1 /*
2  *  Overview:
3  *   This is the generic MTD driver for NAND flash devices. It should be
4  *   capable of working with almost all NAND chips currently available.
5  *
6  *	Additional technical information is available on
7  *	http://www.linux-mtd.infradead.org/doc/nand.html
8  *
9  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
10  *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
11  *
12  *  Credits:
13  *	David Woodhouse for adding multichip support
14  *
15  *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
16  *	rework for 2K page size chips
17  *
18  *  TODO:
19  *	Enable cached programming for 2k page size chips
20  *	Check, if mtd->ecctype should be set to MTD_ECC_HW
21  *	if we have HW ECC support.
22  *	BBT table is not serialized, has to be fixed
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License version 2 as
26  * published by the Free Software Foundation.
27  *
28  */
29 
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <common.h>
32 #if CONFIG_IS_ENABLED(OF_CONTROL)
33 #include <fdtdec.h>
34 #endif
35 #include <log.h>
36 #include <malloc.h>
37 #include <watchdog.h>
38 #include <dm/devres.h>
39 #include <linux/bitops.h>
40 #include <linux/bug.h>
41 #include <linux/delay.h>
42 #include <linux/err.h>
43 #include <linux/compat.h>
44 #include <linux/mtd/mtd.h>
45 #include <linux/mtd/rawnand.h>
46 #include <linux/mtd/nand_ecc.h>
47 #include <linux/mtd/nand_bch.h>
48 #ifdef CONFIG_MTD_PARTITIONS
49 #include <linux/mtd/partitions.h>
50 #endif
51 #include <asm/io.h>
52 #include <linux/errno.h>
53 
54 /* Define default oob placement schemes for large and small page devices */
55 #ifndef CONFIG_SYS_NAND_DRIVER_ECC_LAYOUT
56 static struct nand_ecclayout nand_oob_8 = {
57 	.eccbytes = 3,
58 	.eccpos = {0, 1, 2},
59 	.oobfree = {
60 		{.offset = 3,
61 		 .length = 2},
62 		{.offset = 6,
63 		 .length = 2} }
64 };
65 
66 static struct nand_ecclayout nand_oob_16 = {
67 	.eccbytes = 6,
68 	.eccpos = {0, 1, 2, 3, 6, 7},
69 	.oobfree = {
70 		{.offset = 8,
71 		 . length = 8} }
72 };
73 
74 static struct nand_ecclayout nand_oob_64 = {
75 	.eccbytes = 24,
76 	.eccpos = {
77 		   40, 41, 42, 43, 44, 45, 46, 47,
78 		   48, 49, 50, 51, 52, 53, 54, 55,
79 		   56, 57, 58, 59, 60, 61, 62, 63},
80 	.oobfree = {
81 		{.offset = 2,
82 		 .length = 38} }
83 };
84 
85 static struct nand_ecclayout nand_oob_128 = {
86 	.eccbytes = 48,
87 	.eccpos = {
88 		   80, 81, 82, 83, 84, 85, 86, 87,
89 		   88, 89, 90, 91, 92, 93, 94, 95,
90 		   96, 97, 98, 99, 100, 101, 102, 103,
91 		   104, 105, 106, 107, 108, 109, 110, 111,
92 		   112, 113, 114, 115, 116, 117, 118, 119,
93 		   120, 121, 122, 123, 124, 125, 126, 127},
94 	.oobfree = {
95 		{.offset = 2,
96 		 .length = 78} }
97 };
98 #endif
99 
100 static int nand_get_device(struct mtd_info *mtd, int new_state);
101 
102 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
103 			     struct mtd_oob_ops *ops);
104 
105 /*
106  * For devices which display every fart in the system on a separate LED. Is
107  * compiled away when LED support is disabled.
108  */
109 DEFINE_LED_TRIGGER(nand_led_trigger);
110 
check_offs_len(struct mtd_info * mtd,loff_t ofs,uint64_t len)111 static int check_offs_len(struct mtd_info *mtd,
112 					loff_t ofs, uint64_t len)
113 {
114 	struct nand_chip *chip = mtd_to_nand(mtd);
115 	int ret = 0;
116 
117 	/* Start address must align on block boundary */
118 	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
119 		pr_debug("%s: unaligned address\n", __func__);
120 		ret = -EINVAL;
121 	}
122 
123 	/* Length must align on block boundary */
124 	if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
125 		pr_debug("%s: length not block aligned\n", __func__);
126 		ret = -EINVAL;
127 	}
128 
129 	return ret;
130 }
131 
132 /**
133  * nand_release_device - [GENERIC] release chip
134  * @mtd: MTD device structure
135  *
136  * Release chip lock and wake up anyone waiting on the device.
137  */
nand_release_device(struct mtd_info * mtd)138 static void nand_release_device(struct mtd_info *mtd)
139 {
140 	struct nand_chip *chip = mtd_to_nand(mtd);
141 
142 	/* De-select the NAND device */
143 	chip->select_chip(mtd, -1);
144 }
145 
146 /**
147  * nand_read_byte - [DEFAULT] read one byte from the chip
148  * @mtd: MTD device structure
149  *
150  * Default read function for 8bit buswidth
151  */
nand_read_byte(struct mtd_info * mtd)152 uint8_t nand_read_byte(struct mtd_info *mtd)
153 {
154 	struct nand_chip *chip = mtd_to_nand(mtd);
155 	return readb(chip->IO_ADDR_R);
156 }
157 
158 /**
159  * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
160  * @mtd: MTD device structure
161  *
162  * Default read function for 16bit buswidth with endianness conversion.
163  *
164  */
nand_read_byte16(struct mtd_info * mtd)165 static uint8_t nand_read_byte16(struct mtd_info *mtd)
166 {
167 	struct nand_chip *chip = mtd_to_nand(mtd);
168 	return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
169 }
170 
171 /**
172  * nand_read_word - [DEFAULT] read one word from the chip
173  * @mtd: MTD device structure
174  *
175  * Default read function for 16bit buswidth without endianness conversion.
176  */
nand_read_word(struct mtd_info * mtd)177 static u16 nand_read_word(struct mtd_info *mtd)
178 {
179 	struct nand_chip *chip = mtd_to_nand(mtd);
180 	return readw(chip->IO_ADDR_R);
181 }
182 
183 /**
184  * nand_select_chip - [DEFAULT] control CE line
185  * @mtd: MTD device structure
186  * @chipnr: chipnumber to select, -1 for deselect
187  *
188  * Default select function for 1 chip devices.
189  */
nand_select_chip(struct mtd_info * mtd,int chipnr)190 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
191 {
192 	struct nand_chip *chip = mtd_to_nand(mtd);
193 
194 	switch (chipnr) {
195 	case -1:
196 		chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
197 		break;
198 	case 0:
199 		break;
200 
201 	default:
202 		BUG();
203 	}
204 }
205 
206 /**
207  * nand_write_byte - [DEFAULT] write single byte to chip
208  * @mtd: MTD device structure
209  * @byte: value to write
210  *
211  * Default function to write a byte to I/O[7:0]
212  */
nand_write_byte(struct mtd_info * mtd,uint8_t byte)213 static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
214 {
215 	struct nand_chip *chip = mtd_to_nand(mtd);
216 
217 	chip->write_buf(mtd, &byte, 1);
218 }
219 
220 /**
221  * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
222  * @mtd: MTD device structure
223  * @byte: value to write
224  *
225  * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
226  */
nand_write_byte16(struct mtd_info * mtd,uint8_t byte)227 static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
228 {
229 	struct nand_chip *chip = mtd_to_nand(mtd);
230 	uint16_t word = byte;
231 
232 	/*
233 	 * It's not entirely clear what should happen to I/O[15:8] when writing
234 	 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
235 	 *
236 	 *    When the host supports a 16-bit bus width, only data is
237 	 *    transferred at the 16-bit width. All address and command line
238 	 *    transfers shall use only the lower 8-bits of the data bus. During
239 	 *    command transfers, the host may place any value on the upper
240 	 *    8-bits of the data bus. During address transfers, the host shall
241 	 *    set the upper 8-bits of the data bus to 00h.
242 	 *
243 	 * One user of the write_byte callback is nand_onfi_set_features. The
244 	 * four parameters are specified to be written to I/O[7:0], but this is
245 	 * neither an address nor a command transfer. Let's assume a 0 on the
246 	 * upper I/O lines is OK.
247 	 */
248 	chip->write_buf(mtd, (uint8_t *)&word, 2);
249 }
250 
iowrite8_rep(void * addr,const uint8_t * buf,int len)251 static void iowrite8_rep(void *addr, const uint8_t *buf, int len)
252 {
253 	int i;
254 
255 	for (i = 0; i < len; i++)
256 		writeb(buf[i], addr);
257 }
ioread8_rep(void * addr,uint8_t * buf,int len)258 static void ioread8_rep(void *addr, uint8_t *buf, int len)
259 {
260 	int i;
261 
262 	for (i = 0; i < len; i++)
263 		buf[i] = readb(addr);
264 }
265 
ioread16_rep(void * addr,void * buf,int len)266 static void ioread16_rep(void *addr, void *buf, int len)
267 {
268 	int i;
269  	u16 *p = (u16 *) buf;
270 
271 	for (i = 0; i < len; i++)
272 		p[i] = readw(addr);
273 }
274 
iowrite16_rep(void * addr,void * buf,int len)275 static void iowrite16_rep(void *addr, void *buf, int len)
276 {
277 	int i;
278         u16 *p = (u16 *) buf;
279 
280         for (i = 0; i < len; i++)
281                 writew(p[i], addr);
282 }
283 
284 /**
285  * nand_write_buf - [DEFAULT] write buffer to chip
286  * @mtd: MTD device structure
287  * @buf: data buffer
288  * @len: number of bytes to write
289  *
290  * Default write function for 8bit buswidth.
291  */
nand_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)292 void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
293 {
294 	struct nand_chip *chip = mtd_to_nand(mtd);
295 
296 	iowrite8_rep(chip->IO_ADDR_W, buf, len);
297 }
298 
299 /**
300  * nand_read_buf - [DEFAULT] read chip data into buffer
301  * @mtd: MTD device structure
302  * @buf: buffer to store date
303  * @len: number of bytes to read
304  *
305  * Default read function for 8bit buswidth.
306  */
nand_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)307 void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
308 {
309 	struct nand_chip *chip = mtd_to_nand(mtd);
310 
311 	ioread8_rep(chip->IO_ADDR_R, buf, len);
312 }
313 
314 /**
315  * nand_write_buf16 - [DEFAULT] write buffer to chip
316  * @mtd: MTD device structure
317  * @buf: data buffer
318  * @len: number of bytes to write
319  *
320  * Default write function for 16bit buswidth.
321  */
nand_write_buf16(struct mtd_info * mtd,const uint8_t * buf,int len)322 void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
323 {
324 	struct nand_chip *chip = mtd_to_nand(mtd);
325 	u16 *p = (u16 *) buf;
326 
327 	iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
328 }
329 
330 /**
331  * nand_read_buf16 - [DEFAULT] read chip data into buffer
332  * @mtd: MTD device structure
333  * @buf: buffer to store date
334  * @len: number of bytes to read
335  *
336  * Default read function for 16bit buswidth.
337  */
nand_read_buf16(struct mtd_info * mtd,uint8_t * buf,int len)338 void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
339 {
340 	struct nand_chip *chip = mtd_to_nand(mtd);
341 	u16 *p = (u16 *) buf;
342 
343 	ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
344 }
345 
346 /**
347  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
348  * @mtd: MTD device structure
349  * @ofs: offset from device start
350  *
351  * Check, if the block is bad.
352  */
nand_block_bad(struct mtd_info * mtd,loff_t ofs)353 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
354 {
355 	int page, res = 0, i = 0;
356 	struct nand_chip *chip = mtd_to_nand(mtd);
357 	u16 bad;
358 
359 	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
360 		ofs += mtd->erasesize - mtd->writesize;
361 
362 	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
363 
364 	do {
365 		if (chip->options & NAND_BUSWIDTH_16) {
366 			chip->cmdfunc(mtd, NAND_CMD_READOOB,
367 					chip->badblockpos & 0xFE, page);
368 			bad = cpu_to_le16(chip->read_word(mtd));
369 			if (chip->badblockpos & 0x1)
370 				bad >>= 8;
371 			else
372 				bad &= 0xFF;
373 		} else {
374 			chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
375 					page);
376 			bad = chip->read_byte(mtd);
377 		}
378 
379 		if (likely(chip->badblockbits == 8))
380 			res = bad != 0xFF;
381 		else
382 			res = hweight8(bad) < chip->badblockbits;
383 		ofs += mtd->writesize;
384 		page = (int)(ofs >> chip->page_shift) & chip->pagemask;
385 		i++;
386 	} while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
387 
388 	return res;
389 }
390 
391 /**
392  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
393  * @mtd: MTD device structure
394  * @ofs: offset from device start
395  *
396  * This is the default implementation, which can be overridden by a hardware
397  * specific driver. It provides the details for writing a bad block marker to a
398  * block.
399  */
nand_default_block_markbad(struct mtd_info * mtd,loff_t ofs)400 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
401 {
402 	struct nand_chip *chip = mtd_to_nand(mtd);
403 	struct mtd_oob_ops ops;
404 	uint8_t buf[2] = { 0, 0 };
405 	int ret = 0, res, i = 0;
406 
407 	memset(&ops, 0, sizeof(ops));
408 	ops.oobbuf = buf;
409 	ops.ooboffs = chip->badblockpos;
410 	if (chip->options & NAND_BUSWIDTH_16) {
411 		ops.ooboffs &= ~0x01;
412 		ops.len = ops.ooblen = 2;
413 	} else {
414 		ops.len = ops.ooblen = 1;
415 	}
416 	ops.mode = MTD_OPS_PLACE_OOB;
417 
418 	/* Write to first/last page(s) if necessary */
419 	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
420 		ofs += mtd->erasesize - mtd->writesize;
421 	do {
422 		res = nand_do_write_oob(mtd, ofs, &ops);
423 		if (!ret)
424 			ret = res;
425 
426 		i++;
427 		ofs += mtd->writesize;
428 	} while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
429 
430 	return ret;
431 }
432 
433 /**
434  * nand_block_markbad_lowlevel - mark a block bad
435  * @mtd: MTD device structure
436  * @ofs: offset from device start
437  *
438  * This function performs the generic NAND bad block marking steps (i.e., bad
439  * block table(s) and/or marker(s)). We only allow the hardware driver to
440  * specify how to write bad block markers to OOB (chip->block_markbad).
441  *
442  * We try operations in the following order:
443  *  (1) erase the affected block, to allow OOB marker to be written cleanly
444  *  (2) write bad block marker to OOB area of affected block (unless flag
445  *      NAND_BBT_NO_OOB_BBM is present)
446  *  (3) update the BBT
447  * Note that we retain the first error encountered in (2) or (3), finish the
448  * procedures, and dump the error in the end.
449 */
nand_block_markbad_lowlevel(struct mtd_info * mtd,loff_t ofs)450 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
451 {
452 	struct nand_chip *chip = mtd_to_nand(mtd);
453 	int res, ret = 0;
454 
455 	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
456 		struct erase_info einfo;
457 
458 		/* Attempt erase before marking OOB */
459 		memset(&einfo, 0, sizeof(einfo));
460 		einfo.mtd = mtd;
461 		einfo.addr = ofs;
462 		einfo.len = 1ULL << chip->phys_erase_shift;
463 		nand_erase_nand(mtd, &einfo, 0);
464 
465 		/* Write bad block marker to OOB */
466 		nand_get_device(mtd, FL_WRITING);
467 		ret = chip->block_markbad(mtd, ofs);
468 		nand_release_device(mtd);
469 	}
470 
471 	/* Mark block bad in BBT */
472 	if (chip->bbt) {
473 		res = nand_markbad_bbt(mtd, ofs);
474 		if (!ret)
475 			ret = res;
476 	}
477 
478 	if (!ret)
479 		mtd->ecc_stats.badblocks++;
480 
481 	return ret;
482 }
483 
484 /**
485  * nand_check_wp - [GENERIC] check if the chip is write protected
486  * @mtd: MTD device structure
487  *
488  * Check, if the device is write protected. The function expects, that the
489  * device is already selected.
490  */
nand_check_wp(struct mtd_info * mtd)491 static int nand_check_wp(struct mtd_info *mtd)
492 {
493 	struct nand_chip *chip = mtd_to_nand(mtd);
494 	u8 status;
495 	int ret;
496 
497 	/* Broken xD cards report WP despite being writable */
498 	if (chip->options & NAND_BROKEN_XD)
499 		return 0;
500 
501 	/* Check the WP bit */
502 	ret = nand_status_op(chip, &status);
503 	if (ret)
504 		return ret;
505 
506 	return status & NAND_STATUS_WP ? 0 : 1;
507 }
508 
509 /**
510  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
511  * @mtd: MTD device structure
512  * @ofs: offset from device start
513  *
514  * Check if the block is marked as reserved.
515  */
nand_block_isreserved(struct mtd_info * mtd,loff_t ofs)516 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
517 {
518 	struct nand_chip *chip = mtd_to_nand(mtd);
519 
520 	if (!chip->bbt)
521 		return 0;
522 	/* Return info from the table */
523 	return nand_isreserved_bbt(mtd, ofs);
524 }
525 
526 /**
527  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
528  * @mtd: MTD device structure
529  * @ofs: offset from device start
530  * @allowbbt: 1, if its allowed to access the bbt area
531  *
532  * Check, if the block is bad. Either by reading the bad block table or
533  * calling of the scan function.
534  */
nand_block_checkbad(struct mtd_info * mtd,loff_t ofs,int allowbbt)535 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
536 {
537 	struct nand_chip *chip = mtd_to_nand(mtd);
538 
539 	if (!(chip->options & NAND_SKIP_BBTSCAN) &&
540 	    !(chip->options & NAND_BBT_SCANNED)) {
541 		chip->options |= NAND_BBT_SCANNED;
542 		chip->scan_bbt(mtd);
543 	}
544 
545 	if (!chip->bbt)
546 		return chip->block_bad(mtd, ofs);
547 
548 	/* Return info from the table */
549 	return nand_isbad_bbt(mtd, ofs, allowbbt);
550 }
551 
552 /**
553  * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
554  * @mtd: MTD device structure
555  *
556  * Wait for the ready pin after a command, and warn if a timeout occurs.
557  */
nand_wait_ready(struct mtd_info * mtd)558 void nand_wait_ready(struct mtd_info *mtd)
559 {
560 	struct nand_chip *chip = mtd_to_nand(mtd);
561 	u32 timeo = (CONFIG_SYS_HZ * 400) / 1000;
562 	u32 time_start;
563 
564 	time_start = get_timer(0);
565 	/* Wait until command is processed or timeout occurs */
566 	while (get_timer(time_start) < timeo) {
567 		if (chip->dev_ready)
568 			if (chip->dev_ready(mtd))
569 				break;
570 	}
571 
572 	if (!chip->dev_ready(mtd))
573 		pr_warn("timeout while waiting for chip to become ready\n");
574 }
575 EXPORT_SYMBOL_GPL(nand_wait_ready);
576 
577 /**
578  * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
579  * @mtd: MTD device structure
580  * @timeo: Timeout in ms
581  *
582  * Wait for status ready (i.e. command done) or timeout.
583  */
nand_wait_status_ready(struct mtd_info * mtd,unsigned long timeo)584 static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
585 {
586 	register struct nand_chip *chip = mtd_to_nand(mtd);
587 	u32 time_start;
588 	int ret;
589 
590 	timeo = (CONFIG_SYS_HZ * timeo) / 1000;
591 	time_start = get_timer(0);
592 	while (get_timer(time_start) < timeo) {
593 		u8 status;
594 
595 		ret = nand_read_data_op(chip, &status, sizeof(status), true);
596 		if (ret)
597 			return;
598 
599 		if (status & NAND_STATUS_READY)
600 			break;
601 		WATCHDOG_RESET();
602 	}
603 };
604 
605 /**
606  * nand_command - [DEFAULT] Send command to NAND device
607  * @mtd: MTD device structure
608  * @command: the command to be sent
609  * @column: the column address for this command, -1 if none
610  * @page_addr: the page address for this command, -1 if none
611  *
612  * Send command to NAND device. This function is used for small page devices
613  * (512 Bytes per page).
614  */
nand_command(struct mtd_info * mtd,unsigned int command,int column,int page_addr)615 static void nand_command(struct mtd_info *mtd, unsigned int command,
616 			 int column, int page_addr)
617 {
618 	register struct nand_chip *chip = mtd_to_nand(mtd);
619 	int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
620 
621 	/* Write out the command to the device */
622 	if (command == NAND_CMD_SEQIN) {
623 		int readcmd;
624 
625 		if (column >= mtd->writesize) {
626 			/* OOB area */
627 			column -= mtd->writesize;
628 			readcmd = NAND_CMD_READOOB;
629 		} else if (column < 256) {
630 			/* First 256 bytes --> READ0 */
631 			readcmd = NAND_CMD_READ0;
632 		} else {
633 			column -= 256;
634 			readcmd = NAND_CMD_READ1;
635 		}
636 		chip->cmd_ctrl(mtd, readcmd, ctrl);
637 		ctrl &= ~NAND_CTRL_CHANGE;
638 	}
639 	chip->cmd_ctrl(mtd, command, ctrl);
640 
641 	/* Address cycle, when necessary */
642 	ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
643 	/* Serially input address */
644 	if (column != -1) {
645 		/* Adjust columns for 16 bit buswidth */
646 		if (chip->options & NAND_BUSWIDTH_16 &&
647 				!nand_opcode_8bits(command))
648 			column >>= 1;
649 		chip->cmd_ctrl(mtd, column, ctrl);
650 		ctrl &= ~NAND_CTRL_CHANGE;
651 	}
652 	if (page_addr != -1) {
653 		chip->cmd_ctrl(mtd, page_addr, ctrl);
654 		ctrl &= ~NAND_CTRL_CHANGE;
655 		chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
656 		if (chip->options & NAND_ROW_ADDR_3)
657 			chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
658 	}
659 	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
660 
661 	/*
662 	 * Program and erase have their own busy handlers status and sequential
663 	 * in needs no delay
664 	 */
665 	switch (command) {
666 
667 	case NAND_CMD_PAGEPROG:
668 	case NAND_CMD_ERASE1:
669 	case NAND_CMD_ERASE2:
670 	case NAND_CMD_SEQIN:
671 	case NAND_CMD_STATUS:
672 	case NAND_CMD_READID:
673 	case NAND_CMD_SET_FEATURES:
674 		return;
675 
676 	case NAND_CMD_RESET:
677 		if (chip->dev_ready)
678 			break;
679 		udelay(chip->chip_delay);
680 		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
681 			       NAND_CTRL_CLE | NAND_CTRL_CHANGE);
682 		chip->cmd_ctrl(mtd,
683 			       NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
684 		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
685 		nand_wait_status_ready(mtd, 250);
686 		return;
687 
688 		/* This applies to read commands */
689 	default:
690 		/*
691 		 * If we don't have access to the busy pin, we apply the given
692 		 * command delay
693 		 */
694 		if (!chip->dev_ready) {
695 			udelay(chip->chip_delay);
696 			return;
697 		}
698 	}
699 	/*
700 	 * Apply this short delay always to ensure that we do wait tWB in
701 	 * any case on any machine.
