1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2010
4  * Stefano Babic, DENX Software Engineering, sbabic@denx.de.
5  *
6  * (C) Copyright 2002
7  * Rich Ireland, Enterasys Networks, rireland@enterasys.com.
8  *
9  * ispVM functions adapted from Lattice's ispmVMEmbedded code:
10  * Copyright 2009 Lattice Semiconductor Corp.
11  */
12 
13 #include <common.h>
14 #include <log.h>
15 #include <malloc.h>
16 #include <fpga.h>
17 #include <lattice.h>
18 #include <linux/delay.h>
19 
20 static lattice_board_specific_func *pfns;
21 static const char *fpga_image;
22 static unsigned long read_bytes;
23 static unsigned long bufsize;
24 static unsigned short expectedCRC;
25 
26 /*
27  * External variables and functions declared in ivm_core.c module.
28  */
29 extern unsigned short g_usCalculatedCRC;
30 extern unsigned short g_usDataType;
31 extern unsigned char *g_pucIntelBuffer;
32 extern unsigned char *g_pucHeapMemory;
33 extern unsigned short g_iHeapCounter;
34 extern unsigned short g_iHEAPSize;
35 extern unsigned short g_usIntelDataIndex;
36 extern unsigned short g_usIntelBufferSize;
37 extern char *const g_szSupportedVersions[];
38 
39 
40 /*
41  * ispVMDelay
42  *
43  * Users must implement a delay to observe a_usTimeDelay, where
44  * bit 15 of the a_usTimeDelay defines the unit.
45  *      1 = milliseconds
46  *      0 = microseconds
47  * Example:
48  *      a_usTimeDelay = 0x0001 = 1 microsecond delay.
49  *      a_usTimeDelay = 0x8001 = 1 millisecond delay.
50  *
51  * This subroutine is called upon to provide a delay from 1 millisecond to a few
52  * hundreds milliseconds each time.
53  * It is understood that due to a_usTimeDelay is defined as unsigned short, a 16
54  * bits integer, this function is restricted to produce a delay to 64000
55  * micro-seconds or 32000 milli-second maximum. The VME file will never pass on
56  * to this function a delay time > those maximum number. If it needs more than
57  * those maximum, the VME file will launch the delay function several times to
58  * realize a larger delay time cummulatively.
59  * It is perfectly alright to provide a longer delay than required. It is not
60  * acceptable if the delay is shorter.
61  */
ispVMDelay(unsigned short delay)62 void ispVMDelay(unsigned short delay)
63 {
64 	if (delay & 0x8000)
65 		delay = (delay & ~0x8000) * 1000;
66 	udelay(delay);
67 }
68 
writePort(unsigned char a_ucPins,unsigned char a_ucValue)69 void writePort(unsigned char a_ucPins, unsigned char a_ucValue)
70 {
71 	a_ucValue = a_ucValue ? 1 : 0;
72 
73 	switch (a_ucPins) {
74 	case g_ucPinTDI:
75 		pfns->jtag_set_tdi(a_ucValue);
76 		break;
77 	case g_ucPinTCK:
78 		pfns->jtag_set_tck(a_ucValue);
79 		break;
80 	case g_ucPinTMS:
81 		pfns->jtag_set_tms(a_ucValue);
82 		break;
83 	default:
84 		printf("%s: requested unknown pin\n", __func__);
85 	}
86 }
87 
readPort(void)88 unsigned char readPort(void)
89 {
90 	return pfns->jtag_get_tdo();
91 }
92 
sclock(void)93 void sclock(void)
94 {
95 	writePort(g_ucPinTCK, 0x01);
96 	writePort(g_ucPinTCK, 0x00);
97 }
98 
calibration(void)99 void calibration(void)
100 {
101 	/* Apply 2 pulses to TCK. */
102 	writePort(g_ucPinTCK, 0x00);
103 	writePort(g_ucPinTCK, 0x01);
104 	writePort(g_ucPinTCK, 0x00);
105 	writePort(g_ucPinTCK, 0x01);
106 	writePort(g_ucPinTCK, 0x00);
107 
108 	ispVMDelay(0x8001);
109 
110 	/* Apply 2 pulses to TCK. */
111 	writePort(g_ucPinTCK, 0x01);
112 	writePort(g_ucPinTCK, 0x00);
113 	writePort(g_ucPinTCK, 0x01);
114 	writePort(g_ucPinTCK, 0x00);
115 }
116 
117 /*
118  * GetByte
119  *
120  * Returns a byte to the caller. The returned byte depends on the
121  * g_usDataType register. If the HEAP_IN bit is set, then the byte
122  * is returned from the HEAP. If the LHEAP_IN bit is set, then
123  * the byte is returned from the intelligent buffer. Otherwise,
124  * the byte is returned directly from the VME file.
