1 // SPDX-License-Identifier: GPL-2.0+
2 /**************************************************************************
3 Intel Pro 1000 for ppcboot/das-u-boot
4 Drivers are port from Intel's Linux driver e1000-4.3.15
5 and from Etherboot pro 1000 driver by mrakes at vivato dot net
6 tested on both gig copper and gig fiber boards
7 ***************************************************************************/
8 /*******************************************************************************
9 
10 
11   Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
12 
13 
14   Contact Information:
15   Linux NICS <linux.nics@intel.com>
16   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
17 
18 *******************************************************************************/
19 /*
20  *  Copyright (C) Archway Digital Solutions.
21  *
22  *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
23  *  2/9/2002
24  *
25  *  Copyright (C) Linux Networx.
26  *  Massive upgrade to work with the new intel gigabit NICs.
27  *  <ebiederman at lnxi dot com>
28  *
29  *  Copyright 2011 Freescale Semiconductor, Inc.
30  */
31 
32 #include <common.h>
33 #include <command.h>
34 #include <cpu_func.h>
35 #include <dm.h>
36 #include <errno.h>
37 #include <log.h>
38 #include <malloc.h>
39 #include <memalign.h>
40 #include <net.h>
41 #include <pci.h>
42 #include <linux/delay.h>
43 #include "e1000.h"
44 #include <asm/cache.h>
45 
46 #define TOUT_LOOP   100000
47 
48 #define E1000_DEFAULT_PCI_PBA	0x00000030
49 #define E1000_DEFAULT_PCIE_PBA	0x000a0026
50 
51 /* NIC specific static variables go here */
52 
53 /* Intel i210 needs the DMA descriptor rings aligned to 128b */
54 #define E1000_BUFFER_ALIGN	128
55 
56 /*
57  * TODO(sjg@chromium.org): Even with driver model we share these buffers.
58  * Concurrent receiving on multiple active Ethernet devices will not work.
59  * Normally U-Boot does not support this anyway. To fix it in this driver,
60  * move these buffers and the tx/rx pointers to struct e1000_hw.
61  */
62 DEFINE_ALIGN_BUFFER(struct e1000_tx_desc, tx_base, 16, E1000_BUFFER_ALIGN);
63 DEFINE_ALIGN_BUFFER(struct e1000_rx_desc, rx_base, 16, E1000_BUFFER_ALIGN);
64 DEFINE_ALIGN_BUFFER(unsigned char, packet, 4096, E1000_BUFFER_ALIGN);
65 
66 static int tx_tail;
67 static int rx_tail, rx_last;
68 #ifdef CONFIG_DM_ETH
69 static int num_cards;	/* Number of E1000 devices seen so far */
70 #endif
71 
72 static struct pci_device_id e1000_supported[] = {
73 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542) },
74 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER) },
75 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER) },
76 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER) },
77 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER) },
78 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER) },
79 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM) },
80 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM) },
81 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER) },
82 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER) },
83 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER) },
84 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER) },
85 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER) },
86 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER) },
87 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM) },
88 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER) },
89 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF) },
90 	/* E1000 PCIe card */
91 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER) },
92 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER) },
93 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES) },
94 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER) },
95 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER) },
96 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER) },
97 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE) },
98 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL) },
99 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD) },
100 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER) },
101 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER) },
102 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES) },
103 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI) },
104 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E) },
105 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT) },
106 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L) },
107 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L) },
108 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3) },
109 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT) },
110 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT) },
111 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT) },
112 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT) },
113 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED) },
114 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED) },
115 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER) },
116 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_COPPER) },
117 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS) },
118 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES) },
119 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS) },
120 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_1000BASEKX) },
121 
122 	{}
123 };
124 
125 /* Function forward declarations */
126 static int e1000_setup_link(struct e1000_hw *hw);
127 static int e1000_setup_fiber_link(struct e1000_hw *hw);
128 static int e1000_setup_copper_link(struct e1000_hw *hw);
129 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
130 static void e1000_config_collision_dist(struct e1000_hw *hw);
131 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
132 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
133 static int e1000_check_for_link(struct e1000_hw *hw);
134 static int e1000_wait_autoneg(struct e1000_hw *hw);
135 static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
136 				       uint16_t * duplex);
137 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
138 			      uint16_t * phy_data);
139 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
140 			       uint16_t phy_data);
141 static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
142 static int e1000_phy_reset(struct e1000_hw *hw);
143 static int e1000_detect_gig_phy(struct e1000_hw *hw);
144 static void e1000_set_media_type(struct e1000_hw *hw);
145 
146 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
147 static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
148 static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
149 
150 #ifndef CONFIG_E1000_NO_NVM
151 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
152 static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
153 static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
154 		uint16_t words,
155 		uint16_t *data);
156 /******************************************************************************
157  * Raises the EEPROM's clock input.
158  *
159  * hw - Struct containing variables accessed by shared code
160  * eecd - EECD's current value
161  *****************************************************************************/
e1000_raise_ee_clk(struct e1000_hw * hw,uint32_t * eecd)162 void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
163 {
164 	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
165 	 * wait 50 microseconds.
166 	 */
167 	*eecd = *eecd | E1000_EECD_SK;
168 	E1000_WRITE_REG(hw, EECD, *eecd);
169 	E1000_WRITE_FLUSH(hw);
170 	udelay(50);
171 }
172 
173 /******************************************************************************
174  * Lowers the EEPROM's clock input.
175  *
176  * hw - Struct containing variables accessed by shared code
177  * eecd - EECD's current value
178  *****************************************************************************/
e1000_lower_ee_clk(struct e1000_hw * hw,uint32_t * eecd)179 void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
180 {
181 	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
182 	 * wait 50 microseconds.
183 	 */
184 	*eecd = *eecd & ~E1000_EECD_SK;
185 	E1000_WRITE_REG(hw, EECD, *eecd);
186 	E1000_WRITE_FLUSH(hw);
187 	udelay(50);
188 }
189 
190 /******************************************************************************
191  * Shift data bits out to the EEPROM.
192  *
193  * hw - Struct containing variables accessed by shared code
194  * data - data to send to the EEPROM
195  * count - number of bits to shift out
196  *****************************************************************************/
197 static void
e1000_shift_out_ee_bits(struct e1000_hw * hw,uint16_t data,uint16_t count)198 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
199 {
200 	uint32_t eecd;
201 	uint32_t mask;
202 
203 	/* We need to shift "count" bits out to the EEPROM. So, value in the
204 	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
205 	 * In order to do this, "data" must be broken down into bits.
206 	 */
207 	mask = 0x01 << (count - 1);
208 	eecd = E1000_READ_REG(hw, EECD);
209 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
210 	do {
211 		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
212 		 * and then raising and then lowering the clock (the SK bit controls
213 		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
214 		 * by setting "DI" to "0" and then raising and then lowering the clock.
215 		 */
216 		eecd &= ~E1000_EECD_DI;
217 
218 		if (data & mask)
219 			eecd |= E1000_EECD_DI;
220 
221 		E1000_WRITE_REG(hw, EECD, eecd);
222 		E1000_WRITE_FLUSH(hw);
223 
224 		udelay(50);
225 
226 		e1000_raise_ee_clk(hw, &eecd);
227 		e1000_lower_ee_clk(hw, &eecd);
228 
229 		mask = mask >> 1;
230 
231 	} while (mask);
232 
233 	/* We leave the "DI" bit set to "0" when we leave this routine. */
234 	eecd &= ~E1000_EECD_DI;
235 	E1000_WRITE_REG(hw, EECD, eecd);
236 }
237 
238 /******************************************************************************
239  * Shift data bits in from the EEPROM
240  *
241  * hw - Struct containing variables accessed by shared code
242  *****************************************************************************/
243 static uint16_t
e1000_shift_in_ee_bits(struct e1000_hw * hw,uint16_t count)244 e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
245 {
246 	uint32_t eecd;
247 	uint32_t i;
248 	uint16_t data;
249 
250 	/* In order to read a register from the EEPROM, we need to shift 'count'
251 	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
252 	 * input to the EEPROM (setting the SK bit), and then reading the
253 	 * value of the "DO" bit.  During this "shifting in" process the
254 	 * "DI" bit should always be clear.
255 	 */
256 
257 	eecd = E1000_READ_REG(hw, EECD);
258 
259 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
260 	data = 0;
261 
262 	for (i = 0; i < count; i++) {
263 		data = data << 1;
264 		e1000_raise_ee_clk(hw, &eecd);
265 
266 		eecd = E1000_READ_REG(hw, EECD);
267 
268 		eecd &= ~(E1000_EECD_DI);
269 		if (eecd & E1000_EECD_DO)
270 			data |= 1;
271 
272 		e1000_lower_ee_clk(hw, &eecd);
273 	}
274 
275 	return data;
276 }
277 
278 /******************************************************************************
279  * Returns EEPROM to a "standby" state
280  *
281  * hw - Struct containing variables accessed by shared code
282  *****************************************************************************/
e1000_standby_eeprom(struct e1000_hw * hw)283 void e1000_standby_eeprom(struct e1000_hw *hw)
284 {
285 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
286 	uint32_t eecd;
287 
288 	eecd = E1000_READ_REG(hw, EECD);
289 
290 	if (eeprom->type == e1000_eeprom_microwire) {
291 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
292 		E1000_WRITE_REG(hw, EECD, eecd);
293 		E1000_WRITE_FLUSH(hw);
294 		udelay(eeprom->delay_usec);
295 
296 		/* Clock high */
297 		eecd |= E1000_EECD_SK;
298 		E1000_WRITE_REG(hw, EECD, eecd);
299 		E1000_WRITE_FLUSH(hw);
300 		udelay(eeprom->delay_usec);
301 
302 		/* Select EEPROM */
303 		eecd |= E1000_EECD_CS;
304 		E1000_WRITE_REG(hw, EECD, eecd);
305 		E1000_WRITE_FLUSH(hw);
306 		udelay(eeprom->delay_usec);
307 
308 		/* Clock low */
309 		eecd &= ~E1000_EECD_SK;
310 		E1000_WRITE_REG(hw, EECD, eecd);
311 		E1000_WRITE_FLUSH(hw);
312 		udelay(eeprom->delay_usec);
313 	} else if (eeprom->type == e1000_eeprom_spi) {
314 		/* Toggle CS to flush commands */
315 		eecd |= E1000_EECD_CS;
316 		E1000_WRITE_REG(hw, EECD, eecd);
317 		E1000_WRITE_FLUSH(hw);
318 		udelay(eeprom->delay_usec);
319 		eecd &= ~E1000_EECD_CS;
320 		E1000_WRITE_REG(hw, EECD, eecd);
321 		E1000_WRITE_FLUSH(hw);
322 		udelay(eeprom->delay_usec);
323 	}
324 }
325 
326 /***************************************************************************
327 * Description:     Determines if the onboard NVM is FLASH or EEPROM.
328 *
329 * hw - Struct containing variables accessed by shared code
330 ****************************************************************************/
e1000_is_onboard_nvm_eeprom(struct e1000_hw * hw)331 static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
332 {
333 	uint32_t eecd = 0;
334 
335 	DEBUGFUNC();
336 
337 	if (hw->mac_type == e1000_ich8lan)
338 		return false;
339 
340 	if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
341 		eecd = E1000_READ_REG(hw, EECD);
342 
343 		/* Isolate bits 15 & 16 */
344 		eecd = ((eecd >> 15) & 0x03);
345 
346 		/* If both bits are set, device is Flash type */
347 		if (eecd == 0x03)
348 			return false;
349 	}
350 	return true;
351 }
352 
353 /******************************************************************************
354  * Prepares EEPROM for access
355  *
356  * hw - Struct containing variables accessed by shared code
357  *
358  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
359  * function should be called before issuing a command to the EEPROM.
360  *****************************************************************************/
e1000_acquire_eeprom(struct e1000_hw * hw)361 int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
362 {
363 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
364 	uint32_t eecd, i = 0;
365 
366 	DEBUGFUNC();
367 
368 	if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
369 		return -E1000_ERR_SWFW_SYNC;
370 	eecd = E1000_READ_REG(hw, EECD);
371 
372 	if (hw->mac_type != e1000_82573 && hw->mac_type != e1000_82574) {
373 		/* Request EEPROM Access */
374 		if (hw->mac_type > e1000_82544) {
375 			eecd |= E1000_EECD_REQ;
376 			E1000_WRITE_REG(hw, EECD, eecd);
377 			eecd = E1000_READ_REG(hw, EECD);
378 			while ((!(eecd & E1000_EECD_GNT)) &&
379 				(i < E1000_EEPROM_GRANT_ATTEMPTS)) {
380 				i++;
381 				udelay(5);
382 				eecd = E1000_READ_REG(hw, EECD);
383 			}
384 			if (!(eecd & E1000_EECD_GNT)) {
385 				eecd &= ~E1000_EECD_REQ;
386 				E1000_WRITE_REG(hw, EECD, eecd);
387 				DEBUGOUT("Could not acquire EEPROM grant\n");
388 				return -E1000_ERR_EEPROM;
389 			}
390 		}
391 	}
392 
393 	/* Setup EEPROM for Read/Write */
394 
395 	if (eeprom->type == e1000_eeprom_microwire) {
396 		/* Clear SK and DI */
397 		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
398 		E1000_WRITE_REG(hw, EECD, eecd);
399 
400 		/* Set CS */
401 		eecd |= E1000_EECD_CS;
402 		E1000_WRITE_REG(hw, EECD, eecd);
403 	} else if (eeprom->type == e1000_eeprom_spi) {
404 		/* Clear SK and CS */
405 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
406 		E1000_WRITE_REG(hw, EECD, eecd);
407 		udelay(1);
408 	}
409 
410 	return E1000_SUCCESS;
411 }
412 
413 /******************************************************************************
414  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
415  * is configured.  Additionally, if this is ICH8, the flash controller GbE
416  * registers must be mapped, or this will crash.
417  *
418  * hw - Struct containing variables accessed by shared code
419  *****************************************************************************/
e1000_init_eeprom_params(struct e1000_hw * hw)420 static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
421 {
422 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
423 	uint32_t eecd;
424 	int32_t ret_val = E1000_SUCCESS;
425 	uint16_t eeprom_size;
426 
427 	if (hw->mac_type == e1000_igb)
428 		eecd = E1000_READ_REG(hw, I210_EECD);
429 	else
430 		eecd = E1000_READ_REG(hw, EECD);
431 
432 	DEBUGFUNC();
433 
434 	switch (hw->mac_type) {
435 	case e1000_82542_rev2_0:
436 	case e1000_82542_rev2_1:
437 	case e1000_82543:
438 	case e1000_82544:
439 		eeprom->type = e1000_eeprom_microwire;
440 		eeprom->word_size = 64;
441 		eeprom->opcode_bits = 3;
442 		eeprom->address_bits = 6;
443 		eeprom->delay_usec = 50;
444 		eeprom->use_eerd = false;
445 		eeprom->use_eewr = false;
446 	break;
447 	case e1000_82540:
448 	case e1000_82545:
449 	case e1000_82545_rev_3:
450 	case e1000_82546:
451 	case e1000_82546_rev_3:
452 		eeprom->type = e1000_eeprom_microwire;
453 		eeprom->opcode_bits = 3;
454 		eeprom->delay_usec = 50;
455 		if (eecd & E1000_EECD_SIZE) {
456 			eeprom->word_size = 256;
457 			eeprom->address_bits = 8;
458 		} else {
459 			eeprom->word_size = 64;
460 			eeprom->address_bits = 6;
461 		}
462 		eeprom->use_eerd = false;
463 		eeprom->use_eewr = false;
464 		break;
465 	case e1000_82541:
466 	case e1000_82541_rev_2:
467 	case e1000_82547:
468 	case e1000_82547_rev_2:
469 		if (eecd & E1000_EECD_TYPE) {
470 			eeprom->type = e1000_eeprom_spi;
471 			eeprom->opcode_bits = 8;
472 			eeprom->delay_usec = 1;
473 			if (eecd & E1000_EECD_ADDR_BITS) {
474 				eeprom->page_size = 32;
475 				eeprom->address_bits = 16;
476 			} else {
477 				eeprom->page_size = 8;
478 				eeprom->address_bits = 8;
479 			}
480 		} else {
481 			eeprom->type = e1000_eeprom_microwire;
482 			eeprom->opcode_bits = 3;
483 			eeprom->delay_usec = 50;
484 			if (eecd & E1000_EECD_ADDR_BITS) {
485 				eeprom->word_size = 256;
486 				eeprom->address_bits = 8;
487 			} else {
488 				eeprom->word_size = 64;
489 				eeprom->address_bits = 6;
490 			}
491 		}
492 		eeprom->use_eerd = false;
493 		eeprom->use_eewr = false;
494 		break;
495 	case e1000_82571:
496 	case e1000_82572:
497 		eeprom->type = e1000_eeprom_spi;
498 		eeprom->opcode_bits = 8;
499 		eeprom->delay_usec = 1;
500 		if (eecd & E1000_EECD_ADDR_BITS) {
501 			eeprom->page_size = 32;
502 			eeprom->address_bits = 16;
503 		} else {
504 			eeprom->page_size = 8;
505 			eeprom->address_bits = 8;
506 		}
507 		eeprom->use_eerd = false;
508 		eeprom->use_eewr = false;
509 		break;
510 	case e1000_82573:
511 	case e1000_82574:
512 		eeprom->type = e1000_eeprom_spi;
513 		eeprom->opcode_bits = 8;
514 		eeprom->delay_usec = 1;
515 		if (eecd & E1000_EECD_ADDR_BITS) {
516 			eeprom->page_size = 32;
517 			eeprom->address_bits = 16;
518 		} else {
519 			eeprom->page_size = 8;
520 			eeprom->address_bits = 8;
521 		}
522 		if (e1000_is_onboard_nvm_eeprom(hw) == false) {
523 			eeprom->use_eerd = true;
524 			eeprom->use_eewr = true;
525 
526 			eeprom->type = e1000_eeprom_flash;
527 			eeprom->word_size = 2048;
528 
529 		/* Ensure that the Autonomous FLASH update bit is cleared due to
530 		 * Flash update issue on parts which use a FLASH for NVM. */
531 			eecd &= ~E1000_EECD_AUPDEN;
532 			E1000_WRITE_REG(hw, EECD, eecd);
533 		}
534 		break;
535 	case e1000_80003es2lan:
536 		eeprom->type = e1000_eeprom_spi;
537 		eeprom->opcode_bits = 8;
538 		eeprom->delay_usec = 1;
539 		if (eecd & E1000_EECD_ADDR_BITS) {
540 			eeprom->page_size = 32;
541 			eeprom->address_bits = 16;
542 		} else {
543 			eeprom->page_size = 8;
544 			eeprom->address_bits = 8;
545 		}
546 		eeprom->use_eerd = true;
547 		eeprom->use_eewr = false;
548 		break;
549 	case e1000_igb:
550 		/* i210 has 4k of iNVM mapped as EEPROM */
551 		eeprom->type = e1000_eeprom_invm;
552 		eeprom->opcode_bits = 8;
553 		eeprom->delay_usec = 1;
554 		eeprom->page_size = 32;
555 		eeprom->address_bits = 16;
556 		eeprom->use_eerd = true;
557 		eeprom->use_eewr = false;
558 		break;
559 	default:
560 		break;
561 	}
562 
563 	if (eeprom->type == e1000_eeprom_spi ||
564 	    eeprom->type == e1000_eeprom_invm) {
565 		/* eeprom_size will be an enum [0..8] that maps
566 		 * to eeprom sizes 128B to
567 		 * 32KB (incremented by powers of 2).