702 	 */
703 	ndelay(100);
704 
705 	nand_wait_ready(mtd);
706 }
707 
708 /**
709  * nand_command_lp - [DEFAULT] Send command to NAND large page device
710  * @mtd: MTD device structure
711  * @command: the command to be sent
712  * @column: the column address for this command, -1 if none
713  * @page_addr: the page address for this command, -1 if none
714  *
715  * Send command to NAND device. This is the version for the new large page
716  * devices. We don't have the separate regions as we have in the small page
717  * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
718  */
nand_command_lp(struct mtd_info * mtd,unsigned int command,int column,int page_addr)719 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
720 			    int column, int page_addr)
721 {
722 	register struct nand_chip *chip = mtd_to_nand(mtd);
723 
724 	/* Emulate NAND_CMD_READOOB */
725 	if (command == NAND_CMD_READOOB) {
726 		column += mtd->writesize;
727 		command = NAND_CMD_READ0;
728 	}
729 
730 	/* Command latch cycle */
731 	chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
732 
733 	if (column != -1 || page_addr != -1) {
734 		int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
735 
736 		/* Serially input address */
737 		if (column != -1) {
738 			/* Adjust columns for 16 bit buswidth */
739 			if (chip->options & NAND_BUSWIDTH_16 &&
740 					!nand_opcode_8bits(command))
741 				column >>= 1;
742 			chip->cmd_ctrl(mtd, column, ctrl);
743 			ctrl &= ~NAND_CTRL_CHANGE;
744 			chip->cmd_ctrl(mtd, column >> 8, ctrl);
745 		}
746 		if (page_addr != -1) {
747 			chip->cmd_ctrl(mtd, page_addr, ctrl);
748 			chip->cmd_ctrl(mtd, page_addr >> 8,
749 				       NAND_NCE | NAND_ALE);
750 			if (chip->options & NAND_ROW_ADDR_3)
751 				chip->cmd_ctrl(mtd, page_addr >> 16,
752 					       NAND_NCE | NAND_ALE);
753 		}
754 	}
755 	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
756 
757 	/*
758 	 * Program and erase have their own busy handlers status, sequential
759 	 * in and status need no delay.
760 	 */
761 	switch (command) {
762 
763 	case NAND_CMD_CACHEDPROG:
764 	case NAND_CMD_PAGEPROG:
765 	case NAND_CMD_ERASE1:
766 	case NAND_CMD_ERASE2:
767 	case NAND_CMD_SEQIN:
768 	case NAND_CMD_RNDIN:
769 	case NAND_CMD_STATUS:
770 	case NAND_CMD_READID:
771 	case NAND_CMD_SET_FEATURES:
772 		return;
773 
774 	case NAND_CMD_RESET:
775 		if (chip->dev_ready)
776 			break;
777 		udelay(chip->chip_delay);
778 		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
779 			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
780 		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
781 			       NAND_NCE | NAND_CTRL_CHANGE);
782 		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
783 		nand_wait_status_ready(mtd, 250);
784 		return;
785 
786 	case NAND_CMD_RNDOUT:
787 		/* No ready / busy check necessary */
788 		chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
789 			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
790 		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
791 			       NAND_NCE | NAND_CTRL_CHANGE);
792 		return;
793 
794 	case NAND_CMD_READ0:
795 		chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
796 			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
797 		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
798 			       NAND_NCE | NAND_CTRL_CHANGE);
799 
800 		/* This applies to read commands */
801 	default:
802 		/*
803 		 * If we don't have access to the busy pin, we apply the given
804 		 * command delay.
805 		 */
806 		if (!chip->dev_ready) {
807 			udelay(chip->chip_delay);
808 			return;
809 		}
810 	}
811 
812 	/*
813 	 * Apply this short delay always to ensure that we do wait tWB in
814 	 * any case on any machine.
815 	 */
816 	ndelay(100);
817 
818 	nand_wait_ready(mtd);
819 }
820 
821 /**
822  * panic_nand_get_device - [GENERIC] Get chip for selected access
823  * @chip: the nand chip descriptor
824  * @mtd: MTD device structure
825  * @new_state: the state which is requested
826  *
827  * Used when in panic, no locks are taken.
828  */
panic_nand_get_device(struct nand_chip * chip,struct mtd_info * mtd,int new_state)829 static void panic_nand_get_device(struct nand_chip *chip,
830 		      struct mtd_info *mtd, int new_state)
831 {
832 	/* Hardware controller shared among independent devices */
833 	chip->controller->active = chip;
834 	chip->state = new_state;
835 }
836 
837 /**
838  * nand_get_device - [GENERIC] Get chip for selected access
839  * @mtd: MTD device structure
840  * @new_state: the state which is requested
841  *
842  * Get the device and lock it for exclusive access
843  */
844 static int
nand_get_device(struct mtd_info * mtd,int new_state)845 nand_get_device(struct mtd_info *mtd, int new_state)
846 {
847 	struct nand_chip *chip = mtd_to_nand(mtd);
848 	chip->state = new_state;
849 	return 0;
850 }
851 
852 /**
853  * panic_nand_wait - [GENERIC] wait until the command is done
854  * @mtd: MTD device structure
855  * @chip: NAND chip structure
856  * @timeo: timeout
857  *
858  * Wait for command done. This is a helper function for nand_wait used when
859  * we are in interrupt context. May happen when in panic and trying to write
860  * an oops through mtdoops.
861  */
panic_nand_wait(struct mtd_info * mtd,struct nand_chip * chip,unsigned long timeo)862 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
863 			    unsigned long timeo)
864 {
865 	int i;
866 	for (i = 0; i < timeo; i++) {
867 		if (chip->dev_ready) {
868 			if (chip->dev_ready(mtd))
869 				break;
870 		} else {
871 			int ret;
872 			u8 status;
873 
874 			ret = nand_read_data_op(chip, &status, sizeof(status),
875 						true);
876 			if (ret)
877 				return;
878 
879 			if (status & NAND_STATUS_READY)
880 				break;
881 		}
882 		mdelay(1);
883 	}
884 }
885 
886 /**
887  * nand_wait - [DEFAULT] wait until the command is done
888  * @mtd: MTD device structure
889  * @chip: NAND chip structure
890  *
891  * Wait for command done. This applies to erase and program only.
892  */
nand_wait(struct mtd_info * mtd,struct nand_chip * chip)893 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
894 {
895 	unsigned long timeo = 400;
896 	u8 status;
897 	int ret;
898 
899 	led_trigger_event(nand_led_trigger, LED_FULL);
900 
901 	/*
902 	 * Apply this short delay always to ensure that we do wait tWB in any
903 	 * case on any machine.
904 	 */
905 	ndelay(100);
906 
907 	ret = nand_status_op(chip, NULL);
908 	if (ret)
909 		return ret;
910 
911  	u32 timer = (CONFIG_SYS_HZ * timeo) / 1000;
912  	u32 time_start;
913 
914  	time_start = get_timer(0);
915  	while (get_timer(time_start) < timer) {
916 		if (chip->dev_ready) {
917 			if (chip->dev_ready(mtd))
918 				break;
919 		} else {
920 			ret = nand_read_data_op(chip, &status,
921 						sizeof(status), true);
922 			if (ret)
923 				return ret;
924 
925 			if (status & NAND_STATUS_READY)
926 				break;
927 		}
928 	}
929 	led_trigger_event(nand_led_trigger, LED_OFF);
930 
931 	ret = nand_read_data_op(chip, &status, sizeof(status), true);
932 	if (ret)
933 		return ret;
934 
935 	/* This can happen if in case of timeout or buggy dev_ready */
936 	WARN_ON(!(status & NAND_STATUS_READY));
937 	return status;
938 }
939 
940 /**
941  * nand_reset_data_interface - Reset data interface and timings
942  * @chip: The NAND chip
943  * @chipnr: Internal die id
944  *
945  * Reset the Data interface and timings to ONFI mode 0.
946  *
947  * Returns 0 for success or negative error code otherwise.
948  */
nand_reset_data_interface(struct nand_chip * chip,int chipnr)949 static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
950 {
951 	struct mtd_info *mtd = nand_to_mtd(chip);
952 	const struct nand_data_interface *conf;
953 	int ret;
954 
955 	if (!chip->setup_data_interface)
956 		return 0;
957 
958 	/*
959 	 * The ONFI specification says:
960 	 * "
961 	 * To transition from NV-DDR or NV-DDR2 to the SDR data
962 	 * interface, the host shall use the Reset (FFh) command
963 	 * using SDR timing mode 0. A device in any timing mode is
964 	 * required to recognize Reset (FFh) command issued in SDR
965 	 * timing mode 0.
966 	 * "
967 	 *
968 	 * Configure the data interface in SDR mode and set the
969 	 * timings to timing mode 0.
970 	 */
971 
972 	conf = nand_get_default_data_interface();
973 	ret = chip->setup_data_interface(mtd, chipnr, conf);
974 	if (ret)
975 		pr_err("Failed to configure data interface to SDR timing mode 0\n");
976 
977 	return ret;
978 }
979 
980 /**
981  * nand_setup_data_interface - Setup the best data interface and timings
982  * @chip: The NAND chip
983  * @chipnr: Internal die id
984  *
985  * Find and configure the best data interface and NAND timings supported by
986  * the chip and the driver.
987  * First tries to retrieve supported timing modes from ONFI information,
988  * and if the NAND chip does not support ONFI, relies on the
989  * ->onfi_timing_mode_default specified in the nand_ids table.
990  *
991  * Returns 0 for success or negative error code otherwise.
992  */
nand_setup_data_interface(struct nand_chip * chip,int chipnr)993 static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
994 {
995 	struct mtd_info *mtd = nand_to_mtd(chip);
996 	int ret;
997 
998 	if (!chip->setup_data_interface || !chip->data_interface)
999 		return 0;
1000 
1001 	/*
1002 	 * Ensure the timing mode has been changed on the chip side
1003 	 * before changing timings on the controller side.
1004 	 */
1005 	if (chip->onfi_version) {
1006 		u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
1007 			chip->onfi_timing_mode_default,
1008 		};
1009 
1010 		ret = chip->onfi_set_features(mtd, chip,
1011 				ONFI_FEATURE_ADDR_TIMING_MODE,
1012 				tmode_param);
1013 		if (ret)
1014 			goto err;
1015 	}
1016 
1017 	ret = chip->setup_data_interface(mtd, chipnr, chip->data_interface);
1018 err:
1019 	return ret;
1020 }
1021 
1022 /**
1023  * nand_init_data_interface - find the best data interface and timings
1024  * @chip: The NAND chip
1025  *
1026  * Find the best data interface and NAND timings supported by the chip
1027  * and the driver.
1028  * First tries to retrieve supported timing modes from ONFI information,
1029  * and if the NAND chip does not support ONFI, relies on the
1030  * ->onfi_timing_mode_default specified in the nand_ids table. After this
1031  * function nand_chip->data_interface is initialized with the best timing mode
1032  * available.
1033  *
1034  * Returns 0 for success or negative error code otherwise.
1035  */
nand_init_data_interface(struct nand_chip * chip)1036 static int nand_init_data_interface(struct nand_chip *chip)
1037 {
1038 	struct mtd_info *mtd = nand_to_mtd(chip);
1039 	int modes, mode, ret;
1040 
1041 	if (!chip->setup_data_interface)
1042 		return 0;
1043 
1044 	/*
1045 	 * First try to identify the best timings from ONFI parameters and
1046 	 * if the NAND does not support ONFI, fallback to the default ONFI
1047 	 * timing mode.
1048 	 */
1049 	modes = onfi_get_async_timing_mode(chip);
1050 	if (modes == ONFI_TIMING_MODE_UNKNOWN) {
1051 		if (!chip->onfi_timing_mode_default)
1052 			return 0;
1053 
1054 		modes = GENMASK(chip->onfi_timing_mode_default, 0);
1055 	}
1056 
1057 	chip->data_interface = kzalloc(sizeof(*chip->data_interface),
1058 				       GFP_KERNEL);
1059 	if (!chip->data_interface)
1060 		return -ENOMEM;
1061 
1062 	for (mode = fls(modes) - 1; mode >= 0; mode--) {
1063 		ret = onfi_init_data_interface(chip, chip->data_interface,
1064 					       NAND_SDR_IFACE, mode);
1065 		if (ret)
1066 			continue;
1067 
1068 		/* Pass -1 to only */
1069 		ret = chip->setup_data_interface(mtd,
1070 						 NAND_DATA_IFACE_CHECK_ONLY,
1071 						 chip->data_interface);
1072 		if (!ret) {
1073 			chip->onfi_timing_mode_default = mode;
1074 			break;
1075 		}
1076 	}
1077 
1078 	return 0;
1079 }
1080 
nand_release_data_interface(struct nand_chip * chip)1081 static void __maybe_unused nand_release_data_interface(struct nand_chip *chip)
1082 {
1083 	kfree(chip->data_interface);
1084 }
1085 
1086 /**
1087  * nand_read_page_op - Do a READ PAGE operation
1088  * @chip: The NAND chip
1089  * @page: page to read
1090  * @offset_in_page: offset within the page
1091  * @buf: buffer used to store the data
1092  * @len: length of the buffer
1093  *
1094  * This function issues a READ PAGE operation.
1095  * This function does not select/unselect the CS line.
1096  *
1097  * Returns 0 on success, a negative error code otherwise.
1098  */
nand_read_page_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_page,void * buf,unsigned int len)1099 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1100 		      unsigned int offset_in_page, void *buf, unsigned int len)
1101 {
1102 	struct mtd_info *mtd = nand_to_mtd(chip);
1103 
1104 	if (len && !buf)
1105 		return -EINVAL;
1106 
1107 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1108 		return -EINVAL;
1109 
1110 	chip->cmdfunc(mtd, NAND_CMD_READ0, offset_in_page, page);
1111 	if (len)
1112 		chip->read_buf(mtd, buf, len);
1113 
1114 	return 0;
1115 }
1116 EXPORT_SYMBOL_GPL(nand_read_page_op);
1117 
1118 /**
1119  * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1120  * @chip: The NAND chip
1121  * @page: parameter page to read
1122  * @buf: buffer used to store the data
1123  * @len: length of the buffer
1124  *
1125  * This function issues a READ PARAMETER PAGE operation.
1126  * This function does not select/unselect the CS line.
1127  *
1128  * Returns 0 on success, a negative error code otherwise.
1129  */
nand_read_param_page_op(struct nand_chip * chip,u8 page,void * buf,unsigned int len)1130 static int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1131 				   unsigned int len)
1132 {
1133 	struct mtd_info *mtd = nand_to_mtd(chip);
1134 	unsigned int i;
1135 	u8 *p = buf;
1136 
1137 	if (len && !buf)
1138 		return -EINVAL;
1139 
1140 	chip->cmdfunc(mtd, NAND_CMD_PARAM, page, -1);
1141 	for (i = 0; i < len; i++)
1142 		p[i] = chip->read_byte(mtd);
1143 
1144 	return 0;
1145 }
1146 
1147 /**
1148  * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1149  * @chip: The NAND chip
1150  * @offset_in_page: offset within the page
1151  * @buf: buffer used to store the data
1152  * @len: length of the buffer
1153  * @force_8bit: force 8-bit bus access
1154  *
1155  * This function issues a CHANGE READ COLUMN operation.
1156  * This function does not select/unselect the CS line.
1157  *
1158  * Returns 0 on success, a negative error code otherwise.
1159  */
nand_change_read_column_op(struct nand_chip * chip,unsigned int offset_in_page,void * buf,unsigned int len,bool force_8bit)1160 int nand_change_read_column_op(struct nand_chip *chip,
1161 			       unsigned int offset_in_page, void *buf,
1162 			       unsigned int len, bool force_8bit)
1163 {
1164 	struct mtd_info *mtd = nand_to_mtd(chip);
1165 
1166 	if (len && !buf)
1167 		return -EINVAL;
1168 
1169 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1170 		return -EINVAL;
1171 
1172 	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset_in_page, -1);
1173 	if (len)
1174 		chip->read_buf(mtd, buf, len);
1175 
1176 	return 0;
1177 }
1178 EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1179 
1180 /**
1181  * nand_read_oob_op - Do a READ OOB operation
1182  * @chip: The NAND chip
1183  * @page: page to read
1184  * @offset_in_oob: offset within the OOB area
1185  * @buf: buffer used to store the data
1186  * @len: length of the buffer
1187  *
1188  * This function issues a READ OOB operation.
1189  * This function does not select/unselect the CS line.
1190  *
1191  * Returns 0 on success, a negative error code otherwise.
1192  */
nand_read_oob_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_oob,void * buf,unsigned int len)1193 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1194 		     unsigned int offset_in_oob, void *buf, unsigned int len)
1195 {
1196 	struct mtd_info *mtd = nand_to_mtd(chip);
1197 
1198 	if (len && !buf)
1199 		return -EINVAL;
1200 
1201 	if (offset_in_oob + len > mtd->oobsize)
1202 		return -EINVAL;
1203 
1204 	chip->cmdfunc(mtd, NAND_CMD_READOOB, offset_in_oob, page);
1205 	if (len)
1206 		chip->read_buf(mtd, buf, len);
1207 
1208 	return 0;
1209 }
1210 EXPORT_SYMBOL_GPL(nand_read_oob_op);
1211 
1212 /**
1213  * nand_prog_page_begin_op - starts a PROG PAGE operation
1214  * @chip: The NAND chip
1215  * @page: page to write
1216  * @offset_in_page: offset within the page
1217  * @buf: buffer containing the data to write to the page
1218  * @len: length of the buffer
1219  *
1220  * This function issues the first half of a PROG PAGE operation.
1221  * This function does not select/unselect the CS line.
1222  *
1223  * Returns 0 on success, a negative error code otherwise.
1224  */
nand_prog_page_begin_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_page,const void * buf,unsigned int len)1225 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1226 			    unsigned int offset_in_page, const void *buf,
1227 			    unsigned int len)
1228 {
1229 	struct mtd_info *mtd = nand_to_mtd(chip);
1230 
1231 	if (len && !buf)
1232 		return -EINVAL;
1233 
1234 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1235 		return -EINVAL;
1236 
1237 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page);
1238 
1239 	if (buf)
1240 		chip->write_buf(mtd, buf, len);
1241 
1242 	return 0;
1243 }
1244 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1245 
1246 /**
1247  * nand_prog_page_end_op - ends a PROG PAGE operation
1248  * @chip: The NAND chip
1249  *
1250  * This function issues the second half of a PROG PAGE operation.
1251  * This function does not select/unselect the CS line.
1252  *
1253  * Returns 0 on success, a negative error code otherwise.
1254  */
nand_prog_page_end_op(struct nand_chip * chip)1255 int nand_prog_page_end_op(struct nand_chip *chip)
1256 {
1257 	struct mtd_info *mtd = nand_to_mtd(chip);
1258 	int status;
1259 
1260 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1261 
1262 	status = chip->waitfunc(mtd, chip);
1263 	if (status & NAND_STATUS_FAIL)
1264 		return -EIO;
1265 
1266 	return 0;
1267 }
1268 EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1269 
1270 /**
1271  * nand_prog_page_op - Do a full PROG PAGE operation
1272  * @chip: The NAND chip
1273  * @page: page to write
1274  * @offset_in_page: offset within the page
1275  * @buf: buffer containing the data to write to the page
1276  * @len: length of the buffer
1277  *
1278  * This function issues a full PROG PAGE operation.
1279  * This function does not select/unselect the CS line.
1280  *
1281  * Returns 0 on success, a negative error code otherwise.
1282  */
nand_prog_page_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_page,const void * buf,unsigned int len)1283 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1284 		      unsigned int offset_in_page, const void *buf,
1285 		      unsigned int len)
1286 {
1287 	struct mtd_info *mtd = nand_to_mtd(chip);
1288 	int status;
1289 
1290 	if (!len || !buf)
1291 		return -EINVAL;
1292 
1293 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1294 		return -EINVAL;
1295 
1296 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page);
1297 	chip->write_buf(mtd, buf, len);
1298 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1299 
1300 	status = chip->waitfunc(mtd, chip);
1301 	if (status & NAND_STATUS_FAIL)
1302 		return -EIO;
1303 
1304 	return 0;
1305 }
1306 EXPORT_SYMBOL_GPL(nand_prog_page_op);
1307 
1308 /**
1309  * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1310  * @chip: The NAND chip
1311  * @offset_in_page: offset within the page
1312  * @buf: buffer containing the data to send to the NAND
1313  * @len: length of the buffer
1314  * @force_8bit: force 8-bit bus access
1315  *
1316  * This function issues a CHANGE WRITE COLUMN operation.
1317  * This function does not select/unselect the CS line.
1318  *
1319  * Returns 0 on success, a negative error code otherwise.
1320  */
nand_change_write_column_op(struct nand_chip * chip,unsigned int offset_in_page,const void * buf,unsigned int len,bool force_8bit)1321 int nand_change_write_column_op(struct nand_chip *chip,
1322 				unsigned int offset_in_page,
1323 				const void *buf, unsigned int len,
1324 				bool force_8bit)
1325 {
1326 	struct mtd_info *mtd = nand_to_mtd(chip);
1327 
1328 	if (len && !buf)
1329 		return -EINVAL;
1330 
1331 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1332 		return -EINVAL;
1333 
1334 	chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset_in_page, -1);
1335 	if (len)
1336 		chip->write_buf(mtd, buf, len);
1337 
1338 	return 0;
1339 }
1340 EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1341 
1342 /**
1343  * nand_readid_op - Do a READID operation
1344  * @chip: The NAND chip
1345  * @addr: address cycle to pass after the READID command
1346  * @buf: buffer used to store the ID
1347  * @len: length of the buffer
1348  *
1349  * This function sends a READID command and reads back the ID returned by the
1350  * NAND.
1351  * This function does not select/unselect the CS line.
1352  *
1353  * Returns 0 on success, a negative error code otherwise.
1354  */
nand_readid_op(struct nand_chip * chip,u8 addr,void * buf,unsigned int len)1355 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1356 		   unsigned int len)
1357 {
1358 	struct mtd_info *mtd = nand_to_mtd(chip);
1359 	unsigned int i;
1360 	u8 *id = buf;
1361 
1362 	if (len && !buf)
1363 		return -EINVAL;
1364 
1365 	chip->cmdfunc(mtd, NAND_CMD_READID, addr, -1);
1366 
1367 	for (i = 0; i < len; i++)
1368 		id[i] = chip->read_byte(mtd);
1369 
1370 	return 0;
1371 }
1372 EXPORT_SYMBOL_GPL(nand_readid_op);
1373 
1374 /**
1375  * nand_status_op - Do a STATUS operation
1376  * @chip: The NAND chip
1377  * @status: out variable to store the NAND status
1378  *
1379  * This function sends a STATUS command and reads back the status returned by
1380  * the NAND.