125  */
GetByte(void)126 unsigned char GetByte(void)
127 {
128 	unsigned char ucData;
129 	unsigned int block_size = 4 * 1024;
130 
131 	if (g_usDataType & HEAP_IN) {
132 
133 		/*
134 		 * Get data from repeat buffer.
135 		 */
136 
137 		if (g_iHeapCounter > g_iHEAPSize) {
138 
139 			/*
140 			 * Data over-run.
141 			 */
142 
143 			return 0xFF;
144 		}
145 
146 		ucData = g_pucHeapMemory[g_iHeapCounter++];
147 	} else if (g_usDataType & LHEAP_IN) {
148 
149 		/*
150 		 * Get data from intel buffer.
151 		 */
152 
153 		if (g_usIntelDataIndex >= g_usIntelBufferSize) {
154 			return 0xFF;
155 		}
156 
157 		ucData = g_pucIntelBuffer[g_usIntelDataIndex++];
158 	} else {
159 		if (read_bytes == bufsize) {
160 			return 0xFF;
161 		}
162 		ucData = *fpga_image++;
163 		read_bytes++;
164 
165 		if (!(read_bytes % block_size)) {
166 			printf("Downloading FPGA %ld/%ld completed\r",
167 				read_bytes,
168 				bufsize);
169 		}
170 
171 		if (expectedCRC != 0) {
172 			ispVMCalculateCRC32(ucData);
173 		}
174 	}
175 
176 	return ucData;
177 }
178 
ispVM(void)179 signed char ispVM(void)
180 {
181 	char szFileVersion[9]      = { 0 };
182 	signed char cRetCode         = 0;
183 	signed char cIndex           = 0;
184 	signed char cVersionIndex    = 0;
185 	unsigned char ucReadByte     = 0;
186 	unsigned short crc;
187 
188 	g_pucHeapMemory		= NULL;
189 	g_iHeapCounter		= 0;
190 	g_iHEAPSize		= 0;
191 	g_usIntelDataIndex	= 0;
192 	g_usIntelBufferSize	= 0;
193 	g_usCalculatedCRC = 0;
194 	expectedCRC   = 0;
195 	ucReadByte = GetByte();
196 	switch (ucReadByte) {
197 	case FILE_CRC:
198 		crc = (unsigned char)GetByte();
199 		crc <<= 8;
200 		crc |= GetByte();
201 		expectedCRC = crc;
202 
203 		for (cIndex = 0; cIndex < 8; cIndex++)
204 			szFileVersion[cIndex] = GetByte();
205 
206 		break;
207 	default:
208 		szFileVersion[0] = (signed char) ucReadByte;
209 		for (cIndex = 1; cIndex < 8; cIndex++)
210 			szFileVersion[cIndex] = GetByte();
211 
212 		break;
213 	}
214 
215 	/*
216 	 *
217 	 * Compare the VME file version against the supported version.
