1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Adrian Hunter
8  *          Artem Bityutskiy (Битюцкий Артём)
9  */
10 
11 /*
12  * This file implements garbage collection. The procedure for garbage collection
13  * is different depending on whether a LEB as an index LEB (contains index
14  * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
15  * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
16  * nodes to the journal, at which point the garbage-collected LEB is free to be
17  * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
18  * dirty in the TNC, and after the next commit, the garbage-collected LEB is
19  * to be reused. Garbage collection will cause the number of dirty index nodes
20  * to grow, however sufficient space is reserved for the index to ensure the
21  * commit will never run out of space.
22  *
23  * Notes about dead watermark. At current UBIFS implementation we assume that
24  * LEBs which have less than @c->dead_wm bytes of free + dirty space are full
25  * and not worth garbage-collecting. The dead watermark is one min. I/O unit
26  * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS
27  * Garbage Collector has to synchronize the GC head's write buffer before
28  * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can
29  * actually reclaim even very small pieces of dirty space by garbage collecting
30  * enough dirty LEBs, but we do not bother doing this at this implementation.
31  *
32  * Notes about dark watermark. The results of GC work depends on how big are
33  * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed,
34  * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would
35  * have to waste large pieces of free space at the end of LEB B, because nodes
36  * from LEB A would not fit. And the worst situation is when all nodes are of
37  * maximum size. So dark watermark is the amount of free + dirty space in LEB
38  * which are guaranteed to be reclaimable. If LEB has less space, the GC might
39  * be unable to reclaim it. So, LEBs with free + dirty greater than dark
40  * watermark are "good" LEBs from GC's point of few. The other LEBs are not so
41  * good, and GC takes extra care when moving them.
42  */
43 #ifndef __UBOOT__
44 #include <log.h>
45 #include <dm/devres.h>
46 #include <linux/slab.h>
47 #include <linux/pagemap.h>
48 #include <linux/list_sort.h>
49 #endif
50 #include "ubifs.h"
51 
52 #ifndef __UBOOT__
53 /*
54  * GC may need to move more than one LEB to make progress. The below constants
55  * define "soft" and "hard" limits on the number of LEBs the garbage collector
56  * may move.
57  */
58 #define SOFT_LEBS_LIMIT 4
59 #define HARD_LEBS_LIMIT 32
60 
61 /**
62  * switch_gc_head - switch the garbage collection journal head.
63  * @c: UBIFS file-system description object
64  * @buf: buffer to write
65  * @len: length of the buffer to write
66  * @lnum: LEB number written is returned here
67  * @offs: offset written is returned here
68  *
69  * This function switch the GC head to the next LEB which is reserved in
70  * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
71  * and other negative error code in case of failures.
72  */
switch_gc_head(struct ubifs_info * c)73 static int switch_gc_head(struct ubifs_info *c)
74 {
75 	int err, gc_lnum = c->gc_lnum;
76 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
77 
78 	ubifs_assert(gc_lnum != -1);
79 	dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
80 	       wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum,
81 	       c->leb_size - wbuf->offs - wbuf->used);
82 
83 	err = ubifs_wbuf_sync_nolock(wbuf);
84 	if (err)
85 		return err;
86 
87 	/*
88 	 * The GC write-buffer was synchronized, we may safely unmap
89 	 * 'c->gc_lnum'.
90 	 */
91 	err = ubifs_leb_unmap(c, gc_lnum);
92 	if (err)
93 		return err;
94 
95 	err = ubifs_wbuf_sync_nolock(wbuf);
96 	if (err)
97 		return err;
98 
99 	err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0);
100 	if (err)
101 		return err;
102 
103 	c->gc_lnum = -1;
104 	err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0);
105 	return err;
106 }
107 
108 /**
109  * data_nodes_cmp - compare 2 data nodes.
110  * @priv: UBIFS file-system description object
111  * @a: first data node
112  * @a: second data node
113  *
114  * This function compares data nodes @a and @b. Returns %1 if @a has greater
115  * inode or block number, and %-1 otherwise.