1381  * This function does not select/unselect the CS line.
1382  *
1383  * Returns 0 on success, a negative error code otherwise.
1384  */
nand_status_op(struct nand_chip * chip,u8 * status)1385 int nand_status_op(struct nand_chip *chip, u8 *status)
1386 {
1387 	struct mtd_info *mtd = nand_to_mtd(chip);
1388 
1389 	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
1390 	if (status)
1391 		*status = chip->read_byte(mtd);
1392 
1393 	return 0;
1394 }
1395 EXPORT_SYMBOL_GPL(nand_status_op);
1396 
1397 /**
1398  * nand_exit_status_op - Exit a STATUS operation
1399  * @chip: The NAND chip
1400  *
1401  * This function sends a READ0 command to cancel the effect of the STATUS
1402  * command to avoid reading only the status until a new read command is sent.
1403  *
1404  * This function does not select/unselect the CS line.
1405  *
1406  * Returns 0 on success, a negative error code otherwise.
1407  */
nand_exit_status_op(struct nand_chip * chip)1408 int nand_exit_status_op(struct nand_chip *chip)
1409 {
1410 	struct mtd_info *mtd = nand_to_mtd(chip);
1411 
1412 	chip->cmdfunc(mtd, NAND_CMD_READ0, -1, -1);
1413 
1414 	return 0;
1415 }
1416 EXPORT_SYMBOL_GPL(nand_exit_status_op);
1417 
1418 /**
1419  * nand_erase_op - Do an erase operation
1420  * @chip: The NAND chip
1421  * @eraseblock: block to erase
1422  *
1423  * This function sends an ERASE command and waits for the NAND to be ready
1424  * before returning.
1425  * This function does not select/unselect the CS line.
1426  *
1427  * Returns 0 on success, a negative error code otherwise.
1428  */
nand_erase_op(struct nand_chip * chip,unsigned int eraseblock)1429 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
1430 {
1431 	struct mtd_info *mtd = nand_to_mtd(chip);
1432 	unsigned int page = eraseblock <<
1433 			    (chip->phys_erase_shift - chip->page_shift);
1434 	int status;
1435 
1436 	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1437 	chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1438 
1439 	status = chip->waitfunc(mtd, chip);
1440 	if (status < 0)
1441 		return status;
1442 
1443 	if (status & NAND_STATUS_FAIL)
1444 		return -EIO;
1445 
1446 	return 0;
1447 }
1448 EXPORT_SYMBOL_GPL(nand_erase_op);
1449 
1450 /**
1451  * nand_set_features_op - Do a SET FEATURES operation
1452  * @chip: The NAND chip
1453  * @feature: feature id
1454  * @data: 4 bytes of data
1455  *
1456  * This function sends a SET FEATURES command and waits for the NAND to be
1457  * ready before returning.
1458  * This function does not select/unselect the CS line.
1459  *
1460  * Returns 0 on success, a negative error code otherwise.
1461  */
nand_set_features_op(struct nand_chip * chip,u8 feature,const void * data)1462 static int nand_set_features_op(struct nand_chip *chip, u8 feature,
1463 				const void *data)
1464 {
1465 	struct mtd_info *mtd = nand_to_mtd(chip);
1466 	const u8 *params = data;
1467 	int i, status;
1468 
1469 	chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, feature, -1);
1470 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1471 		chip->write_byte(mtd, params[i]);
1472 
1473 	status = chip->waitfunc(mtd, chip);
1474 	if (status & NAND_STATUS_FAIL)
1475 		return -EIO;
1476 
1477 	return 0;
1478 }
1479 
1480 /**
1481  * nand_get_features_op - Do a GET FEATURES operation
1482  * @chip: The NAND chip
1483  * @feature: feature id
1484  * @data: 4 bytes of data
1485  *
1486  * This function sends a GET FEATURES command and waits for the NAND to be
1487  * ready before returning.
1488  * This function does not select/unselect the CS line.
1489  *
1490  * Returns 0 on success, a negative error code otherwise.
1491  */
nand_get_features_op(struct nand_chip * chip,u8 feature,void * data)1492 static int nand_get_features_op(struct nand_chip *chip, u8 feature,
1493 				void *data)
1494 {
1495 	struct mtd_info *mtd = nand_to_mtd(chip);
1496 	u8 *params = data;
1497 	int i;
1498 
1499 	chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, feature, -1);
1500 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1501 		params[i] = chip->read_byte(mtd);
1502 
1503 	return 0;
1504 }
1505 
1506 /**
1507  * nand_reset_op - Do a reset operation
1508  * @chip: The NAND chip
1509  *
1510  * This function sends a RESET command and waits for the NAND to be ready
1511  * before returning.
1512  * This function does not select/unselect the CS line.
1513  *
1514  * Returns 0 on success, a negative error code otherwise.
1515  */
nand_reset_op(struct nand_chip * chip)1516 int nand_reset_op(struct nand_chip *chip)
1517 {
1518 	struct mtd_info *mtd = nand_to_mtd(chip);
1519 
1520 	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1521 
1522 	return 0;
1523 }
1524 EXPORT_SYMBOL_GPL(nand_reset_op);
1525 
1526 /**
1527  * nand_read_data_op - Read data from the NAND
1528  * @chip: The NAND chip
1529  * @buf: buffer used to store the data
1530  * @len: length of the buffer
1531  * @force_8bit: force 8-bit bus access
1532  *
1533  * This function does a raw data read on the bus. Usually used after launching
1534  * another NAND operation like nand_read_page_op().
1535  * This function does not select/unselect the CS line.
1536  *
1537  * Returns 0 on success, a negative error code otherwise.
1538  */
nand_read_data_op(struct nand_chip * chip,void * buf,unsigned int len,bool force_8bit)1539 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
1540 		      bool force_8bit)
1541 {
1542 	struct mtd_info *mtd = nand_to_mtd(chip);
1543 
1544 	if (!len || !buf)
1545 		return -EINVAL;
1546 
1547 	if (force_8bit) {
1548 		u8 *p = buf;
1549 		unsigned int i;
1550 
1551 		for (i = 0; i < len; i++)
1552 			p[i] = chip->read_byte(mtd);
1553 	} else {
1554 		chip->read_buf(mtd, buf, len);
1555 	}
1556 
1557 	return 0;
1558 }
1559 EXPORT_SYMBOL_GPL(nand_read_data_op);
1560 
1561 /**
1562  * nand_write_data_op - Write data from the NAND
1563  * @chip: The NAND chip
1564  * @buf: buffer containing the data to send on the bus
1565  * @len: length of the buffer
1566  * @force_8bit: force 8-bit bus access
1567  *
1568  * This function does a raw data write on the bus. Usually used after launching
1569  * another NAND operation like nand_write_page_begin_op().
1570  * This function does not select/unselect the CS line.
1571  *
1572  * Returns 0 on success, a negative error code otherwise.
1573  */
nand_write_data_op(struct nand_chip * chip,const void * buf,unsigned int len,bool force_8bit)1574 int nand_write_data_op(struct nand_chip *chip, const void *buf,
1575 		       unsigned int len, bool force_8bit)
1576 {
1577 	struct mtd_info *mtd = nand_to_mtd(chip);
1578 
1579 	if (!len || !buf)
1580 		return -EINVAL;
1581 
1582 	if (force_8bit) {
1583 		const u8 *p = buf;
1584 		unsigned int i;
1585 
1586 		for (i = 0; i < len; i++)
1587 			chip->write_byte(mtd, p[i]);
1588 	} else {
1589 		chip->write_buf(mtd, buf, len);
1590 	}
1591 
1592 	return 0;
1593 }
1594 EXPORT_SYMBOL_GPL(nand_write_data_op);
1595 
1596 /**
1597  * nand_reset - Reset and initialize a NAND device
1598  * @chip: The NAND chip
1599  * @chipnr: Internal die id
1600  *
1601  * Returns 0 for success or negative error code otherwise
1602  */
nand_reset(struct nand_chip * chip,int chipnr)1603 int nand_reset(struct nand_chip *chip, int chipnr)
1604 {
1605 	struct mtd_info *mtd = nand_to_mtd(chip);
1606 	int ret;
1607 
1608 	ret = nand_reset_data_interface(chip, chipnr);
1609 	if (ret)
1610 		return ret;
1611 
1612 	/*
1613 	 * The CS line has to be released before we can apply the new NAND
1614 	 * interface settings, hence this weird ->select_chip() dance.
1615 	 */
1616 	chip->select_chip(mtd, chipnr);
1617 	ret = nand_reset_op(chip);
1618 	chip->select_chip(mtd, -1);
1619 	if (ret)
1620 		return ret;
1621 
1622 	chip->select_chip(mtd, chipnr);
1623 	ret = nand_setup_data_interface(chip, chipnr);
1624 	chip->select_chip(mtd, -1);
1625 	if (ret)
1626 		return ret;
1627 
1628 	return 0;
1629 }
1630 
1631 /**
1632  * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
1633  * @buf: buffer to test
1634  * @len: buffer length
1635  * @bitflips_threshold: maximum number of bitflips
1636  *
1637  * Check if a buffer contains only 0xff, which means the underlying region
1638  * has been erased and is ready to be programmed.
1639  * The bitflips_threshold specify the maximum number of bitflips before
1640  * considering the region is not erased.
1641  * Note: The logic of this function has been extracted from the memweight
1642  * implementation, except that nand_check_erased_buf function exit before
1643  * testing the whole buffer if the number of bitflips exceed the
1644  * bitflips_threshold value.
1645  *
1646  * Returns a positive number of bitflips less than or equal to
1647  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1648  * threshold.
1649  */
nand_check_erased_buf(void * buf,int len,int bitflips_threshold)1650 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
1651 {
1652 	const unsigned char *bitmap = buf;
1653 	int bitflips = 0;
1654 	int weight;
1655 
1656 	for (; len && ((uintptr_t)bitmap) % sizeof(long);
1657 	     len--, bitmap++) {
1658 		weight = hweight8(*bitmap);
1659 		bitflips += BITS_PER_BYTE - weight;
1660 		if (unlikely(bitflips > bitflips_threshold))
1661 			return -EBADMSG;
1662 	}
1663 
1664 	for (; len >= 4; len -= 4, bitmap += 4) {
1665 		weight = hweight32(*((u32 *)bitmap));
1666 		bitflips += 32 - weight;
1667 		if (unlikely(bitflips > bitflips_threshold))
1668 			return -EBADMSG;
1669 	}
1670 
1671 	for (; len > 0; len--, bitmap++) {
1672 		weight = hweight8(*bitmap);
1673 		bitflips += BITS_PER_BYTE - weight;
1674 		if (unlikely(bitflips > bitflips_threshold))
1675 			return -EBADMSG;
1676 	}
1677 
1678 	return bitflips;
1679 }
1680 
1681 /**
1682  * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
1683  *				 0xff data
1684  * @data: data buffer to test
1685  * @datalen: data length
1686  * @ecc: ECC buffer
1687  * @ecclen: ECC length
1688  * @extraoob: extra OOB buffer
1689  * @extraooblen: extra OOB length
1690  * @bitflips_threshold: maximum number of bitflips
1691  *
1692  * Check if a data buffer and its associated ECC and OOB data contains only
1693  * 0xff pattern, which means the underlying region has been erased and is
1694  * ready to be programmed.
1695  * The bitflips_threshold specify the maximum number of bitflips before
1696  * considering the region as not erased.
1697  *
1698  * Note:
1699  * 1/ ECC algorithms are working on pre-defined block sizes which are usually
1700  *    different from the NAND page size. When fixing bitflips, ECC engines will
1701  *    report the number of errors per chunk, and the NAND core infrastructure
1702  *    expect you to return the maximum number of bitflips for the whole page.
1703  *    This is why you should always use this function on a single chunk and
1704  *    not on the whole page. After checking each chunk you should update your
1705  *    max_bitflips value accordingly.
1706  * 2/ When checking for bitflips in erased pages you should not only check
1707  *    the payload data but also their associated ECC data, because a user might
1708  *    have programmed almost all bits to 1 but a few. In this case, we
1709  *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
1710  *    this case.
1711  * 3/ The extraoob argument is optional, and should be used if some of your OOB
1712  *    data are protected by the ECC engine.
1713  *    It could also be used if you support subpages and want to attach some
1714  *    extra OOB data to an ECC chunk.
1715  *
1716  * Returns a positive number of bitflips less than or equal to
1717  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1718  * threshold. In case of success, the passed buffers are filled with 0xff.
1719  */
nand_check_erased_ecc_chunk(void * data,int datalen,void * ecc,int ecclen,void * extraoob,int extraooblen,int bitflips_threshold)1720 int nand_check_erased_ecc_chunk(void *data, int datalen,
1721 				void *ecc, int ecclen,
1722 				void *extraoob, int extraooblen,
1723 				int bitflips_threshold)
1724 {
1725 	int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
1726 
1727 	data_bitflips = nand_check_erased_buf(data, datalen,
1728 					      bitflips_threshold);
1729 	if (data_bitflips < 0)
1730 		return data_bitflips;
1731 
1732 	bitflips_threshold -= data_bitflips;
1733 
1734 	ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
1735 	if (ecc_bitflips < 0)
1736 		return ecc_bitflips;
1737 
1738 	bitflips_threshold -= ecc_bitflips;
1739 
1740 	extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
1741 						  bitflips_threshold);
1742 	if (extraoob_bitflips < 0)
1743 		return extraoob_bitflips;
1744 
1745 	if (data_bitflips)
1746 		memset(data, 0xff, datalen);
1747 
1748 	if (ecc_bitflips)
1749 		memset(ecc, 0xff, ecclen);
1750 
1751 	if (extraoob_bitflips)
1752 		memset(extraoob, 0xff, extraooblen);
1753 
1754 	return data_bitflips + ecc_bitflips + extraoob_bitflips;
1755 }
1756 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
1757 
1758 /**
1759  * nand_read_page_raw - [INTERN] read raw page data without ecc
1760  * @mtd: mtd info structure
1761  * @chip: nand chip info structure
1762  * @buf: buffer to store read data
1763  * @oob_required: caller requires OOB data read to chip->oob_poi
1764  * @page: page number to read
1765  *
1766  * Not for syndrome calculating ECC controllers, which use a special oob layout.
1767  */
nand_read_page_raw(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1768 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1769 			      uint8_t *buf, int oob_required, int page)
1770 {
1771 	int ret;
1772 
1773 	ret = nand_read_data_op(chip, buf, mtd->writesize, false);
1774 	if (ret)
1775 		return ret;
1776 
1777 	if (oob_required) {
1778 		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
1779 					false);
1780 		if (ret)
1781 			return ret;
1782 	}
1783 
1784 	return 0;
1785 }
1786 
1787 /**
1788  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1789  * @mtd: mtd info structure
1790  * @chip: nand chip info structure
1791  * @buf: buffer to store read data
1792  * @oob_required: caller requires OOB data read to chip->oob_poi
1793  * @page: page number to read
1794  *
1795  * We need a special oob layout and handling even when OOB isn't used.
1796  */
nand_read_page_raw_syndrome(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1797 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1798 				       struct nand_chip *chip, uint8_t *buf,
1799 				       int oob_required, int page)
1800 {
1801 	int eccsize = chip->ecc.size;
1802 	int eccbytes = chip->ecc.bytes;
1803 	uint8_t *oob = chip->oob_poi;
1804 	int steps, size, ret;
1805 
1806 	for (steps = chip->ecc.steps; steps > 0; steps--) {
1807 		ret = nand_read_data_op(chip, buf, eccsize, false);
1808 		if (ret)
1809 			return ret;
1810 
1811 		buf += eccsize;
1812 
1813 		if (chip->ecc.prepad) {
1814 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
1815 						false);
1816 			if (ret)
1817 				return ret;
1818 
1819 			oob += chip->ecc.prepad;
1820 		}
1821 
1822 		ret = nand_read_data_op(chip, oob, eccbytes, false);
1823 		if (ret)
1824 			return ret;
1825 
1826 		oob += eccbytes;
1827 
1828 		if (chip->ecc.postpad) {
1829 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
1830 						false);
1831 			if (ret)
1832 				return ret;
1833 
1834 			oob += chip->ecc.postpad;
1835 		}
1836 	}
1837 
1838 	size = mtd->oobsize - (oob - chip->oob_poi);
1839 	if (size) {
1840 		ret = nand_read_data_op(chip, oob, size, false);
1841 		if (ret)
1842 			return ret;
1843 	}
1844 
1845 	return 0;
1846 }
1847 
1848 /**
1849  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1850  * @mtd: mtd info structure
1851  * @chip: nand chip info structure
1852  * @buf: buffer to store read data
1853  * @oob_required: caller requires OOB data read to chip->oob_poi
1854  * @page: page number to read
1855  */
nand_read_page_swecc(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1856 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1857 				uint8_t *buf, int oob_required, int page)
1858 {
1859 	int i, eccsize = chip->ecc.size;
1860 	int eccbytes = chip->ecc.bytes;
1861 	int eccsteps = chip->ecc.steps;
1862 	uint8_t *p = buf;
1863 	uint8_t *ecc_calc = chip->buffers->ecccalc;
1864 	uint8_t *ecc_code = chip->buffers->ecccode;
1865 	uint32_t *eccpos = chip->ecc.layout->eccpos;
1866 	unsigned int max_bitflips = 0;
1867 
1868 	chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1869 
1870 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1871 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1872 
1873 	for (i = 0; i < chip->ecc.total; i++)
1874 		ecc_code[i] = chip->oob_poi[eccpos[i]];
1875 
1876 	eccsteps = chip->ecc.steps;
1877 	p = buf;
1878 
1879 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1880 		int stat;
1881 
1882 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1883 		if (stat < 0) {
1884 			mtd->ecc_stats.failed++;
1885 		} else {
1886 			mtd->ecc_stats.corrected += stat;
1887 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
1888 		}
1889 	}
1890 	return max_bitflips;
1891 }
1892 
1893 /**
1894  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1895  * @mtd: mtd info structure
1896  * @chip: nand chip info structure
1897  * @data_offs: offset of requested data within the page
1898  * @readlen: data length
1899  * @bufpoi: buffer to store read data
1900  * @page: page number to read
1901  */
nand_read_subpage(struct mtd_info * mtd,struct nand_chip * chip,uint32_t data_offs,uint32_t readlen,uint8_t * bufpoi,int page)1902 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1903 			uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1904 			int page)
1905 {
1906 	int start_step, end_step, num_steps;
1907 	uint32_t *eccpos = chip->ecc.layout->eccpos;
1908 	uint8_t *p;
1909 	int data_col_addr, i, gaps = 0;
1910 	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1911 	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1912 	int index;
1913 	unsigned int max_bitflips = 0;
1914 	int ret;
1915 
1916 	/* Column address within the page aligned to ECC size (256bytes) */
1917 	start_step = data_offs / chip->ecc.size;
1918 	end_step = (data_offs + readlen - 1) / chip->ecc.size;
1919 	num_steps = end_step - start_step + 1;
1920 	index = start_step * chip->ecc.bytes;
1921 
1922 	/* Data size aligned to ECC ecc.size */
1923 	datafrag_len = num_steps * chip->ecc.size;
1924 	eccfrag_len = num_steps * chip->ecc.bytes;
1925 
1926 	data_col_addr = start_step * chip->ecc.size;
1927 	/* If we read not a page aligned data */
1928 	if (data_col_addr != 0)
1929 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1930 
1931 	p = bufpoi + data_col_addr;
1932 	ret = nand_read_data_op(chip, p, datafrag_len, false);
1933 	if (ret)
1934 		return ret;
1935 
1936 	/* Calculate ECC */
1937 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1938 		chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1939 
1940 	/*
1941 	 * The performance is faster if we position offsets according to
1942 	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1943 	 */
1944 	for (i = 0; i < eccfrag_len - 1; i++) {
1945 		if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
1946 			gaps = 1;
1947 			break;
1948 		}
1949 	}
1950 	if (gaps) {
1951 		ret = nand_change_read_column_op(chip, mtd->writesize,
1952 						 chip->oob_poi, mtd->oobsize,
1953 						 false);
1954 		if (ret)
1955 			return ret;
1956 	} else {
1957 		/*
1958 		 * Send the command to read the particular ECC bytes take care
1959 		 * about buswidth alignment in read_buf.
1960 		 */
1961 		aligned_pos = eccpos[index] & ~(busw - 1);
1962 		aligned_len = eccfrag_len;
1963 		if (eccpos[index] & (busw - 1))
1964 			aligned_len++;
1965 		if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1966 			aligned_len++;
1967 
1968 		ret = nand_change_read_column_op(chip,
1969 						 mtd->writesize + aligned_pos,
1970 						 &chip->oob_poi[aligned_pos],
1971 						 aligned_len, false);
1972 		if (ret)
1973 			return ret;
1974 	}
1975 
1976 	for (i = 0; i < eccfrag_len; i++)
1977 		chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1978 
1979 	p = bufpoi + data_col_addr;
1980 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1981 		int stat;
1982 
1983 		stat = chip->ecc.correct(mtd, p,
1984 			&chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1985 		if (stat == -EBADMSG &&
1986 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1987 			/* check for empty pages with bitflips */
1988 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1989 						&chip->buffers->ecccode[i],
1990 						chip->ecc.bytes,
1991 						NULL, 0,
1992 						chip->ecc.strength);
1993 		}
1994 
1995 		if (stat < 0) {
1996 			mtd->ecc_stats.failed++;
1997 		} else {
1998 			mtd->ecc_stats.corrected += stat;
1999 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
2000 		}
2001 	}
2002 	return max_bitflips;
2003 }
2004 
2005 /**
2006  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
2007  * @mtd: mtd info structure
2008  * @chip: nand chip info structure
2009  * @buf: buffer to store read data
2010  * @oob_required: caller requires OOB data read to chip->oob_poi
2011  * @page: page number to read
2012  *
2013  * Not for syndrome calculating ECC controllers which need a special oob layout.
