1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) 2014 Google, Inc
4  * Written by Simon Glass <sjg@chromium.org>
5  */
6 
7 #include <common.h>
8 #include <dm.h>
9 #include <errno.h>
10 #include <init.h>
11 #include <log.h>
12 #include <malloc.h>
13 #include <pci.h>
14 #include <asm/global_data.h>
15 #include <asm/io.h>
16 #include <dm/device-internal.h>
17 #include <dm/lists.h>
18 #include <dm/uclass-internal.h>
19 #if defined(CONFIG_X86) && defined(CONFIG_HAVE_FSP)
20 #include <asm/fsp/fsp_support.h>
21 #endif
22 #include <linux/delay.h>
23 #include "pci_internal.h"
24 
25 DECLARE_GLOBAL_DATA_PTR;
26 
pci_get_bus(int busnum,struct udevice ** busp)27 int pci_get_bus(int busnum, struct udevice **busp)
28 {
29 	int ret;
30 
31 	ret = uclass_get_device_by_seq(UCLASS_PCI, busnum, busp);
32 
33 	/* Since buses may not be numbered yet try a little harder with bus 0 */
34 	if (ret == -ENODEV) {
35 		ret = uclass_first_device_err(UCLASS_PCI, busp);
36 		if (ret)
37 			return ret;
38 		ret = uclass_get_device_by_seq(UCLASS_PCI, busnum, busp);
39 	}
40 
41 	return ret;
42 }
43 
pci_get_controller(struct udevice * dev)44 struct udevice *pci_get_controller(struct udevice *dev)
45 {
46 	while (device_is_on_pci_bus(dev))
47 		dev = dev->parent;
48 
49 	return dev;
50 }
51 
dm_pci_get_bdf(const struct udevice * dev)52 pci_dev_t dm_pci_get_bdf(const struct udevice *dev)
53 {
54 	struct pci_child_plat *pplat = dev_get_parent_plat(dev);
55 	struct udevice *bus = dev->parent;
56 
57 	/*
58 	 * This error indicates that @dev is a device on an unprobed PCI bus.
59 	 * The bus likely has bus=seq == -1, so the PCI_ADD_BUS() macro below
60 	 * will produce a bad BDF>
61 	 *
62 	 * A common cause of this problem is that this function is called in the
63 	 * of_to_plat() method of @dev. Accessing the PCI bus in that
64 	 * method is not allowed, since it has not yet been probed. To fix this,
65 	 * move that access to the probe() method of @dev instead.
66 	 */
67 	if (!device_active(bus))
68 		log_err("PCI: Device '%s' on unprobed bus '%s'\n", dev->name,
69 			bus->name);
70 	return PCI_ADD_BUS(dev_seq(bus), pplat->devfn);
71 }
72 
73 /**
74  * pci_get_bus_max() - returns the bus number of the last active bus
75  *
76  * @return last bus number, or -1 if no active buses
77  */
pci_get_bus_max(void)78 static int pci_get_bus_max(void)
79 {
80 	struct udevice *bus;
81 	struct uclass *uc;
82 	int ret = -1;
83 
84 	ret = uclass_get(UCLASS_PCI, &uc);
85 	uclass_foreach_dev(bus, uc) {
86 		if (dev_seq(bus) > ret)
87 			ret = dev_seq(bus);
88 	}
89 
90 	debug("%s: ret=%d\n", __func__, ret);
91 
92 	return ret;
93 }
94 
pci_last_busno(void)95 int pci_last_busno(void)
96 {
97 	return pci_get_bus_max();
98 }
99 
pci_get_ff(enum pci_size_t size)100 int pci_get_ff(enum pci_size_t size)
101 {
102 	switch (size) {
103 	case PCI_SIZE_8:
104 		return 0xff;
105 	case PCI_SIZE_16:
106 		return 0xffff;
107 	default:
108 		return 0xffffffff;
109 	}
110 }
111 
pci_dev_find_ofnode(struct udevice * bus,phys_addr_t bdf,ofnode * rnode)112 static void pci_dev_find_ofnode(struct udevice *bus, phys_addr_t bdf,
113 				ofnode *rnode)
114 {
115 	struct fdt_pci_addr addr;
116 	ofnode node;
117 	int ret;
118 
119 	dev_for_each_subnode(node, bus) {
120 		ret = ofnode_read_pci_addr(node, FDT_PCI_SPACE_CONFIG, "reg",
121 					   &addr);
122 		if (ret)
123 			continue;
124 
125 		if (PCI_MASK_BUS(addr.phys_hi) != PCI_MASK_BUS(bdf))
126 			continue;
127 
128 		*rnode = node;
129 		break;
130 	}
131 };
132 
pci_bus_find_devfn(const struct udevice * bus,pci_dev_t find_devfn,struct udevice ** devp)133 int pci_bus_find_devfn(const struct udevice *bus, pci_dev_t find_devfn,
134 		       struct udevice **devp)
135 {
136 	struct udevice *dev;
137 
138 	for (device_find_first_child(bus, &dev);
139 	     dev;
140 	     device_find_next_child(&dev)) {
141 		struct pci_child_plat *pplat;
142 
143 		pplat = dev_get_parent_plat(dev);
144 		if (pplat && pplat->devfn == find_devfn) {
145 			*devp = dev;
146 			return 0;
147 		}
148 	}
149 
150 	return -ENODEV;
151 }
152 
dm_pci_bus_find_bdf(pci_dev_t bdf,struct udevice ** devp)153 int dm_pci_bus_find_bdf(pci_dev_t bdf, struct udevice **devp)
154 {
155 	struct udevice *bus;
156 	int ret;
157 
158 	ret = pci_get_bus(PCI_BUS(bdf), &bus);
159 	if (ret)
160 		return ret;
161 	return pci_bus_find_devfn(bus, PCI_MASK_BUS(bdf), devp);
162 }
163 
pci_device_matches_ids(struct udevice * dev,struct pci_device_id * ids)164 static int pci_device_matches_ids(struct udevice *dev,
165 				  struct pci_device_id *ids)
166 {
167 	struct pci_child_plat *pplat;
168 	int i;
169 
170 	pplat = dev_get_parent_plat(dev);
171 	if (!pplat)
172 		return -EINVAL;
173 	for (i = 0; ids[i].vendor != 0; i++) {
174 		if (pplat->vendor == ids[i].vendor &&
175 		    pplat->device == ids[i].device)
176 			return i;
177 	}
178 
179 	return -EINVAL;
180 }
181 
pci_bus_find_devices(struct udevice * bus,struct pci_device_id * ids,int * indexp,struct udevice ** devp)182 int pci_bus_find_devices(struct udevice *bus, struct pci_device_id *ids,
183 			 int *indexp, struct udevice **devp)
184 {
185 	struct udevice *dev;
186 
187 	/* Scan all devices on this bus */
188 	for (device_find_first_child(bus, &dev);
189 	     dev;
190 	     device_find_next_child(&dev)) {
191 		if (pci_device_matches_ids(dev, ids) >= 0) {
192 			if ((*indexp)-- <= 0) {
193 				*devp = dev;
194 				return 0;
195 			}
196 		}
197 	}
198 
199 	return -ENODEV;
200 }
201 
pci_find_device_id(struct pci_device_id * ids,int index,struct udevice ** devp)202 int pci_find_device_id(struct pci_device_id *ids, int index,
203 		       struct udevice **devp)
204 {
205 	struct udevice *bus;
206 
207 	/* Scan all known buses */
208 	for (uclass_first_device(UCLASS_PCI, &bus);
209 	     bus;
210 	     uclass_next_device(&bus)) {
211 		if (!pci_bus_find_devices(bus, ids, &index, devp))
212 			return 0;
213 	}
214 	*devp = NULL;
215 
216 	return -ENODEV;
217 }
218 
dm_pci_bus_find_device(struct udevice * bus,unsigned int vendor,unsigned int device,int * indexp,struct udevice ** devp)219 static int dm_pci_bus_find_device(struct udevice *bus, unsigned int vendor,
220 				  unsigned int device, int *indexp,
221 				  struct udevice **devp)
222 {
223 	struct pci_child_plat *pplat;
224 	struct udevice *dev;
225 
226 	for (device_find_first_child(bus, &dev);
227 	     dev;
228 	     device_find_next_child(&dev)) {
229 		pplat = dev_get_parent_plat(dev);
230 		if (pplat->vendor == vendor && pplat->device == device) {
231 			if (!(*indexp)--) {
232 				*devp = dev;
233 				return 0;
234 			}
235 		}
236 	}
237 
238 	return -ENODEV;
239 }
240 
dm_pci_find_device(unsigned int vendor,unsigned int device,int index,struct udevice ** devp)241 int dm_pci_find_device(unsigned int vendor, unsigned int device, int index,
242 		       struct udevice **devp)
243 {
244 	struct udevice *bus;
245 
246 	/* Scan all known buses */
247 	for (uclass_first_device(UCLASS_PCI, &bus);
248 	     bus;
249 	     uclass_next_device(&bus)) {
250 		if (!dm_pci_bus_find_device(bus, vendor, device, &index, devp))
251 			return device_probe(*devp);
252 	}
253 	*devp = NULL;
254 
255 	return -ENODEV;
256 }
257 
dm_pci_find_class(uint find_class,int index,struct udevice ** devp)258 int dm_pci_find_class(uint find_class, int index, struct udevice **devp)
259 {
260 	struct udevice *dev;
261 
262 	/* Scan all known buses */
263 	for (pci_find_first_device(&dev);
264 	     dev;
