1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) 2011-12 The Chromium OS Authors.
4  *
5  * This file is derived from the flashrom project.
6  */
7 
8 #define LOG_CATEGORY	UCLASS_SPI
9 
10 #include <common.h>
11 #include <bootstage.h>
12 #include <div64.h>
13 #include <dm.h>
14 #include <dt-structs.h>
15 #include <errno.h>
16 #include <log.h>
17 #include <malloc.h>
18 #include <pch.h>
19 #include <pci.h>
20 #include <pci_ids.h>
21 #include <spi.h>
22 #include <spi_flash.h>
23 #include <spi-mem.h>
24 #include <spl.h>
25 #include <asm/fast_spi.h>
26 #include <asm/io.h>
27 #include <dm/uclass-internal.h>
28 #include <asm/mtrr.h>
29 #include <linux/bitops.h>
30 #include <linux/delay.h>
31 #include <linux/sizes.h>
32 
33 #include "ich.h"
34 
35 #ifdef DEBUG_TRACE
36 #define debug_trace(fmt, args...) debug(fmt, ##args)
37 #else
38 #define debug_trace(x, args...)
39 #endif
40 
ich_readb(struct ich_spi_priv * priv,int reg)41 static u8 ich_readb(struct ich_spi_priv *priv, int reg)
42 {
43 	u8 value = readb(priv->base + reg);
44 
45 	debug_trace("read %2.2x from %4.4x\n", value, reg);
46 
47 	return value;
48 }
49 
ich_readw(struct ich_spi_priv * priv,int reg)50 static u16 ich_readw(struct ich_spi_priv *priv, int reg)
51 {
52 	u16 value = readw(priv->base + reg);
53 
54 	debug_trace("read %4.4x from %4.4x\n", value, reg);
55 
56 	return value;
57 }
58 
ich_readl(struct ich_spi_priv * priv,int reg)59 static u32 ich_readl(struct ich_spi_priv *priv, int reg)
60 {
61 	u32 value = readl(priv->base + reg);
62 
63 	debug_trace("read %8.8x from %4.4x\n", value, reg);
64 
65 	return value;
66 }
67 
ich_writeb(struct ich_spi_priv * priv,u8 value,int reg)68 static void ich_writeb(struct ich_spi_priv *priv, u8 value, int reg)
69 {
70 	writeb(value, priv->base + reg);
71 	debug_trace("wrote %2.2x to %4.4x\n", value, reg);
72 }
73 
ich_writew(struct ich_spi_priv * priv,u16 value,int reg)74 static void ich_writew(struct ich_spi_priv *priv, u16 value, int reg)
75 {
76 	writew(value, priv->base + reg);
77 	debug_trace("wrote %4.4x to %4.4x\n", value, reg);
78 }
79 
ich_writel(struct ich_spi_priv * priv,u32 value,int reg)80 static void ich_writel(struct ich_spi_priv *priv, u32 value, int reg)
81 {
82 	writel(value, priv->base + reg);
83 	debug_trace("wrote %8.8x to %4.4x\n", value, reg);
84 }
85 
write_reg(struct ich_spi_priv * priv,const void * value,int dest_reg,uint32_t size)86 static void write_reg(struct ich_spi_priv *priv, const void *value,
87 		      int dest_reg, uint32_t size)
88 {
89 	memcpy_toio(priv->base + dest_reg, value, size);
90 }
91 
read_reg(struct ich_spi_priv * priv,int src_reg,void * value,uint32_t size)92 static void read_reg(struct ich_spi_priv *priv, int src_reg, void *value,
93 		     uint32_t size)
94 {
95 	memcpy_fromio(value, priv->base + src_reg, size);
96 }
97 
ich_set_bbar(struct ich_spi_priv * ctlr,uint32_t minaddr)98 static void ich_set_bbar(struct ich_spi_priv *ctlr, uint32_t minaddr)
99 {
100 	const uint32_t bbar_mask = 0x00ffff00;
101 	uint32_t ichspi_bbar;
102 
103 	if (ctlr->bbar) {
104 		minaddr &= bbar_mask;
105 		ichspi_bbar = ich_readl(ctlr, ctlr->bbar) & ~bbar_mask;
106 		ichspi_bbar |= minaddr;
107 		ich_writel(ctlr, ichspi_bbar, ctlr->bbar);
108 	}
109 }
110 
111 /* @return 1 if the SPI flash supports the 33MHz speed */
ich9_can_do_33mhz(struct udevice * dev)112 static bool ich9_can_do_33mhz(struct udevice *dev)
113 {
114 	struct ich_spi_priv *priv = dev_get_priv(dev);
115 	u32 fdod, speed;
116 
117 	if (!CONFIG_IS_ENABLED(PCI))
118 		return false;
119 	/* Observe SPI Descriptor Component Section 0 */
120 	dm_pci_write_config32(priv->pch, 0xb0, 0x1000);
121 
122 	/* Extract the Write/Erase SPI Frequency from descriptor */
123 	dm_pci_read_config32(priv->pch, 0xb4, &fdod);
124 
125 	/* Bits 23:21 have the fast read clock frequency, 0=20MHz, 1=33MHz */