2014  */
nand_read_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)2015 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2016 				uint8_t *buf, int oob_required, int page)
2017 {
2018 	int i, eccsize = chip->ecc.size;
2019 	int eccbytes = chip->ecc.bytes;
2020 	int eccsteps = chip->ecc.steps;
2021 	uint8_t *p = buf;
2022 	uint8_t *ecc_calc = chip->buffers->ecccalc;
2023 	uint8_t *ecc_code = chip->buffers->ecccode;
2024 	uint32_t *eccpos = chip->ecc.layout->eccpos;
2025 	unsigned int max_bitflips = 0;
2026 	int ret;
2027 
2028 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2029 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
2030 
2031 		ret = nand_read_data_op(chip, p, eccsize, false);
2032 		if (ret)
2033 			return ret;
2034 
2035 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2036 	}
2037 
2038 	ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false);
2039 	if (ret)
2040 		return ret;
2041 
2042 	for (i = 0; i < chip->ecc.total; i++)
2043 		ecc_code[i] = chip->oob_poi[eccpos[i]];
2044 
2045 	eccsteps = chip->ecc.steps;
2046 	p = buf;
2047 
2048 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2049 		int stat;
2050 
2051 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
2052 		if (stat == -EBADMSG &&
2053 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
2054 			/* check for empty pages with bitflips */
2055 			stat = nand_check_erased_ecc_chunk(p, eccsize,
2056 						&ecc_code[i], eccbytes,
2057 						NULL, 0,
2058 						chip->ecc.strength);
2059 		}
2060 
2061 		if (stat < 0) {
2062 			mtd->ecc_stats.failed++;
2063 		} else {
2064 			mtd->ecc_stats.corrected += stat;
2065 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
2066 		}
2067 	}
2068 	return max_bitflips;
2069 }
2070 
2071 /**
2072  * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
2073  * @mtd: mtd info structure
2074  * @chip: nand chip info structure
2075  * @buf: buffer to store read data
2076  * @oob_required: caller requires OOB data read to chip->oob_poi
2077  * @page: page number to read
2078  *
2079  * Hardware ECC for large page chips, require OOB to be read first. For this
2080  * ECC mode, the write_page method is re-used from ECC_HW. These methods
2081  * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
2082  * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
2083  * the data area, by overwriting the NAND manufacturer bad block markings.
2084  */
nand_read_page_hwecc_oob_first(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)2085 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
2086 	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
2087 {
2088 	int i, eccsize = chip->ecc.size;
2089 	int eccbytes = chip->ecc.bytes;
2090 	int eccsteps = chip->ecc.steps;
2091 	uint8_t *p = buf;
2092 	uint8_t *ecc_code = chip->buffers->ecccode;
2093 	uint32_t *eccpos = chip->ecc.layout->eccpos;
2094 	uint8_t *ecc_calc = chip->buffers->ecccalc;
2095 	unsigned int max_bitflips = 0;
2096 	int ret;
2097 
2098 	/* Read the OOB area first */
2099 	ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
2100 	if (ret)
2101 		return ret;
2102 
2103 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
2104 	if (ret)
2105 		return ret;
2106 
2107 	for (i = 0; i < chip->ecc.total; i++)
2108 		ecc_code[i] = chip->oob_poi[eccpos[i]];
2109 
2110 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2111 		int stat;
2112 
2113 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
2114 
2115 		ret = nand_read_data_op(chip, p, eccsize, false);
2116 		if (ret)
2117 			return ret;
2118 
2119 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2120 
2121 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
2122 		if (stat == -EBADMSG &&
2123 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
2124 			/* check for empty pages with bitflips */
2125 			stat = nand_check_erased_ecc_chunk(p, eccsize,
2126 						&ecc_code[i], eccbytes,
2127 						NULL, 0,
2128 						chip->ecc.strength);
2129 		}
2130 
2131 		if (stat < 0) {
2132 			mtd->ecc_stats.failed++;
2133 		} else {
2134 			mtd->ecc_stats.corrected += stat;
2135 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
2136 		}
2137 	}
2138 	return max_bitflips;
2139 }
2140 
2141 /**
2142  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
2143  * @mtd: mtd info structure
2144  * @chip: nand chip info structure
2145  * @buf: buffer to store read data
2146  * @oob_required: caller requires OOB data read to chip->oob_poi
2147  * @page: page number to read
2148  *
2149  * The hw generator calculates the error syndrome automatically. Therefore we
2150  * need a special oob layout and handling.
2151  */
nand_read_page_syndrome(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)2152 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
2153 				   uint8_t *buf, int oob_required, int page)
2154 {
2155 	int ret, i, eccsize = chip->ecc.size;
2156 	int eccbytes = chip->ecc.bytes;
2157 	int eccsteps = chip->ecc.steps;
2158 	int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
2159 	uint8_t *p = buf;
2160 	uint8_t *oob = chip->oob_poi;
2161 	unsigned int max_bitflips = 0;
2162 
2163 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2164 		int stat;
2165 
2166 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
2167 
2168 		ret = nand_read_data_op(chip, p, eccsize, false);
2169 		if (ret)
2170 			return ret;
2171 
2172 		if (chip->ecc.prepad) {
2173 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
2174 						false);
2175 			if (ret)
2176 				return ret;
2177 
2178 			oob += chip->ecc.prepad;
2179 		}
2180 
2181 		chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
2182 
2183 		ret = nand_read_data_op(chip, oob, eccbytes, false);
2184 		if (ret)
2185 			return ret;
2186 
2187 		stat = chip->ecc.correct(mtd, p, oob, NULL);
2188 
2189 		oob += eccbytes;
2190 
2191 		if (chip->ecc.postpad) {
2192 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
2193 						false);
2194 			if (ret)
2195 				return ret;
2196 
2197 			oob += chip->ecc.postpad;
2198 		}
2199 
2200 		if (stat == -EBADMSG &&
2201 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
2202 			/* check for empty pages with bitflips */
2203 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
2204 							   oob - eccpadbytes,
2205 							   eccpadbytes,
2206 							   NULL, 0,
2207 							   chip->ecc.strength);
2208 		}
2209 
2210 		if (stat < 0) {
2211 			mtd->ecc_stats.failed++;
2212 		} else {
2213 			mtd->ecc_stats.corrected += stat;
2214 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
2215 		}
2216 	}
2217 
2218 	/* Calculate remaining oob bytes */
2219 	i = mtd->oobsize - (oob - chip->oob_poi);
2220 	if (i) {
2221 		ret = nand_read_data_op(chip, oob, i, false);
2222 		if (ret)
2223 			return ret;
2224 	}
2225 
2226 	return max_bitflips;
2227 }
2228 
2229 /**
2230  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
2231  * @chip: nand chip structure
2232  * @oob: oob destination address
2233  * @ops: oob ops structure
2234  * @len: size of oob to transfer
2235  */
nand_transfer_oob(struct nand_chip * chip,uint8_t * oob,struct mtd_oob_ops * ops,size_t len)2236 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
2237 				  struct mtd_oob_ops *ops, size_t len)
2238 {
2239 	switch (ops->mode) {
2240 
2241 	case MTD_OPS_PLACE_OOB:
2242 	case MTD_OPS_RAW:
2243 		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
2244 		return oob + len;
2245 
2246 	case MTD_OPS_AUTO_OOB: {
2247 		struct nand_oobfree *free = chip->ecc.layout->oobfree;
2248 		uint32_t boffs = 0, roffs = ops->ooboffs;
2249 		size_t bytes = 0;
2250 
2251 		for (; free->length && len; free++, len -= bytes) {
2252 			/* Read request not from offset 0? */
2253 			if (unlikely(roffs)) {
2254 				if (roffs >= free->length) {
2255 					roffs -= free->length;
2256 					continue;
2257 				}
2258 				boffs = free->offset + roffs;
2259 				bytes = min_t(size_t, len,
2260 					      (free->length - roffs));
2261 				roffs = 0;
2262 			} else {
2263 				bytes = min_t(size_t, len, free->length);
2264 				boffs = free->offset;
2265 			}
2266 			memcpy(oob, chip->oob_poi + boffs, bytes);
2267 			oob += bytes;
2268 		}
2269 		return oob;
2270 	}
2271 	default:
2272 		BUG();
2273 	}
2274 	return NULL;
2275 }
2276 
2277 /**
2278  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
2279  * @mtd: MTD device structure
2280  * @retry_mode: the retry mode to use
2281  *
2282  * Some vendors supply a special command to shift the Vt threshold, to be used
2283  * when there are too many bitflips in a page (i.e., ECC error). After setting
2284  * a new threshold, the host should retry reading the page.
2285  */
nand_setup_read_retry(struct mtd_info * mtd,int retry_mode)2286 static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
2287 {
2288 	struct nand_chip *chip = mtd_to_nand(mtd);
2289 
2290 	pr_debug("setting READ RETRY mode %d\n", retry_mode);
2291 
2292 	if (retry_mode >= chip->read_retries)
2293 		return -EINVAL;
2294 
2295 	if (!chip->setup_read_retry)
2296 		return -EOPNOTSUPP;
2297 
2298 	return chip->setup_read_retry(mtd, retry_mode);
2299 }
2300 
2301 /**
2302  * nand_do_read_ops - [INTERN] Read data with ECC
2303  * @mtd: MTD device structure
2304  * @from: offset to read from
2305  * @ops: oob ops structure
2306  *
2307  * Internal function. Called with chip held.
2308  */
nand_do_read_ops(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)2309 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
2310 			    struct mtd_oob_ops *ops)
2311 {
2312 	int chipnr, page, realpage, col, bytes, aligned, oob_required;
2313 	struct nand_chip *chip = mtd_to_nand(mtd);
2314 	int ret = 0;
2315 	uint32_t readlen = ops->len;
2316 	uint32_t oobreadlen = ops->ooblen;
2317 	uint32_t max_oobsize = mtd_oobavail(mtd, ops);
2318 
2319 	uint8_t *bufpoi, *oob, *buf;
2320 	int use_bufpoi;
2321 	unsigned int max_bitflips = 0;
2322 	int retry_mode = 0;
2323 	bool ecc_fail = false;
2324 
2325 	chipnr = (int)(from >> chip->chip_shift);
2326 	chip->select_chip(mtd, chipnr);
2327 
2328 	realpage = (int)(from >> chip->page_shift);
2329 	page = realpage & chip->pagemask;
2330 
2331 	col = (int)(from & (mtd->writesize - 1));
2332 
2333 	buf = ops->datbuf;
2334 	oob = ops->oobbuf;
2335 	oob_required = oob ? 1 : 0;
2336 
2337 	while (1) {
2338 		unsigned int ecc_failures = mtd->ecc_stats.failed;
2339 
2340 		WATCHDOG_RESET();
2341 		bytes = min(mtd->writesize - col, readlen);
2342 		aligned = (bytes == mtd->writesize);
2343 
2344 		if (!aligned)
2345 			use_bufpoi = 1;
2346 		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2347 			use_bufpoi = !IS_ALIGNED((unsigned long)buf,
2348 						 chip->buf_align);
2349 		else
2350 			use_bufpoi = 0;
2351 
2352 		/* Is the current page in the buffer? */
2353 		if (realpage != chip->pagebuf || oob) {
2354 			bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
2355 
2356 			if (use_bufpoi && aligned)
2357 				pr_debug("%s: using read bounce buffer for buf@%p\n",
2358 						 __func__, buf);
2359 
2360 read_retry:
2361 			if (nand_standard_page_accessors(&chip->ecc)) {
2362 				ret = nand_read_page_op(chip, page, 0, NULL, 0);
2363 				if (ret)
2364 					break;
2365 			}
2366 
2367 			/*
2368 			 * Now read the page into the buffer.  Absent an error,
2369 			 * the read methods return max bitflips per ecc step.
2370 			 */
2371 			if (unlikely(ops->mode == MTD_OPS_RAW))
2372 				ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
2373 							      oob_required,
2374 							      page);
2375 			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
2376 				 !oob)
2377 				ret = chip->ecc.read_subpage(mtd, chip,
2378 							col, bytes, bufpoi,
2379 							page);
2380 			else
2381 				ret = chip->ecc.read_page(mtd, chip, bufpoi,
2382 							  oob_required, page);
2383 			if (ret < 0) {
2384 				if (use_bufpoi)
2385 					/* Invalidate page cache */
2386 					chip->pagebuf = -1;
2387 				break;
2388 			}
2389 
2390 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
2391 
2392 			/* Transfer not aligned data */
2393 			if (use_bufpoi) {
2394 				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
2395 				    !(mtd->ecc_stats.failed - ecc_failures) &&
2396 				    (ops->mode != MTD_OPS_RAW)) {
2397 					chip->pagebuf = realpage;
2398 					chip->pagebuf_bitflips = ret;
2399 				} else {
2400 					/* Invalidate page cache */
2401 					chip->pagebuf = -1;
2402 				}
2403 				memcpy(buf, chip->buffers->databuf + col, bytes);
2404 			}
2405 
2406 			if (unlikely(oob)) {
2407 				int toread = min(oobreadlen, max_oobsize);
2408 
2409 				if (toread) {
2410 					oob = nand_transfer_oob(chip,
2411 						oob, ops, toread);
2412 					oobreadlen -= toread;
2413 				}
2414 			}
2415 
2416 			if (chip->options & NAND_NEED_READRDY) {
2417 				/* Apply delay or wait for ready/busy pin */
2418 				if (!chip->dev_ready)
2419 					udelay(chip->chip_delay);
2420 				else
2421 					nand_wait_ready(mtd);
2422 			}
2423 
2424 			if (mtd->ecc_stats.failed - ecc_failures) {
2425 				if (retry_mode + 1 < chip->read_retries) {
2426 					retry_mode++;
2427 					ret = nand_setup_read_retry(mtd,
2428 							retry_mode);
2429 					if (ret < 0)
2430 						break;
2431 
2432 					/* Reset failures; retry */
2433 					mtd->ecc_stats.failed = ecc_failures;
2434 					goto read_retry;
2435 				} else {
2436 					/* No more retry modes; real failure */
2437 					ecc_fail = true;
2438 				}
2439 			}
2440 
2441 			buf += bytes;
2442 		} else {
2443 			memcpy(buf, chip->buffers->databuf + col, bytes);
2444 			buf += bytes;
2445 			max_bitflips = max_t(unsigned int, max_bitflips,
2446 					     chip->pagebuf_bitflips);
2447 		}
2448 
2449 		readlen -= bytes;
2450 
2451 		/* Reset to retry mode 0 */
2452 		if (retry_mode) {
2453 			ret = nand_setup_read_retry(mtd, 0);
2454 			if (ret < 0)
2455 				break;
2456 			retry_mode = 0;
2457 		}
2458 
2459 		if (!readlen)
2460 			break;
2461 
2462 		/* For subsequent reads align to page boundary */
2463 		col = 0;
2464 		/* Increment page address */
2465 		realpage++;
2466 
2467 		page = realpage & chip->pagemask;
2468 		/* Check, if we cross a chip boundary */
2469 		if (!page) {
2470 			chipnr++;
2471 			chip->select_chip(mtd, -1);
2472 			chip->select_chip(mtd, chipnr);
2473 		}
2474 	}
2475 	chip->select_chip(mtd, -1);
2476 
2477 	ops->retlen = ops->len - (size_t) readlen;
2478 	if (oob)
2479 		ops->oobretlen = ops->ooblen - oobreadlen;
2480 
2481 	if (ret < 0)
2482 		return ret;
2483 
2484 	if (ecc_fail)
2485 		return -EBADMSG;
2486 
2487 	return max_bitflips;
2488 }
2489 
2490 /**
2491  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
2492  * @mtd: mtd info structure
2493  * @chip: nand chip info structure
2494  * @page: page number to read
2495  */
nand_read_oob_std(struct mtd_info * mtd,struct nand_chip * chip,int page)2496 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
2497 			     int page)
2498 {
2499 	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
2500 }
2501 
2502 /**
2503  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
2504  *			    with syndromes
2505  * @mtd: mtd info structure
2506  * @chip: nand chip info structure
2507  * @page: page number to read
2508  */
nand_read_oob_syndrome(struct mtd_info * mtd,struct nand_chip * chip,int page)2509 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
2510 				  int page)
2511 {
2512 	int length = mtd->oobsize;
2513 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
2514 	int eccsize = chip->ecc.size;
2515 	uint8_t *bufpoi = chip->oob_poi;
2516 	int i, toread, sndrnd = 0, pos, ret;
2517 
2518 	ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
2519 	if (ret)
2520 		return ret;
2521 
2522 	for (i = 0; i < chip->ecc.steps; i++) {
2523 		if (sndrnd) {
2524 			int ret;
2525 
2526 			pos = eccsize + i * (eccsize + chunk);
2527 			if (mtd->writesize > 512)
2528 				ret = nand_change_read_column_op(chip, pos,
2529 								 NULL, 0,
2530 								 false);
2531 			else
2532 				ret = nand_read_page_op(chip, page, pos, NULL,
2533 							0);
2534 
2535 			if (ret)
2536 				return ret;
2537 		} else
2538 			sndrnd = 1;
2539 		toread = min_t(int, length, chunk);
2540 
2541 		ret = nand_read_data_op(chip, bufpoi, toread, false);
2542 		if (ret)
2543 			return ret;
2544 
2545 		bufpoi += toread;
2546 		length -= toread;
2547 	}
2548 	if (length > 0) {
2549 		ret = nand_read_data_op(chip, bufpoi, length, false);
2550 		if (ret)
2551 			return ret;
2552 	}
2553 
2554 	return 0;
2555 }
2556 
2557 /**
2558  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
2559  * @mtd: mtd info structure
2560  * @chip: nand chip info structure
2561  * @page: page number to write
2562  */
nand_write_oob_std(struct mtd_info * mtd,struct nand_chip * chip,int page)2563 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
2564 			      int page)
2565 {
2566 	return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
2567 				 mtd->oobsize);
2568 }
2569 
2570 /**
2571  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
2572  *			     with syndrome - only for large page flash
2573  * @mtd: mtd info structure
2574  * @chip: nand chip info structure
2575  * @page: page number to write
2576  */
nand_write_oob_syndrome(struct mtd_info * mtd,struct nand_chip * chip,int page)2577 static int nand_write_oob_syndrome(struct mtd_info *mtd,
2578 				   struct nand_chip *chip, int page)
2579 {
2580 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
2581 	int eccsize = chip->ecc.size, length = mtd->oobsize;
2582 	int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
2583 	const uint8_t *bufpoi = chip->oob_poi;
2584 
2585 	/*
2586 	 * data-ecc-data-ecc ... ecc-oob
2587 	 * or
2588 	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
2589 	 */
2590 	if (!chip->ecc.prepad && !chip->ecc.postpad) {
2591 		pos = steps * (eccsize + chunk);
2592 		steps = 0;
2593 	} else
2594 		pos = eccsize;
2595 
2596 	ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
2597 	if (ret)
2598 		return ret;
2599 
2600 	for (i = 0; i < steps; i++) {
2601 		if (sndcmd) {
2602 			if (mtd->writesize <= 512) {
2603 				uint32_t fill = 0xFFFFFFFF;
2604 
2605 				len = eccsize;
2606 				while (len > 0) {
2607 					int num = min_t(int, len, 4);
2608 
2609 					ret = nand_write_data_op(chip, &fill,
2610 								 num, false);
2611 					if (ret)
2612 						return ret;
2613 
2614 					len -= num;
2615 				}
2616 			} else {
2617 				pos = eccsize + i * (eccsize + chunk);
2618 				ret = nand_change_write_column_op(chip, pos,
2619 								  NULL, 0,
2620 								  false);
2621 				if (ret)
2622 					return ret;
2623 			}
2624 		} else
2625 			sndcmd = 1;
2626 		len = min_t(int, length, chunk);
2627 
2628 		ret = nand_write_data_op(chip, bufpoi, len, false);
2629 		if (ret)
2630 			return ret;
2631 
2632 		bufpoi += len;
2633 		length -= len;
2634 	}
2635 	if (length > 0) {
2636 		ret = nand_write_data_op(chip, bufpoi, length, false);
2637 		if (ret)
2638 			return ret;
2639 	}
2640 
2641 	return nand_prog_page_end_op(chip);
2642 }
2643 
2644 /**
2645  * nand_do_read_oob - [INTERN] NAND read out-of-band
2646  * @mtd: MTD device structure
2647  * @from: offset to read from
2648  * @ops: oob operations description structure
2649  *
2650  * NAND read out-of-band data from the spare area.
2651  */
nand_do_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)2652 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
2653 			    struct mtd_oob_ops *ops)
2654 {
2655 	int page, realpage, chipnr;
2656 	struct nand_chip *chip = mtd_to_nand(mtd);
2657 	struct mtd_ecc_stats stats;
2658 	int readlen = ops->ooblen;
2659 	int len;
2660 	uint8_t *buf = ops->oobbuf;
2661 	int ret = 0;
2662 
2663 	pr_debug("%s: from = 0x%08Lx, len = %i\n",
2664 			__func__, (unsigned long long)from, readlen);
2665 
2666 	stats = mtd->ecc_stats;
2667 
2668 	len = mtd_oobavail(mtd, ops);
2669 
2670 	if (unlikely(ops->ooboffs >= len)) {
2671 		pr_debug("%s: attempt to start read outside oob\n",
2672 				__func__);
2673 		return -EINVAL;
2674 	}
2675 
2676 	/* Do not allow reads past end of device */
2677 	if (unlikely(from >= mtd->size ||
2678 		     ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
2679 					(from >> chip->page_shift)) * len)) {
2680 		pr_debug("%s: attempt to read beyond end of device\n",
2681 				__func__);
2682 		return -EINVAL;
2683 	}
2684 
2685 	chipnr = (int)(from >> chip->chip_shift);
2686 	chip->select_chip(mtd, chipnr);
2687 
2688 	/* Shift to get page */
2689 	realpage = (int)(from >> chip->page_shift);
2690 	page = realpage & chip->pagemask;
2691 
2692 	while (1) {
2693 		WATCHDOG_RESET();
2694 
2695 		if (ops->mode == MTD_OPS_RAW)
2696 			ret = chip->ecc.read_oob_raw(mtd, chip, page);
2697 		else
2698 			ret = chip->ecc.read_oob(mtd, chip, page);
2699 
2700 		if (ret < 0)
2701 			break;
2702 
2703 		len = min(len, readlen);
2704 		buf = nand_transfer_oob(chip, buf, ops, len);
2705 
2706 		if (chip->options & NAND_NEED_READRDY) {
2707 			/* Apply delay or wait for ready/busy pin */
2708 			if (!chip->dev_ready)
2709 				udelay(chip->chip_delay);
2710 			else
2711 				nand_wait_ready(mtd);
2712 		}
2713 
2714 		readlen -= len;
2715 		if (!readlen)
2716 			break;
2717 
2718 		/* Increment page address */
2719 		realpage++;
2720 
2721 		page = realpage & chip->pagemask;
2722 		/* Check, if we cross a chip boundary */
2723 		if (!page) {
2724 			chipnr++;
2725 			chip->select_chip(mtd, -1);
2726 			chip->select_chip(mtd, chipnr);
2727 		}
2728 	}
2729 	chip->select_chip(mtd, -1);
2730 
2731 	ops->oobretlen = ops->ooblen - readlen;
2732 
2733 	if (ret < 0)
2734 		return ret;
2735 
2736 	if (mtd->ecc_stats.failed - stats.failed)
2737 		return -EBADMSG;
2738 
2739 	return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
2740 }
2741 
2742 /**
2743  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
2744  * @mtd: MTD device structure
2745  * @from: offset to read from
2746  * @ops: oob operation description structure
2747  *
2748  * NAND read data and/or out-of-band data.