265 	     pci_find_next_device(&dev)) {
266 		struct pci_child_plat *pplat = dev_get_parent_plat(dev);
267 
268 		if (pplat->class == find_class && !index--) {
269 			*devp = dev;
270 			return device_probe(*devp);
271 		}
272 	}
273 	*devp = NULL;
274 
275 	return -ENODEV;
276 }
277 
pci_bus_write_config(struct udevice * bus,pci_dev_t bdf,int offset,unsigned long value,enum pci_size_t size)278 int pci_bus_write_config(struct udevice *bus, pci_dev_t bdf, int offset,
279 			 unsigned long value, enum pci_size_t size)
280 {
281 	struct dm_pci_ops *ops;
282 
283 	ops = pci_get_ops(bus);
284 	if (!ops->write_config)
285 		return -ENOSYS;
286 	return ops->write_config(bus, bdf, offset, value, size);
287 }
288 
pci_bus_clrset_config32(struct udevice * bus,pci_dev_t bdf,int offset,u32 clr,u32 set)289 int pci_bus_clrset_config32(struct udevice *bus, pci_dev_t bdf, int offset,
290 			    u32 clr, u32 set)
291 {
292 	ulong val;
293 	int ret;
294 
295 	ret = pci_bus_read_config(bus, bdf, offset, &val, PCI_SIZE_32);
296 	if (ret)
297 		return ret;
298 	val &= ~clr;
299 	val |= set;
300 
301 	return pci_bus_write_config(bus, bdf, offset, val, PCI_SIZE_32);
302 }
303 
pci_write_config(pci_dev_t bdf,int offset,unsigned long value,enum pci_size_t size)304 int pci_write_config(pci_dev_t bdf, int offset, unsigned long value,
305 		     enum pci_size_t size)
306 {
307 	struct udevice *bus;
308 	int ret;
309 
310 	ret = pci_get_bus(PCI_BUS(bdf), &bus);
311 	if (ret)
312 		return ret;
313 
314 	return pci_bus_write_config(bus, bdf, offset, value, size);
315 }
316 
dm_pci_write_config(struct udevice * dev,int offset,unsigned long value,enum pci_size_t size)317 int dm_pci_write_config(struct udevice *dev, int offset, unsigned long value,
318 			enum pci_size_t size)
319 {
320 	struct udevice *bus;
321 
322 	for (bus = dev; device_is_on_pci_bus(bus);)
323 		bus = bus->parent;
324 	return pci_bus_write_config(bus, dm_pci_get_bdf(dev), offset, value,
325 				    size);
326 }
327 
pci_write_config32(pci_dev_t bdf,int offset,u32 value)328 int pci_write_config32(pci_dev_t bdf, int offset, u32 value)
329 {
330 	return pci_write_config(bdf, offset, value, PCI_SIZE_32);
331 }
332 
pci_write_config16(pci_dev_t bdf,int offset,u16 value)333 int pci_write_config16(pci_dev_t bdf, int offset, u16 value)
334 {
335 	return pci_write_config(bdf, offset, value, PCI_SIZE_16);
336 }
337 
pci_write_config8(pci_dev_t bdf,int offset,u8 value)338 int pci_write_config8(pci_dev_t bdf, int offset, u8 value)
339 {
340 	return pci_write_config(bdf, offset, value, PCI_SIZE_8);
341 }
342 
dm_pci_write_config8(struct udevice * dev,int offset,u8 value)343 int dm_pci_write_config8(struct udevice *dev, int offset, u8 value)
344 {
345 	return dm_pci_write_config(dev, offset, value, PCI_SIZE_8);
346 }
347 
dm_pci_write_config16(struct udevice * dev,int offset,u16 value)348 int dm_pci_write_config16(struct udevice *dev, int offset, u16 value)
349 {
350 	return dm_pci_write_config(dev, offset, value, PCI_SIZE_16);
351 }
352 
dm_pci_write_config32(struct udevice * dev,int offset,u32 value)353 int dm_pci_write_config32(struct udevice *dev, int offset, u32 value)
354 {
355 	return dm_pci_write_config(dev, offset, value, PCI_SIZE_32);
356 }
357 
pci_bus_read_config(const struct udevice * bus,pci_dev_t bdf,int offset,unsigned long * valuep,enum pci_size_t size)358 int pci_bus_read_config(const struct udevice *bus, pci_dev_t bdf, int offset,
359 			unsigned long *valuep, enum pci_size_t size)
360 {
361 	struct dm_pci_ops *ops;
362 
363 	ops = pci_get_ops(bus);
364 	if (!ops->read_config)
365 		return -ENOSYS;
366 	return ops->read_config(bus, bdf, offset, valuep, size);
367 }
368 
pci_read_config(pci_dev_t bdf,int offset,unsigned long * valuep,enum pci_size_t size)369 int pci_read_config(pci_dev_t bdf, int offset, unsigned long *valuep,
370 		    enum pci_size_t size)
371 {
372 	struct udevice *bus;
373 	int ret;
374 
375 	ret = pci_get_bus(PCI_BUS(bdf), &bus);
376 	if (ret)
377 		return ret;
378 
379 	return pci_bus_read_config(bus, bdf, offset, valuep, size);
380 }
381 
dm_pci_read_config(const struct udevice * dev,int offset,unsigned long * valuep,enum pci_size_t size)382 int dm_pci_read_config(const struct udevice *dev, int offset,
383 		       unsigned long *valuep, enum pci_size_t size)
384 {
385 	const struct udevice *bus;
386 
387 	for (bus = dev; device_is_on_pci_bus(bus);)
388 		bus = bus->parent;
389 	return pci_bus_read_config(bus, dm_pci_get_bdf(dev), offset, valuep,
390 				   size);
391 }
392 
pci_read_config32(pci_dev_t bdf,int offset,u32 * valuep)393 int pci_read_config32(pci_dev_t bdf, int offset, u32 *valuep)
394 {
395 	unsigned long value;
396 	int ret;
397 
398 	ret = pci_read_config(bdf, offset, &value, PCI_SIZE_32);
399 	if (ret)
400 		return ret;
401 	*valuep = value;
402 
403 	return 0;
404 }
405 
pci_read_config16(pci_dev_t bdf,int offset,u16 * valuep)406 int pci_read_config16(pci_dev_t bdf, int offset, u16 *valuep)
407 {
408 	unsigned long value;
409 	int ret;
410 
411 	ret = pci_read_config(bdf, offset, &value, PCI_SIZE_16);
412 	if (ret)
413 		return ret;
414 	*valuep = value;
415 
416 	return 0;
417 }
418 
pci_read_config8(pci_dev_t bdf,int offset,u8 * valuep)419 int pci_read_config8(pci_dev_t bdf, int offset, u8 *valuep)
420 {
421 	unsigned long value;
422 	int ret;
423 
424 	ret = pci_read_config(bdf, offset, &value, PCI_SIZE_8);
425 	if (ret)
426 		return ret;
427 	*valuep = value;
428 
429 	return 0;
430 }
431 
dm_pci_read_config8(const struct udevice * dev,int offset,u8 * valuep)432 int dm_pci_read_config8(const struct udevice *dev, int offset, u8 *valuep)
433 {
434 	unsigned long value;
435 	int ret;
436 
437 	ret = dm_pci_read_config(dev, offset, &value, PCI_SIZE_8);
438 	if (ret)
439 		return ret;
440 	*valuep = value;
441 
442 	return 0;
443 }
444 
dm_pci_read_config16(const struct udevice * dev,int offset,u16 * valuep)445 int dm_pci_read_config16(const struct udevice *dev, int offset, u16 *valuep)
446 {
447 	unsigned long value;
448 	int ret;
449 
450 	ret = dm_pci_read_config(dev, offset, &value, PCI_SIZE_16);
451 	if (ret)
452 		return ret;
453 	*valuep = value;
454 
455 	return 0;
456 }
457 
dm_pci_read_config32(const struct udevice * dev,int offset,u32 * valuep)458 int dm_pci_read_config32(const struct udevice *dev, int offset, u32 *valuep)
459 {
460 	unsigned long value;
461 	int ret;
462 
463 	ret = dm_pci_read_config(dev, offset, &value, PCI_SIZE_32);
464 	if (ret)
465 		return ret;
466 	*valuep = value;
467 
468 	return 0;
469 }
470 
dm_pci_clrset_config8(struct udevice * dev,int offset,u32 clr,u32 set)471 int dm_pci_clrset_config8(struct udevice *dev, int offset, u32 clr, u32 set)
472 {
473 	u8 val;
474 	int ret;
475 
476 	ret = dm_pci_read_config8(dev, offset, &val);
477 	if (ret)
478 		return ret;
479 	val &= ~clr;
480 	val |= set;
481 
482 	return dm_pci_write_config8(dev, offset, val);
483 }
484 
dm_pci_clrset_config16(struct udevice * dev,int offset,u32 clr,u32 set)485 int dm_pci_clrset_config16(struct udevice *dev, int offset, u32 clr, u32 set)
486 {
487 	u16 val;
488 	int ret;
489 
490 	ret = dm_pci_read_config16(dev, offset, &val);
491 	if (ret)
492 		return ret;
493 	val &= ~clr;
494 	val |= set;
495 
496 	return dm_pci_write_config16(dev, offset, val);
497 }
498 
dm_pci_clrset_config32(struct udevice * dev,int offset,u32 clr,u32 set)499 int dm_pci_clrset_config32(struct udevice *dev, int offset, u32 clr, u32 set)
500 {
501 	u32 val;