126 	speed = (fdod >> 21) & 7;
127 
128 	return speed == 1;
129 }
130 
spi_lock_down(struct ich_spi_plat * plat,void * sbase)131 static void spi_lock_down(struct ich_spi_plat *plat, void *sbase)
132 {
133 	if (plat->ich_version == ICHV_7) {
134 		struct ich7_spi_regs *ich7_spi = sbase;
135 
136 		setbits_le16(&ich7_spi->spis, SPIS_LOCK);
137 	} else if (plat->ich_version == ICHV_9) {
138 		struct ich9_spi_regs *ich9_spi = sbase;
139 
140 		setbits_le16(&ich9_spi->hsfs, HSFS_FLOCKDN);
141 	}
142 }
143 
spi_lock_status(struct ich_spi_plat * plat,void * sbase)144 static bool spi_lock_status(struct ich_spi_plat *plat, void *sbase)
145 {
146 	int lock = 0;
147 
148 	if (plat->ich_version == ICHV_7) {
149 		struct ich7_spi_regs *ich7_spi = sbase;
150 
151 		lock = readw(&ich7_spi->spis) & SPIS_LOCK;
152 	} else if (plat->ich_version == ICHV_9) {
153 		struct ich9_spi_regs *ich9_spi = sbase;
154 
155 		lock = readw(&ich9_spi->hsfs) & HSFS_FLOCKDN;
156 	}
157 
158 	return lock != 0;
159 }
160 
spi_setup_opcode(struct ich_spi_priv * ctlr,struct spi_trans * trans,bool lock)161 static int spi_setup_opcode(struct ich_spi_priv *ctlr, struct spi_trans *trans,
162 			    bool lock)
163 {
164 	uint16_t optypes;
165 	uint8_t opmenu[ctlr->menubytes];
166 
167 	if (!lock) {
168 		/* The lock is off, so just use index 0. */
169 		ich_writeb(ctlr, trans->opcode, ctlr->opmenu);
170 		optypes = ich_readw(ctlr, ctlr->optype);
171 		optypes = (optypes & 0xfffc) | (trans->type & 0x3);
172 		ich_writew(ctlr, optypes, ctlr->optype);
173 		return 0;
174 	} else {
175 		/* The lock is on. See if what we need is on the menu. */
176 		uint8_t optype;
177 		uint16_t opcode_index;
178 
179 		/* Write Enable is handled as atomic prefix */
180 		if (trans->opcode == SPI_OPCODE_WREN)
181 			return 0;
182 
183 		read_reg(ctlr, ctlr->opmenu, opmenu, sizeof(opmenu));
184 		for (opcode_index = 0; opcode_index < ctlr->menubytes;
185 				opcode_index++) {
186 			if (opmenu[opcode_index] == trans->opcode)
187 				break;
188 		}
189 
190 		if (opcode_index == ctlr->menubytes) {
191 			debug("ICH SPI: Opcode %x not found\n", trans->opcode);
192 			return -EINVAL;
193 		}
194 
195 		optypes = ich_readw(ctlr, ctlr->optype);
196 		optype = (optypes >> (opcode_index * 2)) & 0x3;
197 
198 		if (optype != trans->type) {
199 			debug("ICH SPI: Transaction doesn't fit type %d\n",
200 			      optype);
201 			return -ENOSPC;
202 		}
203 		return opcode_index;
204 	}
205 }
206 
207 /*
208  * Wait for up to 6s til status register bit(s) turn 1 (in case wait_til_set
209  * below is true) or 0. In case the wait was for the bit(s) to set - write
210  * those bits back, which would cause resetting them.
211  *
212  * Return the last read status value on success or -1 on failure.
213  */
ich_status_poll(struct ich_spi_priv * ctlr,u16 bitmask,int wait_til_set)214 static int ich_status_poll(struct ich_spi_priv *ctlr, u16 bitmask,
215 			   int wait_til_set)
216 {
217 	int timeout = 600000; /* This will result in 6s */
218 	u16 status = 0;
219 
220 	while (timeout--) {
221 		status = ich_readw(ctlr, ctlr->status);
222 		if (wait_til_set ^ ((status & bitmask) == 0)) {
223 			if (wait_til_set) {
224 				ich_writew(ctlr, status & bitmask,
225 					   ctlr->status);
226 			}
227 			return status;
228 		}
229 		udelay(10);
230 	}
231 	debug("ICH SPI: SCIP timeout, read %x, expected %x, wts %x %x\n",
232 	      status, bitmask, wait_til_set, status & bitmask);
233 
234 	return -ETIMEDOUT;
235 }
236 
ich_spi_config_opcode(struct udevice * dev)237 static void ich_spi_config_opcode(struct udevice *dev)
238 {
239 	struct ich_spi_priv *ctlr = dev_get_priv(dev);
240 
241 	/*
242 	 * PREOP, OPTYPE, OPMENU1/OPMENU2 registers can be locked down
243 	 * to prevent accidental or intentional writes. Before they get
244 	 * locked down, these registers should be initialized properly.