2749  */
nand_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)2750 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
2751 			 struct mtd_oob_ops *ops)
2752 {
2753 	int ret = -ENOTSUPP;
2754 
2755 	ops->retlen = 0;
2756 
2757 	/* Do not allow reads past end of device */
2758 	if (ops->datbuf && (from + ops->len) > mtd->size) {
2759 		pr_debug("%s: attempt to read beyond end of device\n",
2760 				__func__);
2761 		return -EINVAL;
2762 	}
2763 
2764 	nand_get_device(mtd, FL_READING);
2765 
2766 	switch (ops->mode) {
2767 	case MTD_OPS_PLACE_OOB:
2768 	case MTD_OPS_AUTO_OOB:
2769 	case MTD_OPS_RAW:
2770 		break;
2771 
2772 	default:
2773 		goto out;
2774 	}
2775 
2776 	if (!ops->datbuf)
2777 		ret = nand_do_read_oob(mtd, from, ops);
2778 	else
2779 		ret = nand_do_read_ops(mtd, from, ops);
2780 
2781 out:
2782 	nand_release_device(mtd);
2783 	return ret;
2784 }
2785 
2786 
2787 /**
2788  * nand_write_page_raw - [INTERN] raw page write function
2789  * @mtd: mtd info structure
2790  * @chip: nand chip info structure
2791  * @buf: data buffer
2792  * @oob_required: must write chip->oob_poi to OOB
2793  * @page: page number to write
2794  *
2795  * Not for syndrome calculating ECC controllers, which use a special oob layout.
2796  */
nand_write_page_raw(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2797 static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2798 			       const uint8_t *buf, int oob_required, int page)
2799 {
2800 	int ret;
2801 
2802 	ret = nand_write_data_op(chip, buf, mtd->writesize, false);
2803 	if (ret)
2804 		return ret;
2805 
2806 	if (oob_required) {
2807 		ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
2808 					 false);
2809 		if (ret)
2810 			return ret;
2811 	}
2812 
2813 	return 0;
2814 }
2815 
2816 /**
2817  * nand_write_page_raw_syndrome - [INTERN] raw page write function
2818  * @mtd: mtd info structure
2819  * @chip: nand chip info structure
2820  * @buf: data buffer
2821  * @oob_required: must write chip->oob_poi to OOB
2822  * @page: page number to write
2823  *
2824  * We need a special oob layout and handling even when ECC isn't checked.
2825  */
nand_write_page_raw_syndrome(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2826 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
2827 					struct nand_chip *chip,
2828 					const uint8_t *buf, int oob_required,
2829 					int page)
2830 {
2831 	int eccsize = chip->ecc.size;
2832 	int eccbytes = chip->ecc.bytes;
2833 	uint8_t *oob = chip->oob_poi;
2834 	int steps, size, ret;
2835 
2836 	for (steps = chip->ecc.steps; steps > 0; steps--) {
2837 		ret = nand_write_data_op(chip, buf, eccsize, false);
2838 		if (ret)
2839 			return ret;
2840 
2841 		buf += eccsize;
2842 
2843 		if (chip->ecc.prepad) {
2844 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
2845 						 false);
2846 			if (ret)
2847 				return ret;
2848 
2849 			oob += chip->ecc.prepad;
2850 		}
2851 
2852 		ret = nand_write_data_op(chip, oob, eccbytes, false);
2853 		if (ret)
2854 			return ret;
2855 
2856 		oob += eccbytes;
2857 
2858 		if (chip->ecc.postpad) {
2859 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
2860 						 false);
2861 			if (ret)
2862 				return ret;
2863 
2864 			oob += chip->ecc.postpad;
2865 		}
2866 	}
2867 
2868 	size = mtd->oobsize - (oob - chip->oob_poi);
2869 	if (size) {
2870 		ret = nand_write_data_op(chip, oob, size, false);
2871 		if (ret)
2872 			return ret;
2873 	}
2874 
2875 	return 0;
2876 }
2877 /**
2878  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2879  * @mtd: mtd info structure
2880  * @chip: nand chip info structure
2881  * @buf: data buffer
2882  * @oob_required: must write chip->oob_poi to OOB
2883  * @page: page number to write
2884  */
nand_write_page_swecc(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2885 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2886 				 const uint8_t *buf, int oob_required,
2887 				 int page)
2888 {
2889 	int i, eccsize = chip->ecc.size;
2890 	int eccbytes = chip->ecc.bytes;
2891 	int eccsteps = chip->ecc.steps;
2892 	uint8_t *ecc_calc = chip->buffers->ecccalc;
2893 	const uint8_t *p = buf;
2894 	uint32_t *eccpos = chip->ecc.layout->eccpos;
2895 
2896 	/* Software ECC calculation */
2897 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2898 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2899 
2900 	for (i = 0; i < chip->ecc.total; i++)
2901 		chip->oob_poi[eccpos[i]] = ecc_calc[i];
2902 
2903 	return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
2904 }
2905 
2906 /**
2907  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2908  * @mtd: mtd info structure
2909  * @chip: nand chip info structure
2910  * @buf: data buffer
2911  * @oob_required: must write chip->oob_poi to OOB
2912  * @page: page number to write
2913  */
nand_write_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2914 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2915 				  const uint8_t *buf, int oob_required,
2916 				  int page)
2917 {
2918 	int i, eccsize = chip->ecc.size;
2919 	int eccbytes = chip->ecc.bytes;
2920 	int eccsteps = chip->ecc.steps;
2921 	uint8_t *ecc_calc = chip->buffers->ecccalc;
2922 	const uint8_t *p = buf;
2923 	uint32_t *eccpos = chip->ecc.layout->eccpos;
2924 	int ret;
2925 
2926 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2927 		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2928 
2929 		ret = nand_write_data_op(chip, p, eccsize, false);
2930 		if (ret)
2931 			return ret;
2932 
2933 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2934 	}
2935 
2936 	for (i = 0; i < chip->ecc.total; i++)
2937 		chip->oob_poi[eccpos[i]] = ecc_calc[i];
2938 
2939 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
2940 	if (ret)
2941 		return ret;
2942 
2943 	return 0;
2944 }
2945 
2946 
2947 /**
2948  * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
2949  * @mtd:	mtd info structure
2950  * @chip:	nand chip info structure
2951  * @offset:	column address of subpage within the page
2952  * @data_len:	data length
2953  * @buf:	data buffer
2954  * @oob_required: must write chip->oob_poi to OOB
2955  * @page: page number to write
2956  */
nand_write_subpage_hwecc(struct mtd_info * mtd,struct nand_chip * chip,uint32_t offset,uint32_t data_len,const uint8_t * buf,int oob_required,int page)2957 static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2958 				struct nand_chip *chip, uint32_t offset,
2959 				uint32_t data_len, const uint8_t *buf,
2960 				int oob_required, int page)
2961 {
2962 	uint8_t *oob_buf  = chip->oob_poi;
2963 	uint8_t *ecc_calc = chip->buffers->ecccalc;
2964 	int ecc_size      = chip->ecc.size;
2965 	int ecc_bytes     = chip->ecc.bytes;
2966 	int ecc_steps     = chip->ecc.steps;
2967 	uint32_t *eccpos  = chip->ecc.layout->eccpos;
2968 	uint32_t start_step = offset / ecc_size;
2969 	uint32_t end_step   = (offset + data_len - 1) / ecc_size;
2970 	int oob_bytes       = mtd->oobsize / ecc_steps;
2971 	int step, i;
2972 	int ret;
2973 
2974 	for (step = 0; step < ecc_steps; step++) {
2975 		/* configure controller for WRITE access */
2976 		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2977 
2978 		/* write data (untouched subpages already masked by 0xFF) */
2979 		ret = nand_write_data_op(chip, buf, ecc_size, false);
2980 		if (ret)
2981 			return ret;
2982 
2983 		/* mask ECC of un-touched subpages by padding 0xFF */
2984 		if ((step < start_step) || (step > end_step))
2985 			memset(ecc_calc, 0xff, ecc_bytes);
2986 		else
2987 			chip->ecc.calculate(mtd, buf, ecc_calc);
2988 
2989 		/* mask OOB of un-touched subpages by padding 0xFF */
2990 		/* if oob_required, preserve OOB metadata of written subpage */
2991 		if (!oob_required || (step < start_step) || (step > end_step))
2992 			memset(oob_buf, 0xff, oob_bytes);
2993 
2994 		buf += ecc_size;
2995 		ecc_calc += ecc_bytes;
2996 		oob_buf  += oob_bytes;
2997 	}
2998 
2999 	/* copy calculated ECC for whole page to chip->buffer->oob */
3000 	/* this include masked-value(0xFF) for unwritten subpages */
3001 	ecc_calc = chip->buffers->ecccalc;
3002 	for (i = 0; i < chip->ecc.total; i++)
3003 		chip->oob_poi[eccpos[i]] = ecc_calc[i];
3004 
3005 	/* write OOB buffer to NAND device */
3006 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
3007 	if (ret)
3008 		return ret;
3009 
3010 	return 0;
3011 }
3012 
3013 
3014 /**
3015  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
3016  * @mtd: mtd info structure
3017  * @chip: nand chip info structure
3018  * @buf: data buffer
3019  * @oob_required: must write chip->oob_poi to OOB
3020  * @page: page number to write
3021  *
3022  * The hw generator calculates the error syndrome automatically. Therefore we
3023  * need a special oob layout and handling.
3024  */
nand_write_page_syndrome(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)3025 static int nand_write_page_syndrome(struct mtd_info *mtd,
3026 				    struct nand_chip *chip,
3027 				    const uint8_t *buf, int oob_required,
3028 				    int page)
3029 {
3030 	int i, eccsize = chip->ecc.size;
3031 	int eccbytes = chip->ecc.bytes;
3032 	int eccsteps = chip->ecc.steps;
3033 	const uint8_t *p = buf;
3034 	uint8_t *oob = chip->oob_poi;
3035 	int ret;
3036 
3037 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3038 		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
3039 
3040 		ret = nand_write_data_op(chip, p, eccsize, false);
3041 		if (ret)
3042 			return ret;
3043 
3044 		if (chip->ecc.prepad) {
3045 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
3046 						 false);
3047 			if (ret)
3048 				return ret;
3049 
3050 			oob += chip->ecc.prepad;
3051 		}
3052 
3053 		chip->ecc.calculate(mtd, p, oob);
3054 
3055 		ret = nand_write_data_op(chip, oob, eccbytes, false);
3056 		if (ret)
3057 			return ret;
3058 
3059 		oob += eccbytes;
3060 
3061 		if (chip->ecc.postpad) {
3062 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
3063 						 false);
3064 			if (ret)
3065 				return ret;
3066 
3067 			oob += chip->ecc.postpad;
3068 		}
3069 	}
3070 
3071 	/* Calculate remaining oob bytes */
3072 	i = mtd->oobsize - (oob - chip->oob_poi);
3073 	if (i) {
3074 		ret = nand_write_data_op(chip, oob, i, false);
3075 		if (ret)
3076 			return ret;
3077 	}
3078 
3079 	return 0;
3080 }
3081 
3082 /**
3083  * nand_write_page - [REPLACEABLE] write one page
3084  * @mtd: MTD device structure
3085  * @chip: NAND chip descriptor
3086  * @offset: address offset within the page
3087  * @data_len: length of actual data to be written
3088  * @buf: the data to write
3089  * @oob_required: must write chip->oob_poi to OOB
3090  * @page: page number to write
3091  * @raw: use _raw version of write_page
3092  */
nand_write_page(struct mtd_info * mtd,struct nand_chip * chip,uint32_t offset,int data_len,const uint8_t * buf,int oob_required,int page,int raw)3093 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
3094 		uint32_t offset, int data_len, const uint8_t *buf,
3095 		int oob_required, int page, int raw)
3096 {
3097 	int status, subpage;
3098 
3099 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3100 		chip->ecc.write_subpage)
3101 		subpage = offset || (data_len < mtd->writesize);
3102 	else
3103 		subpage = 0;
3104 
3105 	if (nand_standard_page_accessors(&chip->ecc)) {
3106 		status = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3107 		if (status)
3108 			return status;
3109 	}
3110 
3111 	if (unlikely(raw))
3112 		status = chip->ecc.write_page_raw(mtd, chip, buf,
3113 						  oob_required, page);
3114 	else if (subpage)
3115 		status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
3116 						 buf, oob_required, page);
3117 	else
3118 		status = chip->ecc.write_page(mtd, chip, buf, oob_required,
3119 					      page);
3120 
3121 	if (status < 0)
3122 		return status;
3123 
3124 	if (nand_standard_page_accessors(&chip->ecc))
3125 		return nand_prog_page_end_op(chip);
3126 
3127 	return 0;
3128 }
3129 
3130 /**
3131  * nand_fill_oob - [INTERN] Transfer client buffer to oob
3132  * @mtd: MTD device structure
3133  * @oob: oob data buffer
3134  * @len: oob data write length
3135  * @ops: oob ops structure
3136  */
nand_fill_oob(struct mtd_info * mtd,uint8_t * oob,size_t len,struct mtd_oob_ops * ops)3137 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
3138 			      struct mtd_oob_ops *ops)
3139 {
3140 	struct nand_chip *chip = mtd_to_nand(mtd);
3141 
3142 	/*
3143 	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
3144 	 * data from a previous OOB read.
3145 	 */
3146 	memset(chip->oob_poi, 0xff, mtd->oobsize);
3147 
3148 	switch (ops->mode) {
3149 
3150 	case MTD_OPS_PLACE_OOB:
3151 	case MTD_OPS_RAW:
3152 		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
3153 		return oob + len;
3154 
3155 	case MTD_OPS_AUTO_OOB: {
3156 		struct nand_oobfree *free = chip->ecc.layout->oobfree;
3157 		uint32_t boffs = 0, woffs = ops->ooboffs;
3158 		size_t bytes = 0;
3159 
3160 		for (; free->length && len; free++, len -= bytes) {
3161 			/* Write request not from offset 0? */
3162 			if (unlikely(woffs)) {
3163 				if (woffs >= free->length) {
3164 					woffs -= free->length;
3165 					continue;
3166 				}
3167 				boffs = free->offset + woffs;
3168 				bytes = min_t(size_t, len,
3169 					      (free->length - woffs));
3170 				woffs = 0;
3171 			} else {
3172 				bytes = min_t(size_t, len, free->length);
3173 				boffs = free->offset;
3174 			}
3175 			memcpy(chip->oob_poi + boffs, oob, bytes);
3176 			oob += bytes;
3177 		}
3178 		return oob;
3179 	}
3180 	default:
3181 		BUG();
3182 	}
3183 	return NULL;
3184 }
3185 
3186 #define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
3187 
3188 /**
3189  * nand_do_write_ops - [INTERN] NAND write with ECC
3190  * @mtd: MTD device structure
3191  * @to: offset to write to
3192  * @ops: oob operations description structure
3193  *
3194  * NAND write with ECC.
3195  */
nand_do_write_ops(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)3196 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
3197 			     struct mtd_oob_ops *ops)
3198 {
3199 	int chipnr, realpage, page, column;
3200 	struct nand_chip *chip = mtd_to_nand(mtd);
3201 	uint32_t writelen = ops->len;
3202 
3203 	uint32_t oobwritelen = ops->ooblen;
3204 	uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
3205 
3206 	uint8_t *oob = ops->oobbuf;
3207 	uint8_t *buf = ops->datbuf;
3208 	int ret;
3209 	int oob_required = oob ? 1 : 0;
3210 
3211 	ops->retlen = 0;
3212 	if (!writelen)
3213 		return 0;
3214 
3215 	/* Reject writes, which are not page aligned */
3216 	if (NOTALIGNED(to)) {
3217 		pr_notice("%s: attempt to write non page aligned data\n",
3218 			   __func__);
3219 		return -EINVAL;
3220 	}
3221 
3222 	column = to & (mtd->writesize - 1);
3223 
3224 	chipnr = (int)(to >> chip->chip_shift);
3225 	chip->select_chip(mtd, chipnr);
3226 
3227 	/* Check, if it is write protected */
3228 	if (nand_check_wp(mtd)) {
3229 		ret = -EIO;
3230 		goto err_out;
3231 	}
3232 
3233 	realpage = (int)(to >> chip->page_shift);
3234 	page = realpage & chip->pagemask;
3235 
3236 	/* Invalidate the page cache, when we write to the cached page */
3237 	if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
3238 	    ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
3239 		chip->pagebuf = -1;
3240 
3241 	/* Don't allow multipage oob writes with offset */
3242 	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
3243 		ret = -EINVAL;
3244 		goto err_out;
3245 	}
3246 
3247 	while (1) {
3248 		int bytes = mtd->writesize;
3249 		uint8_t *wbuf = buf;
3250 		int use_bufpoi;
3251 		int part_pagewr = (column || writelen < mtd->writesize);
3252 
3253 		if (part_pagewr)
3254 			use_bufpoi = 1;
3255 		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
3256 			use_bufpoi = !IS_ALIGNED((unsigned long)buf,
3257 						 chip->buf_align);
3258 		else
3259 			use_bufpoi = 0;
3260 
3261 		WATCHDOG_RESET();
3262 		/* Partial page write?, or need to use bounce buffer */
3263 		if (use_bufpoi) {
3264 			pr_debug("%s: using write bounce buffer for buf@%p\n",
3265 					 __func__, buf);
3266 			if (part_pagewr)
3267 				bytes = min_t(int, bytes - column, writelen);
3268 			chip->pagebuf = -1;
3269 			memset(chip->buffers->databuf, 0xff, mtd->writesize);
3270 			memcpy(&chip->buffers->databuf[column], buf, bytes);
3271 			wbuf = chip->buffers->databuf;
3272 		}
3273 
3274 		if (unlikely(oob)) {
3275 			size_t len = min(oobwritelen, oobmaxlen);
3276 			oob = nand_fill_oob(mtd, oob, len, ops);
3277 			oobwritelen -= len;
3278 		} else {
3279 			/* We still need to erase leftover OOB data */
3280 			memset(chip->oob_poi, 0xff, mtd->oobsize);
3281 		}
3282 		ret = chip->write_page(mtd, chip, column, bytes, wbuf,
3283 					oob_required, page,
3284 					(ops->mode == MTD_OPS_RAW));
3285 		if (ret)
3286 			break;
3287 
3288 		writelen -= bytes;
3289 		if (!writelen)
3290 			break;
3291 
3292 		column = 0;
3293 		buf += bytes;
3294 		realpage++;
3295 
3296 		page = realpage & chip->pagemask;
3297 		/* Check, if we cross a chip boundary */
3298 		if (!page) {
3299 			chipnr++;
3300 			chip->select_chip(mtd, -1);
3301 			chip->select_chip(mtd, chipnr);
3302 		}
3303 	}
3304 
3305 	ops->retlen = ops->len - writelen;
3306 	if (unlikely(oob))
3307 		ops->oobretlen = ops->ooblen;
3308 
3309 err_out:
3310 	chip->select_chip(mtd, -1);
3311 	return ret;
3312 }
3313 
3314 /**
3315  * panic_nand_write - [MTD Interface] NAND write with ECC
3316  * @mtd: MTD device structure
3317  * @to: offset to write to
3318  * @len: number of bytes to write
3319  * @retlen: pointer to variable to store the number of written bytes
3320  * @buf: the data to write
3321  *
3322  * NAND write with ECC. Used when performing writes in interrupt context, this
3323  * may for example be called by mtdoops when writing an oops while in panic.
3324  */
panic_nand_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const uint8_t * buf)3325 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
3326 			    size_t *retlen, const uint8_t *buf)
3327 {
3328 	struct nand_chip *chip = mtd_to_nand(mtd);
3329 	struct mtd_oob_ops ops;
3330 	int ret;
3331 
3332 	/* Wait for the device to get ready */
3333 	panic_nand_wait(mtd, chip, 400);
3334 
3335 	/* Grab the device */
3336 	panic_nand_get_device(chip, mtd, FL_WRITING);
3337 
3338 	memset(&ops, 0, sizeof(ops));
3339 	ops.len = len;
3340 	ops.datbuf = (uint8_t *)buf;
3341 	ops.mode = MTD_OPS_PLACE_OOB;
3342 
3343 	ret = nand_do_write_ops(mtd, to, &ops);
3344 
3345 	*retlen = ops.retlen;
3346 	return ret;
3347 }
3348 
3349 /**
3350  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
3351  * @mtd: MTD device structure
3352  * @to: offset to write to
3353  * @ops: oob operation description structure
3354  *
3355  * NAND write out-of-band.
3356  */
nand_do_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)3357 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
3358 			     struct mtd_oob_ops *ops)
3359 {
3360 	int chipnr, page, status, len;
3361 	struct nand_chip *chip = mtd_to_nand(mtd);
3362 
3363 	pr_debug("%s: to = 0x%08x, len = %i\n",
3364 			 __func__, (unsigned int)to, (int)ops->ooblen);
3365 
3366 	len = mtd_oobavail(mtd, ops);
3367 
3368 	/* Do not allow write past end of page */
3369 	if ((ops->ooboffs + ops->ooblen) > len) {
3370 		pr_debug("%s: attempt to write past end of page\n",
3371 				__func__);
3372 		return -EINVAL;
3373 	}
3374 
3375 	if (unlikely(ops->ooboffs >= len)) {
3376 		pr_debug("%s: attempt to start write outside oob\n",
3377 				__func__);
3378 		return -EINVAL;
3379 	}
3380 
3381 	/* Do not allow write past end of device */
3382 	if (unlikely(to >= mtd->size ||
3383 		     ops->ooboffs + ops->ooblen >
3384 			((mtd->size >> chip->page_shift) -
3385 			 (to >> chip->page_shift)) * len)) {
3386 		pr_debug("%s: attempt to write beyond end of device\n",
3387 				__func__);
3388 		return -EINVAL;
3389 	}
3390 
3391 	chipnr = (int)(to >> chip->chip_shift);
3392 
3393 	/*
3394 	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
3395 	 * of my DiskOnChip 2000 test units) will clear the whole data page too
3396 	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
3397 	 * it in the doc2000 driver in August 1999.  dwmw2.
3398 	 */
3399 	nand_reset(chip, chipnr);
3400 
3401 	chip->select_chip(mtd, chipnr);
3402 
3403 	/* Shift to get page */
3404 	page = (int)(to >> chip->page_shift);
3405 
3406 	/* Check, if it is write protected */
3407 	if (nand_check_wp(mtd)) {
3408 		chip->select_chip(mtd, -1);
3409 		return -EROFS;
3410 	}
3411 
3412 	/* Invalidate the page cache, if we write to the cached page */
3413 	if (page == chip->pagebuf)
3414 		chip->pagebuf = -1;
3415 
3416 	nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
3417 
3418 	if (ops->mode == MTD_OPS_RAW)
3419 		status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
3420 	else
3421 		status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
3422 
3423 	chip->select_chip(mtd, -1);
3424 
3425 	if (status)
3426 		return status;
3427 
3428 	ops->oobretlen = ops->ooblen;
3429 
3430 	return 0;
3431 }
3432 
3433 /**
3434  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
3435  * @mtd: MTD device structure
3436  * @to: offset to write to
3437  * @ops: oob operation description structure
3438  */
nand_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)3439 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
3440 			  struct mtd_oob_ops *ops)
3441 {
3442 	int ret = -ENOTSUPP;
3443 
3444 	ops->retlen = 0;
3445 
3446 	/* Do not allow writes past end of device */
3447 	if (ops->datbuf && (to + ops->len) > mtd->size) {
3448 		pr_debug("%s: attempt to write beyond end of device\n",
3449 				__func__);
3450 		return -EINVAL;
3451 	}
3452 
3453 	nand_get_device(mtd, FL_WRITING);
3454 
3455 	switch (ops->mode) {
3456 	case MTD_OPS_PLACE_OOB:
3457 	case MTD_OPS_AUTO_OOB:
3458 	case MTD_OPS_RAW:
3459 		break;
3460 
3461 	default:
3462 		goto out;
3463 	}
3464 
3465 	if (!ops->datbuf)
3466 		ret = nand_do_write_oob(mtd, to, ops);
3467 	else
3468 		ret = nand_do_write_ops(mtd, to, ops);
3469 
3470 out:
3471 	nand_release_device(mtd);
3472 	return ret;
3473 }
3474 
3475 /**
3476  * single_erase - [GENERIC] NAND standard block erase command function
3477  * @mtd: MTD device structure
3478  * @page: the page address of the block which will be erased
3479  *
3480  * Standard erase command for NAND chips. Returns NAND status.
