1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2010-2019, NVIDIA CORPORATION.  All rights reserved.
4  */
5 
6 #include <common.h>
7 #include <log.h>
8 #include <asm/io.h>
9 #include <asm/arch/clock.h>
10 #include <asm/arch/gp_padctrl.h>
11 #include <asm/arch/pinmux.h>
12 #include <asm/arch/tegra.h>
13 #include <asm/arch-tegra/clk_rst.h>
14 #include <asm/arch-tegra/pmc.h>
15 #include <asm/arch-tegra/scu.h>
16 #include <linux/delay.h>
17 #include "cpu.h"
18 
get_num_cpus(void)19 int get_num_cpus(void)
20 {
21 	struct apb_misc_gp_ctlr *gp;
22 	uint rev;
23 	debug("%s entry\n", __func__);
24 
25 	gp = (struct apb_misc_gp_ctlr *)NV_PA_APB_MISC_GP_BASE;
26 	rev = (readl(&gp->hidrev) & HIDREV_CHIPID_MASK) >> HIDREV_CHIPID_SHIFT;
27 
28 	switch (rev) {
29 	case CHIPID_TEGRA20:
30 		return 2;
31 		break;
32 	case CHIPID_TEGRA30:
33 	case CHIPID_TEGRA114:
34 	case CHIPID_TEGRA124:
35 	case CHIPID_TEGRA210:
36 	default:
37 		return 4;
38 		break;
39 	}
40 }
41 
42 /*
43  * Timing tables for each SOC for all four oscillator options.
44  */
45 struct clk_pll_table tegra_pll_x_table[TEGRA_SOC_CNT][CLOCK_OSC_FREQ_COUNT] = {
46 	/*
47 	 * T20: 1 GHz
48 	 *
49 	 * Register   Field  Bits   Width
50 	 * ------------------------------
51 	 * PLLX_BASE  p      22:20    3
52 	 * PLLX_BASE  n      17: 8   10
53 	 * PLLX_BASE  m       4: 0    5
54 	 * PLLX_MISC  cpcon  11: 8    4
55 	 */
56 	{
57 		{ .n = 1000, .m = 13, .p = 0, .cpcon = 12 }, /* OSC: 13.0 MHz */
58 		{ .n =  625, .m = 12, .p = 0, .cpcon =  8 }, /* OSC: 19.2 MHz */
59 		{ .n = 1000, .m = 12, .p = 0, .cpcon = 12 }, /* OSC: 12.0 MHz */
60 		{ .n = 1000, .m = 26, .p = 0, .cpcon = 12 }, /* OSC: 26.0 MHz */
61 		{ .n =    0, .m =  0, .p = 0, .cpcon =  0 }, /* OSC: 38.4 MHz (N/A) */
62 		{ .n =    0, .m =  0, .p = 0, .cpcon =  0 }, /* OSC: 48.0 MHz (N/A) */
63 	},
64 	/*
65 	 * T25: 1.2 GHz
66 	 *
67 	 * Register   Field  Bits   Width
68 	 * ------------------------------
69 	 * PLLX_BASE  p      22:20    3
70 	 * PLLX_BASE  n      17: 8   10
71 	 * PLLX_BASE  m       4: 0    5
72 	 * PLLX_MISC  cpcon  11: 8    4
73 	 */
74 	{
75 		{ .n = 923, .m = 10, .p = 0, .cpcon = 12 }, /* OSC: 13.0 MHz */
76 		{ .n = 750, .m = 12, .p = 0, .cpcon =  8 }, /* OSC: 19.2 MHz */
77 		{ .n = 600, .m =  6, .p = 0, .cpcon = 12 }, /* OSC: 12.0 MHz */
78 		{ .n = 600, .m = 13, .p = 0, .cpcon = 12 }, /* OSC: 26.0 MHz */
79 		{ .n =   0, .m =  0, .p = 0, .cpcon =  0 }, /* OSC: 38.4 MHz (N/A) */
80 		{ .n =   0, .m =  0, .p = 0, .cpcon =  0 }, /* OSC: 48.0 MHz (N/A) */
81 	},
82 	/*
83 	 * T30: 600 MHz
84 	 *
85 	 * Register   Field  Bits   Width
86 	 * ------------------------------
87 	 * PLLX_BASE  p      22:20    3
88 	 * PLLX_BASE  n      17: 8   10
89 	 * PLLX_BASE  m       4: 0    5
90 	 * PLLX_MISC  cpcon  11: 8    4