218 	 *
219 	 */
220 
221 	for (cVersionIndex = 0; g_szSupportedVersions[cVersionIndex] != 0;
222 		cVersionIndex++) {
223 		for (cIndex = 0; cIndex < 8; cIndex++) {
224 			if (szFileVersion[cIndex] !=
225 				g_szSupportedVersions[cVersionIndex][cIndex]) {
226 				cRetCode = VME_VERSION_FAILURE;
227 				break;
228 			}
229 			cRetCode = 0;
230 		}
231 
232 		if (cRetCode == 0) {
233 			break;
234 		}
235 	}
236 
237 	if (cRetCode < 0) {
238 		return VME_VERSION_FAILURE;
239 	}
240 
241 	printf("VME file checked: starting downloading to FPGA\n");
242 
243 	ispVMStart();
244 
245 	cRetCode = ispVMCode();
246 
247 	ispVMEnd();
248 	ispVMFreeMem();
249 	puts("\n");
250 
251 	if (cRetCode == 0 && expectedCRC != 0 &&
252 			(expectedCRC != g_usCalculatedCRC)) {
253 		printf("Expected CRC:   0x%.4X\n", expectedCRC);
254 		printf("Calculated CRC: 0x%.4X\n", g_usCalculatedCRC);
255 		return VME_CRC_FAILURE;
256 	}
257 	return cRetCode;
258 }
259 
lattice_validate(Lattice_desc * desc,const char * fn)260 static int lattice_validate(Lattice_desc *desc, const char *fn)
261 {
262 	int ret_val = false;
263 
264 	if (desc) {
265 		if ((desc->family > min_lattice_type) &&
266 			(desc->family < max_lattice_type)) {
267 			if ((desc->iface > min_lattice_iface_type) &&
268 				(desc->iface < max_lattice_iface_type)) {
269 				if (desc->size) {
270 					ret_val = true;
271 				} else {
272 					printf("%s: NULL part size\n", fn);
273 				}
274 			} else {
275 				printf("%s: Invalid Interface type, %d\n",
276 					fn, desc->iface);
277 			}
278 		} else {
279 			printf("%s: Invalid family type, %d\n",
280 				fn, desc->family);
281 		}
282 	} else {
283 		printf("%s: NULL descriptor!\n", fn);
284 	}
285 
286 	return ret_val;
287 }
288 
lattice_load(Lattice_desc * desc,const void * buf,size_t bsize)289 int lattice_load(Lattice_desc *desc, const void *buf, size_t bsize)
290 {
291 	int ret_val = FPGA_FAIL;
292 
293 	if (!lattice_validate(desc, (char *)__func__)) {
294 		printf("%s: Invalid device descriptor\n", __func__);
295 	} else {
296 		pfns = desc->iface_fns;
297 
298 		switch (desc->family) {
299 		case Lattice_XP2:
300 			fpga_image = buf;
301 			read_bytes = 0;
302 			bufsize = bsize;
303 			debug("%s: Launching the Lattice ISPVME Loader:"
304 				" addr %p size 0x%lx...\n",
305 				__func__, fpga_image, bufsize);
306 			ret_val = ispVM();
307 			if (ret_val)
308 				printf("%s: error %d downloading FPGA image\n",
309 					__func__, ret_val);
310 			else
311 				puts("FPGA downloaded successfully\n");
312 			break;
313 		default:
314 			printf("%s: Unsupported family type, %d\n",
315 					__func__, desc->family);
316 		}
317 	}
318 
319 	return ret_val;
320 }
321 
lattice_dump(Lattice_desc * desc,const void * buf,size_t bsize)322 int lattice_dump(Lattice_desc *desc, const void *buf, size_t bsize)
323 {
324 	puts("Dump not supported for Lattice FPGA\n");
325 
326 	return FPGA_FAIL;
327 
328 }
329 
lattice_info(Lattice_desc * desc)330 int lattice_info(Lattice_desc *desc)
331 {
332 	int ret_val = FPGA_FAIL;
333 
334 	if (lattice_validate(desc, (char *)__func__)) {
335 		printf("Family:        \t");
336 		switch (desc->family) {
337 		case Lattice_XP2:
338 			puts("XP2\n");
339 			break;
340 			/* Add new family types here */
341 		default:
342 			printf("Unknown family type, %d\n", desc->family);
343 		}
344 
345 		puts("Interface type:\t");
346 		switch (desc->iface) {
347 		case lattice_jtag_mode:
348 			puts("JTAG Mode\n");
349 			break;
350 			/* Add new interface types here */
351 		default:
352 			printf("Unsupported interface type, %d\n", desc->iface);
353 		}
354 
355 		printf("Device Size:   \t%d bytes\n",
356 				desc->size);
357 
358 		if (desc->iface_fns) {
359 			printf("Device Function Table @ 0x%p\n",
360 				desc->iface_fns);
361 			switch (desc->family) {
362 			case Lattice_XP2:
363 				break;
364 				/* Add new family types here */
365 			default:
366 				break;
367 			}
368 		} else {
369 			puts("No Device Function Table.\n");
370 		}
371 
372 		if (desc->desc)
373 			printf("Model:         \t%s\n", desc->desc);
374 
375 		ret_val = FPGA_SUCCESS;
376 	} else {
377 		printf("%s: Invalid device descriptor\n", __func__);
378 	}
379 
380 	return ret_val;
381 }
382