568 		 */
569 		if (hw->mac_type <= e1000_82547_rev_2) {
570 			/* Set to default value for initial eeprom read. */
571 			eeprom->word_size = 64;
572 			ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
573 					&eeprom_size);
574 			if (ret_val)
575 				return ret_val;
576 			eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
577 				>> EEPROM_SIZE_SHIFT;
578 			/* 256B eeprom size was not supported in earlier
579 			 * hardware, so we bump eeprom_size up one to
580 			 * ensure that "1" (which maps to 256B) is never
581 			 * the result used in the shifting logic below. */
582 			if (eeprom_size)
583 				eeprom_size++;
584 		} else {
585 			eeprom_size = (uint16_t)((eecd &
586 				E1000_EECD_SIZE_EX_MASK) >>
587 				E1000_EECD_SIZE_EX_SHIFT);
588 		}
589 
590 		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
591 	}
592 	return ret_val;
593 }
594 
595 /******************************************************************************
596  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
597  *
598  * hw - Struct containing variables accessed by shared code
599  *****************************************************************************/
600 static int32_t
e1000_poll_eerd_eewr_done(struct e1000_hw * hw,int eerd)601 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
602 {
603 	uint32_t attempts = 100000;
604 	uint32_t i, reg = 0;
605 	int32_t done = E1000_ERR_EEPROM;
606 
607 	for (i = 0; i < attempts; i++) {
608 		if (eerd == E1000_EEPROM_POLL_READ) {
609 			if (hw->mac_type == e1000_igb)
610 				reg = E1000_READ_REG(hw, I210_EERD);
611 			else
612 				reg = E1000_READ_REG(hw, EERD);
613 		} else {
614 			if (hw->mac_type == e1000_igb)
615 				reg = E1000_READ_REG(hw, I210_EEWR);
616 			else
617 				reg = E1000_READ_REG(hw, EEWR);
618 		}
619 
620 		if (reg & E1000_EEPROM_RW_REG_DONE) {
621 			done = E1000_SUCCESS;
622 			break;
623 		}
624 		udelay(5);
625 	}
626 
627 	return done;
628 }
629 
630 /******************************************************************************
631  * Reads a 16 bit word from the EEPROM using the EERD register.
632  *
633  * hw - Struct containing variables accessed by shared code
634  * offset - offset of  word in the EEPROM to read
635  * data - word read from the EEPROM
636  * words - number of words to read
637  *****************************************************************************/
638 static int32_t
e1000_read_eeprom_eerd(struct e1000_hw * hw,uint16_t offset,uint16_t words,uint16_t * data)639 e1000_read_eeprom_eerd(struct e1000_hw *hw,
640 			uint16_t offset,
641 			uint16_t words,
642 			uint16_t *data)
643 {
644 	uint32_t i, eerd = 0;
645 	int32_t error = 0;
646 
647 	for (i = 0; i < words; i++) {
648 		eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
649 			E1000_EEPROM_RW_REG_START;
650 
651 		if (hw->mac_type == e1000_igb)
652 			E1000_WRITE_REG(hw, I210_EERD, eerd);
653 		else
654 			E1000_WRITE_REG(hw, EERD, eerd);
655 
656 		error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
657 
658 		if (error)
659 			break;
660 
661 		if (hw->mac_type == e1000_igb) {
662 			data[i] = (E1000_READ_REG(hw, I210_EERD) >>
663 				E1000_EEPROM_RW_REG_DATA);
664 		} else {
665 			data[i] = (E1000_READ_REG(hw, EERD) >>
666 				E1000_EEPROM_RW_REG_DATA);
667 		}
668 
669 	}
670 
671 	return error;
672 }
673 
e1000_release_eeprom(struct e1000_hw * hw)674 void e1000_release_eeprom(struct e1000_hw *hw)
675 {
676 	uint32_t eecd;
677 
678 	DEBUGFUNC();
679 
680 	eecd = E1000_READ_REG(hw, EECD);
681 
682 	if (hw->eeprom.type == e1000_eeprom_spi) {
683 		eecd |= E1000_EECD_CS;  /* Pull CS high */
684 		eecd &= ~E1000_EECD_SK; /* Lower SCK */
685 
686 		E1000_WRITE_REG(hw, EECD, eecd);
687 
688 		udelay(hw->eeprom.delay_usec);
689 	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
690 		/* cleanup eeprom */
691 
692 		/* CS on Microwire is active-high */
693 		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
694 
695 		E1000_WRITE_REG(hw, EECD, eecd);
696 
697 		/* Rising edge of clock */
698 		eecd |= E1000_EECD_SK;
699 		E1000_WRITE_REG(hw, EECD, eecd);
700 		E1000_WRITE_FLUSH(hw);
701 		udelay(hw->eeprom.delay_usec);
702 
703 		/* Falling edge of clock */
704 		eecd &= ~E1000_EECD_SK;
705 		E1000_WRITE_REG(hw, EECD, eecd);
706 		E1000_WRITE_FLUSH(hw);
707 		udelay(hw->eeprom.delay_usec);
708 	}
709 
710 	/* Stop requesting EEPROM access */
711 	if (hw->mac_type > e1000_82544) {
712 		eecd &= ~E1000_EECD_REQ;
713 		E1000_WRITE_REG(hw, EECD, eecd);
714 	}
715 
716 	e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
717 }
718 
719 /******************************************************************************
720  * Reads a 16 bit word from the EEPROM.
721  *
722  * hw - Struct containing variables accessed by shared code
723  *****************************************************************************/
724 static int32_t
e1000_spi_eeprom_ready(struct e1000_hw * hw)725 e1000_spi_eeprom_ready(struct e1000_hw *hw)
726 {
727 	uint16_t retry_count = 0;
728 	uint8_t spi_stat_reg;
729 
730 	DEBUGFUNC();
731 
732 	/* Read "Status Register" repeatedly until the LSB is cleared.  The
733 	 * EEPROM will signal that the command has been completed by clearing
734 	 * bit 0 of the internal status register.  If it's not cleared within
735 	 * 5 milliseconds, then error out.
736 	 */
737 	retry_count = 0;
738 	do {
739 		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
740 			hw->eeprom.opcode_bits);
741 		spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
742 		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
743 			break;
744 
745 		udelay(5);
746 		retry_count += 5;
747 
748 		e1000_standby_eeprom(hw);
749 	} while (retry_count < EEPROM_MAX_RETRY_SPI);
750 
751 	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
752 	 * only 0-5mSec on 5V devices)
753 	 */
754 	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
755 		DEBUGOUT("SPI EEPROM Status error\n");
756 		return -E1000_ERR_EEPROM;
757 	}
758 
759 	return E1000_SUCCESS;
760 }
761 
762 /******************************************************************************
763  * Reads a 16 bit word from the EEPROM.
764  *
765  * hw - Struct containing variables accessed by shared code
766  * offset - offset of  word in the EEPROM to read
767  * data - word read from the EEPROM
768  *****************************************************************************/
769 static int32_t
e1000_read_eeprom(struct e1000_hw * hw,uint16_t offset,uint16_t words,uint16_t * data)770 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
771 		uint16_t words, uint16_t *data)
772 {
773 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
774 	uint32_t i = 0;
775 
776 	DEBUGFUNC();
777 
778 	/* If eeprom is not yet detected, do so now */
779 	if (eeprom->word_size == 0)
780 		e1000_init_eeprom_params(hw);
781 
782 	/* A check for invalid values:  offset too large, too many words,
783 	 * and not enough words.
784 	 */
785 	if ((offset >= eeprom->word_size) ||
786 		(words > eeprom->word_size - offset) ||
787 		(words == 0)) {
788 		DEBUGOUT("\"words\" parameter out of bounds."
789 			"Words = %d, size = %d\n", offset, eeprom->word_size);
790 		return -E1000_ERR_EEPROM;
791 	}
792 
793 	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
794 	 * directly. In this case, we need to acquire the EEPROM so that
795 	 * FW or other port software does not interrupt.
796 	 */
797 	if (e1000_is_onboard_nvm_eeprom(hw) == true &&
798 		hw->eeprom.use_eerd == false) {
799 
800 		/* Prepare the EEPROM for bit-bang reading */
801 		if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
802 			return -E1000_ERR_EEPROM;
803 	}
804 
805 	/* Eerd register EEPROM access requires no eeprom aquire/release */
806 	if (eeprom->use_eerd == true)
807 		return e1000_read_eeprom_eerd(hw, offset, words, data);
808 
809 	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
810 	 * acquired the EEPROM at this point, so any returns should relase it */
811 	if (eeprom->type == e1000_eeprom_spi) {
812 		uint16_t word_in;
813 		uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
814 
815 		if (e1000_spi_eeprom_ready(hw)) {
816 			e1000_release_eeprom(hw);
817 			return -E1000_ERR_EEPROM;
818 		}
819 
820 		e1000_standby_eeprom(hw);
821 
822 		/* Some SPI eeproms use the 8th address bit embedded in
823 		 * the opcode */
824 		if ((eeprom->address_bits == 8) && (offset >= 128))
825 			read_opcode |= EEPROM_A8_OPCODE_SPI;
826 
827 		/* Send the READ command (opcode + addr)  */
828 		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
829 		e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
830 				eeprom->address_bits);
831 
832 		/* Read the data.  The address of the eeprom internally
833 		 * increments with each byte (spi) being read, saving on the
834 		 * overhead of eeprom setup and tear-down.  The address
835 		 * counter will roll over if reading beyond the size of
836 		 * the eeprom, thus allowing the entire memory to be read
837 		 * starting from any offset. */
838 		for (i = 0; i < words; i++) {
839 			word_in = e1000_shift_in_ee_bits(hw, 16);
840 			data[i] = (word_in >> 8) | (word_in << 8);
841 		}
842 	} else if (eeprom->type == e1000_eeprom_microwire) {
843 		for (i = 0; i < words; i++) {
844 			/* Send the READ command (opcode + addr)  */
845 			e1000_shift_out_ee_bits(hw,
846 				EEPROM_READ_OPCODE_MICROWIRE,
847 				eeprom->opcode_bits);
848 			e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
849 				eeprom->address_bits);
850 
851 			/* Read the data.  For microwire, each word requires
852 			 * the overhead of eeprom setup and tear-down. */
853 			data[i] = e1000_shift_in_ee_bits(hw, 16);
854 			e1000_standby_eeprom(hw);
855 		}
856 	}
857 
858 	/* End this read operation */
859 	e1000_release_eeprom(hw);
860 
861 	return E1000_SUCCESS;
862 }
863 
864 /******************************************************************************
865  *  e1000_write_eeprom_srwr - Write to Shadow Ram using EEWR
866  *  @hw: pointer to the HW structure
867  *  @offset: offset within the Shadow Ram to be written to
868  *  @words: number of words to write
869  *  @data: 16 bit word(s) to be written to the Shadow Ram
870  *
871  *  Writes data to Shadow Ram at offset using EEWR register.
872  *
873  *  If e1000_update_eeprom_checksum_i210 is not called after this function, the
874  *  Shadow Ram will most likely contain an invalid checksum.
875  *****************************************************************************/
e1000_write_eeprom_srwr(struct e1000_hw * hw,uint16_t offset,uint16_t words,uint16_t * data)876 static int32_t e1000_write_eeprom_srwr(struct e1000_hw *hw, uint16_t offset,
877 				       uint16_t words, uint16_t *data)
878 {
879 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
880 	uint32_t i, k, eewr = 0;
881 	uint32_t attempts = 100000;
882 	int32_t ret_val = 0;
883 
884 	/* A check for invalid values:  offset too large, too many words,
885 	 * too many words for the offset, and not enough words.
886 	 */
887 	if ((offset >= eeprom->word_size) ||
888 	    (words > (eeprom->word_size - offset)) || (words == 0)) {
889 		DEBUGOUT("nvm parameter(s) out of bounds\n");
890 		ret_val = -E1000_ERR_EEPROM;
891 		goto out;
892 	}
893 
894 	for (i = 0; i < words; i++) {
895 		eewr = ((offset + i) << E1000_EEPROM_RW_ADDR_SHIFT)
896 				| (data[i] << E1000_EEPROM_RW_REG_DATA) |
897 				E1000_EEPROM_RW_REG_START;
898 
899 		E1000_WRITE_REG(hw, I210_EEWR, eewr);
900 
901 		for (k = 0; k < attempts; k++) {
902 			if (E1000_EEPROM_RW_REG_DONE &
903 			    E1000_READ_REG(hw, I210_EEWR)) {
904 				ret_val = 0;
905 				break;
906 			}
907 			udelay(5);
908 		}
909 
910 		if (ret_val) {
911 			DEBUGOUT("Shadow RAM write EEWR timed out\n");
912 			break;
913 		}
914 	}
915 
916 out:
917 	return ret_val;
918 }
919 
920 /******************************************************************************
921  *  e1000_pool_flash_update_done_i210 - Pool FLUDONE status.
922  *  @hw: pointer to the HW structure
923  *
924  *****************************************************************************/
e1000_pool_flash_update_done_i210(struct e1000_hw * hw)925 static int32_t e1000_pool_flash_update_done_i210(struct e1000_hw *hw)
926 {
927 	int32_t ret_val = -E1000_ERR_EEPROM;
928 	uint32_t i, reg;
929 
930 	for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
931 		reg = E1000_READ_REG(hw, EECD);
932 		if (reg & E1000_EECD_FLUDONE_I210) {
933 			ret_val = 0;
934 			break;
935 		}
936 		udelay(5);
937 	}
938 
939 	return ret_val;
940 }
941 
942 /******************************************************************************
943  *  e1000_update_flash_i210 - Commit EEPROM to the flash
944  *  @hw: pointer to the HW structure
945  *
946  *****************************************************************************/
e1000_update_flash_i210(struct e1000_hw * hw)947 static int32_t e1000_update_flash_i210(struct e1000_hw *hw)
948 {
949 	int32_t ret_val = 0;
950 	uint32_t flup;
951 
952 	ret_val = e1000_pool_flash_update_done_i210(hw);
953 	if (ret_val == -E1000_ERR_EEPROM) {
954 		DEBUGOUT("Flash update time out\n");
955 		goto out;
956 	}
957 
958 	flup = E1000_READ_REG(hw, EECD) | E1000_EECD_FLUPD_I210;
959 	E1000_WRITE_REG(hw, EECD, flup);
960 
961 	ret_val = e1000_pool_flash_update_done_i210(hw);
962 	if (ret_val)
963 		DEBUGOUT("Flash update time out\n");
964 	else
965 		DEBUGOUT("Flash update complete\n");
966 
967 out:
968 	return ret_val;
969 }
970 
971 /******************************************************************************
972  *  e1000_update_eeprom_checksum_i210 - Update EEPROM checksum
973  *  @hw: pointer to the HW structure
974  *
975  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
976  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
977  *  value to the EEPROM. Next commit EEPROM data onto the Flash.