91 	 */
92 	{
93 		{ .n = 600, .m = 13, .p = 0, .cpcon = 8 }, /* OSC: 13.0 MHz */
94 		{ .n = 500, .m = 16, .p = 0, .cpcon = 8 }, /* OSC: 19.2 MHz */
95 		{ .n = 600, .m = 12, .p = 0, .cpcon = 8 }, /* OSC: 12.0 MHz */
96 		{ .n = 600, .m = 26, .p = 0, .cpcon = 8 }, /* OSC: 26.0 MHz */
97 		{ .n =   0, .m =  0, .p = 0, .cpcon = 0 }, /* OSC: 38.4 MHz (N/A) */
98 		{ .n =   0, .m =  0, .p = 0, .cpcon = 0 }, /* OSC: 48.0 MHz (N/A) */
99 	},
100 	/*
101 	 * T114: 700 MHz
102 	 *
103 	 * Register   Field  Bits   Width
104 	 * ------------------------------
105 	 * PLLX_BASE  p      23:20    4
106 	 * PLLX_BASE  n      15: 8    8
107 	 * PLLX_BASE  m       7: 0    8
108 	 */
109 	{
110 		{ .n = 108, .m = 1, .p = 1 }, /* OSC: 13.0 MHz */
111 		{ .n =  73, .m = 1, .p = 1 }, /* OSC: 19.2 MHz */
112 		{ .n = 116, .m = 1, .p = 1 }, /* OSC: 12.0 MHz */
113 		{ .n = 108, .m = 2, .p = 1 }, /* OSC: 26.0 MHz */
114 		{ .n =   0, .m = 0, .p = 0 }, /* OSC: 38.4 MHz (N/A) */
115 		{ .n =   0, .m = 0, .p = 0 }, /* OSC: 48.0 MHz (N/A) */
116 	},
117 
118 	/*
119 	 * T124: 700 MHz
120 	 *
121 	 * Register   Field  Bits   Width
122 	 * ------------------------------
123 	 * PLLX_BASE  p      23:20    4
124 	 * PLLX_BASE  n      15: 8    8
125 	 * PLLX_BASE  m       7: 0    8
126 	 */
127 	{
128 		{ .n = 108, .m = 1, .p = 1 }, /* OSC: 13.0 MHz */
129 		{ .n =  73, .m = 1, .p = 1 }, /* OSC: 19.2 MHz */
130 		{ .n = 116, .m = 1, .p = 1 }, /* OSC: 12.0 MHz */
131 		{ .n = 108, .m = 2, .p = 1 }, /* OSC: 26.0 MHz */
132 		{ .n =   0, .m = 0, .p = 0 }, /* OSC: 38.4 MHz (N/A) */
133 		{ .n =   0, .m = 0, .p = 0 }, /* OSC: 48.0 MHz (N/A) */
134 	},
135 
136 	/*
137 	 * T210: 700 MHz
138 	 *
139 	 * Register   Field  Bits   Width
140 	 * ------------------------------
141 	 * PLLX_BASE  p      24:20    5
142 	 * PLLX_BASE  n      15: 8    8
143 	 * PLLX_BASE  m       7: 0    8
144 	 */
145 	{
146 		{ .n = 108, .m = 1, .p = 1 }, /* OSC: 13.0 MHz = 702   MHz*/
147 		{ .n =  73, .m = 1, .p = 1 }, /* OSC: 19.2 MHz = 700.8 MHz*/
148 		{ .n = 116, .m = 1, .p = 1 }, /* OSC: 12.0 MHz = 696   MHz*/
149 		{ .n = 108, .m = 2, .p = 1 }, /* OSC: 26.0 MHz = 702   MHz*/
150 		{ .n =  36, .m = 1, .p = 1 }, /* OSC: 38.4 MHz = 691.2 MHz */
151 		{ .n =  58, .m = 2, .p = 1 }, /* OSC: 48.0 MHz = 696   MHz */
152 	},
153 };
154 
pllx_set_iddq(void)155 static inline void pllx_set_iddq(void)
156 {
157 #if defined(CONFIG_TEGRA124) || defined(CONFIG_TEGRA210)
158 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
159 	u32 reg;
160 	debug("%s entry\n", __func__);
161 
162 	/* Disable IDDQ */
163 	reg = readl(&clkrst->crc_pllx_misc3);
164 	reg &= ~PLLX_IDDQ_MASK;
165 	writel(reg, &clkrst->crc_pllx_misc3);
166 	udelay(2);
167 	debug("%s: IDDQ: PLLX IDDQ = 0x%08X\n", __func__,
