1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	Copied from Linux Monitor (LiMon) - Networking.
4  *
5  *	Copyright 1994 - 2000 Neil Russell.
6  *	(See License)
7  *	Copyright 2000 Roland Borde
8  *	Copyright 2000 Paolo Scaffardi
9  *	Copyright 2000-2002 Wolfgang Denk, wd@denx.de
10  */
11 
12 /*
13  * General Desription:
14  *
15  * The user interface supports commands for BOOTP, RARP, and TFTP.
16  * Also, we support ARP internally. Depending on available data,
17  * these interact as follows:
18  *
19  * BOOTP:
20  *
21  *	Prerequisites:	- own ethernet address
22  *	We want:	- own IP address
23  *			- TFTP server IP address
24  *			- name of bootfile
25  *	Next step:	ARP
26  *
27  * LINK_LOCAL:
28  *
29  *	Prerequisites:	- own ethernet address
30  *	We want:	- own IP address
31  *	Next step:	ARP
32  *
33  * RARP:
34  *
35  *	Prerequisites:	- own ethernet address
36  *	We want:	- own IP address
37  *			- TFTP server IP address
38  *	Next step:	ARP
39  *
40  * ARP:
41  *
42  *	Prerequisites:	- own ethernet address
43  *			- own IP address
44  *			- TFTP server IP address
45  *	We want:	- TFTP server ethernet address
46  *	Next step:	TFTP
47  *
48  * DHCP:
49  *
50  *     Prerequisites:	- own ethernet address
51  *     We want:		- IP, Netmask, ServerIP, Gateway IP
52  *			- bootfilename, lease time
53  *     Next step:	- TFTP
54  *
55  * TFTP:
56  *
57  *	Prerequisites:	- own ethernet address
58  *			- own IP address
59  *			- TFTP server IP address
60  *			- TFTP server ethernet address
61  *			- name of bootfile (if unknown, we use a default name
62  *			  derived from our own IP address)
63  *	We want:	- load the boot file
64  *	Next step:	none
65  *
66  * NFS:
67  *
68  *	Prerequisites:	- own ethernet address
69  *			- own IP address
70  *			- name of bootfile (if unknown, we use a default name
71  *			  derived from our own IP address)
72  *	We want:	- load the boot file
73  *	Next step:	none
74  *
75  *
76  * WOL:
77  *
78  *	Prerequisites:	- own ethernet address
79  *	We want:	- magic packet or timeout
80  *	Next step:	none
81  */
82 
83 
84 #include <common.h>
85 #include <bootstage.h>
86 #include <command.h>
87 #include <console.h>
88 #include <env.h>
89 #include <env_internal.h>
90 #include <errno.h>
91 #include <image.h>
92 #include <log.h>
93 #include <net.h>
94 #include <net/fastboot.h>
95 #include <net/tftp.h>
96 #if defined(CONFIG_CMD_PCAP)
97 #include <net/pcap.h>
98 #endif
99 #include <net/udp.h>
100 #if defined(CONFIG_LED_STATUS)
101 #include <miiphy.h>
102 #include <status_led.h>
103 #endif
104 #include <watchdog.h>
105 #include <linux/compiler.h>
106 #include "arp.h"
107 #include "bootp.h"
108 #include "cdp.h"
109 #if defined(CONFIG_CMD_DNS)
110 #include "dns.h"
111 #endif
112 #include "link_local.h"
113 #include "nfs.h"
114 #include "ping.h"
115 #include "rarp.h"
116 #if defined(CONFIG_CMD_WOL)
117 #include "wol.h"
118 #endif
119 
120 /** BOOTP EXTENTIONS **/
121 
122 /* Our subnet mask (0=unknown) */
123 struct in_addr net_netmask;
124 /* Our gateways IP address */
125 struct in_addr net_gateway;
126 /* Our DNS IP address */
127 struct in_addr net_dns_server;
128 #if defined(CONFIG_BOOTP_DNS2)
129 /* Our 2nd DNS IP address */
130 struct in_addr net_dns_server2;
131 #endif
132 
133 /** END OF BOOTP EXTENTIONS **/
134 
135 /* Our ethernet address */
136 u8 net_ethaddr[6];
137 /* Boot server enet address */
138 u8 net_server_ethaddr[6];
139 /* Our IP addr (0 = unknown) */
140 struct in_addr	net_ip;
141 /* Server IP addr (0 = unknown) */
142 struct in_addr	net_server_ip;
143 /* Current receive packet */
144 uchar *net_rx_packet;
145 /* Current rx packet length */
146 int		net_rx_packet_len;
147 /* IP packet ID */
148 static unsigned	net_ip_id;
149 /* Ethernet bcast address */
150 const u8 net_bcast_ethaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
151 const u8 net_null_ethaddr[6];
152 #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER)
153 void (*push_packet)(void *, int len) = 0;
154 #endif
155 /* Network loop state */
156 enum net_loop_state net_state;
157 /* Tried all network devices */
158 int		net_restart_wrap;
159 /* Network loop restarted */
160 static int	net_restarted;
161 /* At least one device configured */
162 static int	net_dev_exists;
163 
164 /* XXX in both little & big endian machines 0xFFFF == ntohs(-1) */
165 /* default is without VLAN */
166 ushort		net_our_vlan = 0xFFFF;
167 /* ditto */
168 ushort		net_native_vlan = 0xFFFF;
169 
170 /* Boot File name */
171 char net_boot_file_name[1024];
172 /* Indicates whether the file name was specified on the command line */
173 bool net_boot_file_name_explicit;
174 /* The actual transferred size of the bootfile (in bytes) */
175 u32 net_boot_file_size;
176 /* Boot file size in blocks as reported by the DHCP server */
177 u32 net_boot_file_expected_size_in_blocks;
178 
179 static uchar net_pkt_buf[(PKTBUFSRX+1) * PKTSIZE_ALIGN + PKTALIGN];
180 /* Receive packets */
181 uchar *net_rx_packets[PKTBUFSRX];
182 /* Current UDP RX packet handler */
183 static rxhand_f *udp_packet_handler;
184 /* Current ARP RX packet handler */
185 static rxhand_f *arp_packet_handler;
186 #ifdef CONFIG_CMD_TFTPPUT
187 /* Current ICMP rx handler */
188 static rxhand_icmp_f *packet_icmp_handler;
189 #endif
190 /* Current timeout handler */
191 static thand_f *time_handler;
192 /* Time base value */
193 static ulong	time_start;
194 /* Current timeout value */
195 static ulong	time_delta;
196 /* THE transmit packet */
197 uchar *net_tx_packet;
198 
199 static int net_check_prereq(enum proto_t protocol);
200 
201 static int net_try_count;
202 
203 int __maybe_unused net_busy_flag;
204 
205 /**********************************************************************/
206 
on_ipaddr(const char * name,const char * value,enum env_op op,int flags)207 static int on_ipaddr(const char *name, const char *value, enum env_op op,
208 	int flags)
209 {
210 	if (flags & H_PROGRAMMATIC)