3481  */
single_erase(struct mtd_info * mtd,int page)3482 static int single_erase(struct mtd_info *mtd, int page)
3483 {
3484 	struct nand_chip *chip = mtd_to_nand(mtd);
3485 	unsigned int eraseblock;
3486 
3487 	/* Send commands to erase a block */
3488 	eraseblock = page >> (chip->phys_erase_shift - chip->page_shift);
3489 
3490 	return nand_erase_op(chip, eraseblock);
3491 }
3492 
3493 /**
3494  * nand_erase - [MTD Interface] erase block(s)
3495  * @mtd: MTD device structure
3496  * @instr: erase instruction
3497  *
3498  * Erase one ore more blocks.
3499  */
nand_erase(struct mtd_info * mtd,struct erase_info * instr)3500 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
3501 {
3502 	return nand_erase_nand(mtd, instr, 0);
3503 }
3504 
3505 /**
3506  * nand_erase_nand - [INTERN] erase block(s)
3507  * @mtd: MTD device structure
3508  * @instr: erase instruction
3509  * @allowbbt: allow erasing the bbt area
3510  *
3511  * Erase one ore more blocks.
3512  */
nand_erase_nand(struct mtd_info * mtd,struct erase_info * instr,int allowbbt)3513 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
3514 		    int allowbbt)
3515 {
3516 	int page, status, pages_per_block, ret, chipnr;
3517 	struct nand_chip *chip = mtd_to_nand(mtd);
3518 	loff_t len;
3519 
3520 	pr_debug("%s: start = 0x%012llx, len = %llu\n",
3521 			__func__, (unsigned long long)instr->addr,
3522 			(unsigned long long)instr->len);
3523 
3524 	if (check_offs_len(mtd, instr->addr, instr->len))
3525 		return -EINVAL;
3526 
3527 	/* Grab the lock and see if the device is available */
3528 	nand_get_device(mtd, FL_ERASING);
3529 
3530 	/* Shift to get first page */
3531 	page = (int)(instr->addr >> chip->page_shift);
3532 	chipnr = (int)(instr->addr >> chip->chip_shift);
3533 
3534 	/* Calculate pages in each block */
3535 	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
3536 
3537 	/* Select the NAND device */
3538 	chip->select_chip(mtd, chipnr);
3539 
3540 	/* Check, if it is write protected */
3541 	if (nand_check_wp(mtd)) {
3542 		pr_debug("%s: device is write protected!\n",
3543 				__func__);
3544 		instr->state = MTD_ERASE_FAILED;
3545 		goto erase_exit;
3546 	}
3547 
3548 	/* Loop through the pages */
3549 	len = instr->len;
3550 
3551 	instr->state = MTD_ERASING;
3552 
3553 	while (len) {
3554 		WATCHDOG_RESET();
3555 
3556 		/* Check if we have a bad block, we do not erase bad blocks! */
3557 		if (!instr->scrub && nand_block_checkbad(mtd, ((loff_t) page) <<
3558 					chip->page_shift, allowbbt)) {
3559 			pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
3560 				    __func__, page);
3561 			instr->state = MTD_ERASE_FAILED;
3562 			instr->fail_addr =
3563 				((loff_t)page << chip->page_shift);
3564 			goto erase_exit;
3565 		}
3566 
3567 		/*
3568 		 * Invalidate the page cache, if we erase the block which
3569 		 * contains the current cached page.
3570 		 */
3571 		if (page <= chip->pagebuf && chip->pagebuf <
3572 		    (page + pages_per_block))
3573 			chip->pagebuf = -1;
3574 
3575 		status = chip->erase(mtd, page & chip->pagemask);
3576 
3577 		/* See if block erase succeeded */
3578 		if (status & NAND_STATUS_FAIL) {
3579 			pr_debug("%s: failed erase, page 0x%08x\n",
3580 					__func__, page);
3581 			instr->state = MTD_ERASE_FAILED;
3582 			instr->fail_addr =
3583 				((loff_t)page << chip->page_shift);
3584 			goto erase_exit;
3585 		}
3586 
3587 		/* Increment page address and decrement length */
3588 		len -= (1ULL << chip->phys_erase_shift);
3589 		page += pages_per_block;
3590 
3591 		/* Check, if we cross a chip boundary */
3592 		if (len && !(page & chip->pagemask)) {
3593 			chipnr++;
3594 			chip->select_chip(mtd, -1);
3595 			chip->select_chip(mtd, chipnr);
3596 		}
3597 	}
3598 	instr->state = MTD_ERASE_DONE;
3599 
3600 erase_exit:
3601 
3602 	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
3603 
3604 	/* Deselect and wake up anyone waiting on the device */
3605 	chip->select_chip(mtd, -1);
3606 	nand_release_device(mtd);
3607 
3608 	/* Do call back function */
3609 	if (!ret)
3610 		mtd_erase_callback(instr);
3611 
3612 	/* Return more or less happy */
3613 	return ret;
3614 }
3615 
3616 /**
3617  * nand_sync - [MTD Interface] sync
3618  * @mtd: MTD device structure
3619  *
3620  * Sync is actually a wait for chip ready function.
3621  */
nand_sync(struct mtd_info * mtd)3622 static void nand_sync(struct mtd_info *mtd)
3623 {
3624 	pr_debug("%s: called\n", __func__);
3625 
3626 	/* Grab the lock and see if the device is available */
3627 	nand_get_device(mtd, FL_SYNCING);
3628 	/* Release it and go back */
3629 	nand_release_device(mtd);
3630 }
3631 
3632 /**
3633  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
3634  * @mtd: MTD device structure
3635  * @offs: offset relative to mtd start
3636  */
nand_block_isbad(struct mtd_info * mtd,loff_t offs)3637 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
3638 {
3639 	struct nand_chip *chip = mtd_to_nand(mtd);
3640 	int chipnr = (int)(offs >> chip->chip_shift);
3641 	int ret;
3642 
3643 	/* Select the NAND device */
3644 	nand_get_device(mtd, FL_READING);
3645 	chip->select_chip(mtd, chipnr);
3646 
3647 	ret = nand_block_checkbad(mtd, offs, 0);
3648 
3649 	chip->select_chip(mtd, -1);
3650 	nand_release_device(mtd);
3651 
3652 	return ret;
3653 }
3654 
3655 /**
3656  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
3657  * @mtd: MTD device structure
3658  * @ofs: offset relative to mtd start
3659  */
nand_block_markbad(struct mtd_info * mtd,loff_t ofs)3660 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
3661 {
3662 	int ret;
3663 
3664 	ret = nand_block_isbad(mtd, ofs);
3665 	if (ret) {
3666 		/* If it was bad already, return success and do nothing */
3667 		if (ret > 0)
3668 			return 0;
3669 		return ret;
3670 	}
3671 
3672 	return nand_block_markbad_lowlevel(mtd, ofs);
3673 }
3674 
3675 /**
3676  * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
3677  * @mtd: MTD device structure
3678  * @chip: nand chip info structure
3679  * @addr: feature address.
3680  * @subfeature_param: the subfeature parameters, a four bytes array.
3681  */
nand_onfi_set_features(struct mtd_info * mtd,struct nand_chip * chip,int addr,uint8_t * subfeature_param)3682 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
3683 			int addr, uint8_t *subfeature_param)
3684 {
3685 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
3686 	if (!chip->onfi_version ||
3687 	    !(le16_to_cpu(chip->onfi_params.opt_cmd)
3688 	      & ONFI_OPT_CMD_SET_GET_FEATURES))
3689 		return -ENOTSUPP;
3690 #endif
3691 
3692 	return nand_set_features_op(chip, addr, subfeature_param);
3693 }
3694 
3695 /**
3696  * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
3697  * @mtd: MTD device structure
3698  * @chip: nand chip info structure
3699  * @addr: feature address.
3700  * @subfeature_param: the subfeature parameters, a four bytes array.
3701  */
nand_onfi_get_features(struct mtd_info * mtd,struct nand_chip * chip,int addr,uint8_t * subfeature_param)3702 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
3703 			int addr, uint8_t *subfeature_param)
3704 {
3705 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
3706 	if (!chip->onfi_version ||
3707 	    !(le16_to_cpu(chip->onfi_params.opt_cmd)
3708 	      & ONFI_OPT_CMD_SET_GET_FEATURES))
3709 		return -ENOTSUPP;
3710 #endif
3711 
3712 	return nand_get_features_op(chip, addr, subfeature_param);
3713 }
3714 
3715 /* Set default functions */
nand_set_defaults(struct nand_chip * chip,int busw)3716 static void nand_set_defaults(struct nand_chip *chip, int busw)
3717 {
3718 	/* check for proper chip_delay setup, set 20us if not */
3719 	if (!chip->chip_delay)
3720 		chip->chip_delay = 20;
3721 
3722 	/* check, if a user supplied command function given */
3723 	if (chip->cmdfunc == NULL)
3724 		chip->cmdfunc = nand_command;
3725 
3726 	/* check, if a user supplied wait function given */
3727 	if (chip->waitfunc == NULL)
3728 		chip->waitfunc = nand_wait;
3729 
3730 	if (!chip->select_chip)
3731 		chip->select_chip = nand_select_chip;
3732 
3733 	/* set for ONFI nand */
3734 	if (!chip->onfi_set_features)
3735 		chip->onfi_set_features = nand_onfi_set_features;
3736 	if (!chip->onfi_get_features)
3737 		chip->onfi_get_features = nand_onfi_get_features;
3738 
3739 	/* If called twice, pointers that depend on busw may need to be reset */
3740 	if (!chip->read_byte || chip->read_byte == nand_read_byte)
3741 		chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
3742 	if (!chip->read_word)
3743 		chip->read_word = nand_read_word;
3744 	if (!chip->block_bad)
3745 		chip->block_bad = nand_block_bad;
3746 	if (!chip->block_markbad)
3747 		chip->block_markbad = nand_default_block_markbad;
3748 	if (!chip->write_buf || chip->write_buf == nand_write_buf)
3749 		chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
3750 	if (!chip->write_byte || chip->write_byte == nand_write_byte)
3751 		chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
3752 	if (!chip->read_buf || chip->read_buf == nand_read_buf)
3753 		chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
3754 	if (!chip->scan_bbt)
3755 		chip->scan_bbt = nand_default_bbt;
3756 
3757 	if (!chip->controller) {
3758 		chip->controller = &chip->hwcontrol;
3759 		spin_lock_init(&chip->controller->lock);
3760 		init_waitqueue_head(&chip->controller->wq);
3761 	}
3762 
3763 	if (!chip->buf_align)
3764 		chip->buf_align = 1;
3765 }
3766 
3767 /* Sanitize ONFI strings so we can safely print them */
sanitize_string(char * s,size_t len)3768 static void sanitize_string(char *s, size_t len)
3769 {
3770 	ssize_t i;
3771 
3772 	/* Null terminate */
3773 	s[len - 1] = 0;
3774 
3775 	/* Remove non printable chars */
3776 	for (i = 0; i < len - 1; i++) {
3777 		if (s[i] < ' ' || s[i] > 127)
3778 			s[i] = '?';
3779 	}
3780 
3781 	/* Remove trailing spaces */
3782 	strim(s);
3783 }
3784 
onfi_crc16(u16 crc,u8 const * p,size_t len)3785 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
3786 {
3787 	int i;
3788 	while (len--) {
3789 		crc ^= *p++ << 8;
3790 		for (i = 0; i < 8; i++)
3791 			crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3792 	}
3793 
3794 	return crc;
3795 }
3796 
3797 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
3798 /* Parse the Extended Parameter Page. */
nand_flash_detect_ext_param_page(struct mtd_info * mtd,struct nand_chip * chip,struct nand_onfi_params * p)3799 static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
3800 		struct nand_chip *chip, struct nand_onfi_params *p)
3801 {
3802 	struct onfi_ext_param_page *ep;
3803 	struct onfi_ext_section *s;
3804 	struct onfi_ext_ecc_info *ecc;
3805 	uint8_t *cursor;
3806 	int ret;
3807 	int len;
3808 	int i;
3809 
3810 	len = le16_to_cpu(p->ext_param_page_length) * 16;
3811 	ep = kmalloc(len, GFP_KERNEL);
3812 	if (!ep)
3813 		return -ENOMEM;
3814 
3815 	/* Send our own NAND_CMD_PARAM. */
3816 	ret = nand_read_param_page_op(chip, 0, NULL, 0);
3817 	if (ret)
3818 		goto ext_out;
3819 
3820 	/* Use the Change Read Column command to skip the ONFI param pages. */
3821 	ret = nand_change_read_column_op(chip,
3822 					 sizeof(*p) * p->num_of_param_pages,
3823 					 ep, len, true);
3824 	if (ret)
3825 		goto ext_out;
3826 
3827 	ret = -EINVAL;
3828 	if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3829 		!= le16_to_cpu(ep->crc))) {
3830 		pr_debug("fail in the CRC.\n");
3831 		goto ext_out;
3832 	}
3833 
3834 	/*
3835 	 * Check the signature.
3836 	 * Do not strictly follow the ONFI spec, maybe changed in future.
3837 	 */
3838 	if (strncmp((char *)ep->sig, "EPPS", 4)) {
3839 		pr_debug("The signature is invalid.\n");
3840 		goto ext_out;
3841 	}
3842 
3843 	/* find the ECC section. */
3844 	cursor = (uint8_t *)(ep + 1);
3845 	for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3846 		s = ep->sections + i;
3847 		if (s->type == ONFI_SECTION_TYPE_2)
3848 			break;
3849 		cursor += s->length * 16;
3850 	}
3851 	if (i == ONFI_EXT_SECTION_MAX) {
3852 		pr_debug("We can not find the ECC section.\n");
3853 		goto ext_out;
3854 	}
3855 
3856 	/* get the info we want. */
3857 	ecc = (struct onfi_ext_ecc_info *)cursor;
3858 
3859 	if (!ecc->codeword_size) {
3860 		pr_debug("Invalid codeword size\n");
3861 		goto ext_out;
3862 	}
3863 
3864 	chip->ecc_strength_ds = ecc->ecc_bits;
3865 	chip->ecc_step_ds = 1 << ecc->codeword_size;
3866 	ret = 0;
3867 
3868 ext_out:
3869 	kfree(ep);
3870 	return ret;
3871 }
3872 
nand_setup_read_retry_micron(struct mtd_info * mtd,int retry_mode)3873 static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3874 {
3875 	struct nand_chip *chip = mtd_to_nand(mtd);
3876 	uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3877 
3878 	return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3879 			feature);
3880 }
3881 
3882 /*
3883  * Configure chip properties from Micron vendor-specific ONFI table
3884  */
nand_onfi_detect_micron(struct nand_chip * chip,struct nand_onfi_params * p)3885 static void nand_onfi_detect_micron(struct nand_chip *chip,
3886 		struct nand_onfi_params *p)
3887 {
3888 	struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3889 
3890 	if (le16_to_cpu(p->vendor_revision) < 1)
3891 		return;
3892 
3893 	chip->read_retries = micron->read_retry_options;
3894 	chip->setup_read_retry = nand_setup_read_retry_micron;
3895 }
3896 
3897 /*
3898  * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3899  */
nand_flash_detect_onfi(struct mtd_info * mtd,struct nand_chip * chip,int * busw)3900 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3901 					int *busw)
3902 {
3903 	struct nand_onfi_params *p = &chip->onfi_params;
3904 	char id[4];
3905 	int i, ret, val;
3906 
3907 	/* Try ONFI for unknown chip or LP */
3908 	ret = nand_readid_op(chip, 0x20, id, sizeof(id));
3909 	if (ret || strncmp(id, "ONFI", 4))
3910 		return 0;
3911 
3912 	ret = nand_read_param_page_op(chip, 0, NULL, 0);
3913 	if (ret)
3914 		return 0;
3915 
3916 	for (i = 0; i < 3; i++) {
3917 		ret = nand_read_data_op(chip, p, sizeof(*p), true);
3918 		if (ret)
3919 			return 0;
3920 
3921 		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3922 				le16_to_cpu(p->crc)) {
3923 			break;
3924 		}
3925 	}
3926 
3927 	if (i == 3) {
3928 		pr_err("Could not find valid ONFI parameter page; aborting\n");
3929 		return 0;
3930 	}
3931 
3932 	/* Check version */
3933 	val = le16_to_cpu(p->revision);
3934 	if (val & (1 << 5))
3935 		chip->onfi_version = 23;
3936 	else if (val & (1 << 4))
3937 		chip->onfi_version = 22;
3938 	else if (val & (1 << 3))
3939 		chip->onfi_version = 21;
3940 	else if (val & (1 << 2))
3941 		chip->onfi_version = 20;
3942 	else if (val & (1 << 1))
3943 		chip->onfi_version = 10;
3944 
3945 	if (!chip->onfi_version) {
3946 		pr_info("unsupported ONFI version: %d\n", val);
3947 		return 0;
3948 	}
3949 
3950 	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3951 	sanitize_string(p->model, sizeof(p->model));
3952 	if (!mtd->name)
3953 		mtd->name = p->model;
3954 
3955 	mtd->writesize = le32_to_cpu(p->byte_per_page);
3956 
3957 	/*
3958 	 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3959 	 * (don't ask me who thought of this...). MTD assumes that these
3960 	 * dimensions will be power-of-2, so just truncate the remaining area.
3961 	 */
3962 	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3963 	mtd->erasesize *= mtd->writesize;
3964 
3965 	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3966 
3967 	/* See erasesize comment */
3968 	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3969 	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3970 	chip->bits_per_cell = p->bits_per_cell;
3971 
3972 	if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3973 		*busw = NAND_BUSWIDTH_16;
3974 	else
3975 		*busw = 0;
3976 
3977 	if (p->ecc_bits != 0xff) {
3978 		chip->ecc_strength_ds = p->ecc_bits;
3979 		chip->ecc_step_ds = 512;
3980 	} else if (chip->onfi_version >= 21 &&
3981 		(onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3982 
3983 		/*
3984 		 * The nand_flash_detect_ext_param_page() uses the
3985 		 * Change Read Column command which maybe not supported
3986 		 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3987 		 * now. We do not replace user supplied command function.
3988 		 */
3989 		if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3990 			chip->cmdfunc = nand_command_lp;
3991 
3992 		/* The Extended Parameter Page is supported since ONFI 2.1. */
3993 		if (nand_flash_detect_ext_param_page(mtd, chip, p))
3994 			pr_warn("Failed to detect ONFI extended param page\n");
3995 	} else {
3996 		pr_warn("Could not retrieve ONFI ECC requirements\n");
3997 	}
3998 
3999 	if (p->jedec_id == NAND_MFR_MICRON)
4000 		nand_onfi_detect_micron(chip, p);
4001 
4002 	return 1;
4003 }
4004 #else
nand_flash_detect_onfi(struct mtd_info * mtd,struct nand_chip * chip,int * busw)4005 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
4006 					int *busw)
4007 {
4008 	return 0;
4009 }
4010 #endif
4011 
4012 /*
4013  * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
4014  */
nand_flash_detect_jedec(struct mtd_info * mtd,struct nand_chip * chip,int * busw)4015 static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
4016 					int *busw)
4017 {
4018 	struct nand_jedec_params *p = &chip->jedec_params;
4019 	struct jedec_ecc_info *ecc;
4020 	char id[5];
4021 	int i, val, ret;
4022 
4023 	/* Try JEDEC for unknown chip or LP */
4024 	ret = nand_readid_op(chip, 0x40, id, sizeof(id));
4025 	if (ret || strncmp(id, "JEDEC", sizeof(id)))
4026 		return 0;
4027 
4028 	ret = nand_read_param_page_op(chip, 0x40, NULL, 0);
4029 	if (ret)
4030 		return 0;
4031 
4032 	for (i = 0; i < 3; i++) {
4033 		ret = nand_read_data_op(chip, p, sizeof(*p), true);
4034 		if (ret)
4035 			return 0;
4036 
4037 		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
4038 				le16_to_cpu(p->crc))
4039 			break;
4040 	}
4041 
4042 	if (i == 3) {
4043 		pr_err("Could not find valid JEDEC parameter page; aborting\n");
4044 		return 0;
4045 	}
4046 
4047 	/* Check version */
4048 	val = le16_to_cpu(p->revision);
4049 	if (val & (1 << 2))
4050 		chip->jedec_version = 10;
4051 	else if (val & (1 << 1))
4052 		chip->jedec_version = 1; /* vendor specific version */
4053 
4054 	if (!chip->jedec_version) {
4055 		pr_info("unsupported JEDEC version: %d\n", val);
4056 		return 0;
4057 	}
4058 
4059 	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
4060 	sanitize_string(p->model, sizeof(p->model));
4061 	if (!mtd->name)
4062 		mtd->name = p->model;
4063 
4064 	mtd->writesize = le32_to_cpu(p->byte_per_page);
4065 
4066 	/* Please reference to the comment for nand_flash_detect_onfi. */
4067 	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
4068 	mtd->erasesize *= mtd->writesize;
4069 
4070 	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
4071 
4072 	/* Please reference to the comment for nand_flash_detect_onfi. */
4073 	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
4074 	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
4075 	chip->bits_per_cell = p->bits_per_cell;
4076 
4077 	if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
4078 		*busw = NAND_BUSWIDTH_16;
4079 	else
4080 		*busw = 0;
4081 
4082 	/* ECC info */
4083 	ecc = &p->ecc_info[0];
4084 
4085 	if (ecc->codeword_size >= 9) {
4086 		chip->ecc_strength_ds = ecc->ecc_bits;
4087 		chip->ecc_step_ds = 1 << ecc->codeword_size;
4088 	} else {
4089 		pr_warn("Invalid codeword size\n");
4090 	}
4091 
4092 	return 1;
4093 }
4094 
4095 /*
4096  * nand_id_has_period - Check if an ID string has a given wraparound period
4097  * @id_data: the ID string
4098  * @arrlen: the length of the @id_data array
4099  * @period: the period of repitition
4100  *
4101  * Check if an ID string is repeated within a given sequence of bytes at
4102  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
4103  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
4104  * if the repetition has a period of @period; otherwise, returns zero.