245 	 */
246 	ich_writew(ctlr, SPI_OPPREFIX, ctlr->preop);
247 	ich_writew(ctlr, SPI_OPTYPE, ctlr->optype);
248 	ich_writel(ctlr, SPI_OPMENU_LOWER, ctlr->opmenu);
249 	ich_writel(ctlr, SPI_OPMENU_UPPER, ctlr->opmenu + sizeof(u32));
250 }
251 
ich_spi_exec_op_swseq(struct spi_slave * slave,const struct spi_mem_op * op)252 static int ich_spi_exec_op_swseq(struct spi_slave *slave,
253 				 const struct spi_mem_op *op)
254 {
255 	struct udevice *bus = dev_get_parent(slave->dev);
256 	struct ich_spi_plat *plat = dev_get_plat(bus);
257 	struct ich_spi_priv *ctlr = dev_get_priv(bus);
258 	uint16_t control;
259 	int16_t opcode_index;
260 	int with_address;
261 	int status;
262 	struct spi_trans *trans = &ctlr->trans;
263 	bool lock = spi_lock_status(plat, ctlr->base);
264 	int ret = 0;
265 
266 	trans->in = NULL;
267 	trans->out = NULL;
268 	trans->type = 0xFF;
269 
270 	if (op->data.nbytes) {
271 		if (op->data.dir == SPI_MEM_DATA_IN) {
272 			trans->in = op->data.buf.in;
273 			trans->bytesin = op->data.nbytes;
274 		} else {
275 			trans->out = op->data.buf.out;
276 			trans->bytesout = op->data.nbytes;
277 		}
278 	}
279 
280 	if (trans->opcode != op->cmd.opcode)
281 		trans->opcode = op->cmd.opcode;
282 
283 	if (lock && trans->opcode == SPI_OPCODE_WRDIS)
284 		return 0;
285 
286 	if (trans->opcode == SPI_OPCODE_WREN) {
287 		/*
288 		 * Treat Write Enable as Atomic Pre-Op if possible
289 		 * in order to prevent the Management Engine from
290 		 * issuing a transaction between WREN and DATA.
291 		 */
292 		if (!lock)
293 			ich_writew(ctlr, trans->opcode, ctlr->preop);
294 		return 0;
295 	}
296 
297 	ret = ich_status_poll(ctlr, SPIS_SCIP, 0);
298 	if (ret < 0)
299 		return ret;
300 
301 	if (plat->ich_version == ICHV_7)
302 		ich_writew(ctlr, SPIS_CDS | SPIS_FCERR, ctlr->status);
303 	else
304 		ich_writeb(ctlr, SPIS_CDS | SPIS_FCERR, ctlr->status);
305 
306 	/* Try to guess spi transaction type */
307 	if (op->data.dir == SPI_MEM_DATA_OUT) {
308 		if (op->addr.nbytes)
309 			trans->type = SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS;
310 		else
311 			trans->type = SPI_OPCODE_TYPE_WRITE_NO_ADDRESS;
312 	} else {
313 		if (op->addr.nbytes)
314 			trans->type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS;
315 		else
316 			trans->type = SPI_OPCODE_TYPE_READ_NO_ADDRESS;
317 	}
318 	/* Special erase case handling */
319 	if (op->addr.nbytes && !op->data.buswidth)
320 		trans->type = SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS;
321 
322 	opcode_index = spi_setup_opcode(ctlr, trans, lock);
323 	if (opcode_index < 0)
324 		return -EINVAL;
325 
326 	if (op->addr.nbytes) {
327 		trans->offset = op->addr.val;
328 		with_address = 1;
329 	}
330 
331 	if (ctlr->speed && ctlr->max_speed >= 33000000) {
332 		int byte;
333 
334 		byte = ich_readb(ctlr, ctlr->speed);
335 		if (ctlr->cur_speed >= 33000000)
336 			byte |= SSFC_SCF_33MHZ;
337 		else
338 			byte &= ~SSFC_SCF_33MHZ;
339 		ich_writeb(ctlr, byte, ctlr->speed);
340 	}
341 
342 	/* Preset control fields */
343 	control = SPIC_SCGO | ((opcode_index & 0x07) << 4);
344 
345 	/* Issue atomic preop cycle if needed */
346 	if (ich_readw(ctlr, ctlr->preop))
347 		control |= SPIC_ACS;
348 
349 	if (!trans->bytesout && !trans->bytesin) {
350 		/* SPI addresses are 24 bit only */
351 		if (with_address) {
352 			ich_writel(ctlr, trans->offset & 0x00FFFFFF,
353 				   ctlr->addr);
354 		}
355 		/*
356 		 * This is a 'no data' command (like Write Enable), its
357 		 * bitesout size was 1, decremented to zero while executing
358 		 * spi_setup_opcode() above. Tell the chip to send the
359 		 * command.