502 	int ret;
503 
504 	ret = dm_pci_read_config32(dev, offset, &val);
505 	if (ret)
506 		return ret;
507 	val &= ~clr;
508 	val |= set;
509 
510 	return dm_pci_write_config32(dev, offset, val);
511 }
512 
set_vga_bridge_bits(struct udevice * dev)513 static void set_vga_bridge_bits(struct udevice *dev)
514 {
515 	struct udevice *parent = dev->parent;
516 	u16 bc;
517 
518 	while (dev_seq(parent) != 0) {
519 		dm_pci_read_config16(parent, PCI_BRIDGE_CONTROL, &bc);
520 		bc |= PCI_BRIDGE_CTL_VGA;
521 		dm_pci_write_config16(parent, PCI_BRIDGE_CONTROL, bc);
522 		parent = parent->parent;
523 	}
524 }
525 
pci_auto_config_devices(struct udevice * bus)526 int pci_auto_config_devices(struct udevice *bus)
527 {
528 	struct pci_controller *hose = dev_get_uclass_priv(bus);
529 	struct pci_child_plat *pplat;
530 	unsigned int sub_bus;
531 	struct udevice *dev;
532 	int ret;
533 
534 	sub_bus = dev_seq(bus);
535 	debug("%s: start\n", __func__);
536 	pciauto_config_init(hose);
537 	for (ret = device_find_first_child(bus, &dev);
538 	     !ret && dev;
539 	     ret = device_find_next_child(&dev)) {
540 		unsigned int max_bus;
541 		int ret;
542 
543 		debug("%s: device %s\n", __func__, dev->name);
544 		if (dev_has_ofnode(dev) &&
545 		    dev_read_bool(dev, "pci,no-autoconfig"))
546 			continue;
547 		ret = dm_pciauto_config_device(dev);
548 		if (ret < 0)
549 			return log_msg_ret("auto", ret);
550 		max_bus = ret;
551 		sub_bus = max(sub_bus, max_bus);
552 
553 		pplat = dev_get_parent_plat(dev);
554 		if (pplat->class == (PCI_CLASS_DISPLAY_VGA << 8))
555 			set_vga_bridge_bits(dev);
556 	}
557 	debug("%s: done\n", __func__);
558 
559 	return log_msg_ret("sub", sub_bus);
560 }
561 
pci_generic_mmap_write_config(const struct udevice * bus,int (* addr_f)(const struct udevice * bus,pci_dev_t bdf,uint offset,void ** addrp),pci_dev_t bdf,uint offset,ulong value,enum pci_size_t size)562 int pci_generic_mmap_write_config(
563 	const struct udevice *bus,
564 	int (*addr_f)(const struct udevice *bus, pci_dev_t bdf, uint offset,
565 		      void **addrp),
566 	pci_dev_t bdf,
567 	uint offset,
568 	ulong value,
569 	enum pci_size_t size)
570 {
571 	void *address;
572 
573 	if (addr_f(bus, bdf, offset, &address) < 0)
574 		return 0;
575 
576 	switch (size) {
577 	case PCI_SIZE_8:
578 		writeb(value, address);
579 		return 0;
580 	case PCI_SIZE_16:
581 		writew(value, address);
582 		return 0;
583 	case PCI_SIZE_32:
584 		writel(value, address);
585 		return 0;
586 	default:
587 		return -EINVAL;
588 	}
589 }
590 
pci_generic_mmap_read_config(const struct udevice * bus,int (* addr_f)(const struct udevice * bus,pci_dev_t bdf,uint offset,void ** addrp),pci_dev_t bdf,uint offset,ulong * valuep,enum pci_size_t size)591 int pci_generic_mmap_read_config(
592 	const struct udevice *bus,
593 	int (*addr_f)(const struct udevice *bus, pci_dev_t bdf, uint offset,
594 		      void **addrp),
595 	pci_dev_t bdf,
596 	uint offset,
597 	ulong *valuep,
598 	enum pci_size_t size)
599 {
600 	void *address;
601 
602 	if (addr_f(bus, bdf, offset, &address) < 0) {
603 		*valuep = pci_get_ff(size);
604 		return 0;
605 	}
606 
607 	switch (size) {
608 	case PCI_SIZE_8:
609 		*valuep = readb(address);
610 		return 0;
611 	case PCI_SIZE_16:
612 		*valuep = readw(address);
613 		return 0;
614 	case PCI_SIZE_32:
615 		*valuep = readl(address);
616 		return 0;
617 	default:
618 		return -EINVAL;
619 	}
620 }
621 
dm_pci_hose_probe_bus(struct udevice * bus)622 int dm_pci_hose_probe_bus(struct udevice *bus)
623 {
624 	int sub_bus;
625 	int ret;
626 	int ea_pos;
627 	u8 reg;
628 
629 	debug("%s\n", __func__);
630 
631 	ea_pos = dm_pci_find_capability(bus, PCI_CAP_ID_EA);
632 	if (ea_pos) {
633 		dm_pci_read_config8(bus, ea_pos + sizeof(u32) + sizeof(u8),
634 				    &reg);
635 		sub_bus = reg;
636 	} else {
637 		sub_bus = pci_get_bus_max() + 1;
638 	}
639 	debug("%s: bus = %d/%s\n", __func__, sub_bus, bus->name);
640 	dm_pciauto_prescan_setup_bridge(bus, sub_bus);
641 
642 	ret = device_probe(bus);
643 	if (ret) {
644 		debug("%s: Cannot probe bus %s: %d\n", __func__, bus->name,
645 		      ret);
646 		return log_msg_ret("probe", ret);
647 	}
648 
649 	if (!ea_pos)
650 		sub_bus = pci_get_bus_max();
651 
652 	dm_pciauto_postscan_setup_bridge(bus, sub_bus);
653 
654 	return sub_bus;
655 }
656 
657 /**
658  * pci_match_one_device - Tell if a PCI device structure has a matching
659  *                        PCI device id structure
660  * @id: single PCI device id structure to match
661  * @find: the PCI device id structure to match against
662  *
663  * Returns true if the finding pci_device_id structure matched or false if
664  * there is no match.
665  */
pci_match_one_id(const struct pci_device_id * id,const struct pci_device_id * find)666 static bool pci_match_one_id(const struct pci_device_id *id,
667 			     const struct pci_device_id *find)
668 {
669 	if ((id->vendor == PCI_ANY_ID || id->vendor == find->vendor) &&
670 	    (id->device == PCI_ANY_ID || id->device == find->device) &&
671 	    (id->subvendor == PCI_ANY_ID || id->subvendor == find->subvendor) &&
672 	    (id->subdevice == PCI_ANY_ID || id->subdevice == find->subdevice) &&
673 	    !((id->class ^ find->class) & id->class_mask))
674 		return true;
675 
676 	return false;
677 }
678 
679 /**
680  * pci_find_and_bind_driver() - Find and bind the right PCI driver
681  *
682  * This only looks at certain fields in the descriptor.
683  *
684  * @parent:	Parent bus
685  * @find_id:	Specification of the driver to find
686  * @bdf:	Bus/device/function addreess - see PCI_BDF()
687  * @devp:	Returns a pointer to the device created
688  * @return 0 if OK, -EPERM if the device is not needed before relocation and
689  *	   therefore was not created, other -ve value on error
690  */
pci_find_and_bind_driver(struct udevice * parent,struct pci_device_id * find_id,pci_dev_t bdf,struct udevice ** devp)691 static int pci_find_and_bind_driver(struct udevice *parent,
692 				    struct pci_device_id *find_id,
693 				    pci_dev_t bdf, struct udevice **devp)
694 {
695 	struct pci_driver_entry *start, *entry;
696 	ofnode node = ofnode_null();
697 	const char *drv;
698 	int n_ents;
699 	int ret;
700 	char name[30], *str;
701 	bool bridge;
702 
703 	*devp = NULL;
704 
705 	debug("%s: Searching for driver: vendor=%x, device=%x\n", __func__,
706 	      find_id->vendor, find_id->device);
707 
708 	/* Determine optional OF node */
709 	if (ofnode_valid(dev_ofnode(parent)))
710 		pci_dev_find_ofnode(parent, bdf, &node);
711 
712 	if (ofnode_valid(node) && !ofnode_is_available(node)) {
713 		debug("%s: Ignoring disabled device\n", __func__);
714 		return log_msg_ret("dis", -EPERM);
715 	}
716 
717 	start = ll_entry_start(struct pci_driver_entry, pci_driver_entry);
718 	n_ents = ll_entry_count(struct pci_driver_entry, pci_driver_entry);
719 	for (entry = start; entry != start + n_ents; entry++) {
720 		const struct pci_device_id *id;
721 		struct udevice *dev;
722 		const struct driver *drv;
723 
724 		for (id = entry->match;
725 		     id->vendor || id->subvendor || id->class_mask;
726 		     id++) {
727 			if (!pci_match_one_id(id, find_id))
728 				continue;
729 
730 			drv = entry->driver;
731 
732 			/*
733 			 * In the pre-relocation phase, we only bind devices
734 			 * whose driver has the DM_FLAG_PRE_RELOC set, to save
735 			 * precious memory space as on some platforms as that
736 			 * space is pretty limited (ie: using Cache As RAM).