116  */
data_nodes_cmp(void * priv,struct list_head * a,struct list_head * b)117 static int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
118 {
119 	ino_t inuma, inumb;
120 	struct ubifs_info *c = priv;
121 	struct ubifs_scan_node *sa, *sb;
122 
123 	cond_resched();
124 	if (a == b)
125 		return 0;
126 
127 	sa = list_entry(a, struct ubifs_scan_node, list);
128 	sb = list_entry(b, struct ubifs_scan_node, list);
129 
130 	ubifs_assert(key_type(c, &sa->key) == UBIFS_DATA_KEY);
131 	ubifs_assert(key_type(c, &sb->key) == UBIFS_DATA_KEY);
132 	ubifs_assert(sa->type == UBIFS_DATA_NODE);
133 	ubifs_assert(sb->type == UBIFS_DATA_NODE);
134 
135 	inuma = key_inum(c, &sa->key);
136 	inumb = key_inum(c, &sb->key);
137 
138 	if (inuma == inumb) {
139 		unsigned int blka = key_block(c, &sa->key);
140 		unsigned int blkb = key_block(c, &sb->key);
141 
142 		if (blka <= blkb)
143 			return -1;
144 	} else if (inuma <= inumb)
145 		return -1;
146 
147 	return 1;
148 }
149 
150 /*
151  * nondata_nodes_cmp - compare 2 non-data nodes.
152  * @priv: UBIFS file-system description object
153  * @a: first node
154  * @a: second node
155  *
156  * This function compares nodes @a and @b. It makes sure that inode nodes go
157  * first and sorted by length in descending order. Directory entry nodes go
158  * after inode nodes and are sorted in ascending hash valuer order.
159  */
nondata_nodes_cmp(void * priv,struct list_head * a,struct list_head * b)160 static int nondata_nodes_cmp(void *priv, struct list_head *a,
161 			     struct list_head *b)
162 {
163 	ino_t inuma, inumb;
164 	struct ubifs_info *c = priv;
165 	struct ubifs_scan_node *sa, *sb;
166 
167 	cond_resched();
168 	if (a == b)
169 		return 0;
170 
171 	sa = list_entry(a, struct ubifs_scan_node, list);
172 	sb = list_entry(b, struct ubifs_scan_node, list);
173 
174 	ubifs_assert(key_type(c, &sa->key) != UBIFS_DATA_KEY &&
175 		     key_type(c, &sb->key) != UBIFS_DATA_KEY);
176 	ubifs_assert(sa->type != UBIFS_DATA_NODE &&
177 		     sb->type != UBIFS_DATA_NODE);
178 
179 	/* Inodes go before directory entries */
180 	if (sa->type == UBIFS_INO_NODE) {
181 		if (sb->type == UBIFS_INO_NODE)
182 			return sb->len - sa->len;
183 		return -1;
184 	}
185 	if (sb->type == UBIFS_INO_NODE)
186 		return 1;
187 
188 	ubifs_assert(key_type(c, &sa->key) == UBIFS_DENT_KEY ||
189 		     key_type(c, &sa->key) == UBIFS_XENT_KEY);
190 	ubifs_assert(key_type(c, &sb->key) == UBIFS_DENT_KEY ||
191 		     key_type(c, &sb->key) == UBIFS_XENT_KEY);
192 	ubifs_assert(sa->type == UBIFS_DENT_NODE ||
193 		     sa->type == UBIFS_XENT_NODE);
194 	ubifs_assert(sb->type == UBIFS_DENT_NODE ||
195 		     sb->type == UBIFS_XENT_NODE);
196 
197 	inuma = key_inum(c, &sa->key);
198 	inumb = key_inum(c, &sb->key);
199 
200 	if (inuma == inumb) {
201 		uint32_t hasha = key_hash(c, &sa->key);
202 		uint32_t hashb = key_hash(c, &sb->key);
203 
204 		if (hasha <= hashb)
205 			return -1;
206 	} else if (inuma <= inumb)
207 		return -1;
208 
209 	return 1;
210 }
211 
212 /**
213  * sort_nodes - sort nodes for GC.
214  * @c: UBIFS file-system description object
215  * @sleb: describes nodes to sort and contains the result on exit
216  * @nondata: contains non-data nodes on exit
217  * @min: minimum node size is returned here
218  *
219  * This function sorts the list of inodes to garbage collect. First of all, it
220  * kills obsolete nodes and separates data and non-data nodes to the
221  * @sleb->nodes and @nondata lists correspondingly.
222  *
223  * Data nodes are then sorted in block number order - this is important for
224  * bulk-read; data nodes with lower inode number go before data nodes with
225  * higher inode number, and data nodes with lower block number go before data
226  * nodes with higher block number;
227  *
228  * Non-data nodes are sorted as follows.
229  *   o First go inode nodes - they are sorted in descending length order.