360 		 */
361 		ich_writew(ctlr, control, ctlr->control);
362 
363 		/* wait for the result */
364 		status = ich_status_poll(ctlr, SPIS_CDS | SPIS_FCERR, 1);
365 		if (status < 0)
366 			return status;
367 
368 		if (status & SPIS_FCERR) {
369 			debug("ICH SPI: Command transaction error\n");
370 			return -EIO;
371 		}
372 
373 		return 0;
374 	}
375 
376 	while (trans->bytesout || trans->bytesin) {
377 		uint32_t data_length;
378 
379 		/* SPI addresses are 24 bit only */
380 		ich_writel(ctlr, trans->offset & 0x00FFFFFF, ctlr->addr);
381 
382 		if (trans->bytesout)
383 			data_length = min(trans->bytesout, ctlr->databytes);
384 		else
385 			data_length = min(trans->bytesin, ctlr->databytes);
386 
387 		/* Program data into FDATA0 to N */
388 		if (trans->bytesout) {
389 			write_reg(ctlr, trans->out, ctlr->data, data_length);
390 			trans->bytesout -= data_length;
391 		}
392 
393 		/* Add proper control fields' values */
394 		control &= ~((ctlr->databytes - 1) << 8);
395 		control |= SPIC_DS;
396 		control |= (data_length - 1) << 8;
397 
398 		/* write it */
399 		ich_writew(ctlr, control, ctlr->control);
400 
401 		/* Wait for Cycle Done Status or Flash Cycle Error */
402 		status = ich_status_poll(ctlr, SPIS_CDS | SPIS_FCERR, 1);
403 		if (status < 0)
404 			return status;
405 
406 		if (status & SPIS_FCERR) {
407 			debug("ICH SPI: Data transaction error %x\n", status);
408 			return -EIO;
409 		}
410 
411 		if (trans->bytesin) {
412 			read_reg(ctlr, ctlr->data, trans->in, data_length);
413 			trans->bytesin -= data_length;
414 		}
415 	}
416 
417 	/* Clear atomic preop now that xfer is done */
418 	if (!lock)
419 		ich_writew(ctlr, 0, ctlr->preop);
420 
421 	return 0;
422 }
423 
424 /*
425  * Ensure read/write xfer len is not greater than SPIBAR_FDATA_FIFO_SIZE and
426  * that the operation does not cross page boundary.
427  */
get_xfer_len(u32 offset,int len,int page_size)428 static uint get_xfer_len(u32 offset, int len, int page_size)
429 {
430 	uint xfer_len = min(len, SPIBAR_FDATA_FIFO_SIZE);
431 	uint bytes_left = ALIGN(offset, page_size) - offset;
432 
433 	if (bytes_left)
434 		xfer_len = min(xfer_len, bytes_left);
435 
436 	return xfer_len;
437 }
438 
439 /* Fill FDATAn FIFO in preparation for a write transaction */
fill_xfer_fifo(struct fast_spi_regs * regs,const void * data,uint len)440 static void fill_xfer_fifo(struct fast_spi_regs *regs, const void *data,
441 			   uint len)
442 {
443 	memcpy(regs->fdata, data, len);
444 }
445 
446 /* Drain FDATAn FIFO after a read transaction populates data */
drain_xfer_fifo(struct fast_spi_regs * regs,void * dest,uint len)447 static void drain_xfer_fifo(struct fast_spi_regs *regs, void *dest, uint len)
448 {
449 	memcpy(dest, regs->fdata, len);
450 }
451 
452 /* Fire up a transfer using the hardware sequencer */
start_hwseq_xfer(struct fast_spi_regs * regs,uint hsfsts_cycle,uint offset,uint len)453 static void start_hwseq_xfer(struct fast_spi_regs *regs, uint hsfsts_cycle,
454 			     uint offset, uint len)
455 {
456 	/* Make sure all W1C status bits get cleared */
457 	u32 hsfsts;
458 
459 	hsfsts = readl(&regs->hsfsts_ctl);
460 	hsfsts &= ~(HSFSTS_FCYCLE_MASK | HSFSTS_FDBC_MASK);
461 	hsfsts |= HSFSTS_AEL | HSFSTS_FCERR | HSFSTS_FDONE;
462 
463 	/* Set up transaction parameters */
464 	hsfsts |= hsfsts_cycle << HSFSTS_FCYCLE_SHIFT;
465 	hsfsts |= ((len - 1) << HSFSTS_FDBC_SHIFT) & HSFSTS_FDBC_MASK;
466 	hsfsts |= HSFSTS_FGO;
467 
468 	writel(offset, &regs->faddr);
469 	writel(hsfsts, &regs->hsfsts_ctl);
470 }
471 
wait_for_hwseq_xfer(struct fast_spi_regs * regs,uint offset)472 static int wait_for_hwseq_xfer(struct fast_spi_regs *regs, uint offset)
473 {
474 	ulong start;
475 	u32 hsfsts;
476 
477 	start = get_timer(0);
478 	do {
479 		hsfsts = readl(&regs->hsfsts_ctl);
480 		if (hsfsts & HSFSTS_FCERR) {
481 			debug("SPI transaction error at offset %x HSFSTS = %08x\n",
