1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * (C) Copyright 2013-2020
4 * NVIDIA Corporation <www.nvidia.com>
5 */
6
7 /* Tegra210 Clock control functions */
8
9 #include <common.h>
10 #include <errno.h>
11 #include <init.h>
12 #include <log.h>
13 #include <asm/cache.h>
14 #include <asm/io.h>
15 #include <asm/arch/clock.h>
16 #include <asm/arch/sysctr.h>
17 #include <asm/arch/tegra.h>
18 #include <asm/arch-tegra/clk_rst.h>
19 #include <asm/arch-tegra/timer.h>
20 #include <div64.h>
21 #include <fdtdec.h>
22 #include <linux/bitops.h>
23 #include <linux/delay.h>
24
25 /*
26 * Clock types that we can use as a source. The Tegra210 has muxes for the
27 * peripheral clocks, and in most cases there are four options for the clock
28 * source. This gives us a clock 'type' and exploits what commonality exists
29 * in the device.
30 *
31 * Letters are obvious, except for T which means CLK_M, and S which means the
32 * clock derived from 32KHz. Beware that CLK_M (also called OSC in the
33 * datasheet) and PLL_M are different things. The former is the basic
34 * clock supplied to the SOC from an external oscillator. The latter is the
35 * memory clock PLL.
36 *
37 * See definitions in clock_id in the header file.
38 */
39 enum clock_type_id {
40 CLOCK_TYPE_AXPT, /* PLL_A, PLL_X, PLL_P, CLK_M */
41 CLOCK_TYPE_MCPA, /* and so on */
42 CLOCK_TYPE_MCPT,
43 CLOCK_TYPE_PCM,
44 CLOCK_TYPE_PCMT,
45 CLOCK_TYPE_PDCT,
46 CLOCK_TYPE_ACPT,
47 CLOCK_TYPE_ASPTE,
48 CLOCK_TYPE_PDD2T,
49 CLOCK_TYPE_PCST,
50 CLOCK_TYPE_DP,
51
52 CLOCK_TYPE_PC2CC3M,
53 CLOCK_TYPE_PC2CC3S_T,
54 CLOCK_TYPE_PC2CC3M_T,
55 CLOCK_TYPE_PC2CC3M_T16, /* PC2CC3M_T, but w/16-bit divisor (I2C) */
56 CLOCK_TYPE_MC2CC3P_A,
57 CLOCK_TYPE_M,
58 CLOCK_TYPE_MCPTM2C2C3,
59 CLOCK_TYPE_PC2CC3T_S,
60 CLOCK_TYPE_AC2CC3P_TS2,
61 CLOCK_TYPE_PC01C00_C42C41TC40,
62
63 CLOCK_TYPE_COUNT,
64 CLOCK_TYPE_NONE = -1, /* invalid clock type */
65 };
66
67 enum {
68 CLOCK_MAX_MUX = 8 /* number of source options for each clock */
69 };
70
71 /*
72 * Clock source mux for each clock type. This just converts our enum into
73 * a list of mux sources for use by the code.
74 *
75 * Note:
76 * The extra column in each clock source array is used to store the mask
77 * bits in its register for the source.
78 */
79 #define CLK(x) CLOCK_ID_ ## x
80 static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX+1] = {
81 { CLK(AUDIO), CLK(XCPU), CLK(PERIPH), CLK(OSC),
82 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
83 MASK_BITS_31_30},
84 { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(AUDIO),
85 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
86 MASK_BITS_31_30},
87 { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
88 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
89 MASK_BITS_31_30},
90 { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(NONE),
91 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
92 MASK_BITS_31_30},
93 { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC),
94 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
95 MASK_BITS_31_30},
96 { CLK(PERIPH), CLK(DISPLAY), CLK(CGENERAL), CLK(OSC),
97 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
98 MASK_BITS_31_30},
99 { CLK(AUDIO), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
100 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
101 MASK_BITS_31_30},
102 { CLK(AUDIO), CLK(SFROM32KHZ), CLK(PERIPH), CLK(OSC),
103 CLK(EPCI), CLK(NONE), CLK(NONE), CLK(NONE),
104 MASK_BITS_31_29},
105 { CLK(PERIPH), CLK(NONE), CLK(DISPLAY), CLK(NONE),
106 CLK(NONE), CLK(DISPLAY2), CLK(OSC), CLK(NONE),
107 MASK_BITS_31_29},
108 { CLK(PERIPH), CLK(CGENERAL), CLK(SFROM32KHZ), CLK(OSC),
109 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
110 MASK_BITS_31_28},
111 /* CLOCK_TYPE_DP */
112 { CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
113 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
114 MASK_BITS_31_28},
115
116 /* Additional clock types on Tegra114+ */
117 /* CLOCK_TYPE_PC2CC3M */
118 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
119 CLK(MEMORY), CLK(NONE), CLK(NONE), CLK(NONE),
120 MASK_BITS_31_29},
121 /* CLOCK_TYPE_PC2CC3S_T */
122 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
123 CLK(SFROM32KHZ), CLK(NONE), CLK(OSC), CLK(NONE),
124 MASK_BITS_31_29},
125 /* CLOCK_TYPE_PC2CC3M_T */
126 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
127 CLK(MEMORY), CLK(NONE), CLK(OSC), CLK(NONE),
128 MASK_BITS_31_29},
129 /* CLOCK_TYPE_PC2CC3M_T, w/16-bit divisor (I2C) */
130 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
131 CLK(MEMORY), CLK(NONE), CLK(OSC), CLK(NONE),