4105  */
nand_id_has_period(u8 * id_data,int arrlen,int period)4106 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
4107 {
4108 	int i, j;
4109 	for (i = 0; i < period; i++)
4110 		for (j = i + period; j < arrlen; j += period)
4111 			if (id_data[i] != id_data[j])
4112 				return 0;
4113 	return 1;
4114 }
4115 
4116 /*
4117  * nand_id_len - Get the length of an ID string returned by CMD_READID
4118  * @id_data: the ID string
4119  * @arrlen: the length of the @id_data array
4120 
4121  * Returns the length of the ID string, according to known wraparound/trailing
4122  * zero patterns. If no pattern exists, returns the length of the array.
4123  */
nand_id_len(u8 * id_data,int arrlen)4124 static int nand_id_len(u8 *id_data, int arrlen)
4125 {
4126 	int last_nonzero, period;
4127 
4128 	/* Find last non-zero byte */
4129 	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
4130 		if (id_data[last_nonzero])
4131 			break;
4132 
4133 	/* All zeros */
4134 	if (last_nonzero < 0)
4135 		return 0;
4136 
4137 	/* Calculate wraparound period */
4138 	for (period = 1; period < arrlen; period++)
4139 		if (nand_id_has_period(id_data, arrlen, period))
4140 			break;
4141 
4142 	/* There's a repeated pattern */
4143 	if (period < arrlen)
4144 		return period;
4145 
4146 	/* There are trailing zeros */
4147 	if (last_nonzero < arrlen - 1)
4148 		return last_nonzero + 1;
4149 
4150 	/* No pattern detected */
4151 	return arrlen;
4152 }
4153 
4154 /* Extract the bits of per cell from the 3rd byte of the extended ID */
nand_get_bits_per_cell(u8 cellinfo)4155 static int nand_get_bits_per_cell(u8 cellinfo)
4156 {
4157 	int bits;
4158 
4159 	bits = cellinfo & NAND_CI_CELLTYPE_MSK;
4160 	bits >>= NAND_CI_CELLTYPE_SHIFT;
4161 	return bits + 1;
4162 }
4163 
4164 /*
4165  * Many new NAND share similar device ID codes, which represent the size of the
4166  * chip. The rest of the parameters must be decoded according to generic or
4167  * manufacturer-specific "extended ID" decoding patterns.
4168  */
nand_decode_ext_id(struct mtd_info * mtd,struct nand_chip * chip,u8 id_data[8],int * busw)4169 static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
4170 				u8 id_data[8], int *busw)
4171 {
4172 	int extid, id_len;
4173 	/* The 3rd id byte holds MLC / multichip data */
4174 	chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4175 	/* The 4th id byte is the important one */
4176 	extid = id_data[3];
4177 
4178 	id_len = nand_id_len(id_data, 8);
4179 
4180 	/*
4181 	 * Field definitions are in the following datasheets:
4182 	 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
4183 	 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
4184 	 * Hynix MLC   (6 byte ID): Hynix H27UBG8T2B (p.22)
4185 	 *
4186 	 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
4187 	 * ID to decide what to do.
4188 	 */
4189 	if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
4190 			!nand_is_slc(chip) && id_data[5] != 0x00) {
4191 		/* Calc pagesize */
4192 		mtd->writesize = 2048 << (extid & 0x03);
4193 		extid >>= 2;
4194 		/* Calc oobsize */
4195 		switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
4196 		case 1:
4197 			mtd->oobsize = 128;
4198 			break;
4199 		case 2:
4200 			mtd->oobsize = 218;
4201 			break;
4202 		case 3:
4203 			mtd->oobsize = 400;
4204 			break;
4205 		case 4:
4206 			mtd->oobsize = 436;
4207 			break;
4208 		case 5:
4209 			mtd->oobsize = 512;
4210 			break;
4211 		case 6:
4212 			mtd->oobsize = 640;
4213 			break;
4214 		case 7:
4215 		default: /* Other cases are "reserved" (unknown) */
4216 			mtd->oobsize = 1024;
4217 			break;
4218 		}
4219 		extid >>= 2;
4220 		/* Calc blocksize */
4221 		mtd->erasesize = (128 * 1024) <<
4222 			(((extid >> 1) & 0x04) | (extid & 0x03));
4223 		*busw = 0;
4224 	} else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
4225 			!nand_is_slc(chip)) {
4226 		unsigned int tmp;
4227 
4228 		/* Calc pagesize */
4229 		mtd->writesize = 2048 << (extid & 0x03);
4230 		extid >>= 2;
4231 		/* Calc oobsize */
4232 		switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
4233 		case 0:
4234 			mtd->oobsize = 128;
4235 			break;
4236 		case 1:
4237 			mtd->oobsize = 224;
4238 			break;
4239 		case 2:
4240 			mtd->oobsize = 448;
4241 			break;
4242 		case 3:
4243 			mtd->oobsize = 64;
4244 			break;
4245 		case 4:
4246 			mtd->oobsize = 32;
4247 			break;
4248 		case 5:
4249 			mtd->oobsize = 16;
4250 			break;
4251 		default:
4252 			mtd->oobsize = 640;
4253 			break;
4254 		}
4255 		extid >>= 2;
4256 		/* Calc blocksize */
4257 		tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
4258 		if (tmp < 0x03)
4259 			mtd->erasesize = (128 * 1024) << tmp;
4260 		else if (tmp == 0x03)
4261 			mtd->erasesize = 768 * 1024;
4262 		else
4263 			mtd->erasesize = (64 * 1024) << tmp;
4264 		*busw = 0;
4265 	} else {
4266 		/* Calc pagesize */
4267 		mtd->writesize = 1024 << (extid & 0x03);
4268 		extid >>= 2;
4269 		/* Calc oobsize */
4270 		mtd->oobsize = (8 << (extid & 0x01)) *
4271 			(mtd->writesize >> 9);
4272 		extid >>= 2;
4273 		/* Calc blocksize. Blocksize is multiples of 64KiB */
4274 		mtd->erasesize = (64 * 1024) << (extid & 0x03);
4275 		extid >>= 2;
4276 		/* Get buswidth information */
4277 		*busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
4278 
4279 		/*
4280 		 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
4281 		 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
4282 		 * follows:
4283 		 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
4284 		 *                         110b -> 24nm
4285 		 * - ID byte 5, bit[7]:    1 -> BENAND, 0 -> raw SLC
4286 		 */
4287 		if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
4288 				nand_is_slc(chip) &&
4289 				(id_data[5] & 0x7) == 0x6 /* 24nm */ &&
4290 				!(id_data[4] & 0x80) /* !BENAND */) {
4291 			mtd->oobsize = 32 * mtd->writesize >> 9;
4292 		}
4293 
4294 	}
4295 }
4296 
4297 /*
4298  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
4299  * decodes a matching ID table entry and assigns the MTD size parameters for
4300  * the chip.
4301  */
nand_decode_id(struct mtd_info * mtd,struct nand_chip * chip,struct nand_flash_dev * type,u8 id_data[8],int * busw)4302 static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
4303 				struct nand_flash_dev *type, u8 id_data[8],
4304 				int *busw)
4305 {
4306 	int maf_id = id_data[0];
4307 
4308 	mtd->erasesize = type->erasesize;
4309 	mtd->writesize = type->pagesize;
4310 	mtd->oobsize = mtd->writesize / 32;
4311 	*busw = type->options & NAND_BUSWIDTH_16;
4312 
4313 	/* All legacy ID NAND are small-page, SLC */
4314 	chip->bits_per_cell = 1;
4315 
4316 	/*
4317 	 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
4318 	 * some Spansion chips have erasesize that conflicts with size
4319 	 * listed in nand_ids table.
4320 	 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
4321 	 */
4322 	if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
4323 			&& id_data[6] == 0x00 && id_data[7] == 0x00
4324 			&& mtd->writesize == 512) {
4325 		mtd->erasesize = 128 * 1024;
4326 		mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
4327 	}
4328 }
4329 
4330 /*
4331  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
4332  * heuristic patterns using various detected parameters (e.g., manufacturer,
4333  * page size, cell-type information).
4334  */
nand_decode_bbm_options(struct mtd_info * mtd,struct nand_chip * chip,u8 id_data[8])4335 static void nand_decode_bbm_options(struct mtd_info *mtd,
4336 				    struct nand_chip *chip, u8 id_data[8])
4337 {
4338 	int maf_id = id_data[0];
4339 
4340 	/* Set the bad block position */
4341 	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
4342 		chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
4343 	else
4344 		chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
4345 
4346 	/*
4347 	 * Bad block marker is stored in the last page of each block on Samsung
4348 	 * and Hynix MLC devices; stored in first two pages of each block on
4349 	 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
4350 	 * AMD/Spansion, and Macronix.  All others scan only the first page.
4351 	 */
4352 	if (!nand_is_slc(chip) &&
4353 			(maf_id == NAND_MFR_SAMSUNG ||
4354 			 maf_id == NAND_MFR_HYNIX))
4355 		chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
4356 	else if ((nand_is_slc(chip) &&
4357 				(maf_id == NAND_MFR_SAMSUNG ||
4358 				 maf_id == NAND_MFR_HYNIX ||
4359 				 maf_id == NAND_MFR_TOSHIBA ||
4360 				 maf_id == NAND_MFR_AMD ||
4361 				 maf_id == NAND_MFR_MACRONIX)) ||
4362 			(mtd->writesize == 2048 &&
4363 			 maf_id == NAND_MFR_MICRON))
4364 		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
4365 }
4366 
is_full_id_nand(struct nand_flash_dev * type)4367 static inline bool is_full_id_nand(struct nand_flash_dev *type)
4368 {
4369 	return type->id_len;
4370 }
4371 
find_full_id_nand(struct mtd_info * mtd,struct nand_chip * chip,struct nand_flash_dev * type,u8 * id_data,int * busw)4372 static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
4373 		   struct nand_flash_dev *type, u8 *id_data, int *busw)
4374 {
4375 	if (!strncmp((char *)type->id, (char *)id_data, type->id_len)) {
4376 		mtd->writesize = type->pagesize;
4377 		mtd->erasesize = type->erasesize;
4378 		mtd->oobsize = type->oobsize;
4379 
4380 		chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4381 		chip->chipsize = (uint64_t)type->chipsize << 20;
4382 		chip->options |= type->options;
4383 		chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
4384 		chip->ecc_step_ds = NAND_ECC_STEP(type);
4385 		chip->onfi_timing_mode_default =
4386 					type->onfi_timing_mode_default;
4387 
4388 		*busw = type->options & NAND_BUSWIDTH_16;
4389 
4390 		if (!mtd->name)
4391 			mtd->name = type->name;
4392 
4393 		return true;
4394 	}
4395 	return false;
4396 }
4397 
4398 /*
4399  * Get the flash and manufacturer id and lookup if the type is supported.
4400  */
nand_get_flash_type(struct mtd_info * mtd,struct nand_chip * chip,int * maf_id,int * dev_id,struct nand_flash_dev * type)4401 struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
4402 						  struct nand_chip *chip,
4403 						  int *maf_id, int *dev_id,
4404 						  struct nand_flash_dev *type)
4405 {
4406 	int busw, ret;
4407 	int maf_idx;
4408 	u8 id_data[8];
4409 
4410 	/*
4411 	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
4412 	 * after power-up.
4413 	 */
4414 	ret = nand_reset(chip, 0);
4415 	if (ret)
4416 		return ERR_PTR(ret);
4417 
4418 	/* Select the device */
4419 	chip->select_chip(mtd, 0);
4420 
4421 	/* Send the command for reading device ID */
4422 	ret = nand_readid_op(chip, 0, id_data, 2);
4423 	if (ret)
4424 		return ERR_PTR(ret);
4425 
4426 	/* Read manufacturer and device IDs */
4427 	*maf_id = id_data[0];
4428 	*dev_id = id_data[1];
4429 
4430 	/*
4431 	 * Try again to make sure, as some systems the bus-hold or other
4432 	 * interface concerns can cause random data which looks like a
4433 	 * possibly credible NAND flash to appear. If the two results do
4434 	 * not match, ignore the device completely.
4435 	 */
4436 
4437 	/* Read entire ID string */
4438 	ret = nand_readid_op(chip, 0, id_data, 8);
4439 	if (ret)
4440 		return ERR_PTR(ret);
4441 
4442 	if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
4443 		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
4444 			*maf_id, *dev_id, id_data[0], id_data[1]);
4445 		return ERR_PTR(-ENODEV);
4446 	}
4447 
4448 	if (!type)
4449 		type = nand_flash_ids;
4450 
4451 	for (; type->name != NULL; type++) {
4452 		if (is_full_id_nand(type)) {
4453 			if (find_full_id_nand(mtd, chip, type, id_data, &busw))
4454 				goto ident_done;
4455 		} else if (*dev_id == type->dev_id) {
4456 			break;
4457 		}
4458 	}
4459 
4460 	chip->onfi_version = 0;
4461 	if (!type->name || !type->pagesize) {
4462 		/* Check if the chip is ONFI compliant */
4463 		if (nand_flash_detect_onfi(mtd, chip, &busw))
4464 			goto ident_done;
4465 
4466 		/* Check if the chip is JEDEC compliant */
4467 		if (nand_flash_detect_jedec(mtd, chip, &busw))
4468 			goto ident_done;
4469 	}
4470 
4471 	if (!type->name)
4472 		return ERR_PTR(-ENODEV);
4473 
4474 	if (!mtd->name)
4475 		mtd->name = type->name;
4476 
4477 	chip->chipsize = (uint64_t)type->chipsize << 20;
4478 
4479 	if (!type->pagesize) {
4480 		/* Decode parameters from extended ID */
4481 		nand_decode_ext_id(mtd, chip, id_data, &busw);
4482 	} else {
4483 		nand_decode_id(mtd, chip, type, id_data, &busw);
4484 	}
4485 	/* Get chip options */
4486 	chip->options |= type->options;
4487 
4488 	/*
4489 	 * Check if chip is not a Samsung device. Do not clear the
4490 	 * options for chips which do not have an extended id.
4491 	 */
4492 	if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
4493 		chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
4494 ident_done:
4495 
4496 	/* Try to identify manufacturer */
4497 	for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
4498 		if (nand_manuf_ids[maf_idx].id == *maf_id)
4499 			break;
4500 	}
4501 
4502 	if (chip->options & NAND_BUSWIDTH_AUTO) {
4503 		WARN_ON(chip->options & NAND_BUSWIDTH_16);
4504 		chip->options |= busw;
4505 		nand_set_defaults(chip, busw);
4506 	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
4507 		/*
4508 		 * Check, if buswidth is correct. Hardware drivers should set
4509 		 * chip correct!
4510 		 */
4511 		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4512 			*maf_id, *dev_id);
4513 		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
4514 		pr_warn("bus width %d instead %d bit\n",
4515 			   (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
4516 			   busw ? 16 : 8);
4517 		return ERR_PTR(-EINVAL);
4518 	}
4519 
4520 	nand_decode_bbm_options(mtd, chip, id_data);
4521 
4522 	/* Calculate the address shift from the page size */
4523 	chip->page_shift = ffs(mtd->writesize) - 1;
4524 	/* Convert chipsize to number of pages per chip -1 */
4525 	chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
4526 
4527 	chip->bbt_erase_shift = chip->phys_erase_shift =
4528 		ffs(mtd->erasesize) - 1;
4529 	if (chip->chipsize & 0xffffffff)
4530 		chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
4531 	else {
4532 		chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
4533 		chip->chip_shift += 32 - 1;
4534 	}
4535 
4536 	if (chip->chip_shift - chip->page_shift > 16)
4537 		chip->options |= NAND_ROW_ADDR_3;
4538 
4539 	chip->badblockbits = 8;
4540 	chip->erase = single_erase;
4541 
4542 	/* Do not replace user supplied command function! */
4543 	if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
4544 		chip->cmdfunc = nand_command_lp;
4545 
4546 	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4547 		*maf_id, *dev_id);
4548 
4549 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
4550 	if (chip->onfi_version)
4551 		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
4552 				chip->onfi_params.model);
4553 	else if (chip->jedec_version)
4554 		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
4555 				chip->jedec_params.model);
4556 	else
4557 		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
4558 				type->name);
4559 #else
4560 	if (chip->jedec_version)
4561 		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
4562 				chip->jedec_params.model);
4563 	else
4564 		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
4565 				type->name);
4566 
4567 	pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
4568 		type->name);
4569 #endif
4570 
4571 	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
4572 		(int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
4573 		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
4574 	return type;
4575 }
4576 EXPORT_SYMBOL(nand_get_flash_type);
4577 
4578 #if CONFIG_IS_ENABLED(OF_CONTROL)
4579 #include <asm/global_data.h>
4580 DECLARE_GLOBAL_DATA_PTR;
4581 
nand_dt_init(struct mtd_info * mtd,struct nand_chip * chip,int node)4582 static int nand_dt_init(struct mtd_info *mtd, struct nand_chip *chip, int node)
4583 {
4584 	int ret, ecc_mode = -1, ecc_strength, ecc_step;
4585 	const void *blob = gd->fdt_blob;
4586 	const char *str;
4587 
4588 	ret = fdtdec_get_int(blob, node, "nand-bus-width", -1);
4589 	if (ret == 16)
4590 		chip->options |= NAND_BUSWIDTH_16;
4591 
4592 	if (fdtdec_get_bool(blob, node, "nand-on-flash-bbt"))
4593 		chip->bbt_options |= NAND_BBT_USE_FLASH;
4594 
4595 	str = fdt_getprop(blob, node, "nand-ecc-mode", NULL);
4596 	if (str) {
4597 		if (!strcmp(str, "none"))
4598 			ecc_mode = NAND_ECC_NONE;
4599 		else if (!strcmp(str, "soft"))
4600 			ecc_mode = NAND_ECC_SOFT;
4601 		else if (!strcmp(str, "hw"))
4602 			ecc_mode = NAND_ECC_HW;
4603 		else if (!strcmp(str, "hw_syndrome"))
4604 			ecc_mode = NAND_ECC_HW_SYNDROME;
4605 		else if (!strcmp(str, "hw_oob_first"))
4606 			ecc_mode = NAND_ECC_HW_OOB_FIRST;
4607 		else if (!strcmp(str, "soft_bch"))
4608 			ecc_mode = NAND_ECC_SOFT_BCH;
4609 	}
4610 
4611 
4612 	ecc_strength = fdtdec_get_int(blob, node, "nand-ecc-strength", -1);
4613 	ecc_step = fdtdec_get_int(blob, node, "nand-ecc-step-size", -1);
4614 
4615 	if ((ecc_step >= 0 && !(ecc_strength >= 0)) ||
4616 	    (!(ecc_step >= 0) && ecc_strength >= 0)) {
4617 		pr_err("must set both strength and step size in DT\n");
4618 		return -EINVAL;
4619 	}
4620 
4621 	if (ecc_mode >= 0)
4622 		chip->ecc.mode = ecc_mode;
4623 
4624 	if (ecc_strength >= 0)
4625 		chip->ecc.strength = ecc_strength;
4626 
4627 	if (ecc_step > 0)
4628 		chip->ecc.size = ecc_step;
4629 
4630 	if (fdt_getprop(blob, node, "nand-ecc-maximize", NULL))
4631 		chip->ecc.options |= NAND_ECC_MAXIMIZE;
4632 
4633 	return 0;
4634 }
4635 #else
nand_dt_init(struct mtd_info * mtd,struct nand_chip * chip,int node)4636 static int nand_dt_init(struct mtd_info *mtd, struct nand_chip *chip, int node)
4637 {
4638 	return 0;
4639 }
4640 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
4641 
4642 /**
4643  * nand_scan_ident - [NAND Interface] Scan for the NAND device
4644  * @mtd: MTD device structure
4645  * @maxchips: number of chips to scan for
4646  * @table: alternative NAND ID table
4647  *
4648  * This is the first phase of the normal nand_scan() function. It reads the
4649  * flash ID and sets up MTD fields accordingly.
4650  *
4651  */
nand_scan_ident(struct mtd_info * mtd,int maxchips,struct nand_flash_dev * table)4652 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
4653 		    struct nand_flash_dev *table)
4654 {
4655 	int i, nand_maf_id, nand_dev_id;
4656 	struct nand_chip *chip = mtd_to_nand(mtd);
4657 	struct nand_flash_dev *type;
4658 	int ret;
4659 
4660 	if (chip->flash_node) {
4661 		ret = nand_dt_init(mtd, chip, chip->flash_node);
4662 		if (ret)
4663 			return ret;
4664 	}
4665 
4666 	/* Set the default functions */
4667 	nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
4668 
4669 	/* Read the flash type */
4670 	type = nand_get_flash_type(mtd, chip, &nand_maf_id,
4671 				   &nand_dev_id, table);
4672 
4673 	if (IS_ERR(type)) {
4674 		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
4675 			pr_warn("No NAND device found\n");
4676 		chip->select_chip(mtd, -1);
4677 		return PTR_ERR(type);
4678 	}
4679 
4680 	/* Initialize the ->data_interface field. */
4681 	ret = nand_init_data_interface(chip);
4682 	if (ret)
4683 		return ret;
4684 
4685 	/*
4686 	 * Setup the data interface correctly on the chip and controller side.
4687 	 * This explicit call to nand_setup_data_interface() is only required
4688 	 * for the first die, because nand_reset() has been called before
4689 	 * ->data_interface and ->default_onfi_timing_mode were set.
4690 	 * For the other dies, nand_reset() will automatically switch to the
4691 	 * best mode for us.
4692 	 */
4693 	ret = nand_setup_data_interface(chip, 0);
4694 	if (ret)
4695 		return ret;
4696 
4697 	chip->select_chip(mtd, -1);
4698 
4699 	/* Check for a chip array */
4700 	for (i = 1; i < maxchips; i++) {
4701 		u8 id[2];
4702 
4703 		/* See comment in nand_get_flash_type for reset */
4704 		nand_reset(chip, i);
4705 
4706 		chip->select_chip(mtd, i);
4707 		/* Send the command for reading device ID */
4708 		nand_readid_op(chip, 0, id, sizeof(id));
4709 
4710 		/* Read manufacturer and device IDs */
4711 		if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
4712 			chip->select_chip(mtd, -1);
4713 			break;
4714 		}
4715 		chip->select_chip(mtd, -1);
4716 	}
4717 
4718 #ifdef DEBUG
4719 	if (i > 1)
4720 		pr_info("%d chips detected\n", i);
4721 #endif
4722 
4723 	/* Store the number of chips and calc total size for mtd */
4724 	chip->numchips = i;
4725 	mtd->size = i * chip->chipsize;
4726 
4727 	return 0;
4728 }
4729 EXPORT_SYMBOL(nand_scan_ident);
4730 
4731 /**
4732  * nand_check_ecc_caps - check the sanity of preset ECC settings
4733  * @chip: nand chip info structure
4734  * @caps: ECC caps info structure
4735  * @oobavail: OOB size that the ECC engine can use
4736  *
4737  * When ECC step size and strength are already set, check if they are supported
4738  * by the controller and the calculated ECC bytes fit within the chip's OOB.