978  *****************************************************************************/
e1000_update_eeprom_checksum_i210(struct e1000_hw * hw)979 static int32_t e1000_update_eeprom_checksum_i210(struct e1000_hw *hw)
980 {
981 	int32_t ret_val = 0;
982 	uint16_t checksum = 0;
983 	uint16_t i, nvm_data;
984 
985 	/* Read the first word from the EEPROM. If this times out or fails, do
986 	 * not continue or we could be in for a very long wait while every
987 	 * EEPROM read fails
988 	 */
989 	ret_val = e1000_read_eeprom_eerd(hw, 0, 1, &nvm_data);
990 	if (ret_val) {
991 		DEBUGOUT("EEPROM read failed\n");
992 		goto out;
993 	}
994 
995 	if (!(e1000_get_hw_eeprom_semaphore(hw))) {
996 		/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
997 		 * because we do not want to take the synchronization
998 		 * semaphores twice here.
999 		 */
1000 
1001 		for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
1002 			ret_val = e1000_read_eeprom_eerd(hw, i, 1, &nvm_data);
1003 			if (ret_val) {
1004 				e1000_put_hw_eeprom_semaphore(hw);
1005 				DEBUGOUT("EEPROM Read Error while updating checksum.\n");
1006 				goto out;
1007 			}
1008 			checksum += nvm_data;
1009 		}
1010 		checksum = (uint16_t)EEPROM_SUM - checksum;
1011 		ret_val = e1000_write_eeprom_srwr(hw, EEPROM_CHECKSUM_REG, 1,
1012 						  &checksum);
1013 		if (ret_val) {
1014 			e1000_put_hw_eeprom_semaphore(hw);
1015 			DEBUGOUT("EEPROM Write Error while updating checksum.\n");
1016 			goto out;
1017 		}
1018 
1019 		e1000_put_hw_eeprom_semaphore(hw);
1020 
1021 		ret_val = e1000_update_flash_i210(hw);
1022 	} else {
1023 		ret_val = -E1000_ERR_SWFW_SYNC;
1024 	}
1025 
1026 out:
1027 	return ret_val;
1028 }
1029 
1030 /******************************************************************************
1031  * Verifies that the EEPROM has a valid checksum
1032  *
1033  * hw - Struct containing variables accessed by shared code
1034  *
1035  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
1036  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
1037  * valid.
1038  *****************************************************************************/
e1000_validate_eeprom_checksum(struct e1000_hw * hw)1039 static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
1040 {
1041 	uint16_t i, checksum, checksum_reg, *buf;
1042 
1043 	DEBUGFUNC();
1044 
1045 	/* Allocate a temporary buffer */
1046 	buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
1047 	if (!buf) {
1048 		E1000_ERR(hw, "Unable to allocate EEPROM buffer!\n");
1049 		return -E1000_ERR_EEPROM;
1050 	}
1051 
1052 	/* Read the EEPROM */
1053 	if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
1054 		E1000_ERR(hw, "Unable to read EEPROM!\n");
1055 		return -E1000_ERR_EEPROM;
1056 	}
1057 
1058 	/* Compute the checksum */
1059 	checksum = 0;
1060 	for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
1061 		checksum += buf[i];
1062 	checksum = ((uint16_t)EEPROM_SUM) - checksum;
1063 	checksum_reg = buf[i];
1064 
1065 	/* Verify it! */
1066 	if (checksum == checksum_reg)
1067 		return 0;
1068 
1069 	/* Hrm, verification failed, print an error */
1070 	E1000_ERR(hw, "EEPROM checksum is incorrect!\n");
1071 	E1000_ERR(hw, "  ...register was 0x%04hx, calculated 0x%04hx\n",
1072 		  checksum_reg, checksum);
1073 
1074 	return -E1000_ERR_EEPROM;
1075 }
1076 #endif /* CONFIG_E1000_NO_NVM */
1077 
1078 /*****************************************************************************
1079  * Set PHY to class A mode
1080  * Assumes the following operations will follow to enable the new class mode.
1081  *  1. Do a PHY soft reset
1082  *  2. Restart auto-negotiation or force link.
1083  *
1084  * hw - Struct containing variables accessed by shared code
1085  ****************************************************************************/
1086 static int32_t
e1000_set_phy_mode(struct e1000_hw * hw)1087 e1000_set_phy_mode(struct e1000_hw *hw)
1088 {
1089 #ifndef CONFIG_E1000_NO_NVM
1090 	int32_t ret_val;
1091 	uint16_t eeprom_data;
1092 
1093 	DEBUGFUNC();
1094 
1095 	if ((hw->mac_type == e1000_82545_rev_3) &&
1096 		(hw->media_type == e1000_media_type_copper)) {
1097 		ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
1098 				1, &eeprom_data);
1099 		if (ret_val)
1100 			return ret_val;
1101 
1102 		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
1103 			(eeprom_data & EEPROM_PHY_CLASS_A)) {
1104 			ret_val = e1000_write_phy_reg(hw,
1105 					M88E1000_PHY_PAGE_SELECT, 0x000B);
1106 			if (ret_val)
1107 				return ret_val;
1108 			ret_val = e1000_write_phy_reg(hw,
1109 					M88E1000_PHY_GEN_CONTROL, 0x8104);
1110 			if (ret_val)
1111 				return ret_val;
1112 
1113 			hw->phy_reset_disable = false;
1114 		}
1115 	}
1116 #endif
1117 	return E1000_SUCCESS;
1118 }
1119 
1120 #ifndef CONFIG_E1000_NO_NVM
1121 /***************************************************************************
1122  *
1123  * Obtaining software semaphore bit (SMBI) before resetting PHY.
1124  *
1125  * hw: Struct containing variables accessed by shared code
1126  *
1127  * returns: - E1000_ERR_RESET if fail to obtain semaphore.
1128  *            E1000_SUCCESS at any other case.
1129  *
1130  ***************************************************************************/
1131 static int32_t
e1000_get_software_semaphore(struct e1000_hw * hw)1132 e1000_get_software_semaphore(struct e1000_hw *hw)
1133 {
1134 	 int32_t timeout = hw->eeprom.word_size + 1;
1135 	 uint32_t swsm;
1136 
1137 	DEBUGFUNC();
1138 
1139 	if (hw->mac_type != e1000_80003es2lan && hw->mac_type != e1000_igb)
1140 		return E1000_SUCCESS;
1141 
1142 	while (timeout) {
1143 		swsm = E1000_READ_REG(hw, SWSM);
1144 		/* If SMBI bit cleared, it is now set and we hold
1145 		 * the semaphore */
1146 		if (!(swsm & E1000_SWSM_SMBI))
1147 			break;
1148 		mdelay(1);
1149 		timeout--;
1150 	}
1151 
1152 	if (!timeout) {
1153 		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
1154 		return -E1000_ERR_RESET;
1155 	}
1156 
1157 	return E1000_SUCCESS;
1158 }
1159 #endif
1160 
1161 /***************************************************************************
1162  * This function clears HW semaphore bits.
1163  *
1164  * hw: Struct containing variables accessed by shared code
1165  *
1166  * returns: - None.
1167  *
1168  ***************************************************************************/
1169 static void
e1000_put_hw_eeprom_semaphore(struct e1000_hw * hw)1170 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
1171 {
1172 #ifndef CONFIG_E1000_NO_NVM
1173 	 uint32_t swsm;
1174 
1175 	DEBUGFUNC();
1176 
1177 	if (!hw->eeprom_semaphore_present)
1178 		return;
1179 
1180 	swsm = E1000_READ_REG(hw, SWSM);
1181 	if (hw->mac_type == e1000_80003es2lan || hw->mac_type == e1000_igb) {
1182 		/* Release both semaphores. */
1183 		swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1184 	} else
1185 		swsm &= ~(E1000_SWSM_SWESMBI);
1186 	E1000_WRITE_REG(hw, SWSM, swsm);
1187 #endif
1188 }
1189 
1190 /***************************************************************************
1191  *
1192  * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1193  * adapter or Eeprom access.
1194  *
1195  * hw: Struct containing variables accessed by shared code
1196  *
1197  * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1198  *            E1000_SUCCESS at any other case.
1199  *
1200  ***************************************************************************/
1201 static int32_t
e1000_get_hw_eeprom_semaphore(struct e1000_hw * hw)1202 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1203 {
1204 #ifndef CONFIG_E1000_NO_NVM
1205 	int32_t timeout;
1206 	uint32_t swsm;
1207 
1208 	DEBUGFUNC();
1209 
1210 	if (!hw->eeprom_semaphore_present)
1211 		return E1000_SUCCESS;
1212 
1213 	if (hw->mac_type == e1000_80003es2lan || hw->mac_type == e1000_igb) {
1214 		/* Get the SW semaphore. */
1215 		if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1216 			return -E1000_ERR_EEPROM;
1217 	}
1218 
1219 	/* Get the FW semaphore. */
1220 	timeout = hw->eeprom.word_size + 1;
1221 	while (timeout) {
1222 		swsm = E1000_READ_REG(hw, SWSM);
1223 		swsm |= E1000_SWSM_SWESMBI;
1224 		E1000_WRITE_REG(hw, SWSM, swsm);
1225 		/* if we managed to set the bit we got the semaphore. */
1226 		swsm = E1000_READ_REG(hw, SWSM);
1227 		if (swsm & E1000_SWSM_SWESMBI)
1228 			break;
1229 
1230 		udelay(50);
1231 		timeout--;
1232 	}
1233 
1234 	if (!timeout) {
1235 		/* Release semaphores */
1236 		e1000_put_hw_eeprom_semaphore(hw);
1237 		DEBUGOUT("Driver can't access the Eeprom - "
1238 				"SWESMBI bit is set.\n");
1239 		return -E1000_ERR_EEPROM;
1240 	}
1241 #endif
1242 	return E1000_SUCCESS;
1243 }
1244 
1245 /* Take ownership of the PHY */
1246 static int32_t
e1000_swfw_sync_acquire(struct e1000_hw * hw,uint16_t mask)1247 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1248 {
1249 	uint32_t swfw_sync = 0;
1250 	uint32_t swmask = mask;
1251 	uint32_t fwmask = mask << 16;
1252 	int32_t timeout = 200;
1253 
1254 	DEBUGFUNC();
1255 	while (timeout) {
1256 		if (e1000_get_hw_eeprom_semaphore(hw))
1257 			return -E1000_ERR_SWFW_SYNC;
1258 
1259 		swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1260 		if (!(swfw_sync & (fwmask | swmask)))
1261 			break;
1262 
1263 		/* firmware currently using resource (fwmask) */
1264 		/* or other software thread currently using resource (swmask) */
1265 		e1000_put_hw_eeprom_semaphore(hw);
1266 		mdelay(5);
1267 		timeout--;
1268 	}
1269 
1270 	if (!timeout) {
1271 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1272 		return -E1000_ERR_SWFW_SYNC;
1273 	}
1274 
1275 	swfw_sync |= swmask;
1276 	E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1277 
1278 	e1000_put_hw_eeprom_semaphore(hw);
1279 	return E1000_SUCCESS;
1280 }
1281 
e1000_swfw_sync_release(struct e1000_hw * hw,uint16_t mask)1282 static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
1283 {
1284 	uint32_t swfw_sync = 0;
1285 
1286 	DEBUGFUNC();
1287 	while (e1000_get_hw_eeprom_semaphore(hw))
1288 		; /* Empty */
1289 
1290 	swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1291 	swfw_sync &= ~mask;
1292 	E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1293 
1294 	e1000_put_hw_eeprom_semaphore(hw);
1295 }
1296 
e1000_is_second_port(struct e1000_hw * hw)1297 static bool e1000_is_second_port(struct e1000_hw *hw)
1298 {
1299 	switch (hw->mac_type) {
1300 	case e1000_80003es2lan:
1301 	case e1000_82546:
1302 	case e1000_82571:
1303 		if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1304 			return true;
1305 		/* Fallthrough */
1306 	default:
1307 		return false;
1308 	}
1309 }
1310 
1311 #ifndef CONFIG_E1000_NO_NVM
1312 /******************************************************************************
1313  * Reads the adapter's MAC address from the EEPROM
1314  *
1315  * hw - Struct containing variables accessed by shared code
1316  * enetaddr - buffering where the MAC address will be stored
1317  *****************************************************************************/
e1000_read_mac_addr_from_eeprom(struct e1000_hw * hw,unsigned char enetaddr[6])1318 static int e1000_read_mac_addr_from_eeprom(struct e1000_hw *hw,
1319 					   unsigned char enetaddr[6])
1320 {
1321 	uint16_t offset;
1322 	uint16_t eeprom_data;
1323 	int i;
1324 
1325 	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1326 		offset = i >> 1;
1327 		if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1328 			DEBUGOUT("EEPROM Read Error\n");
1329 			return -E1000_ERR_EEPROM;
1330 		}
1331 		enetaddr[i] = eeprom_data & 0xff;
1332 		enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1333 	}
1334 
1335 	return 0;
1336 }
1337 
1338 /******************************************************************************
1339  * Reads the adapter's MAC address from the RAL/RAH registers
1340  *
1341  * hw - Struct containing variables accessed by shared code
1342  * enetaddr - buffering where the MAC address will be stored
1343  *****************************************************************************/
e1000_read_mac_addr_from_regs(struct e1000_hw * hw,unsigned char enetaddr[6])1344 static int e1000_read_mac_addr_from_regs(struct e1000_hw *hw,
1345 					 unsigned char enetaddr[6])
1346 {
1347 	uint16_t offset, tmp;
1348 	uint32_t reg_data = 0;
1349 	int i;
1350 
1351 	if (hw->mac_type != e1000_igb)
1352 		return -E1000_ERR_MAC_TYPE;
1353 
1354 	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1355 		offset = i >> 1;
1356 
1357 		if (offset == 0)
1358 			reg_data = E1000_READ_REG_ARRAY(hw, RA, 0);
1359 		else if (offset == 1)
1360 			reg_data >>= 16;
1361 		else if (offset == 2)
1362 			reg_data = E1000_READ_REG_ARRAY(hw, RA, 1);
1363 		tmp = reg_data & 0xffff;
1364 
1365 		enetaddr[i] = tmp & 0xff;
1366 		enetaddr[i + 1] = (tmp >> 8) & 0xff;
1367 	}
1368 
1369 	return 0;
1370 }
1371 
1372 /******************************************************************************
1373  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1374  * second function of dual function devices
1375  *
1376  * hw - Struct containing variables accessed by shared code
1377  * enetaddr - buffering where the MAC address will be stored
1378  *****************************************************************************/
e1000_read_mac_addr(struct e1000_hw * hw,unsigned char enetaddr[6])1379 static int e1000_read_mac_addr(struct e1000_hw *hw, unsigned char enetaddr[6])
1380 {
1381 	int ret_val;
1382 
1383 	if (hw->mac_type == e1000_igb) {
1384 		/* i210 preloads MAC address into RAL/RAH registers */
1385 		ret_val = e1000_read_mac_addr_from_regs(hw, enetaddr);
1386 	} else {
1387 		ret_val = e1000_read_mac_addr_from_eeprom(hw, enetaddr);
1388 	}
1389 	if (ret_val)
1390 		return ret_val;
1391 
1392 	/* Invert the last bit if this is the second device */
1393 	if (e1000_is_second_port(hw))
1394 		enetaddr[5] ^= 1;
1395 
1396 	return 0;
1397 }
1398 #endif
1399 
1400 /******************************************************************************
1401  * Initializes receive address filters.
1402  *
1403  * hw - Struct containing variables accessed by shared code
1404  *
1405  * Places the MAC address in receive address register 0 and clears the rest
1406  * of the receive addresss registers. Clears the multicast table. Assumes
1407  * the receiver is in reset when the routine is called.
1408  *****************************************************************************/
1409 static void
e1000_init_rx_addrs(struct e1000_hw * hw,unsigned char enetaddr[6])1410 e1000_init_rx_addrs(struct e1000_hw *hw, unsigned char enetaddr[6])
1411 {
1412 	uint32_t i;
1413 	uint32_t addr_low;
1414 	uint32_t addr_high;
1415 
1416 	DEBUGFUNC();
1417 
1418 	/* Setup the receive address. */
1419 	DEBUGOUT("Programming MAC Address into RAR[0]\n");
1420 	addr_low = (enetaddr[0] |
1421 		    (enetaddr[1] << 8) |
1422 		    (enetaddr[2] << 16) | (enetaddr[3] << 24));
1423 
1424 	addr_high = (enetaddr[4] | (enetaddr[5] << 8) | E1000_RAH_AV);
1425 
1426 	E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1427 	E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1428 
1429 	/* Zero out the other 15 receive addresses. */
1430 	DEBUGOUT("Clearing RAR[1-15]\n");
1431 	for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1432 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1433 		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1434 	}
1435 }
1436 
1437 /******************************************************************************
1438  * Clears the VLAN filer table
1439  *
1440  * hw - Struct containing variables accessed by shared code
1441  *****************************************************************************/
1442 static void
e1000_clear_vfta(struct e1000_hw * hw)1443 e1000_clear_vfta(struct e1000_hw *hw)
1444 {
1445 	uint32_t offset;
1446 
1447 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1448 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1449 }
1450 
1451 /******************************************************************************
1452  * Set the mac type member in the hw struct.