168 	      readl(&clkrst->crc_pllx_misc3));
169 #endif
170 }
171 
pllx_set_rate(struct clk_pll_simple * pll,u32 divn,u32 divm,u32 divp,u32 cpcon)172 int pllx_set_rate(struct clk_pll_simple *pll , u32 divn, u32 divm,
173 		u32 divp, u32 cpcon)
174 {
175 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[CLOCK_ID_XCPU];
176 	int chip = tegra_get_chip();
177 	u32 reg;
178 	debug("%s entry\n", __func__);
179 
180 	/* If PLLX is already enabled, just return */
181 	if (readl(&pll->pll_base) & PLL_ENABLE_MASK) {
182 		debug("%s: PLLX already enabled, returning\n", __func__);
183 		return 0;
184 	}
185 
186 	pllx_set_iddq();
187 
188 	/* Set BYPASS, m, n and p to PLLX_BASE */
189 	reg = PLL_BYPASS_MASK | (divm << pllinfo->m_shift);
190 	reg |= (divn << pllinfo->n_shift) | (divp << pllinfo->p_shift);
191 	writel(reg, &pll->pll_base);
192 
193 	/* Set cpcon to PLLX_MISC */
194 	if (chip == CHIPID_TEGRA20 || chip == CHIPID_TEGRA30)
195 		reg = (cpcon << pllinfo->kcp_shift);
196 	else
197 		reg = 0;
198 
199 	/*
200 	 * TODO(twarren@nvidia.com) Check which SoCs use DCCON
201 	 * and add to pllinfo table if needed!
202 	 */
203 	 /* Set dccon to PLLX_MISC if freq > 600MHz */
204 	if (divn > 600)
205 		reg |= (1 << PLL_DCCON_SHIFT);
206 	writel(reg, &pll->pll_misc);
207 
208 	/* Disable BYPASS */
209 	reg = readl(&pll->pll_base);
210 	reg &= ~PLL_BYPASS_MASK;
211 	writel(reg, &pll->pll_base);
212 	debug("%s: base = 0x%08X\n", __func__, reg);
213 
214 	/* Set lock_enable to PLLX_MISC if lock_ena is valid (i.e. 0-31) */
215 	reg = readl(&pll->pll_misc);
216 	if (pllinfo->lock_ena < 32)
217 		reg |= (1 << pllinfo->lock_ena);
218 	writel(reg, &pll->pll_misc);
219 	debug("%s: misc = 0x%08X\n", __func__, reg);
220 
221 	/* Enable PLLX last, once it's all configured */
222 	reg = readl(&pll->pll_base);
223 	reg |= PLL_ENABLE_MASK;
224 	writel(reg, &pll->pll_base);
225 	debug("%s: base final = 0x%08X\n", __func__, reg);
226 
227 	return 0;
228 }
229 
init_pllx(void)230 void init_pllx(void)
231 {
232 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
233 	struct clk_pll_simple *pll = &clkrst->crc_pll_simple[SIMPLE_PLLX];
234 	int soc_type, sku_info, chip_sku;
235 	enum clock_osc_freq osc;
236 	struct clk_pll_table *sel;
237 	debug("%s entry\n", __func__);
238 
239 	/* get SOC (chip) type */
240 	soc_type = tegra_get_chip();
241 	debug("%s: SoC = 0x%02X\n", __func__, soc_type);
242 
243 	/* get SKU info */
244 	sku_info = tegra_get_sku_info();
245 	debug("%s: SKU info byte = 0x%02X\n", __func__, sku_info);
246 
247 	/* get chip SKU, combo of the above info */
248 	chip_sku = tegra_get_chip_sku();
249 	debug("%s: Chip SKU = %d\n", __func__, chip_sku);
250 
251 	/* get osc freq */
252 	osc = clock_get_osc_freq();
253 	debug("%s: osc = %d\n", __func__, osc);