737 			 */
738 			if (!(gd->flags & GD_FLG_RELOC) &&
739 			    !(drv->flags & DM_FLAG_PRE_RELOC))
740 				return log_msg_ret("pre", -EPERM);
741 
742 			/*
743 			 * We could pass the descriptor to the driver as
744 			 * plat (instead of NULL) and allow its bind()
745 			 * method to return -ENOENT if it doesn't support this
746 			 * device. That way we could continue the search to
747 			 * find another driver. For now this doesn't seem
748 			 * necesssary, so just bind the first match.
749 			 */
750 			ret = device_bind(parent, drv, drv->name, NULL, node,
751 					  &dev);
752 			if (ret)
753 				goto error;
754 			debug("%s: Match found: %s\n", __func__, drv->name);
755 			dev->driver_data = id->driver_data;
756 			*devp = dev;
757 			return 0;
758 		}
759 	}
760 
761 	bridge = (find_id->class >> 8) == PCI_CLASS_BRIDGE_PCI;
762 	/*
763 	 * In the pre-relocation phase, we only bind bridge devices to save
764 	 * precious memory space as on some platforms as that space is pretty
765 	 * limited (ie: using Cache As RAM).
766 	 */
767 	if (!(gd->flags & GD_FLG_RELOC) && !bridge)
768 		return log_msg_ret("notbr", -EPERM);
769 
770 	/* Bind a generic driver so that the device can be used */
771 	sprintf(name, "pci_%x:%x.%x", dev_seq(parent), PCI_DEV(bdf),
772 		PCI_FUNC(bdf));
773 	str = strdup(name);
774 	if (!str)
775 		return -ENOMEM;
776 	drv = bridge ? "pci_bridge_drv" : "pci_generic_drv";
777 
778 	ret = device_bind_driver_to_node(parent, drv, str, node, devp);
779 	if (ret) {
780 		debug("%s: Failed to bind generic driver: %d\n", __func__, ret);
781 		free(str);
782 		return ret;
783 	}
784 	debug("%s: No match found: bound generic driver instead\n", __func__);
785 
786 	return 0;
787 
788 error:
789 	debug("%s: No match found: error %d\n", __func__, ret);
790 	return ret;
791 }
792 
board_pci_fixup_dev(struct udevice * bus,struct udevice * dev)793 __weak extern void board_pci_fixup_dev(struct udevice *bus, struct udevice *dev)
794 {
795 }
796 
pci_bind_bus_devices(struct udevice * bus)797 int pci_bind_bus_devices(struct udevice *bus)
798 {
799 	ulong vendor, device;
800 	ulong header_type;
801 	pci_dev_t bdf, end;
802 	bool found_multi;
803 	int ari_off;
804 	int ret;
805 
806 	found_multi = false;
807 	end = PCI_BDF(dev_seq(bus), PCI_MAX_PCI_DEVICES - 1,
808 		      PCI_MAX_PCI_FUNCTIONS - 1);
809 	for (bdf = PCI_BDF(dev_seq(bus), 0, 0); bdf <= end;
810 	     bdf += PCI_BDF(0, 0, 1)) {
811 		struct pci_child_plat *pplat;
812 		struct udevice *dev;
813 		ulong class;
814 
815 		if (!PCI_FUNC(bdf))
816 			found_multi = false;
817 		if (PCI_FUNC(bdf) && !found_multi)
818 			continue;
819 
820 		/* Check only the first access, we don't expect problems */
821 		ret = pci_bus_read_config(bus, bdf, PCI_VENDOR_ID, &vendor,
822 					  PCI_SIZE_16);
823 		if (ret)
824 			goto error;
825 
826 		if (vendor == 0xffff || vendor == 0x0000)
827 			continue;
828 
829 		pci_bus_read_config(bus, bdf, PCI_HEADER_TYPE,
830 				    &header_type, PCI_SIZE_8);
831 
832 		if (!PCI_FUNC(bdf))
833 			found_multi = header_type & 0x80;
834 
835 		debug("%s: bus %d/%s: found device %x, function %d", __func__,
836 		      dev_seq(bus), bus->name, PCI_DEV(bdf), PCI_FUNC(bdf));
837 		pci_bus_read_config(bus, bdf, PCI_DEVICE_ID, &device,
838 				    PCI_SIZE_16);
839 		pci_bus_read_config(bus, bdf, PCI_CLASS_REVISION, &class,
840 				    PCI_SIZE_32);
841 		class >>= 8;
842 
843 		/* Find this device in the device tree */
844 		ret = pci_bus_find_devfn(bus, PCI_MASK_BUS(bdf), &dev);
845 		debug(": find ret=%d\n", ret);
846 
847 		/* If nothing in the device tree, bind a device */
848 		if (ret == -ENODEV) {
849 			struct pci_device_id find_id;
850 			ulong val;
851 
852 			memset(&find_id, '\0', sizeof(find_id));
853 			find_id.vendor = vendor;
854 			find_id.device = device;
855 			find_id.class = class;
856 			if ((header_type & 0x7f) == PCI_HEADER_TYPE_NORMAL) {
857 				pci_bus_read_config(bus, bdf,
858 						    PCI_SUBSYSTEM_VENDOR_ID,
859 						    &val, PCI_SIZE_32);
860 				find_id.subvendor = val & 0xffff;
861 				find_id.subdevice = val >> 16;
862 			}
863 			ret = pci_find_and_bind_driver(bus, &find_id, bdf,
864 						       &dev);
865 		}
866 		if (ret == -EPERM)
867 			continue;
868 		else if (ret)
869 			return ret;
870 
871 		/* Update the platform data */
872 		pplat = dev_get_parent_plat(dev);
873 		pplat->devfn = PCI_MASK_BUS(bdf);
874 		pplat->vendor = vendor;
875 		pplat->device = device;
876 		pplat->class = class;
877 
878 		if (IS_ENABLED(CONFIG_PCI_ARID)) {
879 			ari_off = dm_pci_find_ext_capability(dev,
880 							     PCI_EXT_CAP_ID_ARI);
881 			if (ari_off) {
882 				u16 ari_cap;
883 
884 				/*
885 				 * Read Next Function number in ARI Cap
886 				 * Register
887 				 */
888 				dm_pci_read_config16(dev, ari_off + 4,
889 						     &ari_cap);
890 				/*
891 				 * Update next scan on this function number,
892 				 * subtract 1 in BDF to satisfy loop increment.
893 				 */
894 				if (ari_cap & 0xff00) {
895 					bdf = PCI_BDF(PCI_BUS(bdf),
896 						      PCI_DEV(ari_cap),
897 						      PCI_FUNC(ari_cap));
898 					bdf = bdf - 0x100;
899 				}
900 			}
901 		}
902 
903 		board_pci_fixup_dev(bus, dev);
904 	}
905 
906 	return 0;
907 error:
908 	printf("Cannot read bus configuration: %d\n", ret);
909 
910 	return ret;
911 }
912 
decode_regions(struct pci_controller * hose,ofnode parent_node,ofnode node)913 static void decode_regions(struct pci_controller *hose, ofnode parent_node,
914 			   ofnode node)
915 {
916 	int pci_addr_cells, addr_cells, size_cells;
917 	int cells_per_record;
918 	struct bd_info *bd;
919 	const u32 *prop;
920 	int max_regions;
921 	int len;
922 	int i;
923 
924 	prop = ofnode_get_property(node, "ranges", &len);
925 	if (!prop) {
926 		debug("%s: Cannot decode regions\n", __func__);
927 		return;
928 	}
929 
930 	pci_addr_cells = ofnode_read_simple_addr_cells(node);
931 	addr_cells = ofnode_read_simple_addr_cells(parent_node);
932 	size_cells = ofnode_read_simple_size_cells(node);
933 
934 	/* PCI addresses are always 3-cells */
935 	len /= sizeof(u32);
936 	cells_per_record = pci_addr_cells + addr_cells + size_cells;
937 	hose->region_count = 0;
938 	debug("%s: len=%d, cells_per_record=%d\n", __func__, len,
939 	      cells_per_record);
940 
941 	/* Dynamically allocate the regions array */
942 	max_regions = len / cells_per_record + CONFIG_NR_DRAM_BANKS;
943 	hose->regions = (struct pci_region *)
944 		calloc(1, max_regions * sizeof(struct pci_region));
945 
946 	for (i = 0; i < max_regions; i++, len -= cells_per_record) {