230  *   o Then go directory entry nodes - they are sorted in hash order, which
231  *     should supposedly optimize 'readdir()'. Direntry nodes with lower parent
232  *     inode number go before direntry nodes with higher parent inode number,
233  *     and direntry nodes with lower name hash values go before direntry nodes
234  *     with higher name hash values.
235  *
236  * This function returns zero in case of success and a negative error code in
237  * case of failure.
238  */
sort_nodes(struct ubifs_info * c,struct ubifs_scan_leb * sleb,struct list_head * nondata,int * min)239 static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
240 		      struct list_head *nondata, int *min)
241 {
242 	int err;
243 	struct ubifs_scan_node *snod, *tmp;
244 
245 	*min = INT_MAX;
246 
247 	/* Separate data nodes and non-data nodes */
248 	list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
249 		ubifs_assert(snod->type == UBIFS_INO_NODE  ||
250 			     snod->type == UBIFS_DATA_NODE ||
251 			     snod->type == UBIFS_DENT_NODE ||
252 			     snod->type == UBIFS_XENT_NODE ||
253 			     snod->type == UBIFS_TRUN_NODE);
254 
255 		if (snod->type != UBIFS_INO_NODE  &&
256 		    snod->type != UBIFS_DATA_NODE &&
257 		    snod->type != UBIFS_DENT_NODE &&
258 		    snod->type != UBIFS_XENT_NODE) {
259 			/* Probably truncation node, zap it */
260 			list_del(&snod->list);
261 			kfree(snod);
262 			continue;
263 		}
264 
265 		ubifs_assert(key_type(c, &snod->key) == UBIFS_DATA_KEY ||
266 			     key_type(c, &snod->key) == UBIFS_INO_KEY  ||
267 			     key_type(c, &snod->key) == UBIFS_DENT_KEY ||
268 			     key_type(c, &snod->key) == UBIFS_XENT_KEY);
269 
270 		err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum,
271 					 snod->offs, 0);
272 		if (err < 0)
273 			return err;
274 
275 		if (!err) {
276 			/* The node is obsolete, remove it from the list */
277 			list_del(&snod->list);
278 			kfree(snod);
279 			continue;
280 		}
281 
282 		if (snod->len < *min)
283 			*min = snod->len;
284 
285 		if (key_type(c, &snod->key) != UBIFS_DATA_KEY)
286 			list_move_tail(&snod->list, nondata);
287 	}
288 
289 	/* Sort data and non-data nodes */
290 	list_sort(c, &sleb->nodes, &data_nodes_cmp);
291 	list_sort(c, nondata, &nondata_nodes_cmp);
292 
293 	err = dbg_check_data_nodes_order(c, &sleb->nodes);
294 	if (err)
295 		return err;
296 	err = dbg_check_nondata_nodes_order(c, nondata);
297 	if (err)
298 		return err;
299 	return 0;
300 }
301 
302 /**
303  * move_node - move a node.
304  * @c: UBIFS file-system description object
305  * @sleb: describes the LEB to move nodes from
306  * @snod: the mode to move
307  * @wbuf: write-buffer to move node to
308  *
309  * This function moves node @snod to @wbuf, changes TNC correspondingly, and
310  * destroys @snod. Returns zero in case of success and a negative error code in
311  * case of failure.
312  */
move_node(struct ubifs_info * c,struct ubifs_scan_leb * sleb,struct ubifs_scan_node * snod,struct ubifs_wbuf * wbuf)313 static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
314 		     struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf)
315 {
316 	int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used;
317 
318 	cond_resched();
319 	err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len);
320 	if (err)
321 		return err;
322 
323 	err = ubifs_tnc_replace(c, &snod->key, sleb->lnum,
324 				snod->offs, new_lnum, new_offs,
325 				snod->len);
326 	list_del(&snod->list);
327 	kfree(snod);
328 	return err;
329 }
330 
331 /**
332  * move_nodes - move nodes.
333  * @c: UBIFS file-system description object
334  * @sleb: describes the LEB to move nodes from
335  *
336  * This function moves valid nodes from data LEB described by @sleb to the GC
337  * journal head. This function returns zero in case of success, %-EAGAIN if
338  * commit is required, and other negative error codes in case of other
339  * failures.
340  */
move_nodes(struct ubifs_info * c,struct ubifs_scan_leb * sleb)341 static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb)
342 {
343 	int err, min;
344 	LIST_HEAD(nondata);
345 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
346 
347 	if (wbuf->lnum == -1) {
348 		/*
349 		 * The GC journal head is not set, because it is the first GC
350 		 * invocation since mount.