254 
255 	/* set pllx */
256 	sel = &tegra_pll_x_table[chip_sku][osc];
257 	pllx_set_rate(pll, sel->n, sel->m, sel->p, sel->cpcon);
258 }
259 
enable_cpu_clock(int enable)260 void enable_cpu_clock(int enable)
261 {
262 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
263 	u32 clk;
264 	debug("%s entry\n", __func__);
265 
266 	/*
267 	 * NOTE:
268 	 * Regardless of whether the request is to enable or disable the CPU
269 	 * clock, every processor in the CPU complex except the master (CPU 0)
270 	 * will have it's clock stopped because the AVP only talks to the
271 	 * master.
272 	 */
273 
274 	if (enable) {
275 		/* Initialize PLLX */
276 		init_pllx();
277 
278 		/* Wait until all clocks are stable */
279 		udelay(PLL_STABILIZATION_DELAY);
280 
281 		writel(CCLK_BURST_POLICY, &clkrst->crc_cclk_brst_pol);
282 		writel(SUPER_CCLK_DIVIDER, &clkrst->crc_super_cclk_div);
283 	}
284 
285 	/*
286 	 * Read the register containing the individual CPU clock enables and
287 	 * always stop the clocks to CPUs > 0.
288 	 */
289 	clk = readl(&clkrst->crc_clk_cpu_cmplx);
290 	clk |= 1 << CPU1_CLK_STP_SHIFT;
291 	if (get_num_cpus() == 4)
292 		clk |= (1 << CPU2_CLK_STP_SHIFT) + (1 << CPU3_CLK_STP_SHIFT);
293 
294 	/* Stop/Unstop the CPU clock */
295 	clk &= ~CPU0_CLK_STP_MASK;
296 	clk |= !enable << CPU0_CLK_STP_SHIFT;
297 	writel(clk, &clkrst->crc_clk_cpu_cmplx);
298 
299 	clock_enable(PERIPH_ID_CPU);
300 }
301 
is_cpu_powered(void)302 static int is_cpu_powered(void)
303 {
304 	return (tegra_pmc_readl(offsetof(struct pmc_ctlr,
305 				pmc_pwrgate_status)) & CPU_PWRED) ? 1 : 0;
306 }
307 
remove_cpu_io_clamps(void)308 static void remove_cpu_io_clamps(void)
309 {
310 	u32 reg;
311 	debug("%s entry\n", __func__);
312 
313 	/* Remove the clamps on the CPU I/O signals */
314 	reg = tegra_pmc_readl(offsetof(struct pmc_ctlr, pmc_remove_clamping));
315 	reg |= CPU_CLMP;
316 	tegra_pmc_writel(reg, offsetof(struct pmc_ctlr, pmc_remove_clamping));
317 
318 	/* Give I/O signals time to stabilize */
319 	udelay(IO_STABILIZATION_DELAY);
320 }
321 
powerup_cpu(void)322 void powerup_cpu(void)
323 {
324 	u32 reg;
325 	int timeout = IO_STABILIZATION_DELAY;
326 	debug("%s entry\n", __func__);
327 
328 	if (!is_cpu_powered()) {
329 		/* Toggle the CPU power state (OFF -> ON) */
330 		reg = tegra_pmc_readl(offsetof(struct pmc_ctlr,
331 				      pmc_pwrgate_toggle));
332 		reg &= PARTID_CP;
333 		reg |= START_CP;
334 		tegra_pmc_writel(reg,
335 				 offsetof(struct pmc_ctlr,
336 				 pmc_pwrgate_toggle));
337 
338 		/* Wait for the power to come up */
339 		while (!is_cpu_powered()) {
340 			if (timeout-- == 0)
341 				printf("CPU failed to power up!\n");
342 			else
343 				udelay(10);
344 		}
345 
346 		/*
347 		 * Remove the I/O clamps from CPU power partition.
