1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * NAND boot for Freescale Integrated Flash Controller, NAND FCM
4  *
5  * Copyright 2011 Freescale Semiconductor, Inc.
6  * Author: Dipen Dudhat <dipen.dudhat@freescale.com>
7  */
8 
9 #include <common.h>
10 #include <cpu_func.h>
11 #include <asm/io.h>
12 #include <fsl_ifc.h>
13 #include <part.h>
14 #include <linux/mtd/rawnand.h>
15 #ifdef CONFIG_CHAIN_OF_TRUST
16 #include <fsl_validate.h>
17 #endif
18 
is_blank(uchar * addr,int page_size)19 static inline int is_blank(uchar *addr, int page_size)
20 {
21 	int i;
22 
23 	for (i = 0; i < page_size; i++) {
24 		if (__raw_readb(&addr[i]) != 0xff)
25 			return 0;
26 	}
27 
28 	/*
29 	 * For the SPL, don't worry about uncorrectable errors
30 	 * where the main area is all FFs but shouldn't be.
31 	 */
32 	return 1;
33 }
34 
35 /* returns nonzero if entire page is blank */
check_read_ecc(uchar * buf,u32 * eccstat,unsigned int bufnum,int page_size)36 static inline int check_read_ecc(uchar *buf, u32 *eccstat,
37 				 unsigned int bufnum, int page_size)
38 {
39 	u32 reg = eccstat[bufnum / 4];
40 	int errors = (reg >> ((3 - bufnum % 4) * 8)) & 0xf;
41 
42 	if (errors == 0xf) { /* uncorrectable */
43 		/* Blank pages fail hw ECC checks */
44 		if (is_blank(buf, page_size))
45 			return 1;
46 
47 		puts("ecc error\n");
48 		for (;;)
49 			;
50 	}
51 
52 	return 0;
53 }
54 
runtime_regs_address(void)55 static inline struct fsl_ifc_runtime *runtime_regs_address(void)
56 {
57 	struct fsl_ifc regs = {(void *)CONFIG_SYS_IFC_ADDR, NULL};
58 	int ver = 0;
59 
60 	ver = ifc_in32(&regs.gregs->ifc_rev);
61 	if (ver >= FSL_IFC_V2_0_0)
62 		regs.rregs = (void *)CONFIG_SYS_IFC_ADDR + IFC_RREGS_64KOFFSET;
63 	else
64 		regs.rregs = (void *)CONFIG_SYS_IFC_ADDR + IFC_RREGS_4KOFFSET;
65 
66 	return regs.rregs;
67 }
68 
nand_wait(uchar * buf,int bufnum,int page_size)69 static inline void nand_wait(uchar *buf, int bufnum, int page_size)
70 {
71 	struct fsl_ifc_runtime *ifc = runtime_regs_address();
72 	u32 status;
73 	u32 eccstat[8];
74 	int bufperpage = page_size / 512;
75 	int bufnum_end, i;
76 
77 	bufnum *= bufperpage;
78 	bufnum_end = bufnum + bufperpage - 1;
79 
80 	do {
81 		status = ifc_in32(&ifc->ifc_nand.nand_evter_stat);
82 	} while (!(status & IFC_NAND_EVTER_STAT_OPC));
83 
84 	if (status & IFC_NAND_EVTER_STAT_FTOER) {
85 		puts("flash time out error\n");
86 		for (;;)
87 			;
88 	}
89 
90 	for (i = bufnum / 4; i <= bufnum_end / 4; i++)
91 		eccstat[i] = ifc_in32(&ifc->ifc_nand.nand_eccstat[i]);
92 
93 	for (i = bufnum; i <= bufnum_end; i++) {
94 		if (check_read_ecc(buf, eccstat, i, page_size))
95 			break;
96 	}
97 
98 	ifc_out32(&ifc->ifc_nand.nand_evter_stat, status);
99 }
100 
bad_block(uchar * marker,int port_size)101 static inline int bad_block(uchar *marker, int port_size)
102 {
103 	if (port_size == 8)
104 		return __raw_readb(marker) != 0xff;
105 	else
106 		return __raw_readw((u16 *)marker) != 0xffff;
107 }
108 
nand_spl_load_image(uint32_t offs,unsigned int uboot_size,void * vdst)109 int nand_spl_load_image(uint32_t offs, unsigned int uboot_size, void *vdst)
110 {
111 	struct fsl_ifc_fcm *gregs = (void *)CONFIG_SYS_IFC_ADDR;
112 	struct fsl_ifc_runtime *ifc = NULL;
113 	uchar *buf = (uchar *)CONFIG_SYS_NAND_BASE;
114 	int page_size;
115 	int port_size;
116 	int pages_per_blk;
117 	int blk_size;
118 	int bad_marker = 0;