482 			      offset, hsfsts);
483 			return -EIO;
484 		}
485 		if (hsfsts & HSFSTS_AEL)
486 			return -EPERM;
487 
488 		if (hsfsts & HSFSTS_FDONE)
489 			return 0;
490 	} while (get_timer(start) < SPIBAR_HWSEQ_XFER_TIMEOUT_MS);
491 
492 	debug("SPI transaction timeout at offset %x HSFSTS = %08x, timer %d\n",
493 	      offset, hsfsts, (uint)get_timer(start));
494 
495 	return -ETIMEDOUT;
496 }
497 
498 /**
499  * exec_sync_hwseq_xfer() - Execute flash transfer by hardware sequencing
500  *
501  * This waits until complete or timeout
502  *
503  * @regs: SPI registers
504  * @hsfsts_cycle: Cycle type (enum hsfsts_cycle_t)
505  * @offset: Offset to access
506  * @len: Number of bytes to transfer (can be 0)
507  * @return 0 if OK, -EIO on flash-cycle error (FCERR), -EPERM on access error
508  *	(AEL), -ETIMEDOUT on timeout
509  */
exec_sync_hwseq_xfer(struct fast_spi_regs * regs,uint hsfsts_cycle,uint offset,uint len)510 static int exec_sync_hwseq_xfer(struct fast_spi_regs *regs, uint hsfsts_cycle,
511 				uint offset, uint len)
512 {
513 	start_hwseq_xfer(regs, hsfsts_cycle, offset, len);
514 
515 	return wait_for_hwseq_xfer(regs, offset);
516 }
517 
ich_spi_exec_op_hwseq(struct spi_slave * slave,const struct spi_mem_op * op)518 static int ich_spi_exec_op_hwseq(struct spi_slave *slave,
519 				 const struct spi_mem_op *op)
520 {
521 	struct spi_flash *flash = dev_get_uclass_priv(slave->dev);
522 	struct udevice *bus = dev_get_parent(slave->dev);
523 	struct ich_spi_priv *priv = dev_get_priv(bus);
524 	struct fast_spi_regs *regs = priv->base;
525 	uint page_size;
526 	uint offset;
527 	int cycle;
528 	uint len;
529 	bool out;
530 	int ret;
531 	u8 *buf;
532 
533 	offset = op->addr.val;
534 	len = op->data.nbytes;
535 
536 	switch (op->cmd.opcode) {
537 	case SPINOR_OP_RDID:
538 		cycle = HSFSTS_CYCLE_RDID;
539 		break;
540 	case SPINOR_OP_READ_FAST:
541 		cycle = HSFSTS_CYCLE_READ;
542 		break;
543 	case SPINOR_OP_PP:
544 		cycle = HSFSTS_CYCLE_WRITE;
545 		break;
546 	case SPINOR_OP_WREN:
547 		/* Nothing needs to be done */
548 		return 0;
549 	case SPINOR_OP_WRSR:
550 		cycle = HSFSTS_CYCLE_WR_STATUS;
551 		break;
552 	case SPINOR_OP_RDSR:
553 		cycle = HSFSTS_CYCLE_RD_STATUS;
554 		break;
555 	case SPINOR_OP_WRDI:
556 		return 0;  /* ignore */
557 	case SPINOR_OP_BE_4K:
558 		cycle = HSFSTS_CYCLE_4K_ERASE;
559 		ret = exec_sync_hwseq_xfer(regs, cycle, offset, 0);
560 		return ret;
561 	default:
562 		debug("Unknown cycle %x\n", op->cmd.opcode);
563 		return -EINVAL;
564 	};
565 
566 	out = op->data.dir == SPI_MEM_DATA_OUT;
567 	buf = out ? (u8 *)op->data.buf.out : op->data.buf.in;
568 	page_size = flash->page_size ? : 256;
569 
570 	while (len) {
571 		uint xfer_len = get_xfer_len(offset, len, page_size);
572 
573 		if (out)
574 			fill_xfer_fifo(regs, buf, xfer_len);
575 
576 		ret = exec_sync_hwseq_xfer(regs, cycle, offset, xfer_len);
577 		if (ret)
578 			return ret;
579 
580 		if (!out)
581 			drain_xfer_fifo(regs, buf, xfer_len);
582 
583 		offset += xfer_len;
584 		buf += xfer_len;
585 		len -= xfer_len;
586 	}
587 
588 	return 0;
589 }
590 
ich_spi_exec_op(struct spi_slave * slave,const struct spi_mem_op * op)591 static int ich_spi_exec_op(struct spi_slave *slave, const struct spi_mem_op *op)
592 {
593 	struct udevice *bus = dev_get_parent(slave->dev);
594 	struct ich_spi_plat *plat = dev_get_plat(bus);
595 	int ret;
596 
597 	bootstage_start(BOOTSTAGE_ID_ACCUM_SPI, "fast_spi");
598 	if (plat->hwseq)
599 		ret = ich_spi_exec_op_hwseq(slave, op);
600 	else
601 		ret = ich_spi_exec_op_swseq(slave, op);
602 	bootstage_accum(BOOTSTAGE_ID_ACCUM_SPI);
603 
604 	return ret;
605 }
606 
607 #if !CONFIG_IS_ENABLED(OF_PLATDATA)
608 /**
609  * ich_spi_get_basics() - Get basic information about the ICH device
610  *
611  * This works without probing any devices if requested.