947 		u64 pci_addr, addr, size;
948 		int space_code;
949 		u32 flags;
950 		int type;
951 		int pos;
952 
953 		if (len < cells_per_record)
954 			break;
955 		flags = fdt32_to_cpu(prop[0]);
956 		space_code = (flags >> 24) & 3;
957 		pci_addr = fdtdec_get_number(prop + 1, 2);
958 		prop += pci_addr_cells;
959 		addr = fdtdec_get_number(prop, addr_cells);
960 		prop += addr_cells;
961 		size = fdtdec_get_number(prop, size_cells);
962 		prop += size_cells;
963 		debug("%s: region %d, pci_addr=%llx, addr=%llx, size=%llx, space_code=%d\n",
964 		      __func__, hose->region_count, pci_addr, addr, size, space_code);
965 		if (space_code & 2) {
966 			type = flags & (1U << 30) ? PCI_REGION_PREFETCH :
967 					PCI_REGION_MEM;
968 		} else if (space_code & 1) {
969 			type = PCI_REGION_IO;
970 		} else {
971 			continue;
972 		}
973 
974 		if (!IS_ENABLED(CONFIG_SYS_PCI_64BIT) &&
975 		    type == PCI_REGION_MEM && upper_32_bits(pci_addr)) {
976 			debug(" - beyond the 32-bit boundary, ignoring\n");
977 			continue;
978 		}
979 
980 		pos = -1;
981 		if (!IS_ENABLED(CONFIG_PCI_REGION_MULTI_ENTRY)) {
982 			for (i = 0; i < hose->region_count; i++) {
983 				if (hose->regions[i].flags == type)
984 					pos = i;
985 			}
986 		}
987 
988 		if (pos == -1)
989 			pos = hose->region_count++;
990 		debug(" - type=%d, pos=%d\n", type, pos);
991 		pci_set_region(hose->regions + pos, pci_addr, addr, size, type);
992 	}
993 
994 	/* Add a region for our local memory */
995 	bd = gd->bd;
996 	if (!bd)
997 		return;
998 
999 	for (i = 0; i < CONFIG_NR_DRAM_BANKS; ++i) {
1000 		if (bd->bi_dram[i].size) {
1001 			pci_set_region(hose->regions + hose->region_count++,
1002 				       bd->bi_dram[i].start,
1003 				       bd->bi_dram[i].start,
1004 				       bd->bi_dram[i].size,
1005 				       PCI_REGION_MEM | PCI_REGION_SYS_MEMORY);
1006 		}
1007 	}
1008 
1009 	return;
1010 }
1011 
pci_uclass_pre_probe(struct udevice * bus)1012 static int pci_uclass_pre_probe(struct udevice *bus)
1013 {
1014 	struct pci_controller *hose;
1015 	struct uclass *uc;
1016 	int ret;
1017 
1018 	debug("%s, bus=%d/%s, parent=%s\n", __func__, dev_seq(bus), bus->name,
1019 	      bus->parent->name);
1020 	hose = dev_get_uclass_priv(bus);
1021 
1022 	/*
1023 	 * Set the sequence number, if device_bind() doesn't. We want control
1024 	 * of this so that numbers are allocated as devices are probed. That
1025 	 * ensures that sub-bus numbered is correct (sub-buses must get numbers
1026 	 * higher than their parents)
1027 	 */
1028 	if (dev_seq(bus) == -1) {
1029 		ret = uclass_get(UCLASS_PCI, &uc);
1030 		if (ret)
1031 			return ret;
1032 		bus->seq_ = uclass_find_next_free_seq(uc);
1033 	}
1034 
1035 	/* For bridges, use the top-level PCI controller */
1036 	if (!device_is_on_pci_bus(bus)) {
1037 		hose->ctlr = bus;
1038 		decode_regions(hose, dev_ofnode(bus->parent), dev_ofnode(bus));
1039 	} else {
1040 		struct pci_controller *parent_hose;
1041 
1042 		parent_hose = dev_get_uclass_priv(bus->parent);
1043 		hose->ctlr = parent_hose->bus;
1044 	}
1045 
1046 	hose->bus = bus;
1047 	hose->first_busno = dev_seq(bus);
1048 	hose->last_busno = dev_seq(bus);
1049 	if (dev_has_ofnode(bus)) {
1050 		hose->skip_auto_config_until_reloc =
1051 			dev_read_bool(bus,
1052 				      "u-boot,skip-auto-config-until-reloc");
1053 	}
1054 
1055 	return 0;
1056 }
1057 
pci_uclass_post_probe(struct udevice * bus)1058 static int pci_uclass_post_probe(struct udevice *bus)
1059 {
1060 	struct pci_controller *hose = dev_get_uclass_priv(bus);
1061 	int ret;
1062 
1063 	debug("%s: probing bus %d\n", __func__, dev_seq(bus));
1064 	ret = pci_bind_bus_devices(bus);
1065 	if (ret)
1066 		return log_msg_ret("bind", ret);
1067 
1068 	if (CONFIG_IS_ENABLED(PCI_PNP) && ll_boot_init() &&
1069 	    (!hose->skip_auto_config_until_reloc ||
1070 	     (gd->flags & GD_FLG_RELOC))) {
1071 		ret = pci_auto_config_devices(bus);
1072 		if (ret < 0)
1073 			return log_msg_ret("cfg", ret);
1074 	}
1075 
1076 #if defined(CONFIG_X86) && defined(CONFIG_HAVE_FSP)
1077 	/*
1078 	 * Per Intel FSP specification, we should call FSP notify API to
1079 	 * inform FSP that PCI enumeration has been done so that FSP will
1080 	 * do any necessary initialization as required by the chipset's
1081 	 * BIOS Writer's Guide (BWG).
1082 	 *
1083 	 * Unfortunately we have to put this call here as with driver model,
1084 	 * the enumeration is all done on a lazy basis as needed, so until
1085 	 * something is touched on PCI it won't happen.
1086 	 *
1087 	 * Note we only call this 1) after U-Boot is relocated, and 2)
1088 	 * root bus has finished probing.
1089 	 */
1090 	if ((gd->flags & GD_FLG_RELOC) && dev_seq(bus) == 0 && ll_boot_init()) {
1091 		ret = fsp_init_phase_pci();
1092 		if (ret)
1093 			return log_msg_ret("fsp", ret);
1094 	}
1095 #endif
1096 
1097 	return 0;
1098 }
1099 
pci_uclass_child_post_bind(struct udevice * dev)1100 static int pci_uclass_child_post_bind(struct udevice *dev)
1101 {
1102 	struct pci_child_plat *pplat;
1103 
1104 	if (!dev_has_ofnode(dev))
1105 		return 0;
1106 
1107 	pplat = dev_get_parent_plat(dev);
1108 
1109 	/* Extract vendor id and device id if available */
1110 	ofnode_read_pci_vendev(dev_ofnode(dev), &pplat->vendor, &pplat->device);
1111 
1112 	/* Extract the devfn from fdt_pci_addr */
1113 	pplat->devfn = pci_get_devfn(dev);
1114 
1115 	return 0;
1116 }
1117 
pci_bridge_read_config(const struct udevice * bus,pci_dev_t bdf,uint offset,ulong * valuep,enum pci_size_t size)1118 static int pci_bridge_read_config(const struct udevice *bus, pci_dev_t bdf,
1119 				  uint offset, ulong *valuep,
1120 				  enum pci_size_t size)
1121 {
1122 	struct pci_controller *hose = dev_get_uclass_priv(bus);
1123 
1124 	return pci_bus_read_config(hose->ctlr, bdf, offset, valuep, size);
1125 }
1126 
pci_bridge_write_config(struct udevice * bus,pci_dev_t bdf,uint offset,ulong value,enum pci_size_t size)1127 static int pci_bridge_write_config(struct udevice *bus, pci_dev_t bdf,
1128 				   uint offset, ulong value,
1129 				   enum pci_size_t size)
1130 {
1131 	struct pci_controller *hose = dev_get_uclass_priv(bus);
1132 
1133 	return pci_bus_write_config(hose->ctlr, bdf, offset, value, size);
1134 }
1135 
skip_to_next_device(struct udevice * bus,struct udevice ** devp)1136 static int skip_to_next_device(struct udevice *bus, struct udevice **devp)
1137 {
1138 	struct udevice *dev;
1139 	int ret = 0;
1140 
1141 	/*
1142 	 * Scan through all the PCI controllers. On x86 there will only be one
1143 	 * but that is not necessarily true on other hardware.