211 		return 0;
212 
213 	net_ip = string_to_ip(value);
214 
215 	return 0;
216 }
217 U_BOOT_ENV_CALLBACK(ipaddr, on_ipaddr);
218 
on_gatewayip(const char * name,const char * value,enum env_op op,int flags)219 static int on_gatewayip(const char *name, const char *value, enum env_op op,
220 	int flags)
221 {
222 	if (flags & H_PROGRAMMATIC)
223 		return 0;
224 
225 	net_gateway = string_to_ip(value);
226 
227 	return 0;
228 }
229 U_BOOT_ENV_CALLBACK(gatewayip, on_gatewayip);
230 
on_netmask(const char * name,const char * value,enum env_op op,int flags)231 static int on_netmask(const char *name, const char *value, enum env_op op,
232 	int flags)
233 {
234 	if (flags & H_PROGRAMMATIC)
235 		return 0;
236 
237 	net_netmask = string_to_ip(value);
238 
239 	return 0;
240 }
241 U_BOOT_ENV_CALLBACK(netmask, on_netmask);
242 
on_serverip(const char * name,const char * value,enum env_op op,int flags)243 static int on_serverip(const char *name, const char *value, enum env_op op,
244 	int flags)
245 {
246 	if (flags & H_PROGRAMMATIC)
247 		return 0;
248 
249 	net_server_ip = string_to_ip(value);
250 
251 	return 0;
252 }
253 U_BOOT_ENV_CALLBACK(serverip, on_serverip);
254 
on_nvlan(const char * name,const char * value,enum env_op op,int flags)255 static int on_nvlan(const char *name, const char *value, enum env_op op,
256 	int flags)
257 {
258 	if (flags & H_PROGRAMMATIC)
259 		return 0;
260 
261 	net_native_vlan = string_to_vlan(value);
262 
263 	return 0;
264 }
265 U_BOOT_ENV_CALLBACK(nvlan, on_nvlan);
266 
on_vlan(const char * name,const char * value,enum env_op op,int flags)267 static int on_vlan(const char *name, const char *value, enum env_op op,
268 	int flags)
269 {
270 	if (flags & H_PROGRAMMATIC)
271 		return 0;
272 
273 	net_our_vlan = string_to_vlan(value);
274 
275 	return 0;
276 }
277 U_BOOT_ENV_CALLBACK(vlan, on_vlan);
278 
279 #if defined(CONFIG_CMD_DNS)
on_dnsip(const char * name,const char * value,enum env_op op,int flags)280 static int on_dnsip(const char *name, const char *value, enum env_op op,
281 	int flags)
282 {
283 	if (flags & H_PROGRAMMATIC)
284 		return 0;
285 
286 	net_dns_server = string_to_ip(value);
287 
288 	return 0;
289 }
290 U_BOOT_ENV_CALLBACK(dnsip, on_dnsip);
291 #endif
292 
293 /*
294  * Check if autoload is enabled. If so, use either NFS or TFTP to download
295  * the boot file.
296  */
net_auto_load(void)297 void net_auto_load(void)
298 {
299 #if defined(CONFIG_CMD_NFS) && !defined(CONFIG_SPL_BUILD)
300 	const char *s = env_get("autoload");
301 
302 	if (s != NULL && strcmp(s, "NFS") == 0) {
303 		if (net_check_prereq(NFS)) {
304 /* We aren't expecting to get a serverip, so just accept the assigned IP */
305 #ifdef CONFIG_BOOTP_SERVERIP
306 			net_set_state(NETLOOP_SUCCESS);
307 #else
308 			printf("Cannot autoload with NFS\n");
309 			net_set_state(NETLOOP_FAIL);
310 #endif
311 			return;
312 		}
313 		/*
314 		 * Use NFS to load the bootfile.
315 		 */
316 		nfs_start();
317 		return;
318 	}
319 #endif
320 	if (env_get_yesno("autoload") == 0) {
321 		/*
322 		 * Just use BOOTP/RARP to configure system;
323 		 * Do not use TFTP to load the bootfile.
324 		 */
325 		net_set_state(NETLOOP_SUCCESS);
326 		return;
327 	}
328 	if (net_check_prereq(TFTPGET)) {
329 /* We aren't expecting to get a serverip, so just accept the assigned IP */
330 #ifdef CONFIG_BOOTP_SERVERIP
331 		net_set_state(NETLOOP_SUCCESS);
332 #else
333 		printf("Cannot autoload with TFTPGET\n");
334 		net_set_state(NETLOOP_FAIL);
335 #endif
336 		return;
337 	}
338 	tftp_start(TFTPGET);
339 }
340 
net_init_loop(void)341 static int net_init_loop(void)
342 {
343 	if (eth_get_dev())
344 		memcpy(net_ethaddr, eth_get_ethaddr(), 6);
345 	else
346 		/*
347 		 * Not ideal, but there's no way to get the actual error, and I
348 		 * don't feel like fixing all the users of eth_get_dev to deal
349 		 * with errors.
350 		 */
351 		return -ENONET;
352 
353 	return 0;
354 }
355 
net_clear_handlers(void)356 static void net_clear_handlers(void)
357 {
358 	net_set_udp_handler(NULL);
359 	net_set_arp_handler(NULL);
360 	net_set_timeout_handler(0, NULL);
361 }
362 
net_cleanup_loop(void)363 static void net_cleanup_loop(void)
364 {
365 	net_clear_handlers();
366 }
367 
net_init(void)368 int net_init(void)
369 {
370 	static int first_call = 1;
371 
372 	if (first_call) {
373 		/*
374 		 *	Setup packet buffers, aligned correctly.
375 		 */
376 		int i;
377 
378 		net_tx_packet = &net_pkt_buf[0] + (PKTALIGN - 1);
379 		net_tx_packet -= (ulong)net_tx_packet % PKTALIGN;
380 		for (i = 0; i < PKTBUFSRX; i++) {
381 			net_rx_packets[i] = net_tx_packet +
382 				(i + 1) * PKTSIZE_ALIGN;
383 		}
384 		arp_init();
385 		net_clear_handlers();
386 
387 		/* Only need to setup buffer pointers once. */
388 		first_call = 0;
389 	}
390 
391 	return net_init_loop();
392 }
393 
394 /**********************************************************************/
395 /*
396  *	Main network processing loop.
397  */
398 
net_loop(enum proto_t protocol)399 int net_loop(enum proto_t protocol)
400 {
401 	int ret = -EINVAL;
402 	enum net_loop_state prev_net_state = net_state;
403 
404 #if defined(CONFIG_CMD_PING)
405 	if (protocol != PING)
406 		net_ping_ip.s_addr = 0;
407 #endif
408 	net_restarted = 0;
409 	net_dev_exists = 0;
410 	net_try_count = 1;
411 	debug_cond(DEBUG_INT_STATE, "--- net_loop Entry\n");
412 
413 	bootstage_mark_name(BOOTSTAGE_ID_ETH_START, "eth_start");
414 	net_init();
415 	if (eth_is_on_demand_init()) {
416 		eth_halt();
417 		eth_set_current();
418 		ret = eth_init();
419 		if (ret < 0) {
420 			eth_halt();
421 			return ret;
422 		}
423 	} else {
424 		eth_init_state_only();
425 	}
426 restart:
427 #ifdef CONFIG_USB_KEYBOARD
428 	net_busy_flag = 0;
429 #endif
430 	net_set_state(NETLOOP_CONTINUE);
431 
432 	/*
433 	 *	Start the ball rolling with the given start function.  From
434 	 *	here on, this code is a state machine driven by received
435 	 *	packets and timer events.