612  *
613  * @bus: SPI controller to use
614  * @can_probe: true if this function is allowed to probe the PCH
615  * @pchp: Returns a pointer to the pch, or NULL if not found
616  * @ich_versionp: Returns ICH version detected on success
617  * @mmio_basep: Returns the address of the SPI registers on success
618  * @return 0 if OK, -EPROTOTYPE if the PCH could not be found, -EAGAIN if
619  *	the function cannot success without probing, possible another error if
620  *	pch_get_spi_base() fails
621  */
ich_spi_get_basics(struct udevice * bus,bool can_probe,struct udevice ** pchp,enum ich_version * ich_versionp,ulong * mmio_basep)622 static int ich_spi_get_basics(struct udevice *bus, bool can_probe,
623 			      struct udevice **pchp,
624 			      enum ich_version *ich_versionp, ulong *mmio_basep)
625 {
626 	struct udevice *pch = NULL;
627 	int ret = 0;
628 
629 	/* Find a PCH if there is one */
630 	if (can_probe) {
631 		pch = dev_get_parent(bus);
632 		if (device_get_uclass_id(pch) != UCLASS_PCH) {
633 			uclass_first_device(UCLASS_PCH, &pch);
634 			if (!pch)
635 				return log_msg_ret("uclass", -EPROTOTYPE);
636 		}
637 	}
638 
639 	*ich_versionp = dev_get_driver_data(bus);
640 	if (*ich_versionp == ICHV_APL)
641 		*mmio_basep = dm_pci_read_bar32(bus, 0);
642 	else if (pch)
643 		ret = pch_get_spi_base(pch, mmio_basep);
644 	else
645 		return -EAGAIN;
646 	*pchp = pch;
647 
648 	return ret;
649 }
650 #endif
651 
652 /**
653  * ich_get_mmap_bus() - Handle the get_mmap() method for a bus
654  *
655  * There are several cases to consider:
656  * 1. Using of-platdata, in which case we have the BDF and can access the
657  *	registers by reading the BAR
658  * 2. Not using of-platdata, but still with a SPI controller that is on its own
659  * PCI PDF. In this case we read the BDF from the parent plat and again get
660  *	the registers by reading the BAR
661  * 3. Using a SPI controller that is a child of the PCH, in which case we try
662  *	to find the registers by asking the PCH. This only works if the PCH has
663  *	been probed (which it will be if the bus is probed since parents are
664  *	probed before children), since the PCH may not have a PCI address until
665  *	its parent (the PCI bus itself) has been probed. If you are using this
666  *	method then you should make sure the SPI bus is probed.
667  *
668  * The first two cases are useful in early init. The last one is more useful
669  * afterwards.
670  */
ich_get_mmap_bus(struct udevice * bus,ulong * map_basep,uint * map_sizep,uint * offsetp)671 static int ich_get_mmap_bus(struct udevice *bus, ulong *map_basep,
672 			    uint *map_sizep, uint *offsetp)
673 {
674 	pci_dev_t spi_bdf;
675 #if !CONFIG_IS_ENABLED(OF_PLATDATA)
676 	if (device_is_on_pci_bus(bus)) {
677 		struct pci_child_plat *pplat;
678 
679 		pplat = dev_get_parent_plat(bus);
680 		spi_bdf = pplat->devfn;
681 	} else {
682 		enum ich_version ich_version;
683 		struct fast_spi_regs *regs;
684 		struct udevice *pch;
685 		ulong mmio_base;
686 		int ret;
687 
688 		ret = ich_spi_get_basics(bus, device_active(bus), &pch,
689 					 &ich_version, &mmio_base);
690 		if (ret)
691 			return log_msg_ret("basics", ret);
692 		regs = (struct fast_spi_regs *)mmio_base;
693 
694 		return fast_spi_get_bios_mmap_regs(regs, map_basep, map_sizep,
695 						   offsetp);
696 	}
697 #else
698 	struct ich_spi_plat *plat = dev_get_plat(bus);
699 
700 	/*
701 	 * We cannot rely on plat->bdf being set up yet since this method can
702 	 * be called before the device is probed. Use the of-platdata directly
703 	 * instead.
704 	 */
705 	spi_bdf = pci_ofplat_get_devfn(plat->dtplat.reg[0]);
706 #endif
707 
708 	return fast_spi_get_bios_mmap(spi_bdf, map_basep, map_sizep, offsetp);
709 }
710 
ich_get_mmap(struct udevice * dev,ulong * map_basep,uint * map_sizep,uint * offsetp)711 static int ich_get_mmap(struct udevice *dev, ulong *map_basep, uint *map_sizep,
712 			uint *offsetp)
713 {
714 	struct udevice *bus = dev_get_parent(dev);
715 
716 	return ich_get_mmap_bus(bus, map_basep, map_sizep, offsetp);
717 }
718 
ich_spi_adjust_size(struct spi_slave * slave,struct spi_mem_op * op)719 static int ich_spi_adjust_size(struct spi_slave *slave, struct spi_mem_op *op)
720 {
721 	unsigned int page_offset;
722 	int addr = op->addr.val;
723 	unsigned int byte_count = op->data.nbytes;
724 
725 	if (hweight32(ICH_BOUNDARY) == 1) {
726 		page_offset = addr & (ICH_BOUNDARY - 1);
727 	} else {
728 		u64 aux = addr;