132 MASK_BITS_31_29},
133 /* CLOCK_TYPE_MC2CC3P_A */
134 { CLK(MEMORY), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
135 CLK(PERIPH), CLK(NONE), CLK(AUDIO), CLK(NONE),
136 MASK_BITS_31_29},
137 /* CLOCK_TYPE_M */
138 { CLK(MEMORY), CLK(NONE), CLK(NONE), CLK(NONE),
139 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
140 MASK_BITS_31_30},
141 /* CLOCK_TYPE_MCPTM2C2C3 */
142 { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
143 CLK(MEMORY2), CLK(CGENERAL2), CLK(CGENERAL3), CLK(NONE),
144 MASK_BITS_31_29},
145 /* CLOCK_TYPE_PC2CC3T_S */
146 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
147 CLK(OSC), CLK(NONE), CLK(SFROM32KHZ), CLK(NONE),
148 MASK_BITS_31_29},
149 /* CLOCK_TYPE_AC2CC3P_TS2 */
150 { CLK(AUDIO), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
151 CLK(PERIPH), CLK(NONE), CLK(OSC), CLK(SRC2),
152 MASK_BITS_31_29},
153 /* CLOCK_TYPE_PC01C00_C42C41TC40 */
154 { CLK(PERIPH), CLK(CGENERAL_1), CLK(CGENERAL_0), CLK(NONE),
155 CLK(CGENERAL4_2), CLK(CGENERAL4_1), CLK(OSC), CLK(CGENERAL4_0),
156 MASK_BITS_31_29},
157 };
158
159 /*
160 * Clock type for each peripheral clock source. We put the name in each
161 * record just so it is easy to match things up
162 */
163 #define TYPE(name, type) type
164 static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
165 /* 0x00 */
166 TYPE(PERIPHC_I2S2, CLOCK_TYPE_AXPT),
167 TYPE(PERIPHC_I2S3, CLOCK_TYPE_AXPT),
168 TYPE(PERIPHC_SPDIF_OUT, CLOCK_TYPE_AXPT),
169 TYPE(PERIPHC_SPDIF_IN, CLOCK_TYPE_PC2CC3M),
170 TYPE(PERIPHC_PWM, CLOCK_TYPE_PC2CC3S_T),
171 TYPE(PERIPHC_05h, CLOCK_TYPE_NONE),
172 TYPE(PERIPHC_SBC2, CLOCK_TYPE_PC2CC3M_T),
173 TYPE(PERIPHC_SBC3, CLOCK_TYPE_PC2CC3M_T),
174
175 /* 0x08 */
176 TYPE(PERIPHC_08h, CLOCK_TYPE_NONE),
177 TYPE(PERIPHC_I2C1, CLOCK_TYPE_PC2CC3M_T16),
178 TYPE(PERIPHC_I2C5, CLOCK_TYPE_PC2CC3M_T16),
179 TYPE(PERIPHC_0bh, CLOCK_TYPE_NONE),
180 TYPE(PERIPHC_0ch, CLOCK_TYPE_NONE),
181 TYPE(PERIPHC_SBC1, CLOCK_TYPE_PC2CC3M_T),
182 TYPE(PERIPHC_DISP1, CLOCK_TYPE_PDD2T),
183 TYPE(PERIPHC_DISP2, CLOCK_TYPE_PDD2T),
184
185 /* 0x10 */
186 TYPE(PERIPHC_10h, CLOCK_TYPE_NONE),
187 TYPE(PERIPHC_11h, CLOCK_TYPE_NONE),
188 TYPE(PERIPHC_VI, CLOCK_TYPE_MC2CC3P_A),
189 TYPE(PERIPHC_13h, CLOCK_TYPE_NONE),
190 TYPE(PERIPHC_SDMMC1, CLOCK_TYPE_PC2CC3M_T),
191 TYPE(PERIPHC_SDMMC2, CLOCK_TYPE_PC2CC3M_T),
192 TYPE(PERIPHC_16h, CLOCK_TYPE_NONE),
193 TYPE(PERIPHC_17h, CLOCK_TYPE_NONE),
194
195 /* 0x18 */
196 TYPE(PERIPHC_18h, CLOCK_TYPE_NONE),
197 TYPE(PERIPHC_SDMMC4, CLOCK_TYPE_PC2CC3M_T),
198 TYPE(PERIPHC_VFIR, CLOCK_TYPE_PC2CC3M_T),
199 TYPE(PERIPHC_1Bh, CLOCK_TYPE_NONE),
200 TYPE(PERIPHC_1Ch, CLOCK_TYPE_NONE),
201 TYPE(PERIPHC_HSI, CLOCK_TYPE_PC2CC3M_T),
202 TYPE(PERIPHC_UART1, CLOCK_TYPE_PC2CC3M_T),
203 TYPE(PERIPHC_UART2, CLOCK_TYPE_PC2CC3M_T),
204
205 /* 0x20 */
206 TYPE(PERIPHC_HOST1X, CLOCK_TYPE_MC2CC3P_A),
207 TYPE(PERIPHC_21h, CLOCK_TYPE_NONE),
208 TYPE(PERIPHC_22h, CLOCK_TYPE_NONE),
209 TYPE(PERIPHC_23h, CLOCK_TYPE_NONE),
210 TYPE(PERIPHC_24h, CLOCK_TYPE_NONE),
211 TYPE(PERIPHC_25h, CLOCK_TYPE_NONE),
212 TYPE(PERIPHC_I2C2, CLOCK_TYPE_PC2CC3M_T16),
213 TYPE(PERIPHC_EMC, CLOCK_TYPE_MCPTM2C2C3),
214
215 /* 0x28 */
216 TYPE(PERIPHC_UART3, CLOCK_TYPE_PC2CC3M_T),
217 TYPE(PERIPHC_29h, CLOCK_TYPE_NONE),
218 TYPE(PERIPHC_VI_SENSOR, CLOCK_TYPE_MC2CC3P_A),
219 TYPE(PERIPHC_2bh, CLOCK_TYPE_NONE),
220 TYPE(PERIPHC_2ch, CLOCK_TYPE_NONE),
221 TYPE(PERIPHC_SBC4, CLOCK_TYPE_PC2CC3M_T),
222 TYPE(PERIPHC_I2C3, CLOCK_TYPE_PC2CC3M_T16),
223 TYPE(PERIPHC_SDMMC3, CLOCK_TYPE_PC2CC3M_T),
224
225 /* 0x30 */
226 TYPE(PERIPHC_UART4, CLOCK_TYPE_PC2CC3M_T),
227 TYPE(PERIPHC_UART5, CLOCK_TYPE_PC2CC3M_T),
228 TYPE(PERIPHC_VDE, CLOCK_TYPE_PC2CC3M_T),
229 TYPE(PERIPHC_OWR, CLOCK_TYPE_PC2CC3M_T),
230 TYPE(PERIPHC_NOR, CLOCK_TYPE_PC2CC3M_T),
231 TYPE(PERIPHC_CSITE, CLOCK_TYPE_PC2CC3M_T),
232 TYPE(PERIPHC_I2S1, CLOCK_TYPE_AXPT),
233 TYPE(PERIPHC_DTV, CLOCK_TYPE_NONE),
234
235 /* 0x38 */
236 TYPE(PERIPHC_38h, CLOCK_TYPE_NONE),
237 TYPE(PERIPHC_39h, CLOCK_TYPE_NONE),
238 TYPE(PERIPHC_3ah, CLOCK_TYPE_NONE),
239 TYPE(PERIPHC_3bh, CLOCK_TYPE_NONE),
240 TYPE(PERIPHC_MSENC, CLOCK_TYPE_MC2CC3P_A),
241 TYPE(PERIPHC_TSEC, CLOCK_TYPE_PC2CC3M_T),
242 TYPE(PERIPHC_3eh, CLOCK_TYPE_NONE),
243 TYPE(PERIPHC_OSC, CLOCK_TYPE_NONE),
244
245 /* 0x40 */
246 TYPE(PERIPHC_40h, CLOCK_TYPE_NONE), /* start with 0x3b0 */
247 TYPE(PERIPHC_MSELECT, CLOCK_TYPE_PC2CC3M_T),
248 TYPE(PERIPHC_TSENSOR, CLOCK_TYPE_PC2CC3T_S),
249 TYPE(PERIPHC_I2S4, CLOCK_TYPE_AXPT),
250 TYPE(PERIPHC_I2S5, CLOCK_TYPE_AXPT),
251 TYPE(PERIPHC_I2C4, CLOCK_TYPE_PC2CC3M_T16),
252 TYPE(PERIPHC_SBC5, CLOCK_TYPE_PC2CC3M_T),