1453  *
1454  * hw - Struct containing variables accessed by shared code
1455  *****************************************************************************/
1456 int32_t
e1000_set_mac_type(struct e1000_hw * hw)1457 e1000_set_mac_type(struct e1000_hw *hw)
1458 {
1459 	DEBUGFUNC();
1460 
1461 	switch (hw->device_id) {
1462 	case E1000_DEV_ID_82542:
1463 		switch (hw->revision_id) {
1464 		case E1000_82542_2_0_REV_ID:
1465 			hw->mac_type = e1000_82542_rev2_0;
1466 			break;
1467 		case E1000_82542_2_1_REV_ID:
1468 			hw->mac_type = e1000_82542_rev2_1;
1469 			break;
1470 		default:
1471 			/* Invalid 82542 revision ID */
1472 			return -E1000_ERR_MAC_TYPE;
1473 		}
1474 		break;
1475 	case E1000_DEV_ID_82543GC_FIBER:
1476 	case E1000_DEV_ID_82543GC_COPPER:
1477 		hw->mac_type = e1000_82543;
1478 		break;
1479 	case E1000_DEV_ID_82544EI_COPPER:
1480 	case E1000_DEV_ID_82544EI_FIBER:
1481 	case E1000_DEV_ID_82544GC_COPPER:
1482 	case E1000_DEV_ID_82544GC_LOM:
1483 		hw->mac_type = e1000_82544;
1484 		break;
1485 	case E1000_DEV_ID_82540EM:
1486 	case E1000_DEV_ID_82540EM_LOM:
1487 	case E1000_DEV_ID_82540EP:
1488 	case E1000_DEV_ID_82540EP_LOM:
1489 	case E1000_DEV_ID_82540EP_LP:
1490 		hw->mac_type = e1000_82540;
1491 		break;
1492 	case E1000_DEV_ID_82545EM_COPPER:
1493 	case E1000_DEV_ID_82545EM_FIBER:
1494 		hw->mac_type = e1000_82545;
1495 		break;
1496 	case E1000_DEV_ID_82545GM_COPPER:
1497 	case E1000_DEV_ID_82545GM_FIBER:
1498 	case E1000_DEV_ID_82545GM_SERDES:
1499 		hw->mac_type = e1000_82545_rev_3;
1500 		break;
1501 	case E1000_DEV_ID_82546EB_COPPER:
1502 	case E1000_DEV_ID_82546EB_FIBER:
1503 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
1504 		hw->mac_type = e1000_82546;
1505 		break;
1506 	case E1000_DEV_ID_82546GB_COPPER:
1507 	case E1000_DEV_ID_82546GB_FIBER:
1508 	case E1000_DEV_ID_82546GB_SERDES:
1509 	case E1000_DEV_ID_82546GB_PCIE:
1510 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
1511 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1512 		hw->mac_type = e1000_82546_rev_3;
1513 		break;
1514 	case E1000_DEV_ID_82541EI:
1515 	case E1000_DEV_ID_82541EI_MOBILE:
1516 	case E1000_DEV_ID_82541ER_LOM:
1517 		hw->mac_type = e1000_82541;
1518 		break;
1519 	case E1000_DEV_ID_82541ER:
1520 	case E1000_DEV_ID_82541GI:
1521 	case E1000_DEV_ID_82541GI_LF:
1522 	case E1000_DEV_ID_82541GI_MOBILE:
1523 		hw->mac_type = e1000_82541_rev_2;
1524 		break;
1525 	case E1000_DEV_ID_82547EI:
1526 	case E1000_DEV_ID_82547EI_MOBILE:
1527 		hw->mac_type = e1000_82547;
1528 		break;
1529 	case E1000_DEV_ID_82547GI:
1530 		hw->mac_type = e1000_82547_rev_2;
1531 		break;
1532 	case E1000_DEV_ID_82571EB_COPPER:
1533 	case E1000_DEV_ID_82571EB_FIBER:
1534 	case E1000_DEV_ID_82571EB_SERDES:
1535 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
1536 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
1537 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
1538 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
1539 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
1540 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1541 		hw->mac_type = e1000_82571;
1542 		break;
1543 	case E1000_DEV_ID_82572EI_COPPER:
1544 	case E1000_DEV_ID_82572EI_FIBER:
1545 	case E1000_DEV_ID_82572EI_SERDES:
1546 	case E1000_DEV_ID_82572EI:
1547 		hw->mac_type = e1000_82572;
1548 		break;
1549 	case E1000_DEV_ID_82573E:
1550 	case E1000_DEV_ID_82573E_IAMT:
1551 	case E1000_DEV_ID_82573L:
1552 		hw->mac_type = e1000_82573;
1553 		break;
1554 	case E1000_DEV_ID_82574L:
1555 		hw->mac_type = e1000_82574;
1556 		break;
1557 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1558 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1559 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1560 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1561 		hw->mac_type = e1000_80003es2lan;
1562 		break;
1563 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
1564 	case E1000_DEV_ID_ICH8_IGP_AMT:
1565 	case E1000_DEV_ID_ICH8_IGP_C:
1566 	case E1000_DEV_ID_ICH8_IFE:
1567 	case E1000_DEV_ID_ICH8_IFE_GT:
1568 	case E1000_DEV_ID_ICH8_IFE_G:
1569 	case E1000_DEV_ID_ICH8_IGP_M:
1570 		hw->mac_type = e1000_ich8lan;
1571 		break;
1572 	case PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED:
1573 	case PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED:
1574 	case PCI_DEVICE_ID_INTEL_I210_COPPER:
1575 	case PCI_DEVICE_ID_INTEL_I211_COPPER:
1576 	case PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS:
1577 	case PCI_DEVICE_ID_INTEL_I210_SERDES:
1578 	case PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS:
1579 	case PCI_DEVICE_ID_INTEL_I210_1000BASEKX:
1580 		hw->mac_type = e1000_igb;
1581 		break;
1582 	default:
1583 		/* Should never have loaded on this device */
1584 		return -E1000_ERR_MAC_TYPE;
1585 	}
1586 	return E1000_SUCCESS;
1587 }
1588 
1589 /******************************************************************************
1590  * Reset the transmit and receive units; mask and clear all interrupts.
1591  *
1592  * hw - Struct containing variables accessed by shared code
1593  *****************************************************************************/
1594 void
e1000_reset_hw(struct e1000_hw * hw)1595 e1000_reset_hw(struct e1000_hw *hw)
1596 {
1597 	uint32_t ctrl;
1598 	uint32_t ctrl_ext;
1599 	uint32_t manc;
1600 	uint32_t pba = 0;
1601 	uint32_t reg;
1602 
1603 	DEBUGFUNC();
1604 
1605 	/* get the correct pba value for both PCI and PCIe*/
1606 	if (hw->mac_type <  e1000_82571)
1607 		pba = E1000_DEFAULT_PCI_PBA;
1608 	else
1609 		pba = E1000_DEFAULT_PCIE_PBA;
1610 
1611 	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1612 	if (hw->mac_type == e1000_82542_rev2_0) {
1613 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1614 #ifdef CONFIG_DM_ETH
1615 		dm_pci_write_config16(hw->pdev, PCI_COMMAND,
1616 				hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1617 #else
1618 		pci_write_config_word(hw->pdev, PCI_COMMAND,
1619 				hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1620 #endif
1621 	}
1622 
1623 	/* Clear interrupt mask to stop board from generating interrupts */
1624 	DEBUGOUT("Masking off all interrupts\n");
1625 	if (hw->mac_type == e1000_igb)
1626 		E1000_WRITE_REG(hw, I210_IAM, 0);
1627 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
1628 
1629 	/* Disable the Transmit and Receive units.  Then delay to allow
1630 	 * any pending transactions to complete before we hit the MAC with
1631 	 * the global reset.
1632 	 */
1633 	E1000_WRITE_REG(hw, RCTL, 0);
1634 	E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1635 	E1000_WRITE_FLUSH(hw);
1636 
1637 	if (hw->mac_type == e1000_igb) {
1638 		E1000_WRITE_REG(hw, RXPBS, I210_RXPBSIZE_DEFAULT);
1639 		E1000_WRITE_REG(hw, TXPBS, I210_TXPBSIZE_DEFAULT);
1640 	}
1641 
1642 	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1643 	hw->tbi_compatibility_on = false;
1644 
1645 	/* Delay to allow any outstanding PCI transactions to complete before
1646 	 * resetting the device
1647 	 */
1648 	mdelay(10);
1649 
1650 	/* Issue a global reset to the MAC.  This will reset the chip's
1651 	 * transmit, receive, DMA, and link units.  It will not effect
1652 	 * the current PCI configuration.  The global reset bit is self-
1653 	 * clearing, and should clear within a microsecond.
1654 	 */
1655 	DEBUGOUT("Issuing a global reset to MAC\n");
1656 	ctrl = E1000_READ_REG(hw, CTRL);
1657 
1658 	E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
1659 
1660 	/* Force a reload from the EEPROM if necessary */
1661 	if (hw->mac_type == e1000_igb) {
1662 		mdelay(20);
1663 		reg = E1000_READ_REG(hw, STATUS);
1664 		if (reg & E1000_STATUS_PF_RST_DONE)
1665 			DEBUGOUT("PF OK\n");
1666 		reg = E1000_READ_REG(hw, I210_EECD);
1667 		if (reg & E1000_EECD_AUTO_RD)
1668 			DEBUGOUT("EEC OK\n");
1669 	} else if (hw->mac_type < e1000_82540) {
1670 		/* Wait for reset to complete */
1671 		udelay(10);
1672 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1673 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1674 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1675 		E1000_WRITE_FLUSH(hw);
1676 		/* Wait for EEPROM reload */
1677 		mdelay(2);
1678 	} else {
1679 		/* Wait for EEPROM reload (it happens automatically) */
1680 		mdelay(4);
1681 		/* Dissable HW ARPs on ASF enabled adapters */
1682 		manc = E1000_READ_REG(hw, MANC);
1683 		manc &= ~(E1000_MANC_ARP_EN);
1684 		E1000_WRITE_REG(hw, MANC, manc);
1685 	}
1686 
1687 	/* Clear interrupt mask to stop board from generating interrupts */
1688 	DEBUGOUT("Masking off all interrupts\n");
1689 	if (hw->mac_type == e1000_igb)
1690 		E1000_WRITE_REG(hw, I210_IAM, 0);
1691 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
1692 
1693 	/* Clear any pending interrupt events. */
1694 	E1000_READ_REG(hw, ICR);
1695 
1696 	/* If MWI was previously enabled, reenable it. */
1697 	if (hw->mac_type == e1000_82542_rev2_0) {
1698 #ifdef CONFIG_DM_ETH
1699 		dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1700 #else
1701 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1702 #endif
1703 	}
1704 	if (hw->mac_type != e1000_igb)
1705 		E1000_WRITE_REG(hw, PBA, pba);
1706 }
1707 
1708 /******************************************************************************
1709  *
1710  * Initialize a number of hardware-dependent bits
1711  *
1712  * hw: Struct containing variables accessed by shared code
1713  *
1714  * This function contains hardware limitation workarounds for PCI-E adapters
1715  *
1716  *****************************************************************************/
1717 static void
e1000_initialize_hardware_bits(struct e1000_hw * hw)1718 e1000_initialize_hardware_bits(struct e1000_hw *hw)
1719 {
1720 	if ((hw->mac_type >= e1000_82571) &&
1721 			(!hw->initialize_hw_bits_disable)) {
1722 		/* Settings common to all PCI-express silicon */
1723 		uint32_t reg_ctrl, reg_ctrl_ext;
1724 		uint32_t reg_tarc0, reg_tarc1;
1725 		uint32_t reg_tctl;
1726 		uint32_t reg_txdctl, reg_txdctl1;
1727 
1728 		/* link autonegotiation/sync workarounds */
1729 		reg_tarc0 = E1000_READ_REG(hw, TARC0);
1730 		reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1731 
1732 		/* Enable not-done TX descriptor counting */
1733 		reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1734 		reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1735 		E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1736 
1737 		reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1738 		reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1739 		E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1740 
1741 
1742 		switch (hw->mac_type) {
1743 		case e1000_igb:			/* IGB is cool */
1744 			return;
1745 		case e1000_82571:
1746 		case e1000_82572:
1747 			/* Clear PHY TX compatible mode bits */
1748 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1749 			reg_tarc1 &= ~((1 << 30)|(1 << 29));
1750 
1751 			/* link autonegotiation/sync workarounds */
1752 			reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1753 
1754 			/* TX ring control fixes */
1755 			reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1756 
1757 			/* Multiple read bit is reversed polarity */
1758 			reg_tctl = E1000_READ_REG(hw, TCTL);
1759 			if (reg_tctl & E1000_TCTL_MULR)
1760 				reg_tarc1 &= ~(1 << 28);
1761 			else
1762 				reg_tarc1 |= (1 << 28);
1763 
1764 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1765 			break;
1766 		case e1000_82573:
1767 		case e1000_82574:
1768 			reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1769 			reg_ctrl_ext &= ~(1 << 23);
1770 			reg_ctrl_ext |= (1 << 22);
1771 
1772 			/* TX byte count fix */
1773 			reg_ctrl = E1000_READ_REG(hw, CTRL);
1774 			reg_ctrl &= ~(1 << 29);
1775 
1776 			E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1777 			E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1778 			break;
1779 		case e1000_80003es2lan:
1780 	/* improve small packet performace for fiber/serdes */
1781 			if ((hw->media_type == e1000_media_type_fiber)
1782 			|| (hw->media_type ==
1783 				e1000_media_type_internal_serdes)) {
1784 				reg_tarc0 &= ~(1 << 20);
1785 			}
1786 
1787 		/* Multiple read bit is reversed polarity */
1788 			reg_tctl = E1000_READ_REG(hw, TCTL);
1789 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1790 			if (reg_tctl & E1000_TCTL_MULR)
1791 				reg_tarc1 &= ~(1 << 28);
1792 			else
1793 				reg_tarc1 |= (1 << 28);
1794 
1795 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1796 			break;
1797 		case e1000_ich8lan:
1798 			/* Reduce concurrent DMA requests to 3 from 4 */
1799 			if ((hw->revision_id < 3) ||
1800 			((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1801 				(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1802 				reg_tarc0 |= ((1 << 29)|(1 << 28));
1803 
1804 			reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1805 			reg_ctrl_ext |= (1 << 22);
1806 			E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1807 
1808 			/* workaround TX hang with TSO=on */
1809 			reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1810 
1811 			/* Multiple read bit is reversed polarity */
1812 			reg_tctl = E1000_READ_REG(hw, TCTL);
1813 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
1814 			if (reg_tctl & E1000_TCTL_MULR)
1815 				reg_tarc1 &= ~(1 << 28);
1816 			else
1817 				reg_tarc1 |= (1 << 28);
1818 
1819 			/* workaround TX hang with TSO=on */
1820 			reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1821 
1822 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1823 			break;
1824 		default:
1825 			break;
1826 		}
1827 
1828 		E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1829 	}
1830 }
1831 
1832 /******************************************************************************
1833  * Performs basic configuration of the adapter.
1834  *
1835  * hw - Struct containing variables accessed by shared code
1836  *
1837  * Assumes that the controller has previously been reset and is in a
1838  * post-reset uninitialized state. Initializes the receive address registers,
1839  * multicast table, and VLAN filter table. Calls routines to setup link
1840  * configuration and flow control settings. Clears all on-chip counters. Leaves
1841  * the transmit and receive units disabled and uninitialized.
1842  *****************************************************************************/
1843 static int
e1000_init_hw(struct e1000_hw * hw,unsigned char enetaddr[6])1844 e1000_init_hw(struct e1000_hw *hw, unsigned char enetaddr[6])
1845 {
1846 	uint32_t ctrl;
1847 	uint32_t i;
1848 	int32_t ret_val;
1849 	uint16_t pcix_cmd_word;
1850 	uint16_t pcix_stat_hi_word;
1851 	uint16_t cmd_mmrbc;
1852 	uint16_t stat_mmrbc;
1853 	uint32_t mta_size;
1854 	uint32_t reg_data;
1855 	uint32_t ctrl_ext;
1856 	DEBUGFUNC();
1857 	/* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1858 	if ((hw->mac_type == e1000_ich8lan) &&
1859 		((hw->revision_id < 3) ||
1860 		((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1861 		(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1862 			reg_data = E1000_READ_REG(hw, STATUS);
1863 			reg_data &= ~0x80000000;
1864 			E1000_WRITE_REG(hw, STATUS, reg_data);
1865 	}
1866 	/* Do not need initialize Identification LED */
1867 
1868 	/* Set the media type and TBI compatibility */
1869 	e1000_set_media_type(hw);
1870 
1871 	/* Must be called after e1000_set_media_type
1872 	 * because media_type is used */
1873 	e1000_initialize_hardware_bits(hw);
1874 
1875 	/* Disabling VLAN filtering. */
1876 	DEBUGOUT("Initializing the IEEE VLAN\n");
1877 	/* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1878 	if (hw->mac_type != e1000_ich8lan) {
1879 		if (hw->mac_type < e1000_82545_rev_3)
1880 			E1000_WRITE_REG(hw, VET, 0);
1881 		e1000_clear_vfta(hw);
1882 	}
1883 
1884 	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1885 	if (hw->mac_type == e1000_82542_rev2_0) {
1886 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1887 #ifdef CONFIG_DM_ETH
1888 		dm_pci_write_config16(hw->pdev, PCI_COMMAND,
1889 				      hw->
1890 				      pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1891 #else
1892 		pci_write_config_word(hw->pdev, PCI_COMMAND,
1893 				      hw->
1894 				      pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1895 #endif
1896 		E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1897 		E1000_WRITE_FLUSH(hw);
1898 		mdelay(5);
1899 	}
1900 
1901 	/* Setup the receive address. This involves initializing all of the Receive
1902 	 * Address Registers (RARs 0 - 15).