119 	int bufnum_mask, bufnum, ver = 0;
120 
121 	int csor, cspr;
122 	int pos = 0;
123 	int j = 0;
124 
125 	int sram_addr;
126 	int pg_no;
127 	uchar *dst = vdst;
128 
129 	ifc = runtime_regs_address();
130 
131 	/* Get NAND Flash configuration */
132 	csor = CONFIG_SYS_NAND_CSOR;
133 	cspr = CONFIG_SYS_NAND_CSPR;
134 
135 	port_size = (cspr & CSPR_PORT_SIZE_16) ? 16 : 8;
136 
137 	if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_8K) {
138 		page_size = 8192;
139 		bufnum_mask = 0x0;
140 	} else if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_4K) {
141 		page_size = 4096;
142 		bufnum_mask = 0x1;
143 	} else if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_2K) {
144 		page_size = 2048;
145 		bufnum_mask = 0x3;
146 	} else {
147 		page_size = 512;
148 		bufnum_mask = 0xf;
149 
150 		if (port_size == 8)
151 			bad_marker = 5;
152 	}
153 
154 	ver = ifc_in32(&gregs->ifc_rev);
155 	if (ver >= FSL_IFC_V2_0_0)
156 		bufnum_mask = (bufnum_mask * 2) + 1;
157 
158 	pages_per_blk =
159 		32 << ((csor & CSOR_NAND_PB_MASK) >> CSOR_NAND_PB_SHIFT);
160 
161 	blk_size = pages_per_blk * page_size;
162 
163 	/* Open Full SRAM mapping for spare are access */
164 	ifc_out32(&ifc->ifc_nand.ncfgr, 0x0);
165 
166 	/* Clear Boot events */
167 	ifc_out32(&ifc->ifc_nand.nand_evter_stat, 0xffffffff);
168 
169 	/* Program FIR/FCR for Large/Small page */
170 	if (page_size > 512) {
171 		ifc_out32(&ifc->ifc_nand.nand_fir0,
172 			  (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
173 			  (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
174 			  (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
175 			  (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
176 			  (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP4_SHIFT));
177 		ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0);
178 
179 		ifc_out32(&ifc->ifc_nand.nand_fcr0,
180 			  (NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
181 			  (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT));
182 	} else {
183 		ifc_out32(&ifc->ifc_nand.nand_fir0,
184 			  (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
185 			  (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
186 			  (IFC_FIR_OP_RA0  << IFC_NAND_FIR0_OP2_SHIFT) |
187 			  (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP3_SHIFT));
188 		ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0);
189 
190 		ifc_out32(&ifc->ifc_nand.nand_fcr0,
191 			  NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT);
192 	}
193 
194 	/* Program FBCR = 0 for full page read */
195 	ifc_out32(&ifc->ifc_nand.nand_fbcr, 0);
196 
197 	/* Read and copy u-boot on SDRAM from NAND device, In parallel
198 	 * check for Bad block if found skip it and read continue to
199 	 * next Block
200 	 */
201 	while (pos < uboot_size) {
202 		int i = 0;
203 		do {
204 			pg_no = offs / page_size;
205 			bufnum = pg_no & bufnum_mask;
206 			sram_addr = bufnum * page_size * 2;
207 
208 			ifc_out32(&ifc->ifc_nand.row0, pg_no);
209 			ifc_out32(&ifc->ifc_nand.col0, 0);
210 			/* start read */
211 			ifc_out32(&ifc->ifc_nand.nandseq_strt,
212 				  IFC_NAND_SEQ_STRT_FIR_STRT);
213 
214 			/* wait for read to complete */
215 			nand_wait(&buf[sram_addr], bufnum, page_size);
216 
217 			/*
218 			 * If either of the first two pages are marked bad,
219 			 * continue to the next block.