253 TYPE(PERIPHC_SBC6, CLOCK_TYPE_PC2CC3M_T),
254
255 /* 0x48 */
256 TYPE(PERIPHC_AUDIO, CLOCK_TYPE_AC2CC3P_TS2),
257 TYPE(PERIPHC_49h, CLOCK_TYPE_NONE),
258 TYPE(PERIPHC_4ah, CLOCK_TYPE_NONE),
259 TYPE(PERIPHC_4bh, CLOCK_TYPE_NONE),
260 TYPE(PERIPHC_4ch, CLOCK_TYPE_NONE),
261 TYPE(PERIPHC_HDA2CODEC2X, CLOCK_TYPE_PC2CC3M_T),
262 TYPE(PERIPHC_ACTMON, CLOCK_TYPE_PC2CC3S_T),
263 TYPE(PERIPHC_EXTPERIPH1, CLOCK_TYPE_ASPTE),
264
265 /* 0x50 */
266 TYPE(PERIPHC_EXTPERIPH2, CLOCK_TYPE_ASPTE),
267 TYPE(PERIPHC_EXTPERIPH3, CLOCK_TYPE_ASPTE),
268 TYPE(PERIPHC_52h, CLOCK_TYPE_NONE),
269 TYPE(PERIPHC_I2CSLOW, CLOCK_TYPE_PC2CC3S_T),
270 TYPE(PERIPHC_SYS, CLOCK_TYPE_NONE),
271 TYPE(PERIPHC_55h, CLOCK_TYPE_NONE),
272 TYPE(PERIPHC_56h, CLOCK_TYPE_NONE),
273 TYPE(PERIPHC_57h, CLOCK_TYPE_NONE),
274
275 /* 0x58 */
276 TYPE(PERIPHC_58h, CLOCK_TYPE_NONE),
277 TYPE(PERIPHC_59h, CLOCK_TYPE_NONE),
278 TYPE(PERIPHC_5ah, CLOCK_TYPE_NONE),
279 TYPE(PERIPHC_5bh, CLOCK_TYPE_NONE),
280 TYPE(PERIPHC_SATAOOB, CLOCK_TYPE_PCMT),
281 TYPE(PERIPHC_SATA, CLOCK_TYPE_PCMT),
282 TYPE(PERIPHC_HDA, CLOCK_TYPE_PC2CC3M_T),
283 TYPE(PERIPHC_5fh, CLOCK_TYPE_NONE),
284
285 /* 0x60 */
286 TYPE(PERIPHC_XUSB_CORE_HOST, CLOCK_TYPE_NONE),
287 TYPE(PERIPHC_XUSB_FALCON, CLOCK_TYPE_NONE),
288 TYPE(PERIPHC_XUSB_FS, CLOCK_TYPE_NONE),
289 TYPE(PERIPHC_XUSB_CORE_DEV, CLOCK_TYPE_NONE),
290 TYPE(PERIPHC_XUSB_SS, CLOCK_TYPE_NONE),
291 TYPE(PERIPHC_CILAB, CLOCK_TYPE_NONE),
292 TYPE(PERIPHC_CILCD, CLOCK_TYPE_NONE),
293 TYPE(PERIPHC_CILE, CLOCK_TYPE_NONE),
294
295 /* 0x68 */
296 TYPE(PERIPHC_DSIA_LP, CLOCK_TYPE_NONE),
297 TYPE(PERIPHC_DSIB_LP, CLOCK_TYPE_NONE),
298 TYPE(PERIPHC_ENTROPY, CLOCK_TYPE_NONE),
299 TYPE(PERIPHC_DVFS_REF, CLOCK_TYPE_NONE),
300 TYPE(PERIPHC_DVFS_SOC, CLOCK_TYPE_NONE),
301 TYPE(PERIPHC_TRACECLKIN, CLOCK_TYPE_NONE),
302 TYPE(PERIPHC_6eh, CLOCK_TYPE_NONE),
303 TYPE(PERIPHC_6fh, CLOCK_TYPE_NONE),
304
305 /* 0x70 */
306 TYPE(PERIPHC_EMC_LATENCY, CLOCK_TYPE_NONE),
307 TYPE(PERIPHC_SOC_THERM, CLOCK_TYPE_NONE),
308 TYPE(PERIPHC_72h, CLOCK_TYPE_NONE),
309 TYPE(PERIPHC_73h, CLOCK_TYPE_NONE),
310 TYPE(PERIPHC_74h, CLOCK_TYPE_NONE),
311 TYPE(PERIPHC_75h, CLOCK_TYPE_NONE),
312 TYPE(PERIPHC_VI_SENSOR2, CLOCK_TYPE_NONE),
313 TYPE(PERIPHC_I2C6, CLOCK_TYPE_PC2CC3M_T16),
314
315 /* 0x78 */
316 TYPE(PERIPHC_78h, CLOCK_TYPE_NONE),
317 TYPE(PERIPHC_EMC_DLL, CLOCK_TYPE_MCPTM2C2C3),
318 TYPE(PERIPHC_7ah, CLOCK_TYPE_NONE),
319 TYPE(PERIPHC_CLK72MHZ, CLOCK_TYPE_NONE),
320 TYPE(PERIPHC_7ch, CLOCK_TYPE_NONE),
321 TYPE(PERIPHC_7dh, CLOCK_TYPE_NONE),
322 TYPE(PERIPHC_VIC, CLOCK_TYPE_NONE),
323 TYPE(PERIPHC_7Fh, CLOCK_TYPE_NONE),
324
325 /* 0x80 */
326 TYPE(PERIPHC_SDMMC_LEGACY_TM, CLOCK_TYPE_NONE),
327 TYPE(PERIPHC_NVDEC, CLOCK_TYPE_NONE),
328 TYPE(PERIPHC_NVJPG, CLOCK_TYPE_NONE),
329 TYPE(PERIPHC_NVENC, CLOCK_TYPE_NONE),
330 TYPE(PERIPHC_84h, CLOCK_TYPE_NONE),
331 TYPE(PERIPHC_85h, CLOCK_TYPE_NONE),
332 TYPE(PERIPHC_86h, CLOCK_TYPE_NONE),
333 TYPE(PERIPHC_87h, CLOCK_TYPE_NONE),
334
335 /* 0x88 */
336 TYPE(PERIPHC_88h, CLOCK_TYPE_NONE),
337 TYPE(PERIPHC_89h, CLOCK_TYPE_NONE),
338 TYPE(PERIPHC_DMIC3, CLOCK_TYPE_NONE),
339 TYPE(PERIPHC_APE, CLOCK_TYPE_NONE),
340 TYPE(PERIPHC_QSPI, CLOCK_TYPE_PC01C00_C42C41TC40),
341 TYPE(PERIPHC_VI_I2C, CLOCK_TYPE_PC2CC3M_T16),
342 TYPE(PERIPHC_USB2_HSIC_TRK, CLOCK_TYPE_NONE),
343 TYPE(PERIPHC_PEX_SATA_USB_RX_BYP, CLOCK_TYPE_NONE),
344
345 /* 0x90 */
346 TYPE(PERIPHC_MAUD, CLOCK_TYPE_NONE),
347 TYPE(PERIPHC_TSECB, CLOCK_TYPE_NONE),
348 };
349
350 /*
351 * This array translates a periph_id to a periphc_internal_id
352 *
353 * Not present/matched up:
354 * uint vi_sensor; _VI_SENSOR_0, 0x1A8
355 * SPDIF - which is both 0x08 and 0x0c
356 *
357 */
358 #define NONE(name) (-1)
359 #define OFFSET(name, value) PERIPHC_ ## name
360 #define INTERNAL_ID(id) (id & 0x000000ff)
361 static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
362 /* Low word: 31:0 */
363 NONE(CPU),
364 NONE(COP),
365 NONE(TRIGSYS),
366 NONE(ISPB),
367 NONE(RESERVED4),
368 NONE(TMR),
369 PERIPHC_UART1,
370 PERIPHC_UART2, /* and vfir 0x68 */
371
372 /* 8 */
373 NONE(GPIO),
374 PERIPHC_SDMMC2,
375 PERIPHC_SPDIF_IN,
376 PERIPHC_I2S2,
377 PERIPHC_I2C1,
378 NONE(RESERVED13),
379 PERIPHC_SDMMC1,
380 PERIPHC_SDMMC4,
381
382 /* 16 */
383 NONE(TCW),
384 PERIPHC_PWM,
385 PERIPHC_I2S3,
386 NONE(RESERVED19),
387 PERIPHC_VI,
388 NONE(RESERVED21),
389 NONE(USBD),
390 NONE(ISP),
391
392 /* 24 */
393 NONE(RESERVED24),
394 NONE(RESERVED25),
395 PERIPHC_DISP2,
396 PERIPHC_DISP1,
397 PERIPHC_HOST1X,
398 NONE(VCP),
399 PERIPHC_I2S1,
400 NONE(CACHE2),
401
402 /* Middle word: 63:32 */
403 NONE(MEM),