351 		 */
352 		err = switch_gc_head(c);
353 		if (err)
354 			return err;
355 	}
356 
357 	err = sort_nodes(c, sleb, &nondata, &min);
358 	if (err)
359 		goto out;
360 
361 	/* Write nodes to their new location. Use the first-fit strategy */
362 	while (1) {
363 		int avail;
364 		struct ubifs_scan_node *snod, *tmp;
365 
366 		/* Move data nodes */
367 		list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
368 			avail = c->leb_size - wbuf->offs - wbuf->used;
369 			if  (snod->len > avail)
370 				/*
371 				 * Do not skip data nodes in order to optimize
372 				 * bulk-read.
373 				 */
374 				break;
375 
376 			err = move_node(c, sleb, snod, wbuf);
377 			if (err)
378 				goto out;
379 		}
380 
381 		/* Move non-data nodes */
382 		list_for_each_entry_safe(snod, tmp, &nondata, list) {
383 			avail = c->leb_size - wbuf->offs - wbuf->used;
384 			if (avail < min)
385 				break;
386 
387 			if  (snod->len > avail) {
388 				/*
389 				 * Keep going only if this is an inode with
390 				 * some data. Otherwise stop and switch the GC
391 				 * head. IOW, we assume that data-less inode
392 				 * nodes and direntry nodes are roughly of the
393 				 * same size.
394 				 */
395 				if (key_type(c, &snod->key) == UBIFS_DENT_KEY ||
396 				    snod->len == UBIFS_INO_NODE_SZ)
397 					break;
398 				continue;
399 			}
400 
401 			err = move_node(c, sleb, snod, wbuf);
402 			if (err)
403 				goto out;
404 		}
405 
406 		if (list_empty(&sleb->nodes) && list_empty(&nondata))
407 			break;
408 
409 		/*
410 		 * Waste the rest of the space in the LEB and switch to the
411 		 * next LEB.
412 		 */
413 		err = switch_gc_head(c);
414 		if (err)
415 			goto out;
416 	}
417 
418 	return 0;
419 
420 out:
421 	list_splice_tail(&nondata, &sleb->nodes);
422 	return err;
423 }
424 
425 /**
426  * gc_sync_wbufs - sync write-buffers for GC.
427  * @c: UBIFS file-system description object
428  *
429  * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
430  * be in a write-buffer instead. That is, a node could be written to a
431  * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
432  * erased before the write-buffer is sync'd and then there is an unclean
433  * unmount, then an existing node is lost. To avoid this, we sync all
434  * write-buffers.
435  *
436  * This function returns %0 on success or a negative error code on failure.
437  */
gc_sync_wbufs(struct ubifs_info * c)438 static int gc_sync_wbufs(struct ubifs_info *c)
439 {
440 	int err, i;
441 
442 	for (i = 0; i < c->jhead_cnt; i++) {
443 		if (i == GCHD)
444 			continue;
445 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
446 		if (err)
447 			return err;
448 	}
449 	return 0;
450 }
451 
452 /**
453  * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
454  * @c: UBIFS file-system description object
455  * @lp: describes the LEB to garbage collect
456  *
457  * This function garbage-collects an LEB and returns one of the @LEB_FREED,
458  * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
459  * required, and other negative error codes in case of failures.
460  */
ubifs_garbage_collect_leb(struct ubifs_info * c,struct ubifs_lprops * lp)461 int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp)
462 {
463 	struct ubifs_scan_leb *sleb;
464 	struct ubifs_scan_node *snod;
465 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
466 	int err = 0, lnum = lp->lnum;
467 
468 	ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 ||
469 		     c->need_recovery);
470 	ubifs_assert(c->gc_lnum != lnum);
471 	ubifs_assert(wbuf->lnum != lnum);
472 
473 	if (lp->free + lp->dirty == c->leb_size) {
474 		/* Special case - a free LEB  */
475 		dbg_gc("LEB %d is free, return it", lp->lnum);
476 		ubifs_assert(!(lp->flags & LPROPS_INDEX));
477 
478 		if (lp->free != c->leb_size) {
479 			/*
480 			 * Write buffers must be sync'd before unmapping
481 			 * freeable LEBs, because one of them may contain data
482 			 * which obsoletes something in 'lp->pnum'.