436 	 */
437 	debug_cond(DEBUG_INT_STATE, "--- net_loop Init\n");
438 	net_init_loop();
439 
440 	switch (net_check_prereq(protocol)) {
441 	case 1:
442 		/* network not configured */
443 		eth_halt();
444 		net_set_state(prev_net_state);
445 		return -ENODEV;
446 
447 	case 2:
448 		/* network device not configured */
449 		break;
450 
451 	case 0:
452 		net_dev_exists = 1;
453 		net_boot_file_size = 0;
454 		switch (protocol) {
455 #ifdef CONFIG_CMD_TFTPBOOT
456 		case TFTPGET:
457 #ifdef CONFIG_CMD_TFTPPUT
458 		case TFTPPUT:
459 #endif
460 			/* always use ARP to get server ethernet address */
461 			tftp_start(protocol);
462 			break;
463 #endif
464 #ifdef CONFIG_CMD_TFTPSRV
465 		case TFTPSRV:
466 			tftp_start_server();
467 			break;
468 #endif
469 #ifdef CONFIG_UDP_FUNCTION_FASTBOOT
470 		case FASTBOOT:
471 			fastboot_start_server();
472 			break;
473 #endif
474 #if defined(CONFIG_CMD_DHCP)
475 		case DHCP:
476 			bootp_reset();
477 			net_ip.s_addr = 0;
478 			dhcp_request();		/* Basically same as BOOTP */
479 			break;
480 #endif
481 #if defined(CONFIG_CMD_BOOTP)
482 		case BOOTP:
483 			bootp_reset();
484 			net_ip.s_addr = 0;
485 			bootp_request();
486 			break;
487 #endif
488 #if defined(CONFIG_CMD_RARP)
489 		case RARP:
490 			rarp_try = 0;
491 			net_ip.s_addr = 0;
492 			rarp_request();
493 			break;
494 #endif
495 #if defined(CONFIG_CMD_PING)
496 		case PING:
497 			ping_start();
498 			break;
499 #endif
500 #if defined(CONFIG_CMD_NFS) && !defined(CONFIG_SPL_BUILD)
501 		case NFS:
502 			nfs_start();
503 			break;
504 #endif
505 #if defined(CONFIG_CMD_CDP)
506 		case CDP:
507 			cdp_start();
508 			break;
509 #endif
510 #if defined(CONFIG_NETCONSOLE) && !defined(CONFIG_SPL_BUILD)
511 		case NETCONS:
512 			nc_start();
513 			break;
514 #endif
515 #if defined(CONFIG_CMD_DNS)
516 		case DNS:
517 			dns_start();
518 			break;
519 #endif
520 #if defined(CONFIG_CMD_LINK_LOCAL)
521 		case LINKLOCAL:
522 			link_local_start();
523 			break;
524 #endif
525 #if defined(CONFIG_CMD_WOL)
526 		case WOL:
527 			wol_start();
528 			break;
529 #endif
530 		default:
531 			break;
532 		}
533 
534 		if (IS_ENABLED(CONFIG_PROT_UDP) && protocol == UDP)
535 			udp_start();
536 
537 		break;
538 	}
539 
540 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
541 #if	defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN)	&& \
542 	defined(CONFIG_LED_STATUS)			&& \
543 	defined(CONFIG_LED_STATUS_RED)
544 	/*
545 	 * Echo the inverted link state to the fault LED.
546 	 */
547 	if (miiphy_link(eth_get_dev()->name, CONFIG_SYS_FAULT_MII_ADDR))
548 		status_led_set(CONFIG_LED_STATUS_RED, CONFIG_LED_STATUS_OFF);
549 	else
550 		status_led_set(CONFIG_LED_STATUS_RED, CONFIG_LED_STATUS_ON);
551 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */
552 #endif /* CONFIG_MII, ... */
553 #ifdef CONFIG_USB_KEYBOARD
554 	net_busy_flag = 1;
555 #endif
556 
557 	/*
558 	 *	Main packet reception loop.  Loop receiving packets until
559 	 *	someone sets `net_state' to a state that terminates.
560 	 */
561 	for (;;) {
562 		WATCHDOG_RESET();
563 		if (arp_timeout_check() > 0)
564 			time_start = get_timer(0);
565 
566 		/*
567 		 *	Check the ethernet for a new packet.  The ethernet
568 		 *	receive routine will process it.
569 		 *	Most drivers return the most recent packet size, but not
570 		 *	errors that may have happened.
571 		 */
572 		eth_rx();
573 
574 		/*
575 		 *	Abort if ctrl-c was pressed.
576 		 */
577 		if (ctrlc()) {
578 			/* cancel any ARP that may not have completed */
579 			net_arp_wait_packet_ip.s_addr = 0;
580 
581 			net_cleanup_loop();
582 			eth_halt();
583 			/* Invalidate the last protocol */
584 			eth_set_last_protocol(BOOTP);
585 
586 			puts("\nAbort\n");
587 			/* include a debug print as well incase the debug
588 			   messages are directed to stderr */
589 			debug_cond(DEBUG_INT_STATE, "--- net_loop Abort!\n");
590 			ret = -EINTR;
591 			goto done;
592 		}
593 
594 		/*
595 		 *	Check for a timeout, and run the timeout handler
596 		 *	if we have one.
597 		 */
598 		if (time_handler &&
599 		    ((get_timer(0) - time_start) > time_delta)) {
600 			thand_f *x;
601 
602 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
603 #if	defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN)	&& \
604 	defined(CONFIG_LED_STATUS)			&& \
605 	defined(CONFIG_LED_STATUS_RED)
606 			/*
607 			 * Echo the inverted link state to the fault LED.
608 			 */
609 			if (miiphy_link(eth_get_dev()->name,
610 					CONFIG_SYS_FAULT_MII_ADDR))
611 				status_led_set(CONFIG_LED_STATUS_RED,
612 					       CONFIG_LED_STATUS_OFF);
613 			else
614 				status_led_set(CONFIG_LED_STATUS_RED,
615 					       CONFIG_LED_STATUS_ON);
616 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */
617 #endif /* CONFIG_MII, ... */
618 			debug_cond(DEBUG_INT_STATE, "--- net_loop timeout\n");
619 			x = time_handler;
620 			time_handler = (thand_f *)0;
621 			(*x)();
622 		}
623 
624 		if (net_state == NETLOOP_FAIL)
625 			ret = net_start_again();
626 
627 		switch (net_state) {
628 		case NETLOOP_RESTART:
629 			net_restarted = 1;
630 			goto restart;
631 
632 		case NETLOOP_SUCCESS:
633 			net_cleanup_loop();
634 			if (net_boot_file_size > 0) {
635 				printf("Bytes transferred = %d (%x hex)\n",
636 				       net_boot_file_size, net_boot_file_size);
637 				env_set_hex("filesize", net_boot_file_size);
638 				env_set_hex("fileaddr", image_load_addr);
639 			}
640 			if (protocol != NETCONS)
641 				eth_halt();
642 			else
643 				eth_halt_state_only();
644 
645 			eth_set_last_protocol(protocol);
646 
647 			ret = net_boot_file_size;
648 			debug_cond(DEBUG_INT_STATE, "--- net_loop Success!\n");
649 			goto done;
650 
651 		case NETLOOP_FAIL:
652 			net_cleanup_loop();
653 			/* Invalidate the last protocol */
654 			eth_set_last_protocol(BOOTP);
655 			debug_cond(DEBUG_INT_STATE, "--- net_loop Fail!\n");
656 			ret = -ENONET;
657 			goto done;
658 
659 		case NETLOOP_CONTINUE:
660 			continue;
661 		}
662 	}
663 
664 done:
665 #ifdef CONFIG_USB_KEYBOARD
666 	net_busy_flag = 0;
667 #endif
668 #ifdef CONFIG_CMD_TFTPPUT
669 	/* Clear out the handlers */
670 	net_set_udp_handler(NULL);
671 	net_set_icmp_handler(NULL);
672 #endif
673 	net_set_state(prev_net_state);
674 
675 #if defined(CONFIG_CMD_PCAP)
676 	if (pcap_active())
677 		pcap_print_status();
678 #endif
679 	return ret;
680 }
681 
682 /**********************************************************************/
683 
start_again_timeout_handler(void)684 static void start_again_timeout_handler(void)
685 {
686 	net_set_state(NETLOOP_RESTART);
687 }
688 
net_start_again(void)689 int net_start_again(void)
690 {
691 	char *nretry;
692 	int retry_forever = 0;
693 	unsigned long retrycnt = 0;
694 	int ret;
695 
696 	nretry = env_get("netretry");
697 	if (nretry) {
698 		if (!strcmp(nretry, "yes"))
699 			retry_forever = 1;
700 		else if (!strcmp(nretry, "no"))
701 			retrycnt = 0;
702 		else if (!strcmp(nretry, "once"))
703 			retrycnt = 1;
704 		else
705 			retrycnt = simple_strtoul(nretry, NULL, 0);
706 	} else {
707 		retrycnt = 0;
708 		retry_forever = 0;
709 	}
710 
711 	if ((!retry_forever) && (net_try_count > retrycnt)) {
712 		eth_halt();
713 		net_set_state(NETLOOP_FAIL);
714 		/*
715 		 * We don't provide a way for the protocol to return an error,
716 		 * but this is almost always the reason.