404 NONE(AHBDMA),
405 NONE(APBDMA),
406 NONE(RESERVED35),
407 NONE(RESERVED36),
408 NONE(STAT_MON),
409 NONE(RESERVED38),
410 NONE(FUSE),
411
412 /* 40 */
413 NONE(KFUSE),
414 PERIPHC_SBC1, /* SBCx = SPIx */
415 PERIPHC_NOR,
416 NONE(RESERVED43),
417 PERIPHC_SBC2,
418 NONE(XIO),
419 PERIPHC_SBC3,
420 PERIPHC_I2C5,
421
422 /* 48 */
423 NONE(DSI),
424 NONE(RESERVED49),
425 PERIPHC_HSI,
426 NONE(RESERVED51),
427 NONE(CSI),
428 NONE(RESERVED53),
429 PERIPHC_I2C2,
430 PERIPHC_UART3,
431
432 /* 56 */
433 NONE(MIPI_CAL),
434 PERIPHC_EMC,
435 NONE(USB2),
436 NONE(USB3),
437 NONE(RESERVED60),
438 PERIPHC_VDE,
439 NONE(BSEA),
440 NONE(BSEV),
441
442 /* Upper word 95:64 */
443 NONE(RESERVED64),
444 PERIPHC_UART4,
445 PERIPHC_UART5,
446 PERIPHC_I2C3,
447 PERIPHC_SBC4,
448 PERIPHC_SDMMC3,
449 NONE(PCIE),
450 PERIPHC_OWR,
451
452 /* 72 */
453 NONE(AFI),
454 PERIPHC_CSITE,
455 NONE(PCIEXCLK),
456 NONE(AVPUCQ),
457 NONE(LA),
458 NONE(TRACECLKIN),
459 NONE(SOC_THERM),
460 NONE(DTV),
461
462 /* 80 */
463 NONE(RESERVED80),
464 PERIPHC_I2CSLOW,
465 NONE(DSIB),
466 PERIPHC_TSEC,
467 NONE(RESERVED84),
468 NONE(RESERVED85),
469 NONE(RESERVED86),
470 NONE(EMUCIF),
471
472 /* 88 */
473 NONE(RESERVED88),
474 NONE(XUSB_HOST),
475 NONE(RESERVED90),
476 PERIPHC_MSENC,
477 NONE(RESERVED92),
478 NONE(RESERVED93),
479 NONE(RESERVED94),
480 NONE(XUSB_DEV),
481
482 /* V word: 31:0 */
483 NONE(CPUG),
484 NONE(CPULP),
485 NONE(V_RESERVED2),
486 PERIPHC_MSELECT,
487 NONE(V_RESERVED4),
488 PERIPHC_I2S4,
489 PERIPHC_I2S5,
490 PERIPHC_I2C4,
491
492 /* 104 */
493 PERIPHC_SBC5,
494 PERIPHC_SBC6,
495 PERIPHC_AUDIO,
496 NONE(APBIF),
497 NONE(V_RESERVED12),
498 NONE(V_RESERVED13),
499 NONE(V_RESERVED14),
500 PERIPHC_HDA2CODEC2X,
501
502 /* 112 */
503 NONE(ATOMICS),
504 NONE(V_RESERVED17),
505 NONE(V_RESERVED18),
506 NONE(V_RESERVED19),
507 NONE(V_RESERVED20),
508 NONE(V_RESERVED21),
509 NONE(V_RESERVED22),
510 PERIPHC_ACTMON,
511
512 /* 120 */
513 NONE(EXTPERIPH1),
514 NONE(EXTPERIPH2),
515 NONE(EXTPERIPH3),
516 NONE(OOB),
517 PERIPHC_SATA,
518 PERIPHC_HDA,
519 NONE(TZRAM),
520 NONE(SE),
521
522 /* W word: 31:0 */
523 NONE(HDA2HDMICODEC),
524 NONE(SATACOLD),
525 NONE(W_RESERVED2),
526 NONE(W_RESERVED3),
527 NONE(W_RESERVED4),
528 NONE(W_RESERVED5),
529 NONE(W_RESERVED6),
530 NONE(W_RESERVED7),
531
532 /* 136 */
533 NONE(CEC),
534 NONE(W_RESERVED9),
535 NONE(W_RESERVED10),
536 NONE(W_RESERVED11),
537 NONE(W_RESERVED12),
538 NONE(W_RESERVED13),
539 NONE(XUSB_PADCTL),
540 NONE(W_RESERVED15),
541
542 /* 144 */
543 NONE(W_RESERVED16),
544 NONE(W_RESERVED17),
545 NONE(W_RESERVED18),
546 NONE(W_RESERVED19),
547 NONE(W_RESERVED20),
548 NONE(ENTROPY),
549 NONE(DDS),
550 NONE(W_RESERVED23),
551
552 /* 152 */
553 NONE(W_RESERVED24),
554 NONE(W_RESERVED25),
555 NONE(W_RESERVED26),
556 NONE(DVFS),
557 NONE(XUSB_SS),
558 NONE(W_RESERVED29),
559 NONE(W_RESERVED30),
560 NONE(W_RESERVED31),
561
562 /* X word: 31:0 */
563 NONE(SPARE),
564 NONE(X_RESERVED1),
565 NONE(X_RESERVED2),
566 NONE(X_RESERVED3),
567 NONE(CAM_MCLK),
568 NONE(CAM_MCLK2),
569 PERIPHC_I2C6,
570 NONE(X_RESERVED7),
571
572 /* 168 */
573 NONE(X_RESERVED8),
574 NONE(X_RESERVED9),
575 NONE(X_RESERVED10),
576 NONE(VIM2_CLK),
577 NONE(X_RESERVED12),
578 NONE(X_RESERVED13),
579 NONE(EMC_DLL),
580 NONE(X_RESERVED15),
581
582 /* 176 */
583 NONE(X_RESERVED16),
584 NONE(CLK72MHZ),
585 NONE(VIC),
586 NONE(X_RESERVED19),
587 NONE(X_RESERVED20),
588 NONE(DPAUX),
589 NONE(SOR0),
590 NONE(X_RESERVED23),
591
592 /* 184 */
593 NONE(GPU),
594 NONE(X_RESERVED25),
595 NONE(X_RESERVED26),
596 NONE(X_RESERVED27),
597 NONE(X_RESERVED28),
598 NONE(X_RESERVED29),
599 NONE(X_RESERVED30),
600 NONE(X_RESERVED31),
601
602 /* Y: 192 (192 - 223) */
603 NONE(Y_RESERVED0),
604 PERIPHC_SDMMC_LEGACY_TM,
605 PERIPHC_NVDEC,
606 PERIPHC_NVJPG,
607 NONE(Y_RESERVED4),
608 PERIPHC_DMIC3, /* 197 */
609 PERIPHC_APE, /* 198 */
610 NONE(Y_RESERVED7),
611
612 /* 200 */
613 NONE(Y_RESERVED8),
614 NONE(Y_RESERVED9),
615 NONE(Y_RESERVED10),
616 NONE(Y_RESERVED11),
617 NONE(Y_RESERVED12),
618 NONE(Y_RESERVED13),
619 NONE(Y_RESERVED14),
620 NONE(Y_RESERVED15),
621
622 /* 208 */
623 PERIPHC_VI_I2C, /* 208 */
624 NONE(Y_RESERVED17),
625 NONE(Y_RESERVED18),
626 PERIPHC_QSPI, /* 211 */
627 NONE(Y_RESERVED20),
628 NONE(Y_RESERVED21),
629 NONE(Y_RESERVED22),
630 NONE(Y_RESERVED23),
631
632 /* 216 */
633 NONE(Y_RESERVED24),
634 NONE(Y_RESERVED25),
635 NONE(Y_RESERVED26),
636 PERIPHC_NVENC, /* 219 */
637 NONE(Y_RESERVED28),
638 NONE(Y_RESERVED29),
639 NONE(Y_RESERVED30),
640 NONE(Y_RESERVED31),
641 };
642
643 /*
644 * PLL divider shift/mask tables for all PLL IDs.