483 			 */
484 			err = gc_sync_wbufs(c);
485 			if (err)
486 				return err;
487 			err = ubifs_change_one_lp(c, lp->lnum, c->leb_size,
488 						  0, 0, 0, 0);
489 			if (err)
490 				return err;
491 		}
492 		err = ubifs_leb_unmap(c, lp->lnum);
493 		if (err)
494 			return err;
495 
496 		if (c->gc_lnum == -1) {
497 			c->gc_lnum = lnum;
498 			return LEB_RETAINED;
499 		}
500 
501 		return LEB_FREED;
502 	}
503 
504 	/*
505 	 * We scan the entire LEB even though we only really need to scan up to
506 	 * (c->leb_size - lp->free).
507 	 */
508 	sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0);
509 	if (IS_ERR(sleb))
510 		return PTR_ERR(sleb);
511 
512 	ubifs_assert(!list_empty(&sleb->nodes));
513 	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
514 
515 	if (snod->type == UBIFS_IDX_NODE) {
516 		struct ubifs_gced_idx_leb *idx_gc;
517 
518 		dbg_gc("indexing LEB %d (free %d, dirty %d)",
519 		       lnum, lp->free, lp->dirty);
520 		list_for_each_entry(snod, &sleb->nodes, list) {
521 			struct ubifs_idx_node *idx = snod->node;
522 			int level = le16_to_cpu(idx->level);
523 
524 			ubifs_assert(snod->type == UBIFS_IDX_NODE);
525 			key_read(c, ubifs_idx_key(c, idx), &snod->key);
526 			err = ubifs_dirty_idx_node(c, &snod->key, level, lnum,
527 						   snod->offs);
528 			if (err)
529 				goto out;
530 		}
531 
532 		idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
533 		if (!idx_gc) {
534 			err = -ENOMEM;
535 			goto out;
536 		}
537 
538 		idx_gc->lnum = lnum;
539 		idx_gc->unmap = 0;
540 		list_add(&idx_gc->list, &c->idx_gc);
541 
542 		/*
543 		 * Don't release the LEB until after the next commit, because
544 		 * it may contain data which is needed for recovery. So
545 		 * although we freed this LEB, it will become usable only after
546 		 * the commit.
547 		 */
548 		err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0,
549 					  LPROPS_INDEX, 1);
550 		if (err)
551 			goto out;
552 		err = LEB_FREED_IDX;
553 	} else {
554 		dbg_gc("data LEB %d (free %d, dirty %d)",
555 		       lnum, lp->free, lp->dirty);
556 
557 		err = move_nodes(c, sleb);
558 		if (err)
559 			goto out_inc_seq;
560 
561 		err = gc_sync_wbufs(c);
562 		if (err)
563 			goto out_inc_seq;
564 
565 		err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0);
566 		if (err)
567 			goto out_inc_seq;
568 
569 		/* Allow for races with TNC */
570 		c->gced_lnum = lnum;
571 		smp_wmb();
572 		c->gc_seq += 1;
573 		smp_wmb();
574 
575 		if (c->gc_lnum == -1) {
576 			c->gc_lnum = lnum;
577 			err = LEB_RETAINED;
578 		} else {
579 			err = ubifs_wbuf_sync_nolock(wbuf);
580 			if (err)
581 				goto out;
582 
583 			err = ubifs_leb_unmap(c, lnum);
584 			if (err)
585 				goto out;
586 
587 			err = LEB_FREED;
588 		}
589 	}
590 
591 out:
592 	ubifs_scan_destroy(sleb);
593 	return err;
594 
595 out_inc_seq:
596 	/* We may have moved at least some nodes so allow for races with TNC */
597 	c->gced_lnum = lnum;
598 	smp_wmb();
599 	c->gc_seq += 1;
600 	smp_wmb();
601 	goto out;
602 }
603 
604 /**
605  * ubifs_garbage_collect - UBIFS garbage collector.
606  * @c: UBIFS file-system description object
607  * @anyway: do GC even if there are free LEBs
608  *
609  * This function does out-of-place garbage collection. The return codes are:
610  *   o positive LEB number if the LEB has been freed and may be used;
611  *   o %-EAGAIN if the caller has to run commit;
612  *   o %-ENOSPC if GC failed to make any progress;
613  *   o other negative error codes in case of other errors.
614  *
615  * Garbage collector writes data to the journal when GC'ing data LEBs, and just
616  * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
617  * commit may be required. But commit cannot be run from inside GC, because the
618  * caller might be holding the commit lock, so %-EAGAIN is returned instead;
619  * And this error code means that the caller has to run commit, and re-run GC
620  * if there is still no free space.