717 		 */
718 		return -ETIMEDOUT;
719 	}
720 
721 	net_try_count++;
722 
723 	eth_halt();
724 #if !defined(CONFIG_NET_DO_NOT_TRY_ANOTHER)
725 	eth_try_another(!net_restarted);
726 #endif
727 	ret = eth_init();
728 	if (net_restart_wrap) {
729 		net_restart_wrap = 0;
730 		if (net_dev_exists) {
731 			net_set_timeout_handler(10000UL,
732 						start_again_timeout_handler);
733 			net_set_udp_handler(NULL);
734 		} else {
735 			net_set_state(NETLOOP_FAIL);
736 		}
737 	} else {
738 		net_set_state(NETLOOP_RESTART);
739 	}
740 	return ret;
741 }
742 
743 /**********************************************************************/
744 /*
745  *	Miscelaneous bits.
746  */
747 
dummy_handler(uchar * pkt,unsigned dport,struct in_addr sip,unsigned sport,unsigned len)748 static void dummy_handler(uchar *pkt, unsigned dport,
749 			struct in_addr sip, unsigned sport,
750 			unsigned len)
751 {
752 }
753 
net_get_udp_handler(void)754 rxhand_f *net_get_udp_handler(void)
755 {
756 	return udp_packet_handler;
757 }
758 
net_set_udp_handler(rxhand_f * f)759 void net_set_udp_handler(rxhand_f *f)
760 {
761 	debug_cond(DEBUG_INT_STATE, "--- net_loop UDP handler set (%p)\n", f);
762 	if (f == NULL)
763 		udp_packet_handler = dummy_handler;
764 	else
765 		udp_packet_handler = f;
766 }
767 
net_get_arp_handler(void)768 rxhand_f *net_get_arp_handler(void)
769 {
770 	return arp_packet_handler;
771 }
772 
net_set_arp_handler(rxhand_f * f)773 void net_set_arp_handler(rxhand_f *f)
774 {
775 	debug_cond(DEBUG_INT_STATE, "--- net_loop ARP handler set (%p)\n", f);
776 	if (f == NULL)
777 		arp_packet_handler = dummy_handler;
778 	else
779 		arp_packet_handler = f;
780 }
781 
782 #ifdef CONFIG_CMD_TFTPPUT
net_set_icmp_handler(rxhand_icmp_f * f)783 void net_set_icmp_handler(rxhand_icmp_f *f)
784 {
785 	packet_icmp_handler = f;
786 }
787 #endif
788 
net_set_timeout_handler(ulong iv,thand_f * f)789 void net_set_timeout_handler(ulong iv, thand_f *f)
790 {
791 	if (iv == 0) {
792 		debug_cond(DEBUG_INT_STATE,
793 			   "--- net_loop timeout handler cancelled\n");
794 		time_handler = (thand_f *)0;
795 	} else {
796 		debug_cond(DEBUG_INT_STATE,
797 			   "--- net_loop timeout handler set (%p)\n", f);
798 		time_handler = f;
799 		time_start = get_timer(0);
800 		time_delta = iv * CONFIG_SYS_HZ / 1000;
801 	}
802 }
803 
net_get_async_tx_pkt_buf(void)804 uchar *net_get_async_tx_pkt_buf(void)
805 {
806 	if (arp_is_waiting())
807 		return arp_tx_packet; /* If we are waiting, we already sent */
808 	else
809 		return net_tx_packet;
810 }
811 
net_send_udp_packet(uchar * ether,struct in_addr dest,int dport,int sport,int payload_len)812 int net_send_udp_packet(uchar *ether, struct in_addr dest, int dport, int sport,
813 		int payload_len)
814 {
815 	return net_send_ip_packet(ether, dest, dport, sport, payload_len,
816 				  IPPROTO_UDP, 0, 0, 0);
817 }
818 
net_send_ip_packet(uchar * ether,struct in_addr dest,int dport,int sport,int payload_len,int proto,u8 action,u32 tcp_seq_num,u32 tcp_ack_num)819 int net_send_ip_packet(uchar *ether, struct in_addr dest, int dport, int sport,
820 		       int payload_len, int proto, u8 action, u32 tcp_seq_num,
821 		       u32 tcp_ack_num)
822 {
823 	uchar *pkt;
824 	int eth_hdr_size;
825 	int pkt_hdr_size;
826 
827 	/* make sure the net_tx_packet is initialized (net_init() was called) */
828 	assert(net_tx_packet != NULL);
829 	if (net_tx_packet == NULL)
830 		return -1;
831 
832 	/* convert to new style broadcast */
833 	if (dest.s_addr == 0)
834 		dest.s_addr = 0xFFFFFFFF;
835 
836 	/* if broadcast, make the ether address a broadcast and don't do ARP */
837 	if (dest.s_addr == 0xFFFFFFFF)
838 		ether = (uchar *)net_bcast_ethaddr;
839 
840 	pkt = (uchar *)net_tx_packet;
841 
842 	eth_hdr_size = net_set_ether(pkt, ether, PROT_IP);
843 
844 	switch (proto) {
845 	case IPPROTO_UDP:
846 		net_set_udp_header(pkt + eth_hdr_size, dest, dport, sport,
847 				   payload_len);
848 		pkt_hdr_size = eth_hdr_size + IP_UDP_HDR_SIZE;
849 		break;
850 	default:
851 		return -EINVAL;
852 	}
853 
854 	/* if MAC address was not discovered yet, do an ARP request */
855 	if (memcmp(ether, net_null_ethaddr, 6) == 0) {
856 		debug_cond(DEBUG_DEV_PKT, "sending ARP for %pI4\n", &dest);
857 
858 		/* save the ip and eth addr for the packet to send after arp */
859 		net_arp_wait_packet_ip = dest;
860 		arp_wait_packet_ethaddr = ether;
861 
862 		/* size of the waiting packet */
863 		arp_wait_tx_packet_size = pkt_hdr_size + payload_len;
864 
865 		/* and do the ARP request */
866 		arp_wait_try = 1;
867 		arp_wait_timer_start = get_timer(0);
868 		arp_request();
869 		return 1;	/* waiting */
870 	} else {
871 		debug_cond(DEBUG_DEV_PKT, "sending UDP to %pI4/%pM\n",
872 			   &dest, ether);
873 		net_send_packet(net_tx_packet, pkt_hdr_size + payload_len);
874 		return 0;	/* transmitted */
875 	}
876 }
877 
878 #ifdef CONFIG_IP_DEFRAG
879 /*
880  * This function collects fragments in a single packet, according
881  * to the algorithm in RFC815. It returns NULL or the pointer to
882  * a complete packet, in static storage
883  */
884 #define IP_PKTSIZE (CONFIG_NET_MAXDEFRAG)
885 
886 #define IP_MAXUDP (IP_PKTSIZE - IP_HDR_SIZE)
887 
888 /*
889  * this is the packet being assembled, either data or frag control.