1144 	 */
1145 	do {
1146 		device_find_first_child(bus, &dev);
1147 		if (dev) {
1148 			*devp = dev;
1149 			return 0;
1150 		}
1151 		ret = uclass_next_device(&bus);
1152 		if (ret)
1153 			return ret;
1154 	} while (bus);
1155 
1156 	return 0;
1157 }
1158 
pci_find_next_device(struct udevice ** devp)1159 int pci_find_next_device(struct udevice **devp)
1160 {
1161 	struct udevice *child = *devp;
1162 	struct udevice *bus = child->parent;
1163 	int ret;
1164 
1165 	/* First try all the siblings */
1166 	*devp = NULL;
1167 	while (child) {
1168 		device_find_next_child(&child);
1169 		if (child) {
1170 			*devp = child;
1171 			return 0;
1172 		}
1173 	}
1174 
1175 	/* We ran out of siblings. Try the next bus */
1176 	ret = uclass_next_device(&bus);
1177 	if (ret)
1178 		return ret;
1179 
1180 	return bus ? skip_to_next_device(bus, devp) : 0;
1181 }
1182 
pci_find_first_device(struct udevice ** devp)1183 int pci_find_first_device(struct udevice **devp)
1184 {
1185 	struct udevice *bus;
1186 	int ret;
1187 
1188 	*devp = NULL;
1189 	ret = uclass_first_device(UCLASS_PCI, &bus);
1190 	if (ret)
1191 		return ret;
1192 
1193 	return skip_to_next_device(bus, devp);
1194 }
1195 
pci_conv_32_to_size(ulong value,uint offset,enum pci_size_t size)1196 ulong pci_conv_32_to_size(ulong value, uint offset, enum pci_size_t size)
1197 {
1198 	switch (size) {
1199 	case PCI_SIZE_8:
1200 		return (value >> ((offset & 3) * 8)) & 0xff;
1201 	case PCI_SIZE_16:
1202 		return (value >> ((offset & 2) * 8)) & 0xffff;
1203 	default:
1204 		return value;
1205 	}
1206 }
1207 
pci_conv_size_to_32(ulong old,ulong value,uint offset,enum pci_size_t size)1208 ulong pci_conv_size_to_32(ulong old, ulong value, uint offset,
1209 			  enum pci_size_t size)
1210 {
1211 	uint off_mask;
1212 	uint val_mask, shift;
1213 	ulong ldata, mask;
1214 
1215 	switch (size) {
1216 	case PCI_SIZE_8:
1217 		off_mask = 3;
1218 		val_mask = 0xff;
1219 		break;
1220 	case PCI_SIZE_16:
1221 		off_mask = 2;
1222 		val_mask = 0xffff;
1223 		break;
1224 	default:
1225 		return value;
1226 	}
1227 	shift = (offset & off_mask) * 8;
1228 	ldata = (value & val_mask) << shift;
1229 	mask = val_mask << shift;
1230 	value = (old & ~mask) | ldata;
1231 
1232 	return value;
1233 }
1234 
pci_get_dma_regions(struct udevice * dev,struct pci_region * memp,int index)1235 int pci_get_dma_regions(struct udevice *dev, struct pci_region *memp, int index)
1236 {
1237 	int pci_addr_cells, addr_cells, size_cells;
1238 	int cells_per_record;
1239 	const u32 *prop;
1240 	int len;
1241 	int i = 0;
1242 
1243 	prop = ofnode_get_property(dev_ofnode(dev), "dma-ranges", &len);
1244 	if (!prop) {
1245 		log_err("PCI: Device '%s': Cannot decode dma-ranges\n",
1246 			dev->name);
1247 		return -EINVAL;
1248 	}
1249 
1250 	pci_addr_cells = ofnode_read_simple_addr_cells(dev_ofnode(dev));
1251 	addr_cells = ofnode_read_simple_addr_cells(dev_ofnode(dev->parent));
1252 	size_cells = ofnode_read_simple_size_cells(dev_ofnode(dev));
1253 
1254 	/* PCI addresses are always 3-cells */
1255 	len /= sizeof(u32);
1256 	cells_per_record = pci_addr_cells + addr_cells + size_cells;
1257 	debug("%s: len=%d, cells_per_record=%d\n", __func__, len,
1258 	      cells_per_record);
1259 
1260 	while (len) {
1261 		memp->bus_start = fdtdec_get_number(prop + 1, 2);
1262 		prop += pci_addr_cells;
1263 		memp->phys_start = fdtdec_get_number(prop, addr_cells);
1264 		prop += addr_cells;
1265 		memp->size = fdtdec_get_number(prop, size_cells);
1266 		prop += size_cells;
1267 
1268 		if (i == index)
1269 			return 0;
1270 		i++;
1271 		len -= cells_per_record;
1272 	}
1273 
1274 	return -EINVAL;
1275 }
1276 
pci_get_regions(struct udevice * dev,struct pci_region ** iop,struct pci_region ** memp,struct pci_region ** prefp)1277 int pci_get_regions(struct udevice *dev, struct pci_region **iop,
1278 		    struct pci_region **memp, struct pci_region **prefp)
1279 {
1280 	struct udevice *bus = pci_get_controller(dev);
1281 	struct pci_controller *hose = dev_get_uclass_priv(bus);
1282 	int i;
1283 
1284 	*iop = NULL;
1285 	*memp = NULL;
1286 	*prefp = NULL;
1287 	for (i = 0; i < hose->region_count; i++) {
1288 		switch (hose->regions[i].flags) {
1289 		case PCI_REGION_IO:
1290 			if (!*iop || (*iop)->size < hose->regions[i].size)
1291 				*iop = hose->regions + i;
1292 			break;
1293 		case PCI_REGION_MEM:
1294 			if (!*memp || (*memp)->size < hose->regions[i].size)
1295 				*memp = hose->regions + i;
1296 			break;
1297 		case (PCI_REGION_MEM | PCI_REGION_PREFETCH):
1298 			if (!*prefp || (*prefp)->size < hose->regions[i].size)
1299 				*prefp = hose->regions + i;
1300 			break;
1301 		}
1302 	}
1303 
1304 	return (*iop != NULL) + (*memp != NULL) + (*prefp != NULL);
1305 }
1306 
dm_pci_read_bar32(const struct udevice * dev,int barnum)1307 u32 dm_pci_read_bar32(const struct udevice *dev, int barnum)
1308 {
1309 	u32 addr;
1310 	int bar;
1311 
1312 	bar = PCI_BASE_ADDRESS_0 + barnum * 4;
1313 	dm_pci_read_config32(dev, bar, &addr);
1314 
1315 	/*
1316 	 * If we get an invalid address, return this so that comparisons with
1317 	 * FDT_ADDR_T_NONE work correctly
1318 	 */
1319 	if (addr == 0xffffffff)
1320 		return addr;
1321 	else if (addr & PCI_BASE_ADDRESS_SPACE_IO)
1322 		return addr & PCI_BASE_ADDRESS_IO_MASK;
1323 	else
1324 		return addr & PCI_BASE_ADDRESS_MEM_MASK;
1325 }
1326 
dm_pci_write_bar32(struct udevice * dev,int barnum,u32 addr)1327 void dm_pci_write_bar32(struct udevice *dev, int barnum, u32 addr)
1328 {
1329 	int bar;
1330 
1331 	bar = PCI_BASE_ADDRESS_0 + barnum * 4;
1332 	dm_pci_write_config32(dev, bar, addr);
1333 }
1334 
_dm_pci_bus_to_phys(struct udevice * ctlr,pci_addr_t bus_addr,unsigned long flags,unsigned long skip_mask,phys_addr_t * pa)1335 static int _dm_pci_bus_to_phys(struct udevice *ctlr,
1336 			       pci_addr_t bus_addr, unsigned long flags,
1337 			       unsigned long skip_mask, phys_addr_t *pa)
1338 {
1339 	struct pci_controller *hose = dev_get_uclass_priv(ctlr);
1340 	struct pci_region *res;
1341 	int i;
1342 
1343 	if (hose->region_count == 0) {
1344 		*pa = bus_addr;
1345 		return 0;
1346 	}
1347 
1348 	for (i = 0; i < hose->region_count; i++) {
1349 		res = &hose->regions[i];
1350 
1351 		if (((res->flags ^ flags) & PCI_REGION_TYPE) != 0)
1352 			continue;
1353 
1354 		if (res->flags & skip_mask)
1355 			continue;
1356 
1357 		if (bus_addr >= res->bus_start &&
1358 		    (bus_addr - res->bus_start) < res->size) {
1359 			*pa = (bus_addr - res->bus_start + res->phys_start);
1360 			return 0;
1361 		}
1362 	}
1363 
1364 	return 1;
1365 }
1366 
dm_pci_bus_to_phys(struct udevice * dev,pci_addr_t bus_addr,unsigned long flags)1367 phys_addr_t dm_pci_bus_to_phys(struct udevice *dev, pci_addr_t bus_addr,
1368 			       unsigned long flags)
1369 {
1370 	phys_addr_t phys_addr = 0;
1371 	struct udevice *ctlr;
1372 	int ret;
1373 
1374 	/* The root controller has the region information */
1375 	ctlr = pci_get_controller(dev);
1376 
1377 	/*
1378 	 * if PCI_REGION_MEM is set we do a two pass search with preference
1379 	 * on matches that don't have PCI_REGION_SYS_MEMORY set
1380 	 */
1381 	if ((flags & PCI_REGION_TYPE) == PCI_REGION_MEM) {
1382 		ret = _dm_pci_bus_to_phys(ctlr, bus_addr,
1383 					  flags, PCI_REGION_SYS_MEMORY,
1384 					  &phys_addr);
1385 		if (!ret)
1386 			return phys_addr;
1387 	}
1388 
1389 	ret = _dm_pci_bus_to_phys(ctlr, bus_addr, flags, 0, &phys_addr);
1390 
1391 	if (ret)
1392 		puts("pci_hose_bus_to_phys: invalid physical address\n");
1393 
1394 	return phys_addr;
1395 }
1396 
_dm_pci_phys_to_bus(struct udevice * dev,phys_addr_t phys_addr,unsigned long flags,unsigned long skip_mask,pci_addr_t * ba)1397 int _dm_pci_phys_to_bus(struct udevice *dev, phys_addr_t phys_addr,
1398 			unsigned long flags, unsigned long skip_mask,