1903 	 */
1904 	e1000_init_rx_addrs(hw, enetaddr);
1905 
1906 	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1907 	if (hw->mac_type == e1000_82542_rev2_0) {
1908 		E1000_WRITE_REG(hw, RCTL, 0);
1909 		E1000_WRITE_FLUSH(hw);
1910 		mdelay(1);
1911 #ifdef CONFIG_DM_ETH
1912 		dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1913 #else
1914 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1915 #endif
1916 	}
1917 
1918 	/* Zero out the Multicast HASH table */
1919 	DEBUGOUT("Zeroing the MTA\n");
1920 	mta_size = E1000_MC_TBL_SIZE;
1921 	if (hw->mac_type == e1000_ich8lan)
1922 		mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1923 	for (i = 0; i < mta_size; i++) {
1924 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1925 		/* use write flush to prevent Memory Write Block (MWB) from
1926 		 * occuring when accessing our register space */
1927 		E1000_WRITE_FLUSH(hw);
1928 	}
1929 
1930 	switch (hw->mac_type) {
1931 	case e1000_82545_rev_3:
1932 	case e1000_82546_rev_3:
1933 	case e1000_igb:
1934 		break;
1935 	default:
1936 	/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
1937 	if (hw->bus_type == e1000_bus_type_pcix) {
1938 #ifdef CONFIG_DM_ETH
1939 		dm_pci_read_config16(hw->pdev, PCIX_COMMAND_REGISTER,
1940 				     &pcix_cmd_word);
1941 		dm_pci_read_config16(hw->pdev, PCIX_STATUS_REGISTER_HI,
1942 				     &pcix_stat_hi_word);
1943 #else
1944 		pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1945 				     &pcix_cmd_word);
1946 		pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1947 				     &pcix_stat_hi_word);
1948 #endif
1949 		cmd_mmrbc =
1950 		    (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1951 		    PCIX_COMMAND_MMRBC_SHIFT;
1952 		stat_mmrbc =
1953 		    (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1954 		    PCIX_STATUS_HI_MMRBC_SHIFT;
1955 		if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1956 			stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1957 		if (cmd_mmrbc > stat_mmrbc) {
1958 			pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1959 			pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1960 #ifdef CONFIG_DM_ETH
1961 			dm_pci_write_config16(hw->pdev, PCIX_COMMAND_REGISTER,
1962 					      pcix_cmd_word);
1963 #else
1964 			pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1965 					      pcix_cmd_word);
1966 #endif
1967 		}
1968 	}
1969 		break;
1970 	}
1971 
1972 	/* More time needed for PHY to initialize */
1973 	if (hw->mac_type == e1000_ich8lan)
1974 		mdelay(15);
1975 	if (hw->mac_type == e1000_igb)
1976 		mdelay(15);
1977 
1978 	/* Call a subroutine to configure the link and setup flow control. */
1979 	ret_val = e1000_setup_link(hw);
1980 
1981 	/* Set the transmit descriptor write-back policy */
1982 	if (hw->mac_type > e1000_82544) {
1983 		ctrl = E1000_READ_REG(hw, TXDCTL);
1984 		ctrl =
1985 		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
1986 		    E1000_TXDCTL_FULL_TX_DESC_WB;
1987 		E1000_WRITE_REG(hw, TXDCTL, ctrl);
1988 	}
1989 
1990 	/* Set the receive descriptor write back policy */
1991 	if (hw->mac_type >= e1000_82571) {
1992 		ctrl = E1000_READ_REG(hw, RXDCTL);
1993 		ctrl =
1994 		    (ctrl & ~E1000_RXDCTL_WTHRESH) |
1995 		    E1000_RXDCTL_FULL_RX_DESC_WB;
1996 		E1000_WRITE_REG(hw, RXDCTL, ctrl);
1997 	}
1998 
1999 	switch (hw->mac_type) {
2000 	default:
2001 		break;
2002 	case e1000_80003es2lan:
2003 		/* Enable retransmit on late collisions */
2004 		reg_data = E1000_READ_REG(hw, TCTL);
2005 		reg_data |= E1000_TCTL_RTLC;
2006 		E1000_WRITE_REG(hw, TCTL, reg_data);
2007 
2008 		/* Configure Gigabit Carry Extend Padding */
2009 		reg_data = E1000_READ_REG(hw, TCTL_EXT);
2010 		reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
2011 		reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
2012 		E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
2013 
2014 		/* Configure Transmit Inter-Packet Gap */
2015 		reg_data = E1000_READ_REG(hw, TIPG);
2016 		reg_data &= ~E1000_TIPG_IPGT_MASK;
2017 		reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
2018 		E1000_WRITE_REG(hw, TIPG, reg_data);
2019 
2020 		reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
2021 		reg_data &= ~0x00100000;
2022 		E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
2023 		/* Fall through */
2024 	case e1000_82571:
2025 	case e1000_82572:
2026 	case e1000_ich8lan:
2027 		ctrl = E1000_READ_REG(hw, TXDCTL1);
2028 		ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
2029 			| E1000_TXDCTL_FULL_TX_DESC_WB;
2030 		E1000_WRITE_REG(hw, TXDCTL1, ctrl);
2031 		break;
2032 	case e1000_82573:
2033 	case e1000_82574:
2034 		reg_data = E1000_READ_REG(hw, GCR);
2035 		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
2036 		E1000_WRITE_REG(hw, GCR, reg_data);
2037 	case e1000_igb:
2038 		break;
2039 	}
2040 
2041 	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
2042 		hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
2043 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2044 		/* Relaxed ordering must be disabled to avoid a parity
2045 		 * error crash in a PCI slot. */
2046 		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2047 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2048 	}
2049 
2050 	return ret_val;
2051 }
2052 
2053 /******************************************************************************
2054  * Configures flow control and link settings.
2055  *
2056  * hw - Struct containing variables accessed by shared code
2057  *
2058  * Determines which flow control settings to use. Calls the apropriate media-
2059  * specific link configuration function. Configures the flow control settings.
2060  * Assuming the adapter has a valid link partner, a valid link should be
2061  * established. Assumes the hardware has previously been reset and the
2062  * transmitter and receiver are not enabled.
2063  *****************************************************************************/
2064 static int
e1000_setup_link(struct e1000_hw * hw)2065 e1000_setup_link(struct e1000_hw *hw)
2066 {
2067 	int32_t ret_val;
2068 #ifndef CONFIG_E1000_NO_NVM
2069 	uint32_t ctrl_ext;
2070 	uint16_t eeprom_data;
2071 #endif
2072 
2073 	DEBUGFUNC();
2074 
2075 	/* In the case of the phy reset being blocked, we already have a link.
2076 	 * We do not have to set it up again. */
2077 	if (e1000_check_phy_reset_block(hw))
2078 		return E1000_SUCCESS;
2079 
2080 #ifndef CONFIG_E1000_NO_NVM
2081 	/* Read and store word 0x0F of the EEPROM. This word contains bits
2082 	 * that determine the hardware's default PAUSE (flow control) mode,
2083 	 * a bit that determines whether the HW defaults to enabling or
2084 	 * disabling auto-negotiation, and the direction of the
2085 	 * SW defined pins. If there is no SW over-ride of the flow
2086 	 * control setting, then the variable hw->fc will
2087 	 * be initialized based on a value in the EEPROM.
2088 	 */
2089 	if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
2090 				&eeprom_data) < 0) {
2091 		DEBUGOUT("EEPROM Read Error\n");
2092 		return -E1000_ERR_EEPROM;
2093 	}
2094 #endif
2095 	if (hw->fc == e1000_fc_default) {
2096 		switch (hw->mac_type) {
2097 		case e1000_ich8lan:
2098 		case e1000_82573:
2099 		case e1000_82574:
2100 		case e1000_igb:
2101 			hw->fc = e1000_fc_full;
2102 			break;
2103 		default:
2104 #ifndef CONFIG_E1000_NO_NVM
2105 			ret_val = e1000_read_eeprom(hw,
2106 				EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
2107 			if (ret_val) {
2108 				DEBUGOUT("EEPROM Read Error\n");
2109 				return -E1000_ERR_EEPROM;
2110 			}
2111 			if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
2112 				hw->fc = e1000_fc_none;
2113 			else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
2114 				    EEPROM_WORD0F_ASM_DIR)
2115 				hw->fc = e1000_fc_tx_pause;
2116 			else
2117 #endif
2118 				hw->fc = e1000_fc_full;
2119 			break;
2120 		}
2121 	}
2122 
2123 	/* We want to save off the original Flow Control configuration just
2124 	 * in case we get disconnected and then reconnected into a different
2125 	 * hub or switch with different Flow Control capabilities.
2126 	 */
2127 	if (hw->mac_type == e1000_82542_rev2_0)
2128 		hw->fc &= (~e1000_fc_tx_pause);
2129 
2130 	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
2131 		hw->fc &= (~e1000_fc_rx_pause);
2132 
2133 	hw->original_fc = hw->fc;
2134 
2135 	DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
2136 
2137 #ifndef CONFIG_E1000_NO_NVM
2138 	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
2139 	 * polarity value for the SW controlled pins, and setup the
2140 	 * Extended Device Control reg with that info.
2141 	 * This is needed because one of the SW controlled pins is used for
2142 	 * signal detection.  So this should be done before e1000_setup_pcs_link()
2143 	 * or e1000_phy_setup() is called.
2144 	 */
2145 	if (hw->mac_type == e1000_82543) {
2146 		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
2147 			    SWDPIO__EXT_SHIFT);
2148 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2149 	}
2150 #endif
2151 
2152 	/* Call the necessary subroutine to configure the link. */
2153 	ret_val = (hw->media_type == e1000_media_type_fiber) ?
2154 	    e1000_setup_fiber_link(hw) : e1000_setup_copper_link(hw);
2155 	if (ret_val < 0) {
2156 		return ret_val;
2157 	}
2158 
2159 	/* Initialize the flow control address, type, and PAUSE timer
2160 	 * registers to their default values.  This is done even if flow
2161 	 * control is disabled, because it does not hurt anything to
2162 	 * initialize these registers.
2163 	 */
2164 	DEBUGOUT("Initializing the Flow Control address, type"
2165 			"and timer regs\n");
2166 
2167 	/* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
2168 	if (hw->mac_type != e1000_ich8lan) {
2169 		E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
2170 		E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
2171 		E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
2172 	}
2173 
2174 	E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
2175 
2176 	/* Set the flow control receive threshold registers.  Normally,
2177 	 * these registers will be set to a default threshold that may be
2178 	 * adjusted later by the driver's runtime code.  However, if the
2179 	 * ability to transmit pause frames in not enabled, then these
2180 	 * registers will be set to 0.
2181 	 */
2182 	if (!(hw->fc & e1000_fc_tx_pause)) {
2183 		E1000_WRITE_REG(hw, FCRTL, 0);
2184 		E1000_WRITE_REG(hw, FCRTH, 0);
2185 	} else {
2186 		/* We need to set up the Receive Threshold high and low water marks
2187 		 * as well as (optionally) enabling the transmission of XON frames.
2188 		 */
2189 		if (hw->fc_send_xon) {
2190 			E1000_WRITE_REG(hw, FCRTL,
2191 					(hw->fc_low_water | E1000_FCRTL_XONE));
2192 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
2193 		} else {
2194 			E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
2195 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
2196 		}
2197 	}
2198 	return ret_val;
2199 }
2200 
2201 /******************************************************************************
2202  * Sets up link for a fiber based adapter
2203  *
2204  * hw - Struct containing variables accessed by shared code
2205  *
2206  * Manipulates Physical Coding Sublayer functions in order to configure
2207  * link. Assumes the hardware has been previously reset and the transmitter
2208  * and receiver are not enabled.
2209  *****************************************************************************/
2210 static int
e1000_setup_fiber_link(struct e1000_hw * hw)2211 e1000_setup_fiber_link(struct e1000_hw *hw)
2212 {
2213 	uint32_t ctrl;
2214 	uint32_t status;
2215 	uint32_t txcw = 0;
2216 	uint32_t i;
2217 	uint32_t signal;
2218 	int32_t ret_val;
2219 
2220 	DEBUGFUNC();
2221 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
2222 	 * set when the optics detect a signal. On older adapters, it will be
2223 	 * cleared when there is a signal
2224 	 */
2225 	ctrl = E1000_READ_REG(hw, CTRL);
2226 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
2227 		signal = E1000_CTRL_SWDPIN1;
2228 	else
2229 		signal = 0;
2230 
2231 	printf("signal for %s is %x (ctrl %08x)!!!!\n", hw->name, signal,
2232 	       ctrl);
2233 	/* Take the link out of reset */
2234 	ctrl &= ~(E1000_CTRL_LRST);
2235 
2236 	e1000_config_collision_dist(hw);
2237 
2238 	/* Check for a software override of the flow control settings, and setup
2239 	 * the device accordingly.  If auto-negotiation is enabled, then software
2240 	 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
2241 	 * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
2242 	 * auto-negotiation is disabled, then software will have to manually
2243 	 * configure the two flow control enable bits in the CTRL register.
2244 	 *
2245 	 * The possible values of the "fc" parameter are:
2246 	 *	0:  Flow control is completely disabled
2247 	 *	1:  Rx flow control is enabled (we can receive pause frames, but
2248 	 *	    not send pause frames).
2249 	 *	2:  Tx flow control is enabled (we can send pause frames but we do
2250 	 *	    not support receiving pause frames).
2251 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
2252 	 */
2253 	switch (hw->fc) {
2254 	case e1000_fc_none:
2255 		/* Flow control is completely disabled by a software over-ride. */
2256 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
2257 		break;
2258 	case e1000_fc_rx_pause:
2259 		/* RX Flow control is enabled and TX Flow control is disabled by a
2260 		 * software over-ride. Since there really isn't a way to advertise
2261 		 * that we are capable of RX Pause ONLY, we will advertise that we
2262 		 * support both symmetric and asymmetric RX PAUSE. Later, we will
2263 		 *  disable the adapter's ability to send PAUSE frames.
2264 		 */
2265 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2266 		break;
2267 	case e1000_fc_tx_pause:
2268 		/* TX Flow control is enabled, and RX Flow control is disabled, by a
2269 		 * software over-ride.
2270 		 */
2271 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
2272 		break;
2273 	case e1000_fc_full:
2274 		/* Flow control (both RX and TX) is enabled by a software over-ride. */
2275 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2276 		break;
2277 	default:
2278 		DEBUGOUT("Flow control param set incorrectly\n");
2279 		return -E1000_ERR_CONFIG;
2280 		break;
2281 	}
2282 
2283 	/* Since auto-negotiation is enabled, take the link out of reset (the link
2284 	 * will be in reset, because we previously reset the chip). This will
2285 	 * restart auto-negotiation.  If auto-neogtiation is successful then the
2286 	 * link-up status bit will be set and the flow control enable bits (RFCE
2287 	 * and TFCE) will be set according to their negotiated value.
2288 	 */
2289 	DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2290 
2291 	E1000_WRITE_REG(hw, TXCW, txcw);
2292 	E1000_WRITE_REG(hw, CTRL, ctrl);
2293 	E1000_WRITE_FLUSH(hw);
2294 
2295 	hw->txcw = txcw;
2296 	mdelay(1);
2297 
2298 	/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
2299 	 * indication in the Device Status Register.  Time-out if a link isn't
2300 	 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
2301 	 * less than 500 milliseconds even if the other end is doing it in SW).
2302 	 */
2303 	if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2304 		DEBUGOUT("Looking for Link\n");
2305 		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2306 			mdelay(10);
2307 			status = E1000_READ_REG(hw, STATUS);
2308 			if (status & E1000_STATUS_LU)
2309 				break;
2310 		}
2311 		if (i == (LINK_UP_TIMEOUT / 10)) {
2312 			/* AutoNeg failed to achieve a link, so we'll call
2313 			 * e1000_check_for_link. This routine will force the link up if we
2314 			 * detect a signal. This will allow us to communicate with
2315 			 * non-autonegotiating link partners.
2316 			 */
2317 			DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2318 			hw->autoneg_failed = 1;
2319 			ret_val = e1000_check_for_link(hw);
2320 			if (ret_val < 0) {
2321 				DEBUGOUT("Error while checking for link\n");
2322 				return ret_val;
2323 			}
2324 			hw->autoneg_failed = 0;
2325 		} else {
2326 			hw->autoneg_failed = 0;
2327 			DEBUGOUT("Valid Link Found\n");
2328 		}
2329 	} else {
2330 		DEBUGOUT("No Signal Detected\n");
2331 		return -E1000_ERR_NOLINK;
2332 	}
2333 	return 0;
2334 }
2335 
2336 /******************************************************************************
2337 * Make sure we have a valid PHY and change PHY mode before link setup.
2338 *
2339 * hw - Struct containing variables accessed by shared code
2340 ******************************************************************************/
2341 static int32_t
e1000_copper_link_preconfig(struct e1000_hw * hw)2342 e1000_copper_link_preconfig(struct e1000_hw *hw)
2343 {
2344 	uint32_t ctrl;
2345 	int32_t ret_val;
2346 	uint16_t phy_data;
2347 
2348 	DEBUGFUNC();
2349 
2350 	ctrl = E1000_READ_REG(hw, CTRL);
2351 	/* With 82543, we need to force speed and duplex on the MAC equal to what
2352 	 * the PHY speed and duplex configuration is. In addition, we need to
2353 	 * perform a hardware reset on the PHY to take it out of reset.