621  *
622  * There are many reasons why this function may return %-EAGAIN:
623  * o the log is full and there is no space to write an LEB reference for
624  *   @c->gc_lnum;
625  * o the journal is too large and exceeds size limitations;
626  * o GC moved indexing LEBs, but they can be used only after the commit;
627  * o the shrinker fails to find clean znodes to free and requests the commit;
628  * o etc.
629  *
630  * Note, if the file-system is close to be full, this function may return
631  * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
632  * the function. E.g., this happens if the limits on the journal size are too
633  * tough and GC writes too much to the journal before an LEB is freed. This
634  * might also mean that the journal is too large, and the TNC becomes to big,
635  * so that the shrinker is constantly called, finds not clean znodes to free,
636  * and requests commit. Well, this may also happen if the journal is all right,
637  * but another kernel process consumes too much memory. Anyway, infinite
638  * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
639  */
ubifs_garbage_collect(struct ubifs_info * c,int anyway)640 int ubifs_garbage_collect(struct ubifs_info *c, int anyway)
641 {
642 	int i, err, ret, min_space = c->dead_wm;
643 	struct ubifs_lprops lp;
644 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
645 
646 	ubifs_assert_cmt_locked(c);
647 	ubifs_assert(!c->ro_media && !c->ro_mount);
648 
649 	if (ubifs_gc_should_commit(c))
650 		return -EAGAIN;
651 
652 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
653 
654 	if (c->ro_error) {
655 		ret = -EROFS;
656 		goto out_unlock;
657 	}
658 
659 	/* We expect the write-buffer to be empty on entry */
660 	ubifs_assert(!wbuf->used);
661 
662 	for (i = 0; ; i++) {
663 		int space_before, space_after;
664 
665 		cond_resched();
666 
667 		/* Give the commit an opportunity to run */
668 		if (ubifs_gc_should_commit(c)) {
669 			ret = -EAGAIN;
670 			break;
671 		}
672 
673 		if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) {
674 			/*
675 			 * We've done enough iterations. Indexing LEBs were
676 			 * moved and will be available after the commit.
677 			 */
678 			dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
679 			ubifs_commit_required(c);
680 			ret = -EAGAIN;
681 			break;
682 		}
683 
684 		if (i > HARD_LEBS_LIMIT) {
685 			/*
686 			 * We've moved too many LEBs and have not made
687 			 * progress, give up.
688 			 */
689 			dbg_gc("hard limit, -ENOSPC");
690 			ret = -ENOSPC;
691 			break;
692 		}
693 
694 		/*
695 		 * Empty and freeable LEBs can turn up while we waited for
696 		 * the wbuf lock, or while we have been running GC. In that
697 		 * case, we should just return one of those instead of
698 		 * continuing to GC dirty LEBs. Hence we request
699 		 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
700 		 */
701 		ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1);
702 		if (ret) {
703 			if (ret == -ENOSPC)
704 				dbg_gc("no more dirty LEBs");
705 			break;
706 		}
707 
708 		dbg_gc("found LEB %d: free %d, dirty %d, sum %d (min. space %d)",
709 		       lp.lnum, lp.free, lp.dirty, lp.free + lp.dirty,
710 		       min_space);
711 
712 		space_before = c->leb_size - wbuf->offs - wbuf->used;
713 		if (wbuf->lnum == -1)
714 			space_before = 0;
715 
716 		ret = ubifs_garbage_collect_leb(c, &lp);
717 		if (ret < 0) {
718 			if (ret == -EAGAIN) {
719 				/*
720 				 * This is not error, so we have to return the
721 				 * LEB to lprops. But if 'ubifs_return_leb()'
722 				 * fails, its failure code is propagated to the
723 				 * caller instead of the original '-EAGAIN'.
724 				 */
725 				err = ubifs_return_leb(c, lp.lnum);
726 				if (err)
727 					ret = err;
728 				break;
729 			}
730 			goto out;
731 		}
732 
733 		if (ret == LEB_FREED) {
734 			/* An LEB has been freed and is ready for use */
735 			dbg_gc("LEB %d freed, return", lp.lnum);
736 			ret = lp.lnum;
737 			break;
738 		}
739 
740 		if (ret == LEB_FREED_IDX) {
741 			/*
742 			 * This was an indexing LEB and it cannot be
743 			 * immediately used. And instead of requesting the
744 			 * commit straight away, we try to garbage collect some
745 			 * more.