1399 			pci_addr_t *ba)
1400 {
1401 	struct pci_region *res;
1402 	struct udevice *ctlr;
1403 	pci_addr_t bus_addr;
1404 	int i;
1405 	struct pci_controller *hose;
1406 
1407 	/* The root controller has the region information */
1408 	ctlr = pci_get_controller(dev);
1409 	hose = dev_get_uclass_priv(ctlr);
1410 
1411 	if (hose->region_count == 0) {
1412 		*ba = phys_addr;
1413 		return 0;
1414 	}
1415 
1416 	for (i = 0; i < hose->region_count; i++) {
1417 		res = &hose->regions[i];
1418 
1419 		if (((res->flags ^ flags) & PCI_REGION_TYPE) != 0)
1420 			continue;
1421 
1422 		if (res->flags & skip_mask)
1423 			continue;
1424 
1425 		bus_addr = phys_addr - res->phys_start + res->bus_start;
1426 
1427 		if (bus_addr >= res->bus_start &&
1428 		    (bus_addr - res->bus_start) < res->size) {
1429 			*ba = bus_addr;
1430 			return 0;
1431 		}
1432 	}
1433 
1434 	return 1;
1435 }
1436 
dm_pci_phys_to_bus(struct udevice * dev,phys_addr_t phys_addr,unsigned long flags)1437 pci_addr_t dm_pci_phys_to_bus(struct udevice *dev, phys_addr_t phys_addr,
1438 			      unsigned long flags)
1439 {
1440 	pci_addr_t bus_addr = 0;
1441 	int ret;
1442 
1443 	/*
1444 	 * if PCI_REGION_MEM is set we do a two pass search with preference
1445 	 * on matches that don't have PCI_REGION_SYS_MEMORY set
1446 	 */
1447 	if ((flags & PCI_REGION_TYPE) == PCI_REGION_MEM) {
1448 		ret = _dm_pci_phys_to_bus(dev, phys_addr, flags,
1449 					  PCI_REGION_SYS_MEMORY, &bus_addr);
1450 		if (!ret)
1451 			return bus_addr;
1452 	}
1453 
1454 	ret = _dm_pci_phys_to_bus(dev, phys_addr, flags, 0, &bus_addr);
1455 
1456 	if (ret)
1457 		puts("pci_hose_phys_to_bus: invalid physical address\n");
1458 
1459 	return bus_addr;
1460 }
1461 
dm_pci_map_ea_virt(struct udevice * dev,int ea_off,struct pci_child_plat * pdata)1462 static phys_addr_t dm_pci_map_ea_virt(struct udevice *dev, int ea_off,
1463 				      struct pci_child_plat *pdata)
1464 {
1465 	phys_addr_t addr = 0;
1466 
1467 	/*
1468 	 * In the case of a Virtual Function device using BAR
1469 	 * base and size, add offset for VFn BAR(1, 2, 3...n)
1470 	 */
1471 	if (pdata->is_virtfn) {
1472 		size_t sz;
1473 		u32 ea_entry;
1474 
1475 		/* MaxOffset, 1st DW */
1476 		dm_pci_read_config32(dev, ea_off + 8, &ea_entry);
1477 		sz = ea_entry & PCI_EA_FIELD_MASK;
1478 		/* Fill up lower 2 bits */
1479 		sz |= (~PCI_EA_FIELD_MASK);
1480 
1481 		if (ea_entry & PCI_EA_IS_64) {
1482 			/* MaxOffset 2nd DW */
1483 			dm_pci_read_config32(dev, ea_off + 16, &ea_entry);
1484 			sz |= ((u64)ea_entry) << 32;
1485 		}
1486 
1487 		addr = (pdata->virtid - 1) * (sz + 1);
1488 	}
1489 
1490 	return addr;
1491 }
1492 
dm_pci_map_ea_bar(struct udevice * dev,int bar,int flags,int ea_off,struct pci_child_plat * pdata)1493 static void *dm_pci_map_ea_bar(struct udevice *dev, int bar, int flags,
1494 			       int ea_off, struct pci_child_plat *pdata)
1495 {
1496 	int ea_cnt, i, entry_size;
1497 	int bar_id = (bar - PCI_BASE_ADDRESS_0) >> 2;
1498 	u32 ea_entry;
1499 	phys_addr_t addr;
1500 
1501 	if (IS_ENABLED(CONFIG_PCI_SRIOV)) {
1502 		/*
1503 		 * In the case of a Virtual Function device, device is
1504 		 * Physical function, so pdata will point to required VF
1505 		 * specific data.
1506 		 */
1507 		if (pdata->is_virtfn)
1508 			bar_id += PCI_EA_BEI_VF_BAR0;
1509 	}
1510 
1511 	/* EA capability structure header */
1512 	dm_pci_read_config32(dev, ea_off, &ea_entry);
1513 	ea_cnt = (ea_entry >> 16) & PCI_EA_NUM_ENT_MASK;
1514 	ea_off += PCI_EA_FIRST_ENT;
1515 
1516 	for (i = 0; i < ea_cnt; i++, ea_off += entry_size) {
1517 		/* Entry header */
1518 		dm_pci_read_config32(dev, ea_off, &ea_entry);
1519 		entry_size = ((ea_entry & PCI_EA_ES) + 1) << 2;
1520 
1521 		if (((ea_entry & PCI_EA_BEI) >> 4) != bar_id)
1522 			continue;
1523 
1524 		/* Base address, 1st DW */
1525 		dm_pci_read_config32(dev, ea_off + 4, &ea_entry);
1526 		addr = ea_entry & PCI_EA_FIELD_MASK;
1527 		if (ea_entry & PCI_EA_IS_64) {
1528 			/* Base address, 2nd DW, skip over 4B MaxOffset */
1529 			dm_pci_read_config32(dev, ea_off + 12, &ea_entry);
1530 			addr |= ((u64)ea_entry) << 32;
1531 		}
1532 
1533 		if (IS_ENABLED(CONFIG_PCI_SRIOV))
1534 			addr += dm_pci_map_ea_virt(dev, ea_off, pdata);
1535 
1536 		/* size ignored for now */
1537 		return map_physmem(addr, 0, flags);
1538 	}
1539 
1540 	return 0;
1541 }
1542 
dm_pci_map_bar(struct udevice * dev,int bar,int flags)1543 void *dm_pci_map_bar(struct udevice *dev, int bar, int flags)
1544 {
1545 	struct pci_child_plat *pdata = dev_get_parent_plat(dev);
1546 	struct udevice *udev = dev;
1547 	pci_addr_t pci_bus_addr;
1548 	u32 bar_response;
1549 	int ea_off;
1550 
1551 	if (IS_ENABLED(CONFIG_PCI_SRIOV)) {
1552 		/*
1553 		 * In case of Virtual Function devices, use PF udevice
1554 		 * as EA capability is defined in Physical Function
1555 		 */
1556 		if (pdata->is_virtfn)
1557 			udev = pdata->pfdev;
1558 	}
1559 
1560 	/*
1561 	 * if the function supports Enhanced Allocation use that instead of
1562 	 * BARs
1563 	 * Incase of virtual functions, pdata will help read VF BEI
1564 	 * and EA entry size.
1565 	 */
1566 	ea_off = dm_pci_find_capability(udev, PCI_CAP_ID_EA);
1567 	if (ea_off)
1568 		return dm_pci_map_ea_bar(udev, bar, flags, ea_off, pdata);
1569 
1570 	/* read BAR address */
1571 	dm_pci_read_config32(udev, bar, &bar_response);
1572 	pci_bus_addr = (pci_addr_t)(bar_response & ~0xf);
1573 
1574 	/*
1575 	 * Pass "0" as the length argument to pci_bus_to_virt.  The arg
1576 	 * isn't actually used on any platform because U-Boot assumes a static
1577 	 * linear mapping.  In the future, this could read the BAR size
1578 	 * and pass that as the size if needed.
1579 	 */
1580 	return dm_pci_bus_to_virt(udev, pci_bus_addr, flags, 0, MAP_NOCACHE);
1581 }
1582 
_dm_pci_find_next_capability(struct udevice * dev,u8 pos,int cap)1583 static int _dm_pci_find_next_capability(struct udevice *dev, u8 pos, int cap)
1584 {
1585 	int ttl = PCI_FIND_CAP_TTL;
1586 	u8 id;
1587 	u16 ent;
1588 
1589 	dm_pci_read_config8(dev, pos, &pos);
1590 
1591 	while (ttl--) {
1592 		if (pos < PCI_STD_HEADER_SIZEOF)
1593 			break;
1594 		pos &= ~3;
1595 		dm_pci_read_config16(dev, pos, &ent);
1596 
1597 		id = ent & 0xff;
1598 		if (id == 0xff)
1599 			break;
1600 		if (id == cap)
1601 			return pos;
1602 		pos = (ent >> 8);
1603 	}
1604 
1605 	return 0;
1606 }
1607 
dm_pci_find_next_capability(struct udevice * dev,u8 start,int cap)1608 int dm_pci_find_next_capability(struct udevice *dev, u8 start, int cap)
1609 {
1610 	return _dm_pci_find_next_capability(dev, start + PCI_CAP_LIST_NEXT,
1611 					    cap);
1612 }
1613 
dm_pci_find_capability(struct udevice * dev,int cap)1614 int dm_pci_find_capability(struct udevice *dev, int cap)
1615 {
1616 	u16 status;
1617 	u8 header_type;
1618 	u8 pos;
1619 
1620 	dm_pci_read_config16(dev, PCI_STATUS, &status);
1621 	if (!(status & PCI_STATUS_CAP_LIST))
1622 		return 0;
1623 
1624 	dm_pci_read_config8(dev, PCI_HEADER_TYPE, &header_type);
1625 	if ((header_type & 0x7f) == PCI_HEADER_TYPE_CARDBUS)
1626 		pos = PCI_CB_CAPABILITY_LIST;
1627 	else
1628 		pos = PCI_CAPABILITY_LIST;
1629 
1630 	return _dm_pci_find_next_capability(dev, pos, cap);
1631 }
1632 
dm_pci_find_next_ext_capability(struct udevice * dev,int start,int cap)1633 int dm_pci_find_next_ext_capability(struct udevice *dev, int start, int cap)
1634 {
1635 	u32 header;
1636 	int ttl;
1637 	int pos = PCI_CFG_SPACE_SIZE;
1638 
1639 	/* minimum 8 bytes per capability */
1640 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
1641 
1642 	if (start)
1643 		pos = start;
1644 
1645 	dm_pci_read_config32(dev, pos, &header);
1646 	/*
1647 	 * If we have no capabilities, this is indicated by cap ID,
1648 	 * cap version and next pointer all being 0.