2354 	 */
2355 	if (hw->mac_type > e1000_82543) {
2356 		ctrl |= E1000_CTRL_SLU;
2357 		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2358 		E1000_WRITE_REG(hw, CTRL, ctrl);
2359 	} else {
2360 		ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2361 				| E1000_CTRL_SLU);
2362 		E1000_WRITE_REG(hw, CTRL, ctrl);
2363 		ret_val = e1000_phy_hw_reset(hw);
2364 		if (ret_val)
2365 			return ret_val;
2366 	}
2367 
2368 	/* Make sure we have a valid PHY */
2369 	ret_val = e1000_detect_gig_phy(hw);
2370 	if (ret_val) {
2371 		DEBUGOUT("Error, did not detect valid phy.\n");
2372 		return ret_val;
2373 	}
2374 	DEBUGOUT("Phy ID = %x\n", hw->phy_id);
2375 
2376 	/* Set PHY to class A mode (if necessary) */
2377 	ret_val = e1000_set_phy_mode(hw);
2378 	if (ret_val)
2379 		return ret_val;
2380 	if ((hw->mac_type == e1000_82545_rev_3) ||
2381 		(hw->mac_type == e1000_82546_rev_3)) {
2382 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2383 				&phy_data);
2384 		phy_data |= 0x00000008;
2385 		ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2386 				phy_data);
2387 	}
2388 
2389 	if (hw->mac_type <= e1000_82543 ||
2390 		hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2391 		hw->mac_type == e1000_82541_rev_2
2392 		|| hw->mac_type == e1000_82547_rev_2)
2393 			hw->phy_reset_disable = false;
2394 
2395 	return E1000_SUCCESS;
2396 }
2397 
2398 /*****************************************************************************
2399  *
2400  * This function sets the lplu state according to the active flag.  When
2401  * activating lplu this function also disables smart speed and vise versa.
2402  * lplu will not be activated unless the device autonegotiation advertisment
2403  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2404  * hw: Struct containing variables accessed by shared code
2405  * active - true to enable lplu false to disable lplu.
2406  *
2407  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2408  *            E1000_SUCCESS at any other case.
2409  *
2410  ****************************************************************************/
2411 
2412 static int32_t
e1000_set_d3_lplu_state(struct e1000_hw * hw,bool active)2413 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
2414 {
2415 	uint32_t phy_ctrl = 0;
2416 	int32_t ret_val;
2417 	uint16_t phy_data;
2418 	DEBUGFUNC();
2419 
2420 	if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2421 	    && hw->phy_type != e1000_phy_igp_3)
2422 		return E1000_SUCCESS;
2423 
2424 	/* During driver activity LPLU should not be used or it will attain link
2425 	 * from the lowest speeds starting from 10Mbps. The capability is used
2426 	 * for Dx transitions and states */
2427 	if (hw->mac_type == e1000_82541_rev_2
2428 			|| hw->mac_type == e1000_82547_rev_2) {
2429 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2430 				&phy_data);
2431 		if (ret_val)
2432 			return ret_val;
2433 	} else if (hw->mac_type == e1000_ich8lan) {
2434 		/* MAC writes into PHY register based on the state transition
2435 		 * and start auto-negotiation. SW driver can overwrite the
2436 		 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2437 		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2438 	} else {
2439 		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2440 				&phy_data);
2441 		if (ret_val)
2442 			return ret_val;
2443 	}
2444 
2445 	if (!active) {
2446 		if (hw->mac_type == e1000_82541_rev_2 ||
2447 			hw->mac_type == e1000_82547_rev_2) {
2448 			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2449 			ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2450 					phy_data);
2451 			if (ret_val)
2452 				return ret_val;
2453 		} else {
2454 			if (hw->mac_type == e1000_ich8lan) {
2455 				phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2456 				E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2457 			} else {
2458 				phy_data &= ~IGP02E1000_PM_D3_LPLU;
2459 				ret_val = e1000_write_phy_reg(hw,
2460 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2461 				if (ret_val)
2462 					return ret_val;
2463 			}
2464 		}
2465 
2466 	/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2467 	 * Dx states where the power conservation is most important.  During
2468 	 * driver activity we should enable SmartSpeed, so performance is
2469 	 * maintained. */
2470 		if (hw->smart_speed == e1000_smart_speed_on) {
2471 			ret_val = e1000_read_phy_reg(hw,
2472 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2473 			if (ret_val)
2474 				return ret_val;
2475 
2476 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2477 			ret_val = e1000_write_phy_reg(hw,
2478 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2479 			if (ret_val)
2480 				return ret_val;
2481 		} else if (hw->smart_speed == e1000_smart_speed_off) {
2482 			ret_val = e1000_read_phy_reg(hw,
2483 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2484 			if (ret_val)
2485 				return ret_val;
2486 
2487 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2488 			ret_val = e1000_write_phy_reg(hw,
2489 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2490 			if (ret_val)
2491 				return ret_val;
2492 		}
2493 
2494 	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2495 		|| (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2496 		(hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2497 
2498 		if (hw->mac_type == e1000_82541_rev_2 ||
2499 		    hw->mac_type == e1000_82547_rev_2) {
2500 			phy_data |= IGP01E1000_GMII_FLEX_SPD;
2501 			ret_val = e1000_write_phy_reg(hw,
2502 					IGP01E1000_GMII_FIFO, phy_data);
2503 			if (ret_val)
2504 				return ret_val;
2505 		} else {
2506 			if (hw->mac_type == e1000_ich8lan) {
2507 				phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2508 				E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2509 			} else {
2510 				phy_data |= IGP02E1000_PM_D3_LPLU;
2511 				ret_val = e1000_write_phy_reg(hw,
2512 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2513 				if (ret_val)
2514 					return ret_val;
2515 			}
2516 		}
2517 
2518 		/* When LPLU is enabled we should disable SmartSpeed */
2519 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2520 				&phy_data);
2521 		if (ret_val)
2522 			return ret_val;
2523 
2524 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2525 		ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2526 				phy_data);
2527 		if (ret_val)
2528 			return ret_val;
2529 	}
2530 	return E1000_SUCCESS;
2531 }
2532 
2533 /*****************************************************************************
2534  *
2535  * This function sets the lplu d0 state according to the active flag.  When
2536  * activating lplu this function also disables smart speed and vise versa.
2537  * lplu will not be activated unless the device autonegotiation advertisment
2538  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2539  * hw: Struct containing variables accessed by shared code
2540  * active - true to enable lplu false to disable lplu.
2541  *
2542  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2543  *            E1000_SUCCESS at any other case.
2544  *
2545  ****************************************************************************/
2546 
2547 static int32_t
e1000_set_d0_lplu_state(struct e1000_hw * hw,bool active)2548 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2549 {
2550 	uint32_t phy_ctrl = 0;
2551 	int32_t ret_val;
2552 	uint16_t phy_data;
2553 	DEBUGFUNC();
2554 
2555 	if (hw->mac_type <= e1000_82547_rev_2)
2556 		return E1000_SUCCESS;
2557 
2558 	if (hw->mac_type == e1000_ich8lan) {
2559 		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2560 	} else if (hw->mac_type == e1000_igb) {
2561 		phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL);
2562 	} else {
2563 		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2564 				&phy_data);
2565 		if (ret_val)
2566 			return ret_val;
2567 	}
2568 
2569 	if (!active) {
2570 		if (hw->mac_type == e1000_ich8lan) {
2571 			phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2572 			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2573 		} else if (hw->mac_type == e1000_igb) {
2574 			phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2575 			E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2576 		} else {
2577 			phy_data &= ~IGP02E1000_PM_D0_LPLU;
2578 			ret_val = e1000_write_phy_reg(hw,
2579 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2580 			if (ret_val)
2581 				return ret_val;
2582 		}
2583 
2584 		if (hw->mac_type == e1000_igb)
2585 			return E1000_SUCCESS;
2586 
2587 	/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2588 	 * Dx states where the power conservation is most important.  During
2589 	 * driver activity we should enable SmartSpeed, so performance is
2590 	 * maintained. */
2591 		if (hw->smart_speed == e1000_smart_speed_on) {
2592 			ret_val = e1000_read_phy_reg(hw,
2593 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2594 			if (ret_val)
2595 				return ret_val;
2596 
2597 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2598 			ret_val = e1000_write_phy_reg(hw,
2599 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2600 			if (ret_val)
2601 				return ret_val;
2602 		} else if (hw->smart_speed == e1000_smart_speed_off) {
2603 			ret_val = e1000_read_phy_reg(hw,
2604 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2605 			if (ret_val)
2606 				return ret_val;
2607 
2608 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2609 			ret_val = e1000_write_phy_reg(hw,
2610 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2611 			if (ret_val)
2612 				return ret_val;
2613 		}
2614 
2615 
2616 	} else {
2617 
2618 		if (hw->mac_type == e1000_ich8lan) {
2619 			phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2620 			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2621 		} else if (hw->mac_type == e1000_igb) {
2622 			phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2623 			E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2624 		} else {
2625 			phy_data |= IGP02E1000_PM_D0_LPLU;
2626 			ret_val = e1000_write_phy_reg(hw,
2627 					IGP02E1000_PHY_POWER_MGMT, phy_data);
2628 			if (ret_val)
2629 				return ret_val;
2630 		}
2631 
2632 		if (hw->mac_type == e1000_igb)
2633 			return E1000_SUCCESS;
2634 
2635 		/* When LPLU is enabled we should disable SmartSpeed */
2636 		ret_val = e1000_read_phy_reg(hw,
2637 				IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2638 		if (ret_val)
2639 			return ret_val;
2640 
2641 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2642 		ret_val = e1000_write_phy_reg(hw,
2643 				IGP01E1000_PHY_PORT_CONFIG, phy_data);
2644 		if (ret_val)
2645 			return ret_val;
2646 
2647 	}
2648 	return E1000_SUCCESS;
2649 }
2650 
2651 /********************************************************************
2652 * Copper link setup for e1000_phy_igp series.
2653 *
2654 * hw - Struct containing variables accessed by shared code
2655 *********************************************************************/
2656 static int32_t
e1000_copper_link_igp_setup(struct e1000_hw * hw)2657 e1000_copper_link_igp_setup(struct e1000_hw *hw)
2658 {
2659 	uint32_t led_ctrl;
2660 	int32_t ret_val;
2661 	uint16_t phy_data;
2662 
2663 	DEBUGFUNC();
2664 
2665 	if (hw->phy_reset_disable)
2666 		return E1000_SUCCESS;
2667 
2668 	ret_val = e1000_phy_reset(hw);
2669 	if (ret_val) {
2670 		DEBUGOUT("Error Resetting the PHY\n");
2671 		return ret_val;
2672 	}
2673 
2674 	/* Wait 15ms for MAC to configure PHY from eeprom settings */
2675 	mdelay(15);
2676 	if (hw->mac_type != e1000_ich8lan) {
2677 		/* Configure activity LED after PHY reset */
2678 		led_ctrl = E1000_READ_REG(hw, LEDCTL);
2679 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
2680 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2681 		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2682 	}
2683 
2684 	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2685 	if (hw->phy_type == e1000_phy_igp) {
2686 		/* disable lplu d3 during driver init */
2687 		ret_val = e1000_set_d3_lplu_state(hw, false);
2688 		if (ret_val) {
2689 			DEBUGOUT("Error Disabling LPLU D3\n");
2690 			return ret_val;
2691 		}
2692 	}
2693 
2694 	/* disable lplu d0 during driver init */
2695 	ret_val = e1000_set_d0_lplu_state(hw, false);
2696 	if (ret_val) {
2697 		DEBUGOUT("Error Disabling LPLU D0\n");
2698 		return ret_val;
2699 	}
2700 	/* Configure mdi-mdix settings */
2701 	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2702 	if (ret_val)
2703 		return ret_val;
2704 
2705 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2706 		hw->dsp_config_state = e1000_dsp_config_disabled;
2707 		/* Force MDI for earlier revs of the IGP PHY */
2708 		phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2709 				| IGP01E1000_PSCR_FORCE_MDI_MDIX);
2710 		hw->mdix = 1;
2711 
2712 	} else {
2713 		hw->dsp_config_state = e1000_dsp_config_enabled;
2714 		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2715 
2716 		switch (hw->mdix) {
2717 		case 1:
2718 			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2719 			break;
2720 		case 2:
2721 			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2722 			break;
2723 		case 0:
2724 		default:
2725 			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2726 			break;
2727 		}
2728 	}
2729 	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2730 	if (ret_val)
2731 		return ret_val;
2732 
2733 	/* set auto-master slave resolution settings */
2734 	if (hw->autoneg) {
2735 		e1000_ms_type phy_ms_setting = hw->master_slave;
2736 
2737 		if (hw->ffe_config_state == e1000_ffe_config_active)
2738 			hw->ffe_config_state = e1000_ffe_config_enabled;
2739 
2740 		if (hw->dsp_config_state == e1000_dsp_config_activated)
2741 			hw->dsp_config_state = e1000_dsp_config_enabled;
2742 
2743 		/* when autonegotiation advertisment is only 1000Mbps then we
2744 		  * should disable SmartSpeed and enable Auto MasterSlave
2745 		  * resolution as hardware default. */
2746 		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2747 			/* Disable SmartSpeed */
2748 			ret_val = e1000_read_phy_reg(hw,
2749 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2750 			if (ret_val)
2751 				return ret_val;
2752 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2753 			ret_val = e1000_write_phy_reg(hw,
2754 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
2755 			if (ret_val)
2756 				return ret_val;
2757 			/* Set auto Master/Slave resolution process */
2758 			ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2759 					&phy_data);
2760 			if (ret_val)
2761 				return ret_val;
2762 			phy_data &= ~CR_1000T_MS_ENABLE;
2763 			ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2764 					phy_data);
2765 			if (ret_val)
2766 				return ret_val;
2767 		}
2768 
2769 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2770 		if (ret_val)
2771 			return ret_val;
2772 
2773 		/* load defaults for future use */
2774 		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2775 				((phy_data & CR_1000T_MS_VALUE) ?
2776 				e1000_ms_force_master :
2777 				e1000_ms_force_slave) :
2778 				e1000_ms_auto;
2779 
2780 		switch (phy_ms_setting) {
2781 		case e1000_ms_force_master:
2782 			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2783 			break;
2784 		case e1000_ms_force_slave:
2785 			phy_data |= CR_1000T_MS_ENABLE;
2786 			phy_data &= ~(CR_1000T_MS_VALUE);
2787 			break;
2788 		case e1000_ms_auto:
2789 			phy_data &= ~CR_1000T_MS_ENABLE;
2790 		default:
2791 			break;
2792 		}
2793 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2794 		if (ret_val)
2795 			return ret_val;
2796 	}
2797 
2798 	return E1000_SUCCESS;
2799 }
2800 
2801 /*****************************************************************************
2802  * This function checks the mode of the firmware.
2803  *
2804  * returns  - true when the mode is IAMT or false.
2805  ****************************************************************************/
2806 bool
e1000_check_mng_mode(struct e1000_hw * hw)2807 e1000_check_mng_mode(struct e1000_hw *hw)
2808 {
2809 	uint32_t fwsm;
2810 	DEBUGFUNC();
2811 
2812 	fwsm = E1000_READ_REG(hw, FWSM);
2813 
2814 	if (hw->mac_type == e1000_ich8lan) {
2815 		if ((fwsm & E1000_FWSM_MODE_MASK) ==
2816 		    (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2817 			return true;
2818 	} else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2819 		       (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2820 			return true;
2821 
2822 	return false;
2823 }
2824 
2825 static int32_t
e1000_write_kmrn_reg(struct e1000_hw * hw,uint32_t reg_addr,uint16_t data)2826 e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2827 {
2828 	uint16_t swfw = E1000_SWFW_PHY0_SM;
2829 	uint32_t reg_val;
2830 	DEBUGFUNC();
2831 
2832 	if (e1000_is_second_port(hw))
2833 		swfw = E1000_SWFW_PHY1_SM;
2834 
2835 	if (e1000_swfw_sync_acquire(hw, swfw))
2836 		return -E1000_ERR_SWFW_SYNC;
2837 
2838 	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2839 			& E1000_KUMCTRLSTA_OFFSET) | data;
2840 	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2841 	udelay(2);
2842 
2843 	return E1000_SUCCESS;
2844 }
2845 
2846 static int32_t
e1000_read_kmrn_reg(struct e1000_hw * hw,uint32_t reg_addr,uint16_t * data)2847 e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2848 {
2849 	uint16_t swfw = E1000_SWFW_PHY0_SM;
2850 	uint32_t reg_val;
2851 	DEBUGFUNC();
2852 
2853 	if (e1000_is_second_port(hw))
2854 		swfw = E1000_SWFW_PHY1_SM;
2855 
2856 	if (e1000_swfw_sync_acquire(hw, swfw)) {
2857 		debug("%s[%i]\n", __func__, __LINE__);
2858 		return -E1000_ERR_SWFW_SYNC;
2859 	}
2860 
2861 	/* Write register address */
2862 	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2863 			E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2864 	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2865 	udelay(2);
2866 
2867 	/* Read the data returned */
2868 	reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2869 	*data = (uint16_t)reg_val;
2870 
2871 	return E1000_SUCCESS;
2872 }
2873 
2874 /********************************************************************
2875 * Copper link setup for e1000_phy_gg82563 series.