348 		 * Recommended only on a Warm boot, if the CPU partition gets
349 		 * power gated. Shouldn't cause any harm when called after a
350 		 * cold boot according to HW, probably just redundant.
351 		 */
352 		remove_cpu_io_clamps();
353 	}
354 }
355 
reset_A9_cpu(int reset)356 void reset_A9_cpu(int reset)
357 {
358 	/*
359 	* NOTE:  Regardless of whether the request is to hold the CPU in reset
360 	*        or take it out of reset, every processor in the CPU complex
361 	*        except the master (CPU 0) will be held in reset because the
362 	*        AVP only talks to the master. The AVP does not know that there
363 	*        are multiple processors in the CPU complex.
364 	*/
365 	int mask = crc_rst_cpu | crc_rst_de | crc_rst_debug;
366 	int num_cpus = get_num_cpus();
367 	int cpu;
368 
369 	debug("%s entry\n", __func__);
370 	/* Hold CPUs 1 onwards in reset, and CPU 0 if asked */
371 	for (cpu = 1; cpu < num_cpus; cpu++)
372 		reset_cmplx_set_enable(cpu, mask, 1);
373 	reset_cmplx_set_enable(0, mask, reset);
374 
375 	/* Enable/Disable master CPU reset */
376 	reset_set_enable(PERIPH_ID_CPU, reset);
377 }
378 
clock_enable_coresight(int enable)379 void clock_enable_coresight(int enable)
380 {
381 	u32 rst, src = 2;
382 
383 	debug("%s entry\n", __func__);
384 	clock_set_enable(PERIPH_ID_CORESIGHT, enable);
385 	reset_set_enable(PERIPH_ID_CORESIGHT, !enable);
386 
387 	if (enable) {
388 		/*
389 		 * Put CoreSight on PLLP_OUT0 and divide it down as per
390 		 * PLLP base frequency based on SoC type (T20/T30+).
391 		 * Clock divider request would setup CSITE clock as 144MHz
392 		 * for PLLP base 216MHz and 204MHz for PLLP base 408MHz
393 		 */
394 		src = CLK_DIVIDER(NVBL_PLLP_KHZ, CSITE_KHZ);
395 		clock_ll_set_source_divisor(PERIPH_ID_CSI, 0, src);
396 
397 		/* Unlock the CPU CoreSight interfaces */
398 		rst = CORESIGHT_UNLOCK;
399 		writel(rst, CSITE_CPU_DBG0_LAR);
400 		writel(rst, CSITE_CPU_DBG1_LAR);
401 		if (get_num_cpus() == 4) {
402 			writel(rst, CSITE_CPU_DBG2_LAR);
403 			writel(rst, CSITE_CPU_DBG3_LAR);
404 		}
405 	}
406 }
407 
halt_avp(void)408 void halt_avp(void)
409 {
410 	debug("%s entry\n", __func__);
411 
412 	for (;;) {
413 		writel(HALT_COP_EVENT_JTAG | (FLOW_MODE_STOP << 29),
414 		       FLOW_CTLR_HALT_COP_EVENTS);
415 	}
416 }
417