1649 	 */
1650 	if (header == 0)
1651 		return 0;
1652 
1653 	while (ttl--) {
1654 		if (PCI_EXT_CAP_ID(header) == cap)
1655 			return pos;
1656 
1657 		pos = PCI_EXT_CAP_NEXT(header);
1658 		if (pos < PCI_CFG_SPACE_SIZE)
1659 			break;
1660 
1661 		dm_pci_read_config32(dev, pos, &header);
1662 	}
1663 
1664 	return 0;
1665 }
1666 
dm_pci_find_ext_capability(struct udevice * dev,int cap)1667 int dm_pci_find_ext_capability(struct udevice *dev, int cap)
1668 {
1669 	return dm_pci_find_next_ext_capability(dev, 0, cap);
1670 }
1671 
dm_pci_flr(struct udevice * dev)1672 int dm_pci_flr(struct udevice *dev)
1673 {
1674 	int pcie_off;
1675 	u32 cap;
1676 
1677 	/* look for PCI Express Capability */
1678 	pcie_off = dm_pci_find_capability(dev, PCI_CAP_ID_EXP);
1679 	if (!pcie_off)
1680 		return -ENOENT;
1681 
1682 	/* check FLR capability */
1683 	dm_pci_read_config32(dev, pcie_off + PCI_EXP_DEVCAP, &cap);
1684 	if (!(cap & PCI_EXP_DEVCAP_FLR))
1685 		return -ENOENT;
1686 
1687 	dm_pci_clrset_config16(dev, pcie_off + PCI_EXP_DEVCTL, 0,
1688 			       PCI_EXP_DEVCTL_BCR_FLR);
1689 
1690 	/* wait 100ms, per PCI spec */
1691 	mdelay(100);
1692 
1693 	return 0;
1694 }
1695 
1696 #if defined(CONFIG_PCI_SRIOV)
pci_sriov_init(struct udevice * pdev,int vf_en)1697 int pci_sriov_init(struct udevice *pdev, int vf_en)
1698 {
1699 	u16 vendor, device;
1700 	struct udevice *bus;
1701 	struct udevice *dev;
1702 	pci_dev_t bdf;
1703 	u16 ctrl;
1704 	u16 num_vfs;
1705 	u16 total_vf;
1706 	u16 vf_offset;
1707 	u16 vf_stride;
1708 	int vf, ret;
1709 	int pos;
1710 
1711 	pos = dm_pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1712 	if (!pos) {
1713 		debug("Error: SRIOV capability not found\n");
1714 		return -ENOENT;
1715 	}
1716 
1717 	dm_pci_read_config16(pdev, pos + PCI_SRIOV_CTRL, &ctrl);
1718 
1719 	dm_pci_read_config16(pdev, pos + PCI_SRIOV_TOTAL_VF, &total_vf);
1720 	if (vf_en > total_vf)
1721 		vf_en = total_vf;
1722 	dm_pci_write_config16(pdev, pos + PCI_SRIOV_NUM_VF, vf_en);
1723 
1724 	ctrl |= PCI_SRIOV_CTRL_VFE | PCI_SRIOV_CTRL_MSE;
1725 	dm_pci_write_config16(pdev, pos + PCI_SRIOV_CTRL, ctrl);
1726 
1727 	dm_pci_read_config16(pdev, pos + PCI_SRIOV_NUM_VF, &num_vfs);
1728 	if (num_vfs > vf_en)
1729 		num_vfs = vf_en;
1730 
1731 	dm_pci_read_config16(pdev, pos + PCI_SRIOV_VF_OFFSET, &vf_offset);
1732 	dm_pci_read_config16(pdev, pos + PCI_SRIOV_VF_STRIDE, &vf_stride);
1733 
1734 	dm_pci_read_config16(pdev, PCI_VENDOR_ID, &vendor);
1735 	dm_pci_read_config16(pdev, pos + PCI_SRIOV_VF_DID, &device);
1736 
1737 	bdf = dm_pci_get_bdf(pdev);
1738 
1739 	pci_get_bus(PCI_BUS(bdf), &bus);
1740 
1741 	if (!bus)
1742 		return -ENODEV;
1743 
1744 	bdf += PCI_BDF(0, 0, vf_offset);
1745 
1746 	for (vf = 0; vf < num_vfs; vf++) {
1747 		struct pci_child_plat *pplat;
1748 		ulong class;
1749 
1750 		pci_bus_read_config(bus, bdf, PCI_CLASS_DEVICE,
1751 				    &class, PCI_SIZE_16);
1752 
1753 		debug("%s: bus %d/%s: found VF %x:%x\n", __func__,
1754 		      dev_seq(bus), bus->name, PCI_DEV(bdf), PCI_FUNC(bdf));
1755 
1756 		/* Find this device in the device tree */
1757 		ret = pci_bus_find_devfn(bus, PCI_MASK_BUS(bdf), &dev);
1758 
1759 		if (ret == -ENODEV) {
1760 			struct pci_device_id find_id;
1761 
1762 			memset(&find_id, '\0', sizeof(find_id));
1763 			find_id.vendor = vendor;
1764 			find_id.device = device;
1765 			find_id.class = class;
1766 
1767 			ret = pci_find_and_bind_driver(bus, &find_id,
1768 						       bdf, &dev);
1769 
1770 			if (ret)
1771 				return ret;
1772 		}
1773 
1774 		/* Update the platform data */
1775 		pplat = dev_get_parent_plat(dev);
1776 		pplat->devfn = PCI_MASK_BUS(bdf);
1777 		pplat->vendor = vendor;
1778 		pplat->device = device;
1779 		pplat->class = class;
1780 		pplat->is_virtfn = true;
1781 		pplat->pfdev = pdev;
1782 		pplat->virtid = vf * vf_stride + vf_offset;
1783 
1784 		debug("%s: bus %d/%s: found VF %x:%x %x:%x class %lx id %x\n",
1785 		      __func__, dev_seq(dev), dev->name, PCI_DEV(bdf),
1786 		      PCI_FUNC(bdf), vendor, device, class, pplat->virtid);
1787 		bdf += PCI_BDF(0, 0, vf_stride);
1788 	}
1789 
1790 	return 0;
1791 }
1792 
pci_sriov_get_totalvfs(struct udevice * pdev)1793 int pci_sriov_get_totalvfs(struct udevice *pdev)
1794 {
1795 	u16 total_vf;
1796 	int pos;
1797 
1798 	pos = dm_pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1799 	if (!pos) {
1800 		debug("Error: SRIOV capability not found\n");
1801 		return -ENOENT;
1802 	}
1803 
1804 	dm_pci_read_config16(pdev, pos + PCI_SRIOV_TOTAL_VF, &total_vf);
1805 
1806 	return total_vf;
1807 }
1808 #endif /* SRIOV */
1809 
1810 UCLASS_DRIVER(pci) = {
1811 	.id		= UCLASS_PCI,
1812 	.name		= "pci",
1813 	.flags		= DM_UC_FLAG_SEQ_ALIAS | DM_UC_FLAG_NO_AUTO_SEQ,
1814 	.post_bind	= dm_scan_fdt_dev,
1815 	.pre_probe	= pci_uclass_pre_probe,
1816 	.post_probe	= pci_uclass_post_probe,
1817 	.child_post_bind = pci_uclass_child_post_bind,
1818 	.per_device_auto	= sizeof(struct pci_controller),
1819 	.per_child_plat_auto	= sizeof(struct pci_child_plat),
1820 };
1821 
1822 static const struct dm_pci_ops pci_bridge_ops = {
1823 	.read_config	= pci_bridge_read_config,
1824 	.write_config	= pci_bridge_write_config,
1825 };
1826 
1827 static const struct udevice_id pci_bridge_ids[] = {
1828 	{ .compatible = "pci-bridge" },
1829 	{ }
1830 };
1831 
1832 U_BOOT_DRIVER(pci_bridge_drv) = {
1833 	.name		= "pci_bridge_drv",
1834 	.id		= UCLASS_PCI,
1835 	.of_match	= pci_bridge_ids,
1836 	.ops		= &pci_bridge_ops,
1837 };
1838 
1839 UCLASS_DRIVER(pci_generic) = {
1840 	.id		= UCLASS_PCI_GENERIC,
1841 	.name		= "pci_generic",
1842 };
1843 
1844 static const struct udevice_id pci_generic_ids[] = {
1845 	{ .compatible = "pci-generic" },
1846 	{ }
1847 };
1848 
1849 U_BOOT_DRIVER(pci_generic_drv) = {
1850 	.name		= "pci_generic_drv",
1851 	.id		= UCLASS_PCI_GENERIC,
1852 	.of_match	= pci_generic_ids,
1853 };
1854 
pci_init(void)1855 int pci_init(void)
1856 {
1857 	struct udevice *bus;
1858 
1859 	/*
1860 	 * Enumerate all known controller devices. Enumeration has the side-
1861 	 * effect of probing them, so PCIe devices will be enumerated too.
1862 	 */
1863 	for (uclass_first_device_check(UCLASS_PCI, &bus);
1864 	     bus;
1865 	     uclass_next_device_check(&bus)) {
1866 		;
1867 	}
1868 
1869 	return 0;
1870 }
1871