746 			 */
747 			dbg_gc("indexing LEB %d freed, continue", lp.lnum);
748 			continue;
749 		}
750 
751 		ubifs_assert(ret == LEB_RETAINED);
752 		space_after = c->leb_size - wbuf->offs - wbuf->used;
753 		dbg_gc("LEB %d retained, freed %d bytes", lp.lnum,
754 		       space_after - space_before);
755 
756 		if (space_after > space_before) {
757 			/* GC makes progress, keep working */
758 			min_space >>= 1;
759 			if (min_space < c->dead_wm)
760 				min_space = c->dead_wm;
761 			continue;
762 		}
763 
764 		dbg_gc("did not make progress");
765 
766 		/*
767 		 * GC moved an LEB bud have not done any progress. This means
768 		 * that the previous GC head LEB contained too few free space
769 		 * and the LEB which was GC'ed contained only large nodes which
770 		 * did not fit that space.
771 		 *
772 		 * We can do 2 things:
773 		 * 1. pick another LEB in a hope it'll contain a small node
774 		 *    which will fit the space we have at the end of current GC
775 		 *    head LEB, but there is no guarantee, so we try this out
776 		 *    unless we have already been working for too long;
777 		 * 2. request an LEB with more dirty space, which will force
778 		 *    'ubifs_find_dirty_leb()' to start scanning the lprops
779 		 *    table, instead of just picking one from the heap
780 		 *    (previously it already picked the dirtiest LEB).
781 		 */
782 		if (i < SOFT_LEBS_LIMIT) {
783 			dbg_gc("try again");
784 			continue;
785 		}
786 
787 		min_space <<= 1;
788 		if (min_space > c->dark_wm)
789 			min_space = c->dark_wm;
790 		dbg_gc("set min. space to %d", min_space);
791 	}
792 
793 	if (ret == -ENOSPC && !list_empty(&c->idx_gc)) {
794 		dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
795 		ubifs_commit_required(c);
796 		ret = -EAGAIN;
797 	}
798 
799 	err = ubifs_wbuf_sync_nolock(wbuf);
800 	if (!err)
801 		err = ubifs_leb_unmap(c, c->gc_lnum);
802 	if (err) {
803 		ret = err;
804 		goto out;
805 	}
806 out_unlock:
807 	mutex_unlock(&wbuf->io_mutex);
808 	return ret;
809 
810 out:
811 	ubifs_assert(ret < 0);
812 	ubifs_assert(ret != -ENOSPC && ret != -EAGAIN);
813 	ubifs_wbuf_sync_nolock(wbuf);
814 	ubifs_ro_mode(c, ret);
815 	mutex_unlock(&wbuf->io_mutex);
816 	ubifs_return_leb(c, lp.lnum);
817 	return ret;
818 }
819 
820 /**
821  * ubifs_gc_start_commit - garbage collection at start of commit.
822  * @c: UBIFS file-system description object
823  *
824  * If a LEB has only dirty and free space, then we may safely unmap it and make
825  * it free.  Note, we cannot do this with indexing LEBs because dirty space may
826  * correspond index nodes that are required for recovery.  In that case, the
827  * LEB cannot be unmapped until after the next commit.
828  *
829  * This function returns %0 upon success and a negative error code upon failure.
830  */
ubifs_gc_start_commit(struct ubifs_info * c)831 int ubifs_gc_start_commit(struct ubifs_info *c)
832 {
833 	struct ubifs_gced_idx_leb *idx_gc;
834 	const struct ubifs_lprops *lp;
835 	int err = 0, flags;
836 
837 	ubifs_get_lprops(c);
838 
839 	/*
840 	 * Unmap (non-index) freeable LEBs. Note that recovery requires that all
841 	 * wbufs are sync'd before this, which is done in 'do_commit()'.