2876 *
2877 * hw - Struct containing variables accessed by shared code
2878 *********************************************************************/
2879 static int32_t
e1000_copper_link_ggp_setup(struct e1000_hw * hw)2880 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2881 {
2882 	int32_t ret_val;
2883 	uint16_t phy_data;
2884 	uint32_t reg_data;
2885 
2886 	DEBUGFUNC();
2887 
2888 	if (!hw->phy_reset_disable) {
2889 		/* Enable CRS on TX for half-duplex operation. */
2890 		ret_val = e1000_read_phy_reg(hw,
2891 				GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2892 		if (ret_val)
2893 			return ret_val;
2894 
2895 		phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2896 		/* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2897 		phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2898 
2899 		ret_val = e1000_write_phy_reg(hw,
2900 				GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2901 		if (ret_val)
2902 			return ret_val;
2903 
2904 		/* Options:
2905 		 *   MDI/MDI-X = 0 (default)
2906 		 *   0 - Auto for all speeds
2907 		 *   1 - MDI mode
2908 		 *   2 - MDI-X mode
2909 		 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2910 		 */
2911 		ret_val = e1000_read_phy_reg(hw,
2912 				GG82563_PHY_SPEC_CTRL, &phy_data);
2913 		if (ret_val)
2914 			return ret_val;
2915 
2916 		phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2917 
2918 		switch (hw->mdix) {
2919 		case 1:
2920 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2921 			break;
2922 		case 2:
2923 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2924 			break;
2925 		case 0:
2926 		default:
2927 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2928 			break;
2929 		}
2930 
2931 		/* Options:
2932 		 *   disable_polarity_correction = 0 (default)
2933 		 *       Automatic Correction for Reversed Cable Polarity
2934 		 *   0 - Disabled
2935 		 *   1 - Enabled
2936 		 */
2937 		phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2938 		ret_val = e1000_write_phy_reg(hw,
2939 				GG82563_PHY_SPEC_CTRL, phy_data);
2940 
2941 		if (ret_val)
2942 			return ret_val;
2943 
2944 		/* SW Reset the PHY so all changes take effect */
2945 		ret_val = e1000_phy_reset(hw);
2946 		if (ret_val) {
2947 			DEBUGOUT("Error Resetting the PHY\n");
2948 			return ret_val;
2949 		}
2950 	} /* phy_reset_disable */
2951 
2952 	if (hw->mac_type == e1000_80003es2lan) {
2953 		/* Bypass RX and TX FIFO's */
2954 		ret_val = e1000_write_kmrn_reg(hw,
2955 				E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2956 				E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2957 				| E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2958 		if (ret_val)
2959 			return ret_val;
2960 
2961 		ret_val = e1000_read_phy_reg(hw,
2962 				GG82563_PHY_SPEC_CTRL_2, &phy_data);
2963 		if (ret_val)
2964 			return ret_val;
2965 
2966 		phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2967 		ret_val = e1000_write_phy_reg(hw,
2968 				GG82563_PHY_SPEC_CTRL_2, phy_data);
2969 
2970 		if (ret_val)
2971 			return ret_val;
2972 
2973 		reg_data = E1000_READ_REG(hw, CTRL_EXT);
2974 		reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2975 		E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2976 
2977 		ret_val = e1000_read_phy_reg(hw,
2978 				GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2979 		if (ret_val)
2980 			return ret_val;
2981 
2982 	/* Do not init these registers when the HW is in IAMT mode, since the
2983 	 * firmware will have already initialized them.  We only initialize
2984 	 * them if the HW is not in IAMT mode.
2985 	 */
2986 		if (e1000_check_mng_mode(hw) == false) {
2987 			/* Enable Electrical Idle on the PHY */
2988 			phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2989 			ret_val = e1000_write_phy_reg(hw,
2990 					GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2991 			if (ret_val)
2992 				return ret_val;
2993 
2994 			ret_val = e1000_read_phy_reg(hw,
2995 					GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2996 			if (ret_val)
2997 				return ret_val;
2998 
2999 			phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3000 			ret_val = e1000_write_phy_reg(hw,
3001 					GG82563_PHY_KMRN_MODE_CTRL, phy_data);
3002 
3003 			if (ret_val)
3004 				return ret_val;
3005 		}
3006 
3007 		/* Workaround: Disable padding in Kumeran interface in the MAC
3008 		 * and in the PHY to avoid CRC errors.
3009 		 */
3010 		ret_val = e1000_read_phy_reg(hw,
3011 				GG82563_PHY_INBAND_CTRL, &phy_data);
3012 		if (ret_val)
3013 			return ret_val;
3014 		phy_data |= GG82563_ICR_DIS_PADDING;
3015 		ret_val = e1000_write_phy_reg(hw,
3016 				GG82563_PHY_INBAND_CTRL, phy_data);
3017 		if (ret_val)
3018 			return ret_val;
3019 	}
3020 	return E1000_SUCCESS;
3021 }
3022 
3023 /********************************************************************
3024 * Copper link setup for e1000_phy_m88 series.
3025 *
3026 * hw - Struct containing variables accessed by shared code
3027 *********************************************************************/
3028 static int32_t
e1000_copper_link_mgp_setup(struct e1000_hw * hw)3029 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
3030 {
3031 	int32_t ret_val;
3032 	uint16_t phy_data;
3033 
3034 	DEBUGFUNC();
3035 
3036 	if (hw->phy_reset_disable)
3037 		return E1000_SUCCESS;
3038 
3039 	/* Enable CRS on TX. This must be set for half-duplex operation. */
3040 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3041 	if (ret_val)
3042 		return ret_val;
3043 
3044 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
3045 
3046 	/* Options:
3047 	 *   MDI/MDI-X = 0 (default)
3048 	 *   0 - Auto for all speeds
3049 	 *   1 - MDI mode
3050 	 *   2 - MDI-X mode
3051 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
3052 	 */
3053 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
3054 
3055 	switch (hw->mdix) {
3056 	case 1:
3057 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
3058 		break;
3059 	case 2:
3060 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
3061 		break;
3062 	case 3:
3063 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
3064 		break;
3065 	case 0:
3066 	default:
3067 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
3068 		break;
3069 	}
3070 
3071 	/* Options:
3072 	 *   disable_polarity_correction = 0 (default)
3073 	 *       Automatic Correction for Reversed Cable Polarity
3074 	 *   0 - Disabled
3075 	 *   1 - Enabled
3076 	 */
3077 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
3078 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
3079 	if (ret_val)
3080 		return ret_val;
3081 
3082 	if (hw->phy_revision < M88E1011_I_REV_4) {
3083 		/* Force TX_CLK in the Extended PHY Specific Control Register
3084 		 * to 25MHz clock.
3085 		 */
3086 		ret_val = e1000_read_phy_reg(hw,
3087 				M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
3088 		if (ret_val)
3089 			return ret_val;
3090 
3091 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
3092 
3093 		if ((hw->phy_revision == E1000_REVISION_2) &&
3094 			(hw->phy_id == M88E1111_I_PHY_ID)) {
3095 			/* Vidalia Phy, set the downshift counter to 5x */
3096 			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
3097 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
3098 			ret_val = e1000_write_phy_reg(hw,
3099 					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
3100 			if (ret_val)
3101 				return ret_val;
3102 		} else {
3103 			/* Configure Master and Slave downshift values */
3104 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
3105 					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
3106 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
3107 					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
3108 			ret_val = e1000_write_phy_reg(hw,
3109 					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
3110 			if (ret_val)
3111 				return ret_val;
3112 		}
3113 	}
3114 
3115 	/* SW Reset the PHY so all changes take effect */
3116 	ret_val = e1000_phy_reset(hw);
3117 	if (ret_val) {
3118 		DEBUGOUT("Error Resetting the PHY\n");
3119 		return ret_val;
3120 	}
3121 
3122 	return E1000_SUCCESS;
3123 }
3124 
3125 /********************************************************************
3126 * Setup auto-negotiation and flow control advertisements,
3127 * and then perform auto-negotiation.
3128 *
3129 * hw - Struct containing variables accessed by shared code
3130 *********************************************************************/
3131 static int32_t
e1000_copper_link_autoneg(struct e1000_hw * hw)3132 e1000_copper_link_autoneg(struct e1000_hw *hw)
3133 {
3134 	int32_t ret_val;
3135 	uint16_t phy_data;
3136 
3137 	DEBUGFUNC();
3138 
3139 	/* Perform some bounds checking on the hw->autoneg_advertised
3140 	 * parameter.  If this variable is zero, then set it to the default.
3141 	 */
3142 	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
3143 
3144 	/* If autoneg_advertised is zero, we assume it was not defaulted
3145 	 * by the calling code so we set to advertise full capability.
3146 	 */
3147 	if (hw->autoneg_advertised == 0)
3148 		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
3149 
3150 	/* IFE phy only supports 10/100 */
3151 	if (hw->phy_type == e1000_phy_ife)
3152 		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
3153 
3154 	DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
3155 	ret_val = e1000_phy_setup_autoneg(hw);
3156 	if (ret_val) {
3157 		DEBUGOUT("Error Setting up Auto-Negotiation\n");
3158 		return ret_val;
3159 	}
3160 	DEBUGOUT("Restarting Auto-Neg\n");
3161 
3162 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
3163 	 * the Auto Neg Restart bit in the PHY control register.
3164 	 */
3165 	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3166 	if (ret_val)
3167 		return ret_val;
3168 
3169 	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
3170 	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3171 	if (ret_val)
3172 		return ret_val;
3173 
3174 	/* Does the user want to wait for Auto-Neg to complete here, or
3175 	 * check at a later time (for example, callback routine).
3176 	 */
3177 	/* If we do not wait for autonegtation to complete I
3178 	 * do not see a valid link status.
3179 	 * wait_autoneg_complete = 1 .
3180 	 */
3181 	if (hw->wait_autoneg_complete) {
3182 		ret_val = e1000_wait_autoneg(hw);
3183 		if (ret_val) {
3184 			DEBUGOUT("Error while waiting for autoneg"
3185 					"to complete\n");
3186 			return ret_val;
3187 		}
3188 	}
3189 
3190 	hw->get_link_status = true;
3191 
3192 	return E1000_SUCCESS;
3193 }
3194 
3195 /******************************************************************************
3196 * Config the MAC and the PHY after link is up.
3197 *   1) Set up the MAC to the current PHY speed/duplex
3198 *      if we are on 82543.  If we
3199 *      are on newer silicon, we only need to configure
3200 *      collision distance in the Transmit Control Register.
3201 *   2) Set up flow control on the MAC to that established with
3202 *      the link partner.
3203 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
3204 *
3205 * hw - Struct containing variables accessed by shared code
3206 ******************************************************************************/
3207 static int32_t
e1000_copper_link_postconfig(struct e1000_hw * hw)3208 e1000_copper_link_postconfig(struct e1000_hw *hw)
3209 {
3210 	int32_t ret_val;
3211 	DEBUGFUNC();
3212 
3213 	if (hw->mac_type >= e1000_82544) {
3214 		e1000_config_collision_dist(hw);
3215 	} else {
3216 		ret_val = e1000_config_mac_to_phy(hw);
3217 		if (ret_val) {
3218 			DEBUGOUT("Error configuring MAC to PHY settings\n");
3219 			return ret_val;
3220 		}
3221 	}
3222 	ret_val = e1000_config_fc_after_link_up(hw);
3223 	if (ret_val) {
3224 		DEBUGOUT("Error Configuring Flow Control\n");
3225 		return ret_val;
3226 	}
3227 	return E1000_SUCCESS;
3228 }
3229 
3230 /******************************************************************************
3231 * Detects which PHY is present and setup the speed and duplex
3232 *
3233 * hw - Struct containing variables accessed by shared code
3234 ******************************************************************************/
3235 static int
e1000_setup_copper_link(struct e1000_hw * hw)3236 e1000_setup_copper_link(struct e1000_hw *hw)
3237 {
3238 	int32_t ret_val;
3239 	uint16_t i;
3240 	uint16_t phy_data;
3241 	uint16_t reg_data;
3242 
3243 	DEBUGFUNC();
3244 
3245 	switch (hw->mac_type) {
3246 	case e1000_80003es2lan:
3247 	case e1000_ich8lan:
3248 		/* Set the mac to wait the maximum time between each
3249 		 * iteration and increase the max iterations when
3250 		 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
3251 		ret_val = e1000_write_kmrn_reg(hw,
3252 				GG82563_REG(0x34, 4), 0xFFFF);
3253 		if (ret_val)
3254 			return ret_val;
3255 		ret_val = e1000_read_kmrn_reg(hw,
3256 				GG82563_REG(0x34, 9), &reg_data);
3257 		if (ret_val)
3258 			return ret_val;
3259 		reg_data |= 0x3F;
3260 		ret_val = e1000_write_kmrn_reg(hw,
3261 				GG82563_REG(0x34, 9), reg_data);
3262 		if (ret_val)
3263 			return ret_val;
3264 	default:
3265 		break;
3266 	}
3267 
3268 	/* Check if it is a valid PHY and set PHY mode if necessary. */
3269 	ret_val = e1000_copper_link_preconfig(hw);
3270 	if (ret_val)
3271 		return ret_val;
3272 	switch (hw->mac_type) {
3273 	case e1000_80003es2lan:
3274 		/* Kumeran registers are written-only */
3275 		reg_data =
3276 		E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
3277 		reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
3278 		ret_val = e1000_write_kmrn_reg(hw,
3279 				E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
3280 		if (ret_val)
3281 			return ret_val;
3282 		break;
3283 	default:
3284 		break;
3285 	}
3286 
3287 	if (hw->phy_type == e1000_phy_igp ||
3288 		hw->phy_type == e1000_phy_igp_3 ||
3289 		hw->phy_type == e1000_phy_igp_2) {
3290 		ret_val = e1000_copper_link_igp_setup(hw);
3291 		if (ret_val)
3292 			return ret_val;
3293 	} else if (hw->phy_type == e1000_phy_m88 ||
3294 		hw->phy_type == e1000_phy_igb) {
3295 		ret_val = e1000_copper_link_mgp_setup(hw);
3296 		if (ret_val)
3297 			return ret_val;
3298 	} else if (hw->phy_type == e1000_phy_gg82563) {
3299 		ret_val = e1000_copper_link_ggp_setup(hw);
3300 		if (ret_val)
3301 			return ret_val;
3302 	}
3303 
3304 	/* always auto */
3305 	/* Setup autoneg and flow control advertisement
3306 	  * and perform autonegotiation */
3307 	ret_val = e1000_copper_link_autoneg(hw);
3308 	if (ret_val)
3309 		return ret_val;
3310 
3311 	/* Check link status. Wait up to 100 microseconds for link to become
3312 	 * valid.
3313 	 */
3314 	for (i = 0; i < 10; i++) {
3315 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3316 		if (ret_val)
3317 			return ret_val;
3318 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3319 		if (ret_val)
3320 			return ret_val;
3321 
3322 		if (phy_data & MII_SR_LINK_STATUS) {
3323 			/* Config the MAC and PHY after link is up */
3324 			ret_val = e1000_copper_link_postconfig(hw);
3325 			if (ret_val)
3326 				return ret_val;
3327 
3328 			DEBUGOUT("Valid link established!!!\n");
3329 			return E1000_SUCCESS;
3330 		}
3331 		udelay(10);
3332 	}
3333 
3334 	DEBUGOUT("Unable to establish link!!!\n");
3335 	return E1000_SUCCESS;
3336 }
3337 
3338 /******************************************************************************
3339 * Configures PHY autoneg and flow control advertisement settings
3340 *
3341 * hw - Struct containing variables accessed by shared code
3342 ******************************************************************************/
3343 int32_t
e1000_phy_setup_autoneg(struct e1000_hw * hw)3344 e1000_phy_setup_autoneg(struct e1000_hw *hw)
3345 {
3346 	int32_t ret_val;
3347 	uint16_t mii_autoneg_adv_reg;
3348 	uint16_t mii_1000t_ctrl_reg;
3349 
3350 	DEBUGFUNC();
3351 
3352 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
3353 	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3354 	if (ret_val)
3355 		return ret_val;
3356 
3357 	if (hw->phy_type != e1000_phy_ife) {
3358 		/* Read the MII 1000Base-T Control Register (Address 9). */
3359 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3360 				&mii_1000t_ctrl_reg);
3361 		if (ret_val)
3362 			return ret_val;
3363 	} else
3364 		mii_1000t_ctrl_reg = 0;
3365 
3366 	/* Need to parse both autoneg_advertised and fc and set up
3367 	 * the appropriate PHY registers.  First we will parse for
3368 	 * autoneg_advertised software override.  Since we can advertise
3369 	 * a plethora of combinations, we need to check each bit
3370 	 * individually.
3371 	 */
3372 
3373 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
3374 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
3375 	 * the  1000Base-T Control Register (Address 9).