890  * Fragments go by 8 bytes, so this union must be 8 bytes long
891  */
892 struct hole {
893 	/* first_byte is address of this structure */
894 	u16 last_byte;	/* last byte in this hole + 1 (begin of next hole) */
895 	u16 next_hole;	/* index of next (in 8-b blocks), 0 == none */
896 	u16 prev_hole;	/* index of prev, 0 == none */
897 	u16 unused;
898 };
899 
__net_defragment(struct ip_udp_hdr * ip,int * lenp)900 static struct ip_udp_hdr *__net_defragment(struct ip_udp_hdr *ip, int *lenp)
901 {
902 	static uchar pkt_buff[IP_PKTSIZE] __aligned(PKTALIGN);
903 	static u16 first_hole, total_len;
904 	struct hole *payload, *thisfrag, *h, *newh;
905 	struct ip_udp_hdr *localip = (struct ip_udp_hdr *)pkt_buff;
906 	uchar *indata = (uchar *)ip;
907 	int offset8, start, len, done = 0;
908 	u16 ip_off = ntohs(ip->ip_off);
909 
910 	/* payload starts after IP header, this fragment is in there */
911 	payload = (struct hole *)(pkt_buff + IP_HDR_SIZE);
912 	offset8 =  (ip_off & IP_OFFS);
913 	thisfrag = payload + offset8;
914 	start = offset8 * 8;
915 	len = ntohs(ip->ip_len) - IP_HDR_SIZE;
916 
917 	if (start + len > IP_MAXUDP) /* fragment extends too far */
918 		return NULL;
919 
920 	if (!total_len || localip->ip_id != ip->ip_id) {
921 		/* new (or different) packet, reset structs */
922 		total_len = 0xffff;
923 		payload[0].last_byte = ~0;
924 		payload[0].next_hole = 0;
925 		payload[0].prev_hole = 0;
926 		first_hole = 0;
927 		/* any IP header will work, copy the first we received */
928 		memcpy(localip, ip, IP_HDR_SIZE);
929 	}
930 
931 	/*
932 	 * What follows is the reassembly algorithm. We use the payload
933 	 * array as a linked list of hole descriptors, as each hole starts
934 	 * at a multiple of 8 bytes. However, last byte can be whatever value,
935 	 * so it is represented as byte count, not as 8-byte blocks.
936 	 */
937 
938 	h = payload + first_hole;
939 	while (h->last_byte < start) {
940 		if (!h->next_hole) {
941 			/* no hole that far away */
942 			return NULL;
943 		}
944 		h = payload + h->next_hole;
945 	}
946 
947 	/* last fragment may be 1..7 bytes, the "+7" forces acceptance */
948 	if (offset8 + ((len + 7) / 8) <= h - payload) {
949 		/* no overlap with holes (dup fragment?) */
950 		return NULL;
951 	}
952 
953 	if (!(ip_off & IP_FLAGS_MFRAG)) {
954 		/* no more fragmentss: truncate this (last) hole */
955 		total_len = start + len;
956 		h->last_byte = start + len;
957 	}
958 
959 	/*
960 	 * There is some overlap: fix the hole list. This code doesn't
961 	 * deal with a fragment that overlaps with two different holes
962 	 * (thus being a superset of a previously-received fragment).
963 	 */
964 
965 	if ((h >= thisfrag) && (h->last_byte <= start + len)) {
966 		/* complete overlap with hole: remove hole */
967 		if (!h->prev_hole && !h->next_hole) {
968 			/* last remaining hole */
969 			done = 1;
970 		} else if (!h->prev_hole) {
971 			/* first hole */
972 			first_hole = h->next_hole;
973 			payload[h->next_hole].prev_hole = 0;
974 		} else if (!h->next_hole) {
975 			/* last hole */
976 			payload[h->prev_hole].next_hole = 0;
977 		} else {
978 			/* in the middle of the list */
979 			payload[h->next_hole].prev_hole = h->prev_hole;
980 			payload[h->prev_hole].next_hole = h->next_hole;
981 		}
982 
983 	} else if (h->last_byte <= start + len) {
984 		/* overlaps with final part of the hole: shorten this hole */
985 		h->last_byte = start;
986 
987 	} else if (h >= thisfrag) {
988 		/* overlaps with initial part of the hole: move this hole */
989 		newh = thisfrag + (len / 8);
990 		*newh = *h;
991 		h = newh;
992 		if (h->next_hole)
993 			payload[h->next_hole].prev_hole = (h - payload);
994 		if (h->prev_hole)
995 			payload[h->prev_hole].next_hole = (h - payload);
996 		else
997 			first_hole = (h - payload);
998 
999 	} else {
1000 		/* fragment sits in the middle: split the hole */
1001 		newh = thisfrag + (len / 8);
1002 		*newh = *h;
1003 		h->last_byte = start;
1004 		h->next_hole = (newh - payload);
1005 		newh->prev_hole = (h - payload);
1006 		if (newh->next_hole)
1007 			payload[newh->next_hole].prev_hole = (newh - payload);
1008 	}
1009 
1010 	/* finally copy this fragment and possibly return whole packet */
1011 	memcpy((uchar *)thisfrag, indata + IP_HDR_SIZE, len);
1012 	if (!done)
1013 		return NULL;
1014 
1015 	localip->ip_len = htons(total_len);
1016 	*lenp = total_len + IP_HDR_SIZE;
1017 	return localip;
1018 }
1019 
net_defragment(struct ip_udp_hdr * ip,int * lenp)1020 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip,
1021 	int *lenp)
1022 {
1023 	u16 ip_off = ntohs(ip->ip_off);
1024 	if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG)))
1025 		return ip; /* not a fragment */
1026 	return __net_defragment(ip, lenp);
1027 }
1028 
1029 #else /* !CONFIG_IP_DEFRAG */
1030 
net_defragment(struct ip_udp_hdr * ip,int * lenp)1031 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip,
1032 	int *lenp)
1033 {
1034 	u16 ip_off = ntohs(ip->ip_off);
1035 	if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG)))
1036 		return ip; /* not a fragment */
1037 	return NULL;
1038 }
1039 #endif
1040 
1041 /**
1042  * Receive an ICMP packet. We deal with REDIRECT and PING here, and silently
1043  * drop others.