842 	 */
843 	while (1) {
844 		lp = ubifs_fast_find_freeable(c);
845 		if (IS_ERR(lp)) {
846 			err = PTR_ERR(lp);
847 			goto out;
848 		}
849 		if (!lp)
850 			break;
851 		ubifs_assert(!(lp->flags & LPROPS_TAKEN));
852 		ubifs_assert(!(lp->flags & LPROPS_INDEX));
853 		err = ubifs_leb_unmap(c, lp->lnum);
854 		if (err)
855 			goto out;
856 		lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0);
857 		if (IS_ERR(lp)) {
858 			err = PTR_ERR(lp);
859 			goto out;
860 		}
861 		ubifs_assert(!(lp->flags & LPROPS_TAKEN));
862 		ubifs_assert(!(lp->flags & LPROPS_INDEX));
863 	}
864 
865 	/* Mark GC'd index LEBs OK to unmap after this commit finishes */
866 	list_for_each_entry(idx_gc, &c->idx_gc, list)
867 		idx_gc->unmap = 1;
868 
869 	/* Record index freeable LEBs for unmapping after commit */
870 	while (1) {
871 		lp = ubifs_fast_find_frdi_idx(c);
872 		if (IS_ERR(lp)) {
873 			err = PTR_ERR(lp);
874 			goto out;
875 		}
876 		if (!lp)
877 			break;
878 		idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
879 		if (!idx_gc) {
880 			err = -ENOMEM;
881 			goto out;
882 		}
883 		ubifs_assert(!(lp->flags & LPROPS_TAKEN));
884 		ubifs_assert(lp->flags & LPROPS_INDEX);
885 		/* Don't release the LEB until after the next commit */
886 		flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX;
887 		lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1);
888 		if (IS_ERR(lp)) {
889 			err = PTR_ERR(lp);
890 			kfree(idx_gc);
891 			goto out;
892 		}
893 		ubifs_assert(lp->flags & LPROPS_TAKEN);
894 		ubifs_assert(!(lp->flags & LPROPS_INDEX));
895 		idx_gc->lnum = lp->lnum;
896 		idx_gc->unmap = 1;
897 		list_add(&idx_gc->list, &c->idx_gc);
898 	}
899 out:
900 	ubifs_release_lprops(c);
901 	return err;
902 }
903 
904 /**
905  * ubifs_gc_end_commit - garbage collection at end of commit.
906  * @c: UBIFS file-system description object
907  *
908  * This function completes out-of-place garbage collection of index LEBs.
909  */
ubifs_gc_end_commit(struct ubifs_info * c)910 int ubifs_gc_end_commit(struct ubifs_info *c)
911 {
912 	struct ubifs_gced_idx_leb *idx_gc, *tmp;
913 	struct ubifs_wbuf *wbuf;
914 	int err = 0;
915 
916 	wbuf = &c->jheads[GCHD].wbuf;
917 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
918 	list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list)
919 		if (idx_gc->unmap) {
920 			dbg_gc("LEB %d", idx_gc->lnum);
921 			err = ubifs_leb_unmap(c, idx_gc->lnum);
922 			if (err)
923 				goto out;
924 			err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC,
925 					  LPROPS_NC, 0, LPROPS_TAKEN, -1);
926 			if (err)
927 				goto out;
928 			list_del(&idx_gc->list);
929 			kfree(idx_gc);
930 		}
931 out:
932 	mutex_unlock(&wbuf->io_mutex);
933 	return err;
934 }
935 #endif
936 /**
937  * ubifs_destroy_idx_gc - destroy idx_gc list.
938  * @c: UBIFS file-system description object
939  *
940  * This function destroys the @c->idx_gc list. It is called when unmounting
941  * so locks are not needed. Returns zero in case of success and a negative
942  * error code in case of failure.
943  */
ubifs_destroy_idx_gc(struct ubifs_info * c)944 void ubifs_destroy_idx_gc(struct ubifs_info *c)
945 {
946 	while (!list_empty(&c->idx_gc)) {
947 		struct ubifs_gced_idx_leb *idx_gc;
948 
949 		idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb,
950 				    list);
951 		c->idx_gc_cnt -= 1;
952 		list_del(&idx_gc->list);
953 		kfree(idx_gc);
954 	}
955 }
956 #ifndef __UBOOT__
957 /**
958  * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
959  * @c: UBIFS file-system description object
960  *
961  * Called during start commit so locks are not needed.
962  */
ubifs_get_idx_gc_leb(struct ubifs_info * c)963 int ubifs_get_idx_gc_leb(struct ubifs_info *c)
964 {
965 	struct ubifs_gced_idx_leb *idx_gc;
966 	int lnum;
967 
968 	if (list_empty(&c->idx_gc))
969 		return -ENOSPC;
970 	idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list);
971 	lnum = idx_gc->lnum;
972 	/* c->idx_gc_cnt is updated by the caller when lprops are updated */
973 	list_del(&idx_gc->list);
974 	kfree(idx_gc);
975 	return lnum;
976 }
977 #endif
978