645 */
646 struct clk_pll_info tegra_pll_info_table[CLOCK_ID_PLL_COUNT] = {
647 /*
648 * NOTE: If kcp_mask/kvco_mask == 0, they're not used in that PLL (PLLC, etc.)
649 * If lock_ena or lock_det are >31, they're not used in that PLL (PLLC, etc.)
650 */
651 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 10, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
652 .lock_ena = 32, .lock_det = 27, .kcp_shift = 0, .kcp_mask = 0, .kvco_shift = 0, .kvco_mask = 0 }, /* PLLC */
653 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
654 .lock_ena = 4, .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 }, /* PLLM */
655 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 10, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
656 .lock_ena = 18, .lock_det = 27, .kcp_shift = 0, .kcp_mask = 3, .kvco_shift = 2, .kvco_mask = 1 }, /* PLLP */
657 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
658 .lock_ena = 28, .lock_det = 27, .kcp_shift = 25, .kcp_mask = 3, .kvco_shift = 24, .kvco_mask = 1 }, /* PLLA */
659 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 16, .p_mask = 0x1F,
660 .lock_ena = 29, .lock_det = 27, .kcp_shift = 25, .kcp_mask = 3, .kvco_shift = 24, .kvco_mask = 1 }, /* PLLU */
661 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 11, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x07,
662 .lock_ena = 18, .lock_det = 27, .kcp_shift = 23, .kcp_mask = 3, .kvco_shift = 22, .kvco_mask = 1 }, /* PLLD */
663 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
664 .lock_ena = 18, .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 }, /* PLLX */
665 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 0, .p_mask = 0,
666 .lock_ena = 9, .lock_det = 11, .kcp_shift = 6, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 }, /* PLLE */
667 { .m_shift = 0, .m_mask = 0, .n_shift = 0, .n_mask = 0, .p_shift = 0, .p_mask = 0,
668 .lock_ena = 0, .lock_det = 0, .kcp_shift = 0, .kcp_mask = 0, .kvco_shift = 0, .kvco_mask = 0 }, /* PLLS (gone)*/
669 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 19, .p_mask = 0x1F,
670 .lock_ena = 30, .lock_det = 27, .kcp_shift = 25, .kcp_mask = 3, .kvco_shift = 24, .kvco_mask = 1 }, /* PLLDP */
671 };
672
673 /*
674 * Get the oscillator frequency, from the corresponding hardware configuration
675 * field. Note that Tegra30+ support 3 new higher freqs, but we map back
676 * to the old T20 freqs. Support for the higher oscillators is TBD.
677 */
clock_get_osc_freq(void)678 enum clock_osc_freq clock_get_osc_freq(void)
679 {
680 struct clk_rst_ctlr *clkrst =
681 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
682 u32 reg;
683
684 reg = readl(&clkrst->crc_osc_ctrl);
685 reg = (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
686 /*
687 * 0 = 13MHz, 1 = 16.8MHz, 4 = 19.2MHz, 5 = 38.4MHz,
688 * 8 = 12MHz, 9 = 48MHz, 12 = 26MHz
689 */
690 if (reg == 5) {
691 debug("OSC_FREQ is 38.4MHz (%d) ...\n", reg);
692 /* Map it to the 5th CLOCK_OSC_ enum, i.e. 4 */
693 return 4;
694 }
695
696 /*
697 * Map to most common (T20) freqs (except 38.4, handled above):
698 * 13/16.8 = 0, 19.2 = 1, 12/48 = 2, 26 = 3
699 */
700 return reg >> 2;
701 }
702
703 /* Returns a pointer to the clock source register for a peripheral */
get_periph_source_reg(enum periph_id periph_id)704 u32 *get_periph_source_reg(enum periph_id periph_id)
705 {
706 struct clk_rst_ctlr *clkrst =
707 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
708 enum periphc_internal_id internal_id;
709
710 /* Coresight is a special case */
711 if (periph_id == PERIPH_ID_CSI)
712 return &clkrst->crc_clk_src[PERIPH_ID_CSI+1];
713
714 assert(periph_id >= PERIPH_ID_FIRST && periph_id < PERIPH_ID_COUNT);
715 internal_id = INTERNAL_ID(periph_id_to_internal_id[periph_id]);
716 assert(internal_id != -1);
717
718 if (internal_id < PERIPHC_VW_FIRST)
719 /* L, H, U */
720 return &clkrst->crc_clk_src[internal_id];
721
722 if (internal_id < PERIPHC_X_FIRST) {
723 /* VW */
724 internal_id -= PERIPHC_VW_FIRST;
725 return &clkrst->crc_clk_src_vw[internal_id];
726 }
727
728 if (internal_id < PERIPHC_Y_FIRST) {
729 /* X */
730 internal_id -= PERIPHC_X_FIRST;
731 return &clkrst->crc_clk_src_x[internal_id];
732 }
733
734 /* Y */
735 internal_id -= PERIPHC_Y_FIRST;
736 return &clkrst->crc_clk_src_y[internal_id];
737 }
738
get_periph_clock_info(enum periph_id periph_id,int * mux_bits,int * divider_bits,int * type)739 int get_periph_clock_info(enum periph_id periph_id, int *mux_bits,
740 int *divider_bits, int *type)
741 {
742 enum periphc_internal_id internal_id;
743
744 if (!clock_periph_id_isvalid(periph_id))
745 return -1;
746
747 internal_id = INTERNAL_ID(periph_id_to_internal_id[periph_id]);
748 if (!periphc_internal_id_isvalid(internal_id))
749 return -1;
750
751 *type = clock_periph_type[internal_id];
752 if (!clock_type_id_isvalid(*type))
753 return -1;
754
755 *mux_bits = clock_source[*type][CLOCK_MAX_MUX];
756
757 if (*type == CLOCK_TYPE_PC2CC3M_T16)
758 *divider_bits = 16;
759 else
760 *divider_bits = 8;
761
762 return 0;
763 }
764
get_periph_clock_id(enum periph_id periph_id,int source)765 enum clock_id get_periph_clock_id(enum periph_id periph_id, int source)
766 {
767 enum periphc_internal_id internal_id;
768 int type;
769
770 if (!clock_periph_id_isvalid(periph_id))
771 return CLOCK_ID_NONE;
772
773 internal_id = INTERNAL_ID(periph_id_to_internal_id[periph_id]);
774 if (!periphc_internal_id_isvalid(internal_id))
775 return CLOCK_ID_NONE;
776
777 type = clock_periph_type[internal_id];
778 if (!clock_type_id_isvalid(type))
779 return CLOCK_ID_NONE;
780
781 return clock_source[type][source];
782 }
783
784 /**
785 * Given a peripheral ID and the required source clock, this returns which
786 * value should be programmed into the source mux for that peripheral.