1044  *
1045  * @parma ip	IP packet containing the ICMP
1046  */
receive_icmp(struct ip_udp_hdr * ip,int len,struct in_addr src_ip,struct ethernet_hdr * et)1047 static void receive_icmp(struct ip_udp_hdr *ip, int len,
1048 			struct in_addr src_ip, struct ethernet_hdr *et)
1049 {
1050 	struct icmp_hdr *icmph = (struct icmp_hdr *)&ip->udp_src;
1051 
1052 	switch (icmph->type) {
1053 	case ICMP_REDIRECT:
1054 		if (icmph->code != ICMP_REDIR_HOST)
1055 			return;
1056 		printf(" ICMP Host Redirect to %pI4 ",
1057 		       &icmph->un.gateway);
1058 		break;
1059 	default:
1060 #if defined(CONFIG_CMD_PING)
1061 		ping_receive(et, ip, len);
1062 #endif
1063 #ifdef CONFIG_CMD_TFTPPUT
1064 		if (packet_icmp_handler)
1065 			packet_icmp_handler(icmph->type, icmph->code,
1066 					    ntohs(ip->udp_dst), src_ip,
1067 					    ntohs(ip->udp_src), icmph->un.data,
1068 					    ntohs(ip->udp_len));
1069 #endif
1070 		break;
1071 	}
1072 }
1073 
net_process_received_packet(uchar * in_packet,int len)1074 void net_process_received_packet(uchar *in_packet, int len)
1075 {
1076 	struct ethernet_hdr *et;
1077 	struct ip_udp_hdr *ip;
1078 	struct in_addr dst_ip;
1079 	struct in_addr src_ip;
1080 	int eth_proto;
1081 #if defined(CONFIG_CMD_CDP)
1082 	int iscdp;
1083 #endif
1084 	ushort cti = 0, vlanid = VLAN_NONE, myvlanid, mynvlanid;
1085 
1086 	debug_cond(DEBUG_NET_PKT, "packet received\n");
1087 
1088 #if defined(CONFIG_CMD_PCAP)
1089 	pcap_post(in_packet, len, false);
1090 #endif
1091 	net_rx_packet = in_packet;
1092 	net_rx_packet_len = len;
1093 	et = (struct ethernet_hdr *)in_packet;
1094 
1095 	/* too small packet? */
1096 	if (len < ETHER_HDR_SIZE)
1097 		return;
1098 
1099 #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER)
1100 	if (push_packet) {
1101 		(*push_packet)(in_packet, len);
1102 		return;
1103 	}
1104 #endif
1105 
1106 #if defined(CONFIG_CMD_CDP)
1107 	/* keep track if packet is CDP */
1108 	iscdp = is_cdp_packet(et->et_dest);
1109 #endif
1110 
1111 	myvlanid = ntohs(net_our_vlan);
1112 	if (myvlanid == (ushort)-1)
1113 		myvlanid = VLAN_NONE;
1114 	mynvlanid = ntohs(net_native_vlan);
1115 	if (mynvlanid == (ushort)-1)
1116 		mynvlanid = VLAN_NONE;
1117 
1118 	eth_proto = ntohs(et->et_protlen);
1119 
1120 	if (eth_proto < 1514) {
1121 		struct e802_hdr *et802 = (struct e802_hdr *)et;
1122 		/*
1123 		 *	Got a 802.2 packet.  Check the other protocol field.
1124 		 *	XXX VLAN over 802.2+SNAP not implemented!
1125 		 */
1126 		eth_proto = ntohs(et802->et_prot);
1127 
1128 		ip = (struct ip_udp_hdr *)(in_packet + E802_HDR_SIZE);
1129 		len -= E802_HDR_SIZE;
1130 
1131 	} else if (eth_proto != PROT_VLAN) {	/* normal packet */
1132 		ip = (struct ip_udp_hdr *)(in_packet + ETHER_HDR_SIZE);
1133 		len -= ETHER_HDR_SIZE;
1134 
1135 	} else {			/* VLAN packet */
1136 		struct vlan_ethernet_hdr *vet =
1137 			(struct vlan_ethernet_hdr *)et;
1138 
1139 		debug_cond(DEBUG_NET_PKT, "VLAN packet received\n");
1140 
1141 		/* too small packet? */
1142 		if (len < VLAN_ETHER_HDR_SIZE)
1143 			return;
1144 
1145 		/* if no VLAN active */
1146 		if ((ntohs(net_our_vlan) & VLAN_IDMASK) == VLAN_NONE
1147 #if defined(CONFIG_CMD_CDP)
1148 				&& iscdp == 0
1149 #endif
1150 				)
1151 			return;
1152 
1153 		cti = ntohs(vet->vet_tag);
1154 		vlanid = cti & VLAN_IDMASK;
1155 		eth_proto = ntohs(vet->vet_type);
1156 
1157 		ip = (struct ip_udp_hdr *)(in_packet + VLAN_ETHER_HDR_SIZE);
1158 		len -= VLAN_ETHER_HDR_SIZE;
1159 	}
1160 
1161 	debug_cond(DEBUG_NET_PKT, "Receive from protocol 0x%x\n", eth_proto);
1162 
1163 #if defined(CONFIG_CMD_CDP)
1164 	if (iscdp) {
1165 		cdp_receive((uchar *)ip, len);
1166 		return;
1167 	}
1168 #endif
1169 
1170 	if ((myvlanid & VLAN_IDMASK) != VLAN_NONE) {
1171 		if (vlanid == VLAN_NONE)
1172 			vlanid = (mynvlanid & VLAN_IDMASK);
1173 		/* not matched? */
1174 		if (vlanid != (myvlanid & VLAN_IDMASK))
1175 			return;
1176 	}
1177 
1178 	switch (eth_proto) {
1179 	case PROT_ARP:
1180 		arp_receive(et, ip, len);
1181 		break;
1182 
1183 #ifdef CONFIG_CMD_RARP
1184 	case PROT_RARP:
1185 		rarp_receive(ip, len);
1186 		break;
1187 #endif
1188 	case PROT_IP:
1189 		debug_cond(DEBUG_NET_PKT, "Got IP\n");
1190 		/* Before we start poking the header, make sure it is there */
1191 		if (len < IP_UDP_HDR_SIZE) {
1192 			debug("len bad %d < %lu\n", len,
1193 			      (ulong)IP_UDP_HDR_SIZE);
1194 			return;
1195 		}
1196 		/* Check the packet length */
1197 		if (len < ntohs(ip->ip_len)) {
1198 			debug("len bad %d < %d\n", len, ntohs(ip->ip_len));
1199 			return;
1200 		}
1201 		len = ntohs(ip->ip_len);
1202 		debug_cond(DEBUG_NET_PKT, "len=%d, v=%02x\n",
1203 			   len, ip->ip_hl_v & 0xff);
1204 
1205 		/* Can't deal with anything except IPv4 */
1206 		if ((ip->ip_hl_v & 0xf0) != 0x40)
1207 			return;
1208 		/* Can't deal with IP options (headers != 20 bytes) */
1209 		if ((ip->ip_hl_v & 0x0f) > 0x05)
1210 			return;
1211 		/* Check the Checksum of the header */
1212 		if (!ip_checksum_ok((uchar *)ip, IP_HDR_SIZE)) {
1213 			debug("checksum bad\n");
1214 			return;
1215 		}
1216 		/* If it is not for us, ignore it */
1217 		dst_ip = net_read_ip(&ip->ip_dst);
1218 		if (net_ip.s_addr && dst_ip.s_addr != net_ip.s_addr &&
1219 		    dst_ip.s_addr != 0xFFFFFFFF) {
1220 				return;
1221 		}
1222 		/* Read source IP address for later use */
1223 		src_ip = net_read_ip(&ip->ip_src);
1224 		/*
1225 		 * The function returns the unchanged packet if it's not
1226 		 * a fragment, and either the complete packet or NULL if
1227 		 * it is a fragment (if !CONFIG_IP_DEFRAG, it returns NULL)
1228 		 */
1229 		ip = net_defragment(ip, &len);
1230 		if (!ip)
1231 			return;
1232 		/*
1233 		 * watch for ICMP host redirects
1234 		 *
1235 		 * There is no real handler code (yet). We just watch
1236 		 * for ICMP host redirect messages. In case anybody
1237 		 * sees these messages: please contact me
1238 		 * (wd@denx.de), or - even better - send me the
1239 		 * necessary fixes :-)
1240 		 *
1241 		 * Note: in all cases where I have seen this so far
1242 		 * it was a problem with the router configuration,
1243 		 * for instance when a router was configured in the
1244 		 * BOOTP reply, but the TFTP server was on the same
1245 		 * subnet. So this is probably a warning that your
1246 		 * configuration might be wrong. But I'm not really
1247 		 * sure if there aren't any other situations.