729 
730 		page_offset = do_div(aux, ICH_BOUNDARY);
731 	}
732 
733 	if (op->data.dir == SPI_MEM_DATA_IN) {
734 		if (slave->max_read_size) {
735 			op->data.nbytes = min(ICH_BOUNDARY - page_offset,
736 					      slave->max_read_size);
737 		}
738 	} else if (slave->max_write_size) {
739 		op->data.nbytes = min(ICH_BOUNDARY - page_offset,
740 				      slave->max_write_size);
741 	}
742 
743 	op->data.nbytes = min(op->data.nbytes, byte_count);
744 
745 	return 0;
746 }
747 
ich_protect_lockdown(struct udevice * dev)748 static int ich_protect_lockdown(struct udevice *dev)
749 {
750 	struct ich_spi_plat *plat = dev_get_plat(dev);
751 	struct ich_spi_priv *priv = dev_get_priv(dev);
752 	int ret = -ENOSYS;
753 
754 	/* Disable the BIOS write protect so write commands are allowed */
755 	if (priv->pch)
756 		ret = pch_set_spi_protect(priv->pch, false);
757 	if (ret == -ENOSYS) {
758 		u8 bios_cntl;
759 
760 		bios_cntl = ich_readb(priv, priv->bcr);
761 		bios_cntl &= ~BIT(5);	/* clear Enable InSMM_STS (EISS) */
762 		bios_cntl |= 1;		/* Write Protect Disable (WPD) */
763 		ich_writeb(priv, bios_cntl, priv->bcr);
764 	} else if (ret) {
765 		debug("%s: Failed to disable write-protect: err=%d\n",
766 		      __func__, ret);
767 		return ret;
768 	}
769 
770 	/* Lock down SPI controller settings if required */
771 	if (plat->lockdown) {
772 		ich_spi_config_opcode(dev);
773 		spi_lock_down(plat, priv->base);
774 	}
775 
776 	return 0;
777 }
778 
ich_init_controller(struct udevice * dev,struct ich_spi_plat * plat,struct ich_spi_priv * ctlr)779 static int ich_init_controller(struct udevice *dev,
780 			       struct ich_spi_plat *plat,
781 			       struct ich_spi_priv *ctlr)
782 {
783 	if (spl_phase() == PHASE_TPL) {
784 		struct ich_spi_plat *plat = dev_get_plat(dev);
785 		int ret;
786 
787 		ret = fast_spi_early_init(plat->bdf, plat->mmio_base);
788 		if (ret)
789 			return ret;
790 	}
791 
792 	ctlr->base = (void *)plat->mmio_base;
793 	if (plat->ich_version == ICHV_7) {
794 		struct ich7_spi_regs *ich7_spi = ctlr->base;
795 
796 		ctlr->opmenu = offsetof(struct ich7_spi_regs, opmenu);
797 		ctlr->menubytes = sizeof(ich7_spi->opmenu);
798 		ctlr->optype = offsetof(struct ich7_spi_regs, optype);
799 		ctlr->addr = offsetof(struct ich7_spi_regs, spia);
800 		ctlr->data = offsetof(struct ich7_spi_regs, spid);
801 		ctlr->databytes = sizeof(ich7_spi->spid);
802 		ctlr->status = offsetof(struct ich7_spi_regs, spis);
803 		ctlr->control = offsetof(struct ich7_spi_regs, spic);
804 		ctlr->bbar = offsetof(struct ich7_spi_regs, bbar);
805 		ctlr->preop = offsetof(struct ich7_spi_regs, preop);
806 	} else if (plat->ich_version == ICHV_9) {
807 		struct ich9_spi_regs *ich9_spi = ctlr->base;
808 
809 		ctlr->opmenu = offsetof(struct ich9_spi_regs, opmenu);
810 		ctlr->menubytes = sizeof(ich9_spi->opmenu);
811 		ctlr->optype = offsetof(struct ich9_spi_regs, optype);
812 		ctlr->addr = offsetof(struct ich9_spi_regs, faddr);
813 		ctlr->data = offsetof(struct ich9_spi_regs, fdata);
814 		ctlr->databytes = sizeof(ich9_spi->fdata);
815 		ctlr->status = offsetof(struct ich9_spi_regs, ssfs);
816 		ctlr->control = offsetof(struct ich9_spi_regs, ssfc);
817 		ctlr->speed = ctlr->control + 2;
818 		ctlr->bbar = offsetof(struct ich9_spi_regs, bbar);
819 		ctlr->preop = offsetof(struct ich9_spi_regs, preop);
820 		ctlr->bcr = offsetof(struct ich9_spi_regs, bcr);
821 		ctlr->pr = &ich9_spi->pr[0];
822 	} else if (plat->ich_version == ICHV_APL) {
823 	} else {
824 		debug("ICH SPI: Unrecognised ICH version %d\n",
825 		      plat->ich_version);
826 		return -EINVAL;
827 	}
828 
829 	/* Work out the maximum speed we can support */
830 	ctlr->max_speed = 20000000;
831 	if (plat->ich_version == ICHV_9 && ich9_can_do_33mhz(dev))
832 		ctlr->max_speed = 33000000;
833 	debug("ICH SPI: Version ID %d detected at %lx, speed %ld\n",
834 	      plat->ich_version, plat->mmio_base, ctlr->max_speed);
835 
836 	ich_set_bbar(ctlr, 0);
837 
838 	return 0;
839 }
840 
ich_cache_bios_region(struct udevice * dev)841 static int ich_cache_bios_region(struct udevice *dev)
842 {
843 	ulong map_base;
844 	uint map_size;
845 	uint offset;
846 	ulong base;
847 	int ret;
848 
849 	ret = ich_get_mmap_bus(dev, &map_base, &map_size, &offset);
850 	if (ret)
851 		return ret;
852 
853 	/* Don't use WRBACK since we are not supposed to write to SPI flash */
854 	base = SZ_4G - map_size;
855 	mtrr_set_next_var(MTRR_TYPE_WRPROT, base, map_size);