787 *
788 * There is special code here to handle the one source type with 5 sources.
789 *
790 * @param periph_id peripheral to start
791 * @param source PLL id of required parent clock
792 * @param mux_bits Set to number of bits in mux register: 2 or 4
793 * @param divider_bits Set to number of divider bits (8 or 16)
794 * @return mux value (0-4, or -1 if not found)
795 */
get_periph_clock_source(enum periph_id periph_id,enum clock_id parent,int * mux_bits,int * divider_bits)796 int get_periph_clock_source(enum periph_id periph_id,
797 enum clock_id parent, int *mux_bits, int *divider_bits)
798 {
799 enum clock_type_id type;
800 int mux, err;
801
802 err = get_periph_clock_info(periph_id, mux_bits, divider_bits, &type);
803 assert(!err);
804
805 for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
806 if (clock_source[type][mux] == parent)
807 return mux;
808
809 /* if we get here, either us or the caller has made a mistake */
810 printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
811 parent);
812 return -1;
813 }
814
clock_set_enable(enum periph_id periph_id,int enable)815 void clock_set_enable(enum periph_id periph_id, int enable)
816 {
817 struct clk_rst_ctlr *clkrst =
818 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
819 u32 *clk;
820 u32 reg;
821
822 /* Enable/disable the clock to this peripheral */
823 assert(clock_periph_id_isvalid(periph_id));
824 if ((int)periph_id < (int)PERIPH_ID_VW_FIRST)
825 clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
826 else if ((int)periph_id < (int)PERIPH_ID_X_FIRST)
827 clk = &clkrst->crc_clk_out_enb_vw[PERIPH_REG(periph_id)];
828 else if ((int)periph_id < (int)PERIPH_ID_Y_FIRST)
829 clk = &clkrst->crc_clk_out_enb_x;
830 else
831 clk = &clkrst->crc_clk_out_enb_y;
832
833 reg = readl(clk);
834 if (enable)
835 reg |= PERIPH_MASK(periph_id);
836 else
837 reg &= ~PERIPH_MASK(periph_id);
838 writel(reg, clk);
839 }
840
reset_set_enable(enum periph_id periph_id,int enable)841 void reset_set_enable(enum periph_id periph_id, int enable)
842 {
843 struct clk_rst_ctlr *clkrst =
844 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
845 u32 *reset;
846 u32 reg;
847
848 /* Enable/disable reset to the peripheral */
849 assert(clock_periph_id_isvalid(periph_id));
850 if (periph_id < PERIPH_ID_VW_FIRST)
851 reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
852 else if ((int)periph_id < (int)PERIPH_ID_X_FIRST)
853 reset = &clkrst->crc_rst_dev_vw[PERIPH_REG(periph_id)];
854 else if ((int)periph_id < (int)PERIPH_ID_Y_FIRST)
855 reset = &clkrst->crc_rst_devices_x;
856 else
857 reset = &clkrst->crc_rst_devices_y;
858
859 reg = readl(reset);
860 if (enable)
861 reg |= PERIPH_MASK(periph_id);
862 else
863 reg &= ~PERIPH_MASK(periph_id);
864 writel(reg, reset);
865 }
866
867 #ifdef CONFIG_OF_CONTROL
868 /*
869 * Convert a device tree clock ID to our peripheral ID. They are mostly
870 * the same but we are very cautious so we check that a valid clock ID is
871 * provided.
872 *
873 * @param clk_id Clock ID according to tegra210 device tree binding
874 * @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
875 */
clk_id_to_periph_id(int clk_id)876 enum periph_id clk_id_to_periph_id(int clk_id)
877 {
878 if (clk_id > PERIPH_ID_COUNT)
879 return PERIPH_ID_NONE;
880
881 switch (clk_id) {
882 case PERIPH_ID_RESERVED4:
883 case PERIPH_ID_RESERVED25:
884 case PERIPH_ID_RESERVED35:
885 case PERIPH_ID_RESERVED36:
886 case PERIPH_ID_RESERVED38:
887 case PERIPH_ID_RESERVED43:
888 case PERIPH_ID_RESERVED49:
889 case PERIPH_ID_RESERVED53:
890 case PERIPH_ID_RESERVED64:
891 case PERIPH_ID_RESERVED84:
892 case PERIPH_ID_RESERVED85:
893 case PERIPH_ID_RESERVED86:
894 case PERIPH_ID_RESERVED88:
895 case PERIPH_ID_RESERVED90:
896 case PERIPH_ID_RESERVED92:
897 case PERIPH_ID_RESERVED93:
898 case PERIPH_ID_RESERVED94:
899 case PERIPH_ID_V_RESERVED2:
900 case PERIPH_ID_V_RESERVED4:
901 case PERIPH_ID_V_RESERVED17:
902 case PERIPH_ID_V_RESERVED18:
903 case PERIPH_ID_V_RESERVED19:
904 case PERIPH_ID_V_RESERVED20:
905 case PERIPH_ID_V_RESERVED21:
906 case PERIPH_ID_V_RESERVED22:
907 case PERIPH_ID_W_RESERVED2:
908 case PERIPH_ID_W_RESERVED3:
909 case PERIPH_ID_W_RESERVED4:
910 case PERIPH_ID_W_RESERVED5:
911 case PERIPH_ID_W_RESERVED6:
912 case PERIPH_ID_W_RESERVED7:
913 case PERIPH_ID_W_RESERVED9:
914 case PERIPH_ID_W_RESERVED10:
915 case PERIPH_ID_W_RESERVED11:
916 case PERIPH_ID_W_RESERVED12:
917 case PERIPH_ID_W_RESERVED13:
918 case PERIPH_ID_W_RESERVED15:
919 case PERIPH_ID_W_RESERVED16:
920 case PERIPH_ID_W_RESERVED17:
921 case PERIPH_ID_W_RESERVED18:
922 case PERIPH_ID_W_RESERVED19:
923 case PERIPH_ID_W_RESERVED20:
924 case PERIPH_ID_W_RESERVED23:
925 case PERIPH_ID_W_RESERVED29:
926 case PERIPH_ID_W_RESERVED30:
927 case PERIPH_ID_W_RESERVED31:
928 return PERIPH_ID_NONE;
929 default:
930 return clk_id;
931 }
932 }
933 #endif /* CONFIG_OF_CONTROL */
934
935 /*
936 * T210 redefines PLLP_OUT2 as PLLP_VCO/DIVP, so do different OUT1-4 setup here.
937 * PLLP_BASE/MISC/etc. is already set up for 408MHz in the BootROM.