220 			 */
221 			if (i++ < 2 &&
222 			    bad_block(&buf[sram_addr + page_size + bad_marker],
223 				      port_size)) {
224 				puts("skipping\n");
225 				offs = (offs + blk_size) & ~(blk_size - 1);
226 				pos &= ~(blk_size - 1);
227 				break;
228 			}
229 
230 			for (j = 0; j < page_size; j++)
231 				dst[pos + j] = __raw_readb(&buf[sram_addr + j]);
232 
233 			pos += page_size;
234 			offs += page_size;
235 		} while ((offs & (blk_size - 1)) && (pos < uboot_size));
236 	}
237 
238 	return 0;
239 }
240 
241 /*
242  * Main entrypoint for NAND Boot. It's necessary that SDRAM is already
243  * configured and available since this code loads the main U-Boot image
244  * from NAND into SDRAM and starts from there.
245  */
nand_boot(void)246 void nand_boot(void)
247 {
248 	__attribute__((noreturn)) void (*uboot)(void);
249 	/*
250 	 * Load U-Boot image from NAND into RAM
251 	 */
252 	nand_spl_load_image(CONFIG_SYS_NAND_U_BOOT_OFFS,
253 			    CONFIG_SYS_NAND_U_BOOT_SIZE,
254 			    (uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
255 
256 #ifdef CONFIG_NAND_ENV_DST
257 	nand_spl_load_image(CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
258 			    (uchar *)CONFIG_NAND_ENV_DST);
259 
260 #ifdef CONFIG_ENV_OFFSET_REDUND
261 	nand_spl_load_image(CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
262 			    (uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE);
263 #endif
264 #endif
265 	/*
266 	 * Jump to U-Boot image
267 	 */
268 #ifdef CONFIG_SPL_FLUSH_IMAGE
269 	/*
270 	 * Clean d-cache and invalidate i-cache, to
271 	 * make sure that no stale data is executed.
272 	 */
273 	flush_cache(CONFIG_SYS_NAND_U_BOOT_DST, CONFIG_SYS_NAND_U_BOOT_SIZE);
274 #endif
275 
276 #ifdef CONFIG_CHAIN_OF_TRUST
277 	/*
278 	 * U-Boot header is appended at end of U-boot image, so
279 	 * calculate U-boot header address using U-boot header size.
280 	 */
281 #define CONFIG_U_BOOT_HDR_ADDR \
282 		((CONFIG_SYS_NAND_U_BOOT_START + \
283 		  CONFIG_SYS_NAND_U_BOOT_SIZE) - \
284 		 CONFIG_U_BOOT_HDR_SIZE)
285 	spl_validate_uboot(CONFIG_U_BOOT_HDR_ADDR,
286 			   CONFIG_SYS_NAND_U_BOOT_START);
287 	/*
288 	 * In case of failure in validation, spl_validate_uboot would
289 	 * not return back in case of Production environment with ITS=1.
290 	 * Thus U-Boot will not start.
291 	 * In Development environment (ITS=0 and SB_EN=1), the function
292 	 * may return back in case of non-fatal failures.
293 	 */
294 #endif
295 
296 	uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
297 	uboot();
298 }
299 
300 #ifndef CONFIG_SPL_NAND_INIT
nand_init(void)301 void nand_init(void)
302 {
303 }
304 
nand_deselect(void)305 void nand_deselect(void)
306 {
307 }
308 #endif
309