856 	log_debug("BIOS cache base=%lx, size=%x\n", base, (uint)map_size);
857 
858 	return 0;
859 }
860 
ich_spi_probe(struct udevice * dev)861 static int ich_spi_probe(struct udevice *dev)
862 {
863 	struct ich_spi_plat *plat = dev_get_plat(dev);
864 	struct ich_spi_priv *priv = dev_get_priv(dev);
865 	int ret;
866 
867 	ret = ich_init_controller(dev, plat, priv);
868 	if (ret)
869 		return ret;
870 
871 	if (spl_phase() == PHASE_TPL) {
872 		/* Cache the BIOS to speed things up */
873 		ret = ich_cache_bios_region(dev);
874 		if (ret)
875 			return ret;
876 	} else {
877 		ret = ich_protect_lockdown(dev);
878 		if (ret)
879 			return ret;
880 	}
881 	priv->cur_speed = priv->max_speed;
882 
883 	return 0;
884 }
885 
ich_spi_remove(struct udevice * bus)886 static int ich_spi_remove(struct udevice *bus)
887 {
888 	/*
889 	 * Configure SPI controller so that the Linux MTD driver can fully
890 	 * access the SPI NOR chip
891 	 */
892 	ich_spi_config_opcode(bus);
893 
894 	return 0;
895 }
896 
ich_spi_set_speed(struct udevice * bus,uint speed)897 static int ich_spi_set_speed(struct udevice *bus, uint speed)
898 {
899 	struct ich_spi_priv *priv = dev_get_priv(bus);
900 
901 	priv->cur_speed = speed;
902 
903 	return 0;
904 }
905 
ich_spi_set_mode(struct udevice * bus,uint mode)906 static int ich_spi_set_mode(struct udevice *bus, uint mode)
907 {
908 	debug("%s: mode=%d\n", __func__, mode);
909 
910 	return 0;
911 }
912 
ich_spi_child_pre_probe(struct udevice * dev)913 static int ich_spi_child_pre_probe(struct udevice *dev)
914 {
915 	struct udevice *bus = dev_get_parent(dev);
916 	struct ich_spi_plat *plat = dev_get_plat(bus);
917 	struct ich_spi_priv *priv = dev_get_priv(bus);
918 	struct spi_slave *slave = dev_get_parent_priv(dev);
919 
920 	/*
921 	 * Yes this controller can only write a small number of bytes at
922 	 * once! The limit is typically 64 bytes. For hardware sequencing a
923 	 * a loop is used to get around this.
924 	 */
925 	if (!plat->hwseq)
926 		slave->max_write_size = priv->databytes;
927 	/*
928 	 * ICH 7 SPI controller only supports array read command
929 	 * and byte program command for SST flash
930 	 */
931 	if (plat->ich_version == ICHV_7)
932 		slave->mode = SPI_RX_SLOW | SPI_TX_BYTE;
933 
934 	return 0;
935 }
936 
ich_spi_of_to_plat(struct udevice * dev)937 static int ich_spi_of_to_plat(struct udevice *dev)
938 {
939 	struct ich_spi_plat *plat = dev_get_plat(dev);
940 
941 #if !CONFIG_IS_ENABLED(OF_PLATDATA)
942 	struct ich_spi_priv *priv = dev_get_priv(dev);
943 	int ret;
944 
945 	ret = ich_spi_get_basics(dev, true, &priv->pch, &plat->ich_version,
946 				 &plat->mmio_base);
947 	if (ret)
948 		return log_msg_ret("basics", ret);
949 	plat->lockdown = dev_read_bool(dev, "intel,spi-lock-down");
950 	/*
951 	 * Use an int so that the property is present in of-platdata even
952 	 * when false.
953 	 */
954 	plat->hwseq = dev_read_u32_default(dev, "intel,hardware-seq", 0);
955 #else
956 	plat->ich_version = ICHV_APL;
957 	plat->mmio_base = plat->dtplat.early_regs[0];
958 	plat->bdf = pci_ofplat_get_devfn(plat->dtplat.reg[0]);
959 	plat->hwseq = plat->dtplat.intel_hardware_seq;
960 #endif
961 	debug("%s: mmio_base=%lx\n", __func__, plat->mmio_base);
962 
963 	return 0;
964 }
965 
966 static const struct spi_controller_mem_ops ich_controller_mem_ops = {
967 	.adjust_op_size	= ich_spi_adjust_size,
968 	.supports_op	= NULL,
969 	.exec_op	= ich_spi_exec_op,
970 };
971 
972 static const struct dm_spi_ops ich_spi_ops = {
973 	/* xfer is not supported */
974 	.set_speed	= ich_spi_set_speed,
975 	.set_mode	= ich_spi_set_mode,
976 	.mem_ops	= &ich_controller_mem_ops,
977 	.get_mmap	= ich_get_mmap,
978 	/*
979 	 * cs_info is not needed, since we require all chip selects to be
980 	 * in the device tree explicitly
981 	 */
982 };
983 
984 static const struct udevice_id ich_spi_ids[] = {
985 	{ .compatible = "intel,ich7-spi", ICHV_7 },
986 	{ .compatible = "intel,ich9-spi", ICHV_9 },
987 	{ .compatible = "intel,fast-spi", ICHV_APL },
988 	{ }
989 };
990 
991 U_BOOT_DRIVER(intel_fast_spi) = {
992 	.name	= "intel_fast_spi",
993 	.id	= UCLASS_SPI,
994 	.of_match = ich_spi_ids,
995 	.ops	= &ich_spi_ops,
996 	.of_to_plat = ich_spi_of_to_plat,
997 	.plat_auto	= sizeof(struct ich_spi_plat),
998 	.priv_auto	= sizeof(struct ich_spi_priv),
999 	.child_pre_probe = ich_spi_child_pre_probe,
1000 	.probe	= ich_spi_probe,
1001 	.remove	= ich_spi_remove,
1002 	.flags	= DM_FLAG_OS_PREPARE,
1003 };
1004