938 */
tegra210_setup_pllp(void)939 void tegra210_setup_pllp(void)
940 {
941 struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
942 u32 reg;
943
944 /* Set PLLP_OUT1, 3 & 4 freqs to 9.6, 102 & 204MHz */
945
946 /* OUT1 */
947 /* Assert RSTN before enable */
948 reg = PLLP_OUT1_RSTN_EN;
949 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
950 /* Set divisor and reenable */
951 reg = (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO)
952 | PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS;
953 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
954
955 /* OUT3, 4 */
956 /* Assert RSTN before enable */
957 reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN;
958 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
959 /* Set divisor and reenable */
960 reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO)
961 | PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS
962 | (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO)
963 | PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS;
964 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
965
966 /*
967 * NOTE: If you want to change PLLP_OUT2 away from 204MHz,
968 * you can change PLLP_BASE DIVP here. Currently defaults
969 * to 1, which is 2^1, or 2, so PLLP_OUT2 is 204MHz.
970 * See Table 13 in section 5.1.4 in T210 TRM for more info.
971 */
972 }
973
clock_early_init(void)974 void clock_early_init(void)
975 {
976 struct clk_rst_ctlr *clkrst =
977 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
978 struct clk_pll_info *pllinfo = &tegra_pll_info_table[CLOCK_ID_DISPLAY];
979 u32 data;
980
981 tegra210_setup_pllp();
982
983 /*
984 * PLLC output frequency set to 600Mhz
985 * PLLD output frequency set to 925Mhz
986 */
987 switch (clock_get_osc_freq()) {
988 case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
989 clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8);
990 clock_set_rate(CLOCK_ID_DISPLAY, 925, 12, 0, 12);
991 break;
992
993 case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
994 clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
995 clock_set_rate(CLOCK_ID_DISPLAY, 925, 26, 0, 12);
996 break;
997
998 case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
999 clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
1000 clock_set_rate(CLOCK_ID_DISPLAY, 925, 13, 0, 12);
1001 break;
1002 case CLOCK_OSC_FREQ_19_2:
1003 clock_set_rate(CLOCK_ID_CGENERAL, 125, 4, 0, 0);
1004 clock_set_rate(CLOCK_ID_DISPLAY, 96, 2, 0, 12);
1005 break;
1006 case CLOCK_OSC_FREQ_38_4:
1007 clock_set_rate(CLOCK_ID_CGENERAL, 125, 8, 0, 0);
1008 clock_set_rate(CLOCK_ID_DISPLAY, 96, 4, 0, 0);
1009 break;
1010 default:
1011 /*
1012 * These are not supported. It is too early to print a
1013 * message and the UART likely won't work anyway due to the
1014 * oscillator being wrong.
1015 */
1016 break;
1017 }
1018
1019 /* PLLC_MISC1: Turn IDDQ off. NOTE: T210 PLLC_MISC_1 maps to pll_misc */
1020 clrbits_le32(&clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_misc,
1021 (1 << PLLC_IDDQ));
1022 udelay(2);
1023
1024 /*
1025 * PLLC_MISC: Take PLLC out of reset. NOTE: T210 PLLC_MISC maps
1026 * to pll_out[1]
1027 */
1028 clrbits_le32(&clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_out[1],
1029 (1 << PLLC_RESET));
1030 udelay(2);
1031
1032 /* PLLD_MISC: Set CLKENABLE and LOCK_DETECT bits */
1033 data = (1 << PLLD_ENABLE_CLK) | (1 << pllinfo->lock_ena);
1034 writel(data, &clkrst->crc_pll[CLOCK_ID_DISPLAY].pll_misc);
1035 udelay(2);
1036 }
1037
clk_m_get_rate(unsigned parent_rate)1038 unsigned int clk_m_get_rate(unsigned parent_rate)
1039 {
1040 struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
1041 u32 value, div;
1042
1043 value = readl(&clkrst->crc_spare_reg0);
1044 div = ((value >> 2) & 0x3) + 1;
1045
1046 return parent_rate / div;
1047 }
1048
arch_timer_init(void)1049 void arch_timer_init(void)
1050 {
1051 struct sysctr_ctlr *sysctr = (struct sysctr_ctlr *)NV_PA_TSC_BASE;
1052 u32 freq, val;
1053
1054 freq = clock_get_rate(CLOCK_ID_CLK_M);
1055 debug("%s: clk_m freq is %dHz [0x%08X]\n", __func__, freq, freq);
1056
1057 if (current_el() == 3)
1058 asm("msr cntfrq_el0, %0\n" : : "r" (freq));
1059
1060 /* Only Tegra114+ has the System Counter regs */
1061 debug("%s: setting CNTFID0 to 0x%08X\n", __func__, freq);
1062 writel(freq, &sysctr->cntfid0);
1063
1064 val = readl(&sysctr->cntcr);
1065 val |= TSC_CNTCR_ENABLE | TSC_CNTCR_HDBG;
1066 writel(val, &sysctr->cntcr);
1067 debug("%s: TSC CNTCR = 0x%08X\n", __func__, val);
1068 }
1069
1070 #define PLLREFE_MISC 0x4c8
1071 #define PLLREFE_MISC_LOCK BIT(27)
1072 #define PLLREFE_MISC_IDDQ BIT(24)
1073
1074 #define PLLREFE_BASE 0x4c4
1075 #define PLLREFE_BASE_BYPASS BIT(31)
1076 #define PLLREFE_BASE_ENABLE BIT(30)
1077 #define PLLREFE_BASE_REF_DIS BIT(29)
1078 #define PLLREFE_BASE_KCP(kcp) (((kcp) & 0x3) << 27)
1079 #define PLLREFE_BASE_KVCO BIT(26)
1080 #define PLLREFE_BASE_DIVP(p) (((p) & 0x1f) << 16)
1081 #define PLLREFE_BASE_DIVN(n) (((n) & 0xff) << 8)
1082 #define PLLREFE_BASE_DIVM(m) (((m) & 0xff) << 0)
1083
tegra_pllref_enable(void)1084 static int tegra_pllref_enable(void)
1085 {
1086 u32 value;
1087 unsigned long start;
1088
1089 /*
1090 * This sequence comes from Tegra X1 TRM section "Cold Boot, with no
1091 * Recovery Mode or Boot from USB", sub-section "PLLREFE".
