_DBW_16
1412 	nand->options = NAND_BUSWIDTH_16;
1413 	nand->read_buf = nand_read_buf16;
1414 #else
1415 	nand->read_buf = nand_read_buf;
1416 #endif
1417 	nand->cmd_ctrl = at91_nand_hwcontrol;
1418 #ifdef CONFIG_SYS_NAND_READY_PIN
1419 	nand->dev_ready = at91_nand_ready;
1420 #else
1421 	nand->dev_ready = at91_nand_wait_ready;
1422 #endif
1423 	nand->chip_delay = 20;
1424 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1425 	nand->bbt_options |= NAND_BBT_USE_FLASH;
1426 #endif
1427 
1428 #ifdef CONFIG_ATMEL_NAND_HWECC
1429 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
1430 	ret = atmel_pmecc_nand_init_params(nand, mtd);
1431 #endif
1432 #endif
1433 
1434 	return ret;
1435 }
1436 
nand_init(void)1437 void nand_init(void)
1438 {
1439 	mtd = nand_to_mtd(&nand_chip);
1440 	mtd->writesize = CONFIG_SYS_NAND_PAGE_SIZE;
1441 	mtd->oobsize = CONFIG_SYS_NAND_OOBSIZE;
1442 	nand_chip.IO_ADDR_R = (void __iomem *)CONFIG_SYS_NAND_BASE;
1443 	nand_chip.IO_ADDR_W = (void __iomem *)CONFIG_SYS_NAND_BASE;
1444 	board_nand_init(&nand_chip);
1445 
1446 #ifdef CONFIG_SPL_NAND_ECC
1447 	if (nand_chip.ecc.mode == NAND_ECC_SOFT) {
1448 		nand_chip.ecc.calculate = nand_calculate_ecc;
1449 		nand_chip.ecc.correct = nand_correct_data;
1450 	}
1451 #endif
1452 
1453 	if (nand_chip.select_chip)
1454 		nand_chip.select_chip(mtd, 0);
1455 }
1456 
nand_deselect(void)1457 void nand_deselect(void)
1458 {
1459 	if (nand_chip.select_chip)
1460 		nand_chip.select_chip(mtd, -1);
1461 }
1462 
1463 #include "nand_spl_loaders.c"
1464 
1465 #else
1466 
1467 #ifndef CONFIG_SYS_NAND_BASE_LIST
1468 #define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE }
1469 #endif
1470 static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];
1471 static ulong base_addr[CONFIG_SYS_MAX_NAND_DEVICE] = CONFIG_SYS_NAND_BASE_LIST;
1472 
atmel_nand_chip_init(int devnum,ulong base_addr)1473 int atmel_nand_chip_init(int devnum, ulong base_addr)
1474 {
1475 	int ret;
1476 	struct nand_chip *nand = &nand_chip[devnum];
1477 	struct mtd_info *mtd = nand_to_mtd(nand);
1478 
1479 	nand->IO_ADDR_R = nand->IO_ADDR_W = (void  __iomem *)base_addr;
1480 
1481 #ifdef CONFIG_NAND_ECC_BCH
1482 	nand->ecc.mode = NAND_ECC_SOFT_BCH;
1483 #else
1484 	nand->ecc.mode = NAND_ECC_SOFT;
1485 #endif
1486 #ifdef CONFIG_SYS_NAND_DBW_16
1487 	nand->options = NAND_BUSWIDTH_16;
1488 #endif
1489 	nand->cmd_ctrl = at91_nand_hwcontrol;
1490 #ifdef CONFIG_SYS_NAND_READY_PIN
1491 	nand->dev_ready = at91_nand_ready;
1492 #endif
1493 	nand->chip_delay = 75;
1494 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1495 	nand->bbt_options |= NAND_BBT_USE_FLASH;
1496 #endif
1497 
1498 	ret = nand_scan_ident(mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);
1499 	if (ret)
1500 		return ret;
1501 
1502 #ifdef CONFIG_ATMEL_NAND_HWECC
1503 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
1504 	ret = atmel_pmecc_nand_init_params(nand, mtd);
1505 #else
1506 	ret = atmel_hwecc_nand_init_param(nand, mtd);
1507 #endif
1508 	if (ret)
1509 		return ret;
1510 #endif
1511 
1512 	ret = nand_scan_tail(mtd);
1513 	if (!ret)
1514 		nand_register(devnum, mtd);
1515 
1516 	return ret;
1517 }
1518 
board_nand_init(void)1519 void board_nand_init(void)
1520 {
1521 	int i;
1522 	for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
1523 		if (atmel_nand_chip_init(i, base_addr[i]))
1524 			log_err("atmel_nand: Fail to initialize #%d chip", i);
1525 }
1526 #endif /* CONFIG_SPL_BUILD */
1527