1248 		 *
1249 		 * Simon Glass <sjg@chromium.org>: We get an ICMP when
1250 		 * we send a tftp packet to a dead connection, or when
1251 		 * there is no server at the other end.
1252 		 */
1253 		if (ip->ip_p == IPPROTO_ICMP) {
1254 			receive_icmp(ip, len, src_ip, et);
1255 			return;
1256 		} else if (ip->ip_p != IPPROTO_UDP) {	/* Only UDP packets */
1257 			return;
1258 		}
1259 
1260 		if (ntohs(ip->udp_len) < UDP_HDR_SIZE || ntohs(ip->udp_len) > ntohs(ip->ip_len))
1261 			return;
1262 
1263 		debug_cond(DEBUG_DEV_PKT,
1264 			   "received UDP (to=%pI4, from=%pI4, len=%d)\n",
1265 			   &dst_ip, &src_ip, len);
1266 
1267 #ifdef CONFIG_UDP_CHECKSUM
1268 		if (ip->udp_xsum != 0) {
1269 			ulong   xsum;
1270 			u8 *sumptr;
1271 			ushort  sumlen;
1272 
1273 			xsum  = ip->ip_p;
1274 			xsum += (ntohs(ip->udp_len));
1275 			xsum += (ntohl(ip->ip_src.s_addr) >> 16) & 0x0000ffff;
1276 			xsum += (ntohl(ip->ip_src.s_addr) >>  0) & 0x0000ffff;
1277 			xsum += (ntohl(ip->ip_dst.s_addr) >> 16) & 0x0000ffff;
1278 			xsum += (ntohl(ip->ip_dst.s_addr) >>  0) & 0x0000ffff;
1279 
1280 			sumlen = ntohs(ip->udp_len);
1281 			sumptr = (u8 *)&ip->udp_src;
1282 
1283 			while (sumlen > 1) {
1284 				/* inlined ntohs() to avoid alignment errors */
1285 				xsum += (sumptr[0] << 8) + sumptr[1];
1286 				sumptr += 2;
1287 				sumlen -= 2;
1288 			}
1289 			if (sumlen > 0)
1290 				xsum += (sumptr[0] << 8) + sumptr[0];
1291 			while ((xsum >> 16) != 0) {
1292 				xsum = (xsum & 0x0000ffff) +
1293 				       ((xsum >> 16) & 0x0000ffff);
1294 			}
1295 			if ((xsum != 0x00000000) && (xsum != 0x0000ffff)) {
1296 				printf(" UDP wrong checksum %08lx %08x\n",
1297 				       xsum, ntohs(ip->udp_xsum));
1298 				return;
1299 			}
1300 		}
1301 #endif
1302 
1303 #if defined(CONFIG_NETCONSOLE) && !defined(CONFIG_SPL_BUILD)
1304 		nc_input_packet((uchar *)ip + IP_UDP_HDR_SIZE,
1305 				src_ip,
1306 				ntohs(ip->udp_dst),
1307 				ntohs(ip->udp_src),
1308 				ntohs(ip->udp_len) - UDP_HDR_SIZE);
1309 #endif
1310 		/*
1311 		 * IP header OK.  Pass the packet to the current handler.
1312 		 */
1313 		(*udp_packet_handler)((uchar *)ip + IP_UDP_HDR_SIZE,
1314 				      ntohs(ip->udp_dst),
1315 				      src_ip,
1316 				      ntohs(ip->udp_src),
1317 				      ntohs(ip->udp_len) - UDP_HDR_SIZE);
1318 		break;
1319 #ifdef CONFIG_CMD_WOL
1320 	case PROT_WOL:
1321 		wol_receive(ip, len);
1322 		break;
1323 #endif
1324 	}
1325 }
1326 
1327 /**********************************************************************/
1328 
net_check_prereq(enum proto_t protocol)1329 static int net_check_prereq(enum proto_t protocol)
1330 {
1331 	switch (protocol) {
1332 		/* Fall through */
1333 #if defined(CONFIG_CMD_PING)
1334 	case PING:
1335 		if (net_ping_ip.s_addr == 0) {
1336 			puts("*** ERROR: ping address not given\n");
1337 			return 1;
1338 		}
1339 		goto common;
1340 #endif
1341 #if defined(CONFIG_CMD_DNS)
1342 	case DNS:
1343 		if (net_dns_server.s_addr == 0) {
1344 			puts("*** ERROR: DNS server address not given\n");
1345 			return 1;
1346 		}
1347 		goto common;
1348 #endif
1349 #if defined(CONFIG_PROT_UDP)
1350 	case UDP:
1351 		if (udp_prereq())
1352 			return 1;
1353 		goto common;
1354 #endif
1355 
1356 #if defined(CONFIG_CMD_NFS)
1357 	case NFS:
1358 #endif
1359 		/* Fall through */
1360 	case TFTPGET:
1361 	case TFTPPUT:
1362 		if (net_server_ip.s_addr == 0 && !is_serverip_in_cmd()) {
1363 			puts("*** ERROR: `serverip' not set\n");
1364 			return 1;
1365 		}
1366 #if	defined(CONFIG_CMD_PING) || \
1367 	defined(CONFIG_CMD_DNS) || defined(CONFIG_PROT_UDP)
1368 common:
1369 #endif
1370 		/* Fall through */
1371 
1372 	case NETCONS:
1373 	case FASTBOOT:
1374 	case TFTPSRV:
1375 		if (net_ip.s_addr == 0) {
1376 			puts("*** ERROR: `ipaddr' not set\n");
1377 			return 1;
1378 		}
1379 		/* Fall through */
1380 
1381 #ifdef CONFIG_CMD_RARP
1382 	case RARP:
1383 #endif
1384 	case BOOTP:
1385 	case CDP:
1386 	case DHCP:
1387 	case LINKLOCAL:
1388 		if (memcmp(net_ethaddr, "\0\0\0\0\0\0", 6) == 0) {
1389 			int num = eth_get_dev_index();
1390 
1391 			switch (num) {
1392 			case -1:
1393 				puts("*** ERROR: No ethernet found.\n");
1394 				return 1;
1395 			case 0:
1396 				puts("*** ERROR: `ethaddr' not set\n");
1397 				break;
1398 			default:
1399 				printf("*** ERROR: `eth%daddr' not set\n",
1400 				       num);
1401 				break;
1402 			}
1403 
1404 			net_start_again();
1405 			return 2;
1406 		}
1407 		/* Fall through */
1408 	default:
1409 		return 0;
1410 	}
1411 	return 0;		/* OK */
1412 }
1413 /**********************************************************************/
1414 
1415 int
net_eth_hdr_size(void)1416 net_eth_hdr_size(void)
1417 {
1418 	ushort myvlanid;
1419 
1420 	myvlanid = ntohs(net_our_vlan);
1421 	if (myvlanid == (ushort)-1)
1422 		myvlanid = VLAN_NONE;
1423 
1424 	return ((myvlanid & VLAN_IDMASK) == VLAN_NONE) ? ETHER_HDR_SIZE :
1425 		VLAN_ETHER_HDR_SIZE;
1426 }
1427 
net_set_ether(uchar * xet,const uchar * dest_ethaddr,uint prot)1428 int net_set_ether(uchar *xet, const uchar *dest_ethaddr, uint prot)
1429 {
1430 	struct ethernet_hdr *et = (struct ethernet_hdr *)xet;