1092 */
1093
1094 value = readl(NV_PA_CLK_RST_BASE + PLLREFE_MISC);
1095 value &= ~PLLREFE_MISC_IDDQ;
1096 writel(value, NV_PA_CLK_RST_BASE + PLLREFE_MISC);
1097
1098 udelay(5);
1099
1100 value = PLLREFE_BASE_ENABLE |
1101 PLLREFE_BASE_KCP(0) |
1102 PLLREFE_BASE_DIVP(0) |
1103 PLLREFE_BASE_DIVN(0x41) |
1104 PLLREFE_BASE_DIVM(4);
1105 writel(value, NV_PA_CLK_RST_BASE + PLLREFE_BASE);
1106
1107 debug("waiting for pllrefe lock\n");
1108 start = get_timer(0);
1109 while (get_timer(start) < 250) {
1110 value = readl(NV_PA_CLK_RST_BASE + PLLREFE_MISC);
1111 if (value & PLLREFE_MISC_LOCK)
1112 break;
1113 }
1114 if (!(value & PLLREFE_MISC_LOCK)) {
1115 debug(" timeout\n");
1116 return -ETIMEDOUT;
1117 }
1118 debug(" done\n");
1119
1120 return 0;
1121 }
1122
1123 #define PLLE_SS_CNTL 0x68
1124 #define PLLE_SS_CNTL_SSCINCINTR(x) (((x) & 0x3f) << 24)
1125 #define PLLE_SS_CNTL_SSCINC(x) (((x) & 0xff) << 16)
1126 #define PLLE_SS_CNTL_SSCINVERT (1 << 15)
1127 #define PLLE_SS_CNTL_SSCCENTER (1 << 14)
1128 #define PLLE_SS_CNTL_SSCBYP (1 << 12)
1129 #define PLLE_SS_CNTL_INTERP_RESET (1 << 11)
1130 #define PLLE_SS_CNTL_BYPASS_SS (1 << 10)
1131 #define PLLE_SS_CNTL_SSCMAX(x) (((x) & 0x1ff) << 0)
1132
1133 #define PLLE_BASE 0x0e8
1134 #define PLLE_BASE_ENABLE (1 << 31)
1135 #define PLLE_BASE_PLDIV_CML(x) (((x) & 0x1f) << 24)
1136 #define PLLE_BASE_NDIV(x) (((x) & 0xff) << 8)
1137 #define PLLE_BASE_MDIV(x) (((x) & 0xff) << 0)
1138
1139 #define PLLE_MISC 0x0ec
1140 #define PLLE_MISC_IDDQ_SWCTL (1 << 14)
1141 #define PLLE_MISC_IDDQ_OVERRIDE_VALUE (1 << 13)
1142 #define PLLE_MISC_LOCK (1 << 11)
1143 #define PLLE_PTS (1 << 8)
1144 #define PLLE_MISC_KCP(x) (((x) & 0x3) << 6)
1145 #define PLLE_MISC_VREG_CTRL(x) (((x) & 0x3) << 2)
1146 #define PLLE_MISC_KVCO (1 << 0)
1147
1148 #define PLLE_AUX 0x48c
1149 #define PLLE_AUX_SS_SEQ_INCLUDE (1 << 31)
1150 #define PLLE_AUX_REF_SEL_PLLREFE (1 << 28)
1151 #define PLLE_AUX_SEQ_ENABLE (1 << 24)
1152 #define PLLE_AUX_SS_SWCTL (1 << 6)
1153 #define PLLE_AUX_ENABLE_SWCTL (1 << 4)
1154 #define PLLE_AUX_USE_LOCKDET (1 << 3)
1155
tegra_plle_enable(void)1156 int tegra_plle_enable(void)
1157 {
1158 u32 value;
1159 unsigned long start;
1160
1161 /* PLLREF feeds PLLE */
1162 tegra_pllref_enable();
1163
1164 /*
1165 * This sequence comes from Tegra X1 TRM section "Cold Boot, with no
1166 * Recovery Mode or Boot from USB", sub-section "PLLEs".
1167 */
1168
1169 /* 1. Select XTAL as the source */
1170
1171 value = readl(NV_PA_CLK_RST_BASE + PLLE_AUX);
1172 value &= ~PLLE_AUX_REF_SEL_PLLREFE;
1173 writel(value, NV_PA_CLK_RST_BASE + PLLE_AUX);
1174
1175 value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
1176 value &= ~PLLE_MISC_IDDQ_OVERRIDE_VALUE;
1177 writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
1178
1179 /* 2. Wait 5 us */
1180 udelay(5);
1181
1182 /*
1183 * 3. Program the following registers to generate a low jitter 100MHz
1184 * clock.
1185 */
1186
1187 value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
1188 value &= ~PLLE_BASE_PLDIV_CML(0x1f);
1189 value &= ~PLLE_BASE_NDIV(0xff);
1190 value &= ~PLLE_BASE_MDIV(0xff);
1191 value |= PLLE_BASE_PLDIV_CML(0xe);
1192 value |= PLLE_BASE_NDIV(0x7d);
1193 value |= PLLE_BASE_MDIV(2);
1194 writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
1195
1196 value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
1197 value |= PLLE_PTS;
1198 value &= ~PLLE_MISC_KCP(3);
1199 value &= ~PLLE_MISC_VREG_CTRL(3);
1200 value &= ~PLLE_MISC_KVCO;
1201 writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
1202
1203 value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
1204 value |= PLLE_BASE_ENABLE;
1205 writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
1206
1207 /* 4. Wait for LOCK */
1208
1209 debug("waiting for plle lock\n");
1210 start = get_timer(0);
1211 while (get_timer(start) < 250) {
1212 value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
1213 if (value & PLLE_MISC_LOCK)
1214 break;
1215 }
1216 if (!(value & PLLE_MISC_LOCK)) {
1217 debug(" timeout\n");
1218 return -ETIMEDOUT;
1219 }
1220 debug(" done\n");
1221
1222 /* 5. Enable SSA */
1223
1224 value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1225 value &= ~PLLE_SS_CNTL_SSCINC(0xff);
1226 value |= PLLE_SS_CNTL_SSCINC(1);
1227 value &= ~PLLE_SS_CNTL_SSCINCINTR(0x3f);
1228 value |= PLLE_SS_CNTL_SSCINCINTR(0x23);
1229 value &= ~PLLE_SS_CNTL_SSCMAX(0x1fff);
1230 value |= PLLE_SS_CNTL_SSCMAX(0x21);
1231 value &= ~PLLE_SS_CNTL_SSCINVERT;
1232 value &= ~PLLE_SS_CNTL_SSCCENTER;
1233 value &= ~PLLE_SS_CNTL_BYPASS_SS;
1234 value &= ~PLLE_SS_CNTL_SSCBYP;
1235 writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1236
1237 /* 6. Wait 300 ns */
1238
1239 udelay(1);
1240 value &= ~PLLE_SS_CNTL_INTERP_RESET;
1241 writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1242
1243 return 0;
1244 }
1245
1246 struct periph_clk_init periph_clk_init_table[] = {
1247 { PERIPH_ID_SBC1, CLOCK_ID_PERIPH },
1248 { PERIPH_ID_SBC2, CLOCK_ID_PERIPH },
1249 { PERIPH_ID_SBC3, CLOCK_ID_PERIPH },
1250 { PERIPH_ID_SBC4, CLOCK_ID_PERIPH },
1251 { PERIPH_ID_SBC5, CLOCK_ID_PERIPH },
1252 { PERIPH_ID_SBC6, CLOCK_ID_PERIPH },
1253 { PERIPH_ID_HOST1X, CLOCK_ID_PERIPH },
1254 { PERIPH_ID_SDMMC1, CLOCK_ID_PERIPH },
1255 { PERIPH_ID_SDMMC2, CLOCK_ID_PERIPH },
1256 { PERIPH_ID_SDMMC3, CLOCK_ID_PERIPH },
1257 { PERIPH_ID_SDMMC4, CLOCK_ID_PERIPH },
1258 { PERIPH_ID_PWM, CLOCK_ID_SFROM32KHZ },
1259 { PERIPH_ID_I2C1, CLOCK_ID_PERIPH },
1260 { PERIPH_ID_I2C2, CLOCK_ID_PERIPH },
1261 { PERIPH_ID_I2C3, CLOCK_ID_PERIPH },
1262 { PERIPH_ID_I2C4, CLOCK_ID_PERIPH },
1263 { PERIPH_ID_I2C5, CLOCK_ID_PERIPH },
1264 { PERIPH_ID_I2C6, CLOCK_ID_PERIPH },
1265 { -1, },
1266 };
1267