4739  * On success, the calculated ECC bytes is set.
4740  */
nand_check_ecc_caps(struct nand_chip * chip,const struct nand_ecc_caps * caps,int oobavail)4741 int nand_check_ecc_caps(struct nand_chip *chip,
4742 			const struct nand_ecc_caps *caps, int oobavail)
4743 {
4744 	struct mtd_info *mtd = nand_to_mtd(chip);
4745 	const struct nand_ecc_step_info *stepinfo;
4746 	int preset_step = chip->ecc.size;
4747 	int preset_strength = chip->ecc.strength;
4748 	int nsteps, ecc_bytes;
4749 	int i, j;
4750 
4751 	if (WARN_ON(oobavail < 0))
4752 		return -EINVAL;
4753 
4754 	if (!preset_step || !preset_strength)
4755 		return -ENODATA;
4756 
4757 	nsteps = mtd->writesize / preset_step;
4758 
4759 	for (i = 0; i < caps->nstepinfos; i++) {
4760 		stepinfo = &caps->stepinfos[i];
4761 
4762 		if (stepinfo->stepsize != preset_step)
4763 			continue;
4764 
4765 		for (j = 0; j < stepinfo->nstrengths; j++) {
4766 			if (stepinfo->strengths[j] != preset_strength)
4767 				continue;
4768 
4769 			ecc_bytes = caps->calc_ecc_bytes(preset_step,
4770 							 preset_strength);
4771 			if (WARN_ON_ONCE(ecc_bytes < 0))
4772 				return ecc_bytes;
4773 
4774 			if (ecc_bytes * nsteps > oobavail) {
4775 				pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
4776 				       preset_step, preset_strength);
4777 				return -ENOSPC;
4778 			}
4779 
4780 			chip->ecc.bytes = ecc_bytes;
4781 
4782 			return 0;
4783 		}
4784 	}
4785 
4786 	pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
4787 	       preset_step, preset_strength);
4788 
4789 	return -ENOTSUPP;
4790 }
4791 EXPORT_SYMBOL_GPL(nand_check_ecc_caps);
4792 
4793 /**
4794  * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
4795  * @chip: nand chip info structure
4796  * @caps: ECC engine caps info structure
4797  * @oobavail: OOB size that the ECC engine can use
4798  *
4799  * If a chip's ECC requirement is provided, try to meet it with the least
4800  * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
4801  * On success, the chosen ECC settings are set.
4802  */
nand_match_ecc_req(struct nand_chip * chip,const struct nand_ecc_caps * caps,int oobavail)4803 int nand_match_ecc_req(struct nand_chip *chip,
4804 		       const struct nand_ecc_caps *caps, int oobavail)
4805 {
4806 	struct mtd_info *mtd = nand_to_mtd(chip);
4807 	const struct nand_ecc_step_info *stepinfo;
4808 	int req_step = chip->ecc_step_ds;
4809 	int req_strength = chip->ecc_strength_ds;
4810 	int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
4811 	int best_step, best_strength, best_ecc_bytes;
4812 	int best_ecc_bytes_total = INT_MAX;
4813 	int i, j;
4814 
4815 	if (WARN_ON(oobavail < 0))
4816 		return -EINVAL;
4817 
4818 	/* No information provided by the NAND chip */
4819 	if (!req_step || !req_strength)
4820 		return -ENOTSUPP;
4821 
4822 	/* number of correctable bits the chip requires in a page */
4823 	req_corr = mtd->writesize / req_step * req_strength;
4824 
4825 	for (i = 0; i < caps->nstepinfos; i++) {
4826 		stepinfo = &caps->stepinfos[i];
4827 		step_size = stepinfo->stepsize;
4828 
4829 		for (j = 0; j < stepinfo->nstrengths; j++) {
4830 			strength = stepinfo->strengths[j];
4831 
4832 			/*
4833 			 * If both step size and strength are smaller than the
4834 			 * chip's requirement, it is not easy to compare the
4835 			 * resulted reliability.
4836 			 */
4837 			if (step_size < req_step && strength < req_strength)
4838 				continue;
4839 
4840 			if (mtd->writesize % step_size)
4841 				continue;
4842 
4843 			nsteps = mtd->writesize / step_size;
4844 
4845 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
4846 			if (WARN_ON_ONCE(ecc_bytes < 0))
4847 				continue;
4848 			ecc_bytes_total = ecc_bytes * nsteps;
4849 
4850 			if (ecc_bytes_total > oobavail ||
4851 			    strength * nsteps < req_corr)
4852 				continue;
4853 
4854 			/*
4855 			 * We assume the best is to meet the chip's requrement
4856 			 * with the least number of ECC bytes.
4857 			 */
4858 			if (ecc_bytes_total < best_ecc_bytes_total) {
4859 				best_ecc_bytes_total = ecc_bytes_total;
4860 				best_step = step_size;
4861 				best_strength = strength;
4862 				best_ecc_bytes = ecc_bytes;
4863 			}
4864 		}
4865 	}
4866 
4867 	if (best_ecc_bytes_total == INT_MAX)
4868 		return -ENOTSUPP;
4869 
4870 	chip->ecc.size = best_step;
4871 	chip->ecc.strength = best_strength;
4872 	chip->ecc.bytes = best_ecc_bytes;
4873 
4874 	return 0;
4875 }
4876 EXPORT_SYMBOL_GPL(nand_match_ecc_req);
4877 
4878 /**
4879  * nand_maximize_ecc - choose the max ECC strength available
4880  * @chip: nand chip info structure
4881  * @caps: ECC engine caps info structure
4882  * @oobavail: OOB size that the ECC engine can use
4883  *
4884  * Choose the max ECC strength that is supported on the controller, and can fit
4885  * within the chip's OOB.  On success, the chosen ECC settings are set.
4886  */
nand_maximize_ecc(struct nand_chip * chip,const struct nand_ecc_caps * caps,int oobavail)4887 int nand_maximize_ecc(struct nand_chip *chip,
4888 		      const struct nand_ecc_caps *caps, int oobavail)
4889 {
4890 	struct mtd_info *mtd = nand_to_mtd(chip);
4891 	const struct nand_ecc_step_info *stepinfo;
4892 	int step_size, strength, nsteps, ecc_bytes, corr;
4893 	int best_corr = 0;
4894 	int best_step = 0;
4895 	int best_strength, best_ecc_bytes;
4896 	int i, j;
4897 
4898 	if (WARN_ON(oobavail < 0))
4899 		return -EINVAL;
4900 
4901 	for (i = 0; i < caps->nstepinfos; i++) {
4902 		stepinfo = &caps->stepinfos[i];
4903 		step_size = stepinfo->stepsize;
4904 
4905 		/* If chip->ecc.size is already set, respect it */
4906 		if (chip->ecc.size && step_size != chip->ecc.size)
4907 			continue;
4908 
4909 		for (j = 0; j < stepinfo->nstrengths; j++) {
4910 			strength = stepinfo->strengths[j];
4911 
4912 			if (mtd->writesize % step_size)
4913 				continue;
4914 
4915 			nsteps = mtd->writesize / step_size;
4916 
4917 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
4918 			if (WARN_ON_ONCE(ecc_bytes < 0))
4919 				continue;
4920 
4921 			if (ecc_bytes * nsteps > oobavail)
4922 				continue;
4923 
4924 			corr = strength * nsteps;
4925 
4926 			/*
4927 			 * If the number of correctable bits is the same,
4928 			 * bigger step_size has more reliability.
4929 			 */
4930 			if (corr > best_corr ||
4931 			    (corr == best_corr && step_size > best_step)) {
4932 				best_corr = corr;
4933 				best_step = step_size;
4934 				best_strength = strength;
4935 				best_ecc_bytes = ecc_bytes;
4936 			}
4937 		}
4938 	}
4939 
4940 	if (!best_corr)
4941 		return -ENOTSUPP;
4942 
4943 	chip->ecc.size = best_step;
4944 	chip->ecc.strength = best_strength;
4945 	chip->ecc.bytes = best_ecc_bytes;
4946 
4947 	return 0;
4948 }
4949 EXPORT_SYMBOL_GPL(nand_maximize_ecc);
4950 
4951 /*
4952  * Check if the chip configuration meet the datasheet requirements.
4953 
4954  * If our configuration corrects A bits per B bytes and the minimum
4955  * required correction level is X bits per Y bytes, then we must ensure
4956  * both of the following are true:
4957  *
4958  * (1) A / B >= X / Y
4959  * (2) A >= X
4960  *
4961  * Requirement (1) ensures we can correct for the required bitflip density.
4962  * Requirement (2) ensures we can correct even when all bitflips are clumped
4963  * in the same sector.
4964  */
nand_ecc_strength_good(struct mtd_info * mtd)4965 static bool nand_ecc_strength_good(struct mtd_info *mtd)
4966 {
4967 	struct nand_chip *chip = mtd_to_nand(mtd);
4968 	struct nand_ecc_ctrl *ecc = &chip->ecc;
4969 	int corr, ds_corr;
4970 
4971 	if (ecc->size == 0 || chip->ecc_step_ds == 0)
4972 		/* Not enough information */
4973 		return true;
4974 
4975 	/*
4976 	 * We get the number of corrected bits per page to compare
4977 	 * the correction density.
4978 	 */
4979 	corr = (mtd->writesize * ecc->strength) / ecc->size;
4980 	ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
4981 
4982 	return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
4983 }
4984 
invalid_ecc_page_accessors(struct nand_chip * chip)4985 static bool invalid_ecc_page_accessors(struct nand_chip *chip)
4986 {
4987 	struct nand_ecc_ctrl *ecc = &chip->ecc;
4988 
4989 	if (nand_standard_page_accessors(ecc))
4990 		return false;
4991 
4992 	/*
4993 	 * NAND_ECC_CUSTOM_PAGE_ACCESS flag is set, make sure the NAND
4994 	 * controller driver implements all the page accessors because
4995 	 * default helpers are not suitable when the core does not
4996 	 * send the READ0/PAGEPROG commands.
4997 	 */
4998 	return (!ecc->read_page || !ecc->write_page ||
4999 		!ecc->read_page_raw || !ecc->write_page_raw ||
5000 		(NAND_HAS_SUBPAGE_READ(chip) && !ecc->read_subpage) ||
5001 		(NAND_HAS_SUBPAGE_WRITE(chip) && !ecc->write_subpage &&
5002 		 ecc->hwctl && ecc->calculate));
5003 }
5004 
5005 /**
5006  * nand_scan_tail - [NAND Interface] Scan for the NAND device
5007  * @mtd: MTD device structure
5008  *
5009  * This is the second phase of the normal nand_scan() function. It fills out
5010  * all the uninitialized function pointers with the defaults and scans for a
5011  * bad block table if appropriate.
5012  */
nand_scan_tail(struct mtd_info * mtd)5013 int nand_scan_tail(struct mtd_info *mtd)
5014 {
5015 	int i;
5016 	struct nand_chip *chip = mtd_to_nand(mtd);
5017 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5018 	struct nand_buffers *nbuf;
5019 
5020 	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
5021 	BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
5022 			!(chip->bbt_options & NAND_BBT_USE_FLASH));
5023 
5024 	if (invalid_ecc_page_accessors(chip)) {
5025 		pr_err("Invalid ECC page accessors setup\n");
5026 		return -EINVAL;
5027 	}
5028 
5029 	if (!(chip->options & NAND_OWN_BUFFERS)) {
5030 		nbuf = kzalloc(sizeof(struct nand_buffers), GFP_KERNEL);
5031 		chip->buffers = nbuf;
5032 	} else {
5033 		if (!chip->buffers)
5034 			return -ENOMEM;
5035 	}
5036 
5037 	/* Set the internal oob buffer location, just after the page data */
5038 	chip->oob_poi = chip->buffers->databuf + mtd->writesize;
5039 
5040 	/*
5041 	 * If no default placement scheme is given, select an appropriate one.
5042 	 */
5043 	if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
5044 		switch (mtd->oobsize) {
5045 #ifndef CONFIG_SYS_NAND_DRIVER_ECC_LAYOUT
5046 		case 8:
5047 			ecc->layout = &nand_oob_8;
5048 			break;
5049 		case 16:
5050 			ecc->layout = &nand_oob_16;
5051 			break;
5052 		case 64:
5053 			ecc->layout = &nand_oob_64;
5054 			break;
5055 		case 128:
5056 			ecc->layout = &nand_oob_128;
5057 			break;
5058 #endif
5059 		default:
5060 			pr_warn("No oob scheme defined for oobsize %d\n",
5061 				   mtd->oobsize);
5062 			BUG();
5063 		}
5064 	}
5065 
5066 	if (!chip->write_page)
5067 		chip->write_page = nand_write_page;
5068 
5069 	/*
5070 	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
5071 	 * selected and we have 256 byte pagesize fallback to software ECC
5072 	 */
5073 
5074 	switch (ecc->mode) {
5075 	case NAND_ECC_HW_OOB_FIRST:
5076 		/* Similar to NAND_ECC_HW, but a separate read_page handle */
5077 		if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
5078 			pr_warn("No ECC functions supplied; hardware ECC not possible\n");
5079 			BUG();
5080 		}
5081 		if (!ecc->read_page)
5082 			ecc->read_page = nand_read_page_hwecc_oob_first;
5083 
5084 	case NAND_ECC_HW:
5085 		/* Use standard hwecc read page function? */
5086 		if (!ecc->read_page)
5087 			ecc->read_page = nand_read_page_hwecc;
5088 		if (!ecc->write_page)
5089 			ecc->write_page = nand_write_page_hwecc;
5090 		if (!ecc->read_page_raw)
5091 			ecc->read_page_raw = nand_read_page_raw;
5092 		if (!ecc->write_page_raw)
5093 			ecc->write_page_raw = nand_write_page_raw;
5094 		if (!ecc->read_oob)
5095 			ecc->read_oob = nand_read_oob_std;
5096 		if (!ecc->write_oob)
5097 			ecc->write_oob = nand_write_oob_std;
5098 		if (!ecc->read_subpage)
5099 			ecc->read_subpage = nand_read_subpage;
5100 		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
5101 			ecc->write_subpage = nand_write_subpage_hwecc;
5102 
5103 	case NAND_ECC_HW_SYNDROME:
5104 		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
5105 		    (!ecc->read_page ||
5106 		     ecc->read_page == nand_read_page_hwecc ||
5107 		     !ecc->write_page ||
5108 		     ecc->write_page == nand_write_page_hwecc)) {
5109 			pr_warn("No ECC functions supplied; hardware ECC not possible\n");
5110 			BUG();
5111 		}
5112 		/* Use standard syndrome read/write page function? */
5113 		if (!ecc->read_page)
5114 			ecc->read_page = nand_read_page_syndrome;
5115 		if (!ecc->write_page)
5116 			ecc->write_page = nand_write_page_syndrome;
5117 		if (!ecc->read_page_raw)
5118 			ecc->read_page_raw = nand_read_page_raw_syndrome;
5119 		if (!ecc->write_page_raw)
5120 			ecc->write_page_raw = nand_write_page_raw_syndrome;
5121 		if (!ecc->read_oob)
5122 			ecc->read_oob = nand_read_oob_syndrome;
5123 		if (!ecc->write_oob)
5124 			ecc->write_oob = nand_write_oob_syndrome;
5125 
5126 		if (mtd->writesize >= ecc->size) {
5127 			if (!ecc->strength) {
5128 				pr_warn("Driver must set ecc.strength when using hardware ECC\n");
5129 				BUG();
5130 			}
5131 			break;
5132 		}
5133 		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
5134 			ecc->size, mtd->writesize);
5135 		ecc->mode = NAND_ECC_SOFT;
5136 
5137 	case NAND_ECC_SOFT:
5138 		ecc->calculate = nand_calculate_ecc;
5139 		ecc->correct = nand_correct_data;
5140 		ecc->read_page = nand_read_page_swecc;
5141 		ecc->read_subpage = nand_read_subpage;
5142 		ecc->write_page = nand_write_page_swecc;
5143 		ecc->read_page_raw = nand_read_page_raw;
5144 		ecc->write_page_raw = nand_write_page_raw;
5145 		ecc->read_oob = nand_read_oob_std;
5146 		ecc->write_oob = nand_write_oob_std;
5147 		if (!ecc->size)
5148 			ecc->size = 256;
5149 		ecc->bytes = 3;
5150 		ecc->strength = 1;
5151 		break;
5152 
5153 	case NAND_ECC_SOFT_BCH:
5154 		if (!mtd_nand_has_bch()) {
5155 			pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
5156 			BUG();
5157 		}
5158 		ecc->calculate = nand_bch_calculate_ecc;
5159 		ecc->correct = nand_bch_correct_data;
5160 		ecc->read_page = nand_read_page_swecc;
5161 		ecc->read_subpage = nand_read_subpage;
5162 		ecc->write_page = nand_write_page_swecc;
5163 		ecc->read_page_raw = nand_read_page_raw;
5164 		ecc->write_page_raw = nand_write_page_raw;
5165 		ecc->read_oob = nand_read_oob_std;
5166 		ecc->write_oob = nand_write_oob_std;
5167 		/*
5168 		 * Board driver should supply ecc.size and ecc.strength values
5169 		 * to select how many bits are correctable. Otherwise, default
5170 		 * to 4 bits for large page devices.
5171 		 */
5172 		if (!ecc->size && (mtd->oobsize >= 64)) {
5173 			ecc->size = 512;
5174 			ecc->strength = 4;
5175 		}
5176 
5177 		/* See nand_bch_init() for details. */
5178 		ecc->bytes = 0;
5179 		ecc->priv = nand_bch_init(mtd);
5180 		if (!ecc->priv) {
5181 			pr_warn("BCH ECC initialization failed!\n");
5182 			BUG();
5183 		}
5184 		break;
5185 
5186 	case NAND_ECC_NONE:
5187 		pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
5188 		ecc->read_page = nand_read_page_raw;
5189 		ecc->write_page = nand_write_page_raw;
5190 		ecc->read_oob = nand_read_oob_std;
5191 		ecc->read_page_raw = nand_read_page_raw;
5192 		ecc->write_page_raw = nand_write_page_raw;
5193 		ecc->write_oob = nand_write_oob_std;
5194 		ecc->size = mtd->writesize;
5195 		ecc->bytes = 0;
5196 		ecc->strength = 0;
5197 		break;
5198 
5199 	default:
5200 		pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
5201 		BUG();
5202 	}
5203 
5204 	/* For many systems, the standard OOB write also works for raw */
5205 	if (!ecc->read_oob_raw)
5206 		ecc->read_oob_raw = ecc->read_oob;
5207 	if (!ecc->write_oob_raw)
5208 		ecc->write_oob_raw = ecc->write_oob;
5209 
5210 	/*
5211 	 * The number of bytes available for a client to place data into
5212 	 * the out of band area.
5213 	 */
5214 	mtd->oobavail = 0;
5215 	if (ecc->layout) {
5216 		for (i = 0; ecc->layout->oobfree[i].length; i++)
5217 			mtd->oobavail += ecc->layout->oobfree[i].length;
5218 	}
5219 
5220 	/* ECC sanity check: warn if it's too weak */
5221 	if (!nand_ecc_strength_good(mtd))
5222 		pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
5223 			mtd->name);
5224 
5225 	/*
5226 	 * Set the number of read / write steps for one page depending on ECC
5227 	 * mode.
5228 	 */
5229 	ecc->steps = mtd->writesize / ecc->size;
5230 	if (ecc->steps * ecc->size != mtd->writesize) {
5231 		pr_warn("Invalid ECC parameters\n");
5232 		BUG();
5233 	}
5234 	ecc->total = ecc->steps * ecc->bytes;
5235 
5236 	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
5237 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
5238 		switch (ecc->steps) {
5239 		case 2:
5240 			mtd->subpage_sft = 1;
5241 			break;
5242 		case 4:
5243 		case 8:
5244 		case 16:
5245 			mtd->subpage_sft = 2;
5246 			break;
5247 		}
5248 	}
5249 	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
5250 
5251 	/* Initialize state */
5252 	chip->state = FL_READY;
5253 
5254 	/* Invalidate the pagebuffer reference */
5255 	chip->pagebuf = -1;
5256 
5257 	/* Large page NAND with SOFT_ECC should support subpage reads */
5258 	switch (ecc->mode) {
5259 	case NAND_ECC_SOFT:
5260 	case NAND_ECC_SOFT_BCH:
5261 		if (chip->page_shift > 9)
5262 			chip->options |= NAND_SUBPAGE_READ;
5263 		break;
5264 
5265 	default:
5266 		break;
5267 	}
5268 
5269 	/* Fill in remaining MTD driver data */
5270 	mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
5271 	mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
5272 						MTD_CAP_NANDFLASH;
5273 	mtd->_erase = nand_erase;
5274 	mtd->_panic_write = panic_nand_write;
5275 	mtd->_read_oob = nand_read_oob;
5276 	mtd->_write_oob = nand_write_oob;
5277 	mtd->_sync = nand_sync;
5278 	mtd->_lock = NULL;
5279 	mtd->_unlock = NULL;
5280 	mtd->_block_isreserved = nand_block_isreserved;
5281 	mtd->_block_isbad = nand_block_isbad;
5282 	mtd->_block_markbad = nand_block_markbad;
5283 	mtd->writebufsize = mtd->writesize;
5284 
5285 	/* propagate ecc info to mtd_info */
5286 	mtd->ecclayout = ecc->layout;
5287 	mtd->ecc_strength = ecc->strength;
5288 	mtd->ecc_step_size = ecc->size;
5289 	/*
5290 	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
5291 	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
5292 	 * properly set.
5293 	 */
5294 	if (!mtd->bitflip_threshold)
5295 		mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
5296 
5297 	return 0;
5298 }
5299 EXPORT_SYMBOL(nand_scan_tail);
5300 
5301 /**
5302  * nand_scan - [NAND Interface] Scan for the NAND device
5303  * @mtd: MTD device structure
5304  * @maxchips: number of chips to scan for
5305  *
5306  * This fills out all the uninitialized function pointers with the defaults.
5307  * The flash ID is read and the mtd/chip structures are filled with the
5308  * appropriate values.
5309  */
nand_scan(struct mtd_info * mtd,int maxchips)5310 int nand_scan(struct mtd_info *mtd, int maxchips)
5311 {
5312 	int ret;
5313 
5314 	ret = nand_scan_ident(mtd, maxchips, NULL);
5315 	if (!ret)
5316 		ret = nand_scan_tail(mtd);
5317 	return ret;
5318 }
5319 EXPORT_SYMBOL(nand_scan);
5320 
5321 MODULE_LICENSE("GPL");
5322 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
5323 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
5324 MODULE_DESCRIPTION("Generic NAND flash driver code");
5325