1431 	ushort myvlanid;
1432 
1433 	myvlanid = ntohs(net_our_vlan);
1434 	if (myvlanid == (ushort)-1)
1435 		myvlanid = VLAN_NONE;
1436 
1437 	memcpy(et->et_dest, dest_ethaddr, 6);
1438 	memcpy(et->et_src, net_ethaddr, 6);
1439 	if ((myvlanid & VLAN_IDMASK) == VLAN_NONE) {
1440 		et->et_protlen = htons(prot);
1441 		return ETHER_HDR_SIZE;
1442 	} else {
1443 		struct vlan_ethernet_hdr *vet =
1444 			(struct vlan_ethernet_hdr *)xet;
1445 
1446 		vet->vet_vlan_type = htons(PROT_VLAN);
1447 		vet->vet_tag = htons((0 << 5) | (myvlanid & VLAN_IDMASK));
1448 		vet->vet_type = htons(prot);
1449 		return VLAN_ETHER_HDR_SIZE;
1450 	}
1451 }
1452 
net_update_ether(struct ethernet_hdr * et,uchar * addr,uint prot)1453 int net_update_ether(struct ethernet_hdr *et, uchar *addr, uint prot)
1454 {
1455 	ushort protlen;
1456 
1457 	memcpy(et->et_dest, addr, 6);
1458 	memcpy(et->et_src, net_ethaddr, 6);
1459 	protlen = ntohs(et->et_protlen);
1460 	if (protlen == PROT_VLAN) {
1461 		struct vlan_ethernet_hdr *vet =
1462 			(struct vlan_ethernet_hdr *)et;
1463 		vet->vet_type = htons(prot);
1464 		return VLAN_ETHER_HDR_SIZE;
1465 	} else if (protlen > 1514) {
1466 		et->et_protlen = htons(prot);
1467 		return ETHER_HDR_SIZE;
1468 	} else {
1469 		/* 802.2 + SNAP */
1470 		struct e802_hdr *et802 = (struct e802_hdr *)et;
1471 		et802->et_prot = htons(prot);
1472 		return E802_HDR_SIZE;
1473 	}
1474 }
1475 
net_set_ip_header(uchar * pkt,struct in_addr dest,struct in_addr source,u16 pkt_len,u8 proto)1476 void net_set_ip_header(uchar *pkt, struct in_addr dest, struct in_addr source,
1477 		       u16 pkt_len, u8 proto)
1478 {
1479 	struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt;
1480 
1481 	/*
1482 	 *	Construct an IP header.
1483 	 */
1484 	/* IP_HDR_SIZE / 4 (not including UDP) */
1485 	ip->ip_hl_v  = 0x45;
1486 	ip->ip_tos   = 0;
1487 	ip->ip_len   = htons(pkt_len);
1488 	ip->ip_p     = proto;
1489 	ip->ip_id    = htons(net_ip_id++);
1490 	ip->ip_off   = htons(IP_FLAGS_DFRAG);	/* Don't fragment */
1491 	ip->ip_ttl   = 255;
1492 	ip->ip_sum   = 0;
1493 	/* already in network byte order */
1494 	net_copy_ip((void *)&ip->ip_src, &source);
1495 	/* already in network byte order */
1496 	net_copy_ip((void *)&ip->ip_dst, &dest);
1497 
1498 	ip->ip_sum   = compute_ip_checksum(ip, IP_HDR_SIZE);
1499 }
1500 
net_set_udp_header(uchar * pkt,struct in_addr dest,int dport,int sport,int len)1501 void net_set_udp_header(uchar *pkt, struct in_addr dest, int dport, int sport,
1502 			int len)
1503 {
1504 	struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt;
1505 
1506 	/*
1507 	 *	If the data is an odd number of bytes, zero the
1508 	 *	byte after the last byte so that the checksum
1509 	 *	will work.
1510 	 */
1511 	if (len & 1)
1512 		pkt[IP_UDP_HDR_SIZE + len] = 0;
1513 
1514 	net_set_ip_header(pkt, dest, net_ip, IP_UDP_HDR_SIZE + len,
1515 			  IPPROTO_UDP);
1516 
1517 	ip->udp_src  = htons(sport);
1518 	ip->udp_dst  = htons(dport);
1519 	ip->udp_len  = htons(UDP_HDR_SIZE + len);
1520 	ip->udp_xsum = 0;
1521 }
1522 
copy_filename(char * dst,const char * src,int size)1523 void copy_filename(char *dst, const char *src, int size)
1524 {
1525 	if (src && *src && (*src == '"')) {
1526 		++src;
1527 		--size;
1528 	}
1529 
1530 	while ((--size > 0) && src && *src && (*src != '"'))
1531 		*dst++ = *src++;
1532 	*dst = '\0';
1533 }
1534 
is_serverip_in_cmd(void)1535 int is_serverip_in_cmd(void)
1536 {
1537 	return !!strchr(net_boot_file_name, ':');
1538 }
1539 
net_parse_bootfile(struct in_addr * ipaddr,char * filename,int max_len)1540 int net_parse_bootfile(struct in_addr *ipaddr, char *filename, int max_len)
1541 {
1542 	char *colon;
1543 
1544 	if (net_boot_file_name[0] == '\0')
1545 		return 0;
1546 
1547 	colon = strchr(net_boot_file_name, ':');
1548 	if (colon) {
1549 		if (ipaddr)
1550 			*ipaddr = string_to_ip(net_boot_file_name);
1551 		strncpy(filename, colon + 1, max_len);
1552 	} else {
1553 		strncpy(filename, net_boot_file_name, max_len);
1554 	}
1555 	filename[max_len - 1] = '\0';
1556 
1557 	return 1;
1558 }
1559 
ip_to_string(struct in_addr x,char * s)1560 void ip_to_string(struct in_addr x, char *s)
1561 {
1562 	x.s_addr = ntohl(x.s_addr);
1563 	sprintf(s, "%d.%d.%d.%d",
1564 		(int) ((x.s_addr >> 24) & 0xff),
1565 		(int) ((x.s_addr >> 16) & 0xff),
1566 		(int) ((x.s_addr >> 8) & 0xff),
1567 		(int) ((x.s_addr >> 0) & 0xff)
1568 	);
1569 }
1570 
vlan_to_string(ushort x,char * s)1571 void vlan_to_string(ushort x, char *s)
1572 {
1573 	x = ntohs(x);
1574 
1575 	if (x == (ushort)-1)
1576 		x = VLAN_NONE;
1577 
1578 	if (x == VLAN_NONE)
1579 		strcpy(s, "none");
1580 	else
1581 		sprintf(s, "%d", x & VLAN_IDMASK);
1582 }
1583 
string_to_vlan(const char * s)1584 ushort string_to_vlan(const char *s)
1585 {
1586 	ushort id;
1587 
1588 	if (s == NULL)
1589 		return htons(VLAN_NONE);
1590 
1591 	if (*s < '0' || *s > '9')
1592 		id = VLAN_NONE;
1593 	else
1594 		id = (ushort)simple_strtoul(s, NULL, 10);
1595 
1596 	return htons(id);
1597 }
1598 
env_get_vlan(char * var)1599 ushort env_get_vlan(char *var)
1600 {
1601 	return string_to_vlan(env_get(var));
1602 }
1603