3376 	 */
3377 	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3378 	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3379 
3380 	DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3381 
3382 	/* Do we want to advertise 10 Mb Half Duplex? */
3383 	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3384 		DEBUGOUT("Advertise 10mb Half duplex\n");
3385 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3386 	}
3387 
3388 	/* Do we want to advertise 10 Mb Full Duplex? */
3389 	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3390 		DEBUGOUT("Advertise 10mb Full duplex\n");
3391 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3392 	}
3393 
3394 	/* Do we want to advertise 100 Mb Half Duplex? */
3395 	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3396 		DEBUGOUT("Advertise 100mb Half duplex\n");
3397 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3398 	}
3399 
3400 	/* Do we want to advertise 100 Mb Full Duplex? */
3401 	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3402 		DEBUGOUT("Advertise 100mb Full duplex\n");
3403 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3404 	}
3405 
3406 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3407 	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3408 		DEBUGOUT
3409 		    ("Advertise 1000mb Half duplex requested, request denied!\n");
3410 	}
3411 
3412 	/* Do we want to advertise 1000 Mb Full Duplex? */
3413 	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3414 		DEBUGOUT("Advertise 1000mb Full duplex\n");
3415 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3416 	}
3417 
3418 	/* Check for a software override of the flow control settings, and
3419 	 * setup the PHY advertisement registers accordingly.  If
3420 	 * auto-negotiation is enabled, then software will have to set the
3421 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
3422 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3423 	 *
3424 	 * The possible values of the "fc" parameter are:
3425 	 *	0:  Flow control is completely disabled
3426 	 *	1:  Rx flow control is enabled (we can receive pause frames
3427 	 *	    but not send pause frames).
3428 	 *	2:  Tx flow control is enabled (we can send pause frames
3429 	 *	    but we do not support receiving pause frames).
3430 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
3431 	 *  other:  No software override.  The flow control configuration
3432 	 *	    in the EEPROM is used.
3433 	 */
3434 	switch (hw->fc) {
3435 	case e1000_fc_none:	/* 0 */
3436 		/* Flow control (RX & TX) is completely disabled by a
3437 		 * software over-ride.
3438 		 */
3439 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3440 		break;
3441 	case e1000_fc_rx_pause:	/* 1 */
3442 		/* RX Flow control is enabled, and TX Flow control is
3443 		 * disabled, by a software over-ride.
3444 		 */
3445 		/* Since there really isn't a way to advertise that we are
3446 		 * capable of RX Pause ONLY, we will advertise that we
3447 		 * support both symmetric and asymmetric RX PAUSE.  Later
3448 		 * (in e1000_config_fc_after_link_up) we will disable the
3449 		 *hw's ability to send PAUSE frames.
3450 		 */
3451 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3452 		break;
3453 	case e1000_fc_tx_pause:	/* 2 */
3454 		/* TX Flow control is enabled, and RX Flow control is
3455 		 * disabled, by a software over-ride.
3456 		 */
3457 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3458 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3459 		break;
3460 	case e1000_fc_full:	/* 3 */
3461 		/* Flow control (both RX and TX) is enabled by a software
3462 		 * over-ride.
3463 		 */
3464 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3465 		break;
3466 	default:
3467 		DEBUGOUT("Flow control param set incorrectly\n");
3468 		return -E1000_ERR_CONFIG;
3469 	}
3470 
3471 	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3472 	if (ret_val)
3473 		return ret_val;
3474 
3475 	DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3476 
3477 	if (hw->phy_type != e1000_phy_ife) {
3478 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3479 				mii_1000t_ctrl_reg);
3480 		if (ret_val)
3481 			return ret_val;
3482 	}
3483 
3484 	return E1000_SUCCESS;
3485 }
3486 
3487 /******************************************************************************
3488 * Sets the collision distance in the Transmit Control register
3489 *
3490 * hw - Struct containing variables accessed by shared code
3491 *
3492 * Link should have been established previously. Reads the speed and duplex
3493 * information from the Device Status register.
3494 ******************************************************************************/
3495 static void
e1000_config_collision_dist(struct e1000_hw * hw)3496 e1000_config_collision_dist(struct e1000_hw *hw)
3497 {
3498 	uint32_t tctl, coll_dist;
3499 
3500 	DEBUGFUNC();
3501 
3502 	if (hw->mac_type < e1000_82543)
3503 		coll_dist = E1000_COLLISION_DISTANCE_82542;
3504 	else
3505 		coll_dist = E1000_COLLISION_DISTANCE;
3506 
3507 	tctl = E1000_READ_REG(hw, TCTL);
3508 
3509 	tctl &= ~E1000_TCTL_COLD;
3510 	tctl |= coll_dist << E1000_COLD_SHIFT;
3511 
3512 	E1000_WRITE_REG(hw, TCTL, tctl);
3513 	E1000_WRITE_FLUSH(hw);
3514 }
3515 
3516 /******************************************************************************
3517 * Sets MAC speed and duplex settings to reflect the those in the PHY
3518 *
3519 * hw - Struct containing variables accessed by shared code
3520 * mii_reg - data to write to the MII control register
3521 *
3522 * The contents of the PHY register containing the needed information need to
3523 * be passed in.
3524 ******************************************************************************/
3525 static int
e1000_config_mac_to_phy(struct e1000_hw * hw)3526 e1000_config_mac_to_phy(struct e1000_hw *hw)
3527 {
3528 	uint32_t ctrl;
3529 	uint16_t phy_data;
3530 
3531 	DEBUGFUNC();
3532 
3533 	/* Read the Device Control Register and set the bits to Force Speed
3534 	 * and Duplex.
3535 	 */
3536 	ctrl = E1000_READ_REG(hw, CTRL);
3537 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3538 	ctrl &= ~(E1000_CTRL_ILOS);
3539 	ctrl |= (E1000_CTRL_SPD_SEL);
3540 
3541 	/* Set up duplex in the Device Control and Transmit Control
3542 	 * registers depending on negotiated values.
3543 	 */
3544 	if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3545 		DEBUGOUT("PHY Read Error\n");
3546 		return -E1000_ERR_PHY;
3547 	}
3548 	if (phy_data & M88E1000_PSSR_DPLX)
3549 		ctrl |= E1000_CTRL_FD;
3550 	else
3551 		ctrl &= ~E1000_CTRL_FD;
3552 
3553 	e1000_config_collision_dist(hw);
3554 
3555 	/* Set up speed in the Device Control register depending on
3556 	 * negotiated values.
3557 	 */
3558 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3559 		ctrl |= E1000_CTRL_SPD_1000;
3560 	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3561 		ctrl |= E1000_CTRL_SPD_100;
3562 	/* Write the configured values back to the Device Control Reg. */
3563 	E1000_WRITE_REG(hw, CTRL, ctrl);
3564 	return 0;
3565 }
3566 
3567 /******************************************************************************
3568  * Forces the MAC's flow control settings.
3569  *
3570  * hw - Struct containing variables accessed by shared code
3571  *
3572  * Sets the TFCE and RFCE bits in the device control register to reflect
3573  * the adapter settings. TFCE and RFCE need to be explicitly set by
3574  * software when a Copper PHY is used because autonegotiation is managed
3575  * by the PHY rather than the MAC. Software must also configure these
3576  * bits when link is forced on a fiber connection.
3577  *****************************************************************************/
3578 static int
e1000_force_mac_fc(struct e1000_hw * hw)3579 e1000_force_mac_fc(struct e1000_hw *hw)
3580 {
3581 	uint32_t ctrl;
3582 
3583 	DEBUGFUNC();
3584 
3585 	/* Get the current configuration of the Device Control Register */
3586 	ctrl = E1000_READ_REG(hw, CTRL);
3587 
3588 	/* Because we didn't get link via the internal auto-negotiation
3589 	 * mechanism (we either forced link or we got link via PHY
3590 	 * auto-neg), we have to manually enable/disable transmit an
3591 	 * receive flow control.
3592 	 *
3593 	 * The "Case" statement below enables/disable flow control
3594 	 * according to the "hw->fc" parameter.
3595 	 *
3596 	 * The possible values of the "fc" parameter are:
3597 	 *	0:  Flow control is completely disabled
3598 	 *	1:  Rx flow control is enabled (we can receive pause
3599 	 *	    frames but not send pause frames).
3600 	 *	2:  Tx flow control is enabled (we can send pause frames
3601 	 *	    frames but we do not receive pause frames).
3602 	 *	3:  Both Rx and TX flow control (symmetric) is enabled.
3603 	 *  other:  No other values should be possible at this point.
3604 	 */
3605 
3606 	switch (hw->fc) {
3607 	case e1000_fc_none:
3608 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3609 		break;
3610 	case e1000_fc_rx_pause:
3611 		ctrl &= (~E1000_CTRL_TFCE);
3612 		ctrl |= E1000_CTRL_RFCE;
3613 		break;
3614 	case e1000_fc_tx_pause:
3615 		ctrl &= (~E1000_CTRL_RFCE);
3616 		ctrl |= E1000_CTRL_TFCE;
3617 		break;
3618 	case e1000_fc_full:
3619 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3620 		break;
3621 	default:
3622 		DEBUGOUT("Flow control param set incorrectly\n");
3623 		return -E1000_ERR_CONFIG;
3624 	}
3625 
3626 	/* Disable TX Flow Control for 82542 (rev 2.0) */
3627 	if (hw->mac_type == e1000_82542_rev2_0)
3628 		ctrl &= (~E1000_CTRL_TFCE);
3629 
3630 	E1000_WRITE_REG(hw, CTRL, ctrl);
3631 	return 0;
3632 }
3633 
3634 /******************************************************************************
3635  * Configures flow control settings after link is established
3636  *
3637  * hw - Struct containing variables accessed by shared code
3638  *
3639  * Should be called immediately after a valid link has been established.
3640  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3641  * and autonegotiation is enabled, the MAC flow control settings will be set
3642  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3643  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3644  *****************************************************************************/
3645 static int32_t
e1000_config_fc_after_link_up(struct e1000_hw * hw)3646 e1000_config_fc_after_link_up(struct e1000_hw *hw)
3647 {
3648 	int32_t ret_val;
3649 	uint16_t mii_status_reg;
3650 	uint16_t mii_nway_adv_reg;
3651 	uint16_t mii_nway_lp_ability_reg;
3652 	uint16_t speed;
3653 	uint16_t duplex;
3654 
3655 	DEBUGFUNC();
3656 
3657 	/* Check for the case where we have fiber media and auto-neg failed
3658 	 * so we had to force link.  In this case, we need to force the
3659 	 * configuration of the MAC to match the "fc" parameter.
3660 	 */
3661 	if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3662 		|| ((hw->media_type == e1000_media_type_internal_serdes)
3663 		&& (hw->autoneg_failed))
3664 		|| ((hw->media_type == e1000_media_type_copper)
3665 		&& (!hw->autoneg))) {
3666 		ret_val = e1000_force_mac_fc(hw);
3667 		if (ret_val < 0) {
3668 			DEBUGOUT("Error forcing flow control settings\n");
3669 			return ret_val;
3670 		}
3671 	}
3672 
3673 	/* Check for the case where we have copper media and auto-neg is
3674 	 * enabled.  In this case, we need to check and see if Auto-Neg
3675 	 * has completed, and if so, how the PHY and link partner has
3676 	 * flow control configured.
3677 	 */
3678 	if (hw->media_type == e1000_media_type_copper) {
3679 		/* Read the MII Status Register and check to see if AutoNeg
3680 		 * has completed.  We read this twice because this reg has
3681 		 * some "sticky" (latched) bits.
3682 		 */
3683 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3684 			DEBUGOUT("PHY Read Error\n");
3685 			return -E1000_ERR_PHY;
3686 		}
3687 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3688 			DEBUGOUT("PHY Read Error\n");
3689 			return -E1000_ERR_PHY;
3690 		}
3691 
3692 		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3693 			/* The AutoNeg process has completed, so we now need to
3694 			 * read both the Auto Negotiation Advertisement Register
3695 			 * (Address 4) and the Auto_Negotiation Base Page Ability
3696 			 * Register (Address 5) to determine how flow control was
3697 			 * negotiated.
3698 			 */
3699 			if (e1000_read_phy_reg
3700 			    (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3701 				DEBUGOUT("PHY Read Error\n");
3702 				return -E1000_ERR_PHY;
3703 			}
3704 			if (e1000_read_phy_reg
3705 			    (hw, PHY_LP_ABILITY,
3706 			     &mii_nway_lp_ability_reg) < 0) {
3707 				DEBUGOUT("PHY Read Error\n");
3708 				return -E1000_ERR_PHY;
3709 			}
3710 
3711 			/* Two bits in the Auto Negotiation Advertisement Register
3712 			 * (Address 4) and two bits in the Auto Negotiation Base
3713 			 * Page Ability Register (Address 5) determine flow control
3714 			 * for both the PHY and the link partner.  The following
3715 			 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3716 			 * 1999, describes these PAUSE resolution bits and how flow
3717 			 * control is determined based upon these settings.
3718 			 * NOTE:  DC = Don't Care
3719 			 *
3720 			 *   LOCAL DEVICE  |   LINK PARTNER
3721 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3722 			 *-------|---------|-------|---------|--------------------
3723 			 *   0	 |    0    |  DC   |   DC    | e1000_fc_none
3724 			 *   0	 |    1    |   0   |   DC    | e1000_fc_none
3725 			 *   0	 |    1    |   1   |	0    | e1000_fc_none
3726 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
3727 			 *   1	 |    0    |   0   |   DC    | e1000_fc_none
3728 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
3729 			 *   1	 |    1    |   0   |	0    | e1000_fc_none
3730 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
3731 			 *
3732 			 */
3733 			/* Are both PAUSE bits set to 1?  If so, this implies
3734 			 * Symmetric Flow Control is enabled at both ends.  The
3735 			 * ASM_DIR bits are irrelevant per the spec.
3736 			 *
3737 			 * For Symmetric Flow Control:
3738 			 *
3739 			 *   LOCAL DEVICE  |   LINK PARTNER
3740 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3741 			 *-------|---------|-------|---------|--------------------
3742 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
3743 			 *
3744 			 */
3745 			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3746 			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3747 				/* Now we need to check if the user selected RX ONLY
3748 				 * of pause frames.  In this case, we had to advertise
3749 				 * FULL flow control because we could not advertise RX
3750 				 * ONLY. Hence, we must now check to see if we need to
3751 				 * turn OFF  the TRANSMISSION of PAUSE frames.
3752 				 */
3753 				if (hw->original_fc == e1000_fc_full) {
3754 					hw->fc = e1000_fc_full;
3755 					DEBUGOUT("Flow Control = FULL.\r\n");
3756 				} else {
3757 					hw->fc = e1000_fc_rx_pause;
3758 					DEBUGOUT
3759 					    ("Flow Control = RX PAUSE frames only.\r\n");
3760 				}
3761 			}
3762 			/* For receiving PAUSE frames ONLY.
3763 			 *
3764 			 *   LOCAL DEVICE  |   LINK PARTNER
3765 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3766 			 *-------|---------|-------|---------|--------------------
3767 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
3768 			 *
3769 			 */
3770 			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3771 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3772 				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3773 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3774 			{
3775 				hw->fc = e1000_fc_tx_pause;
3776 				DEBUGOUT
3777 				    ("Flow Control = TX PAUSE frames only.\r\n");
3778 			}
3779 			/* For transmitting PAUSE frames ONLY.
3780 			 *
3781 			 *   LOCAL DEVICE  |   LINK PARTNER
3782 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3783 			 *-------|---------|-------|---------|--------------------
3784 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
3785 			 *
3786 			 */
3787 			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3788 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3789 				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3790 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3791 			{
3792 				hw->fc = e1000_fc_rx_pause;
3793 				DEBUGOUT
3794 				    ("Flow Control = RX PAUSE frames only.\r\n");
3795 			}
3796 			/* Per the IEEE spec, at this point flow control should be
3797 			 * disabled.  However, we want to consider that we could
3798 			 * be connected to a legacy switch that doesn't advertise
3799 			 * desired flow control, but can be forced on the link
3800 			 * partner.  So if we advertised no flow control, that is
3801 			 * what we will resolve to.  If we advertised some kind of
3802 			 * receive capability (Rx Pause Only or Full Flow Control)
3803 			 * and the link partner advertised none, we will configure
3804 			 * ourselves to enable Rx Flow Control only.  We can do
3805 			 * this safely for two reasons:  If the link partner really
3806 			 * didn't want flow control enabled, and we enable Rx, no
3807 			 * harm done since we won't be receiving any PAUSE frames
3808 			 * anyway.  If the intent on the link partner was to have
3809 			 * flow control enabled, then by us enabling RX only, we
3810 			 * can at least receive pause frames and process them.
3811 			 * This is a good idea because in most cases, since we are
3812 			 * predominantly a server NIC, more times than not we will
3813 			 * be asked to delay transmission of packets than asking
3814 			 * our link partner to pause transmission of frames.
3815 			 */
3816 			else if (hw->original_fc == e1000_fc_none ||
3817 				 hw->original_fc == e1000_fc_tx_pause) {
3818 				hw->fc = e1000_fc_none;
3819 				DEBUGOUT("Flow Control = NONE.\r\n");
3820 			} else {
3821 				hw->fc = e1000_fc_rx_pause;
3822 				DEBUGOUT
3823 				    ("Flow Control = RX PAUSE frames only.\r\n");
3824 			}
3825 
3826 			/* Now we need to do one last check...	If we auto-
3827 			 * negotiated to HALF DUPLEX, flow control should not be
3828 			 * enabled per IEEE 802.3 spec.
3829 			 */
3830 			e1000_get_speed_and_duplex(hw, &speed, &duplex);
3831 
3832 			if (duplex == HALF_DUPLEX)
3833 				hw->fc = e1000_fc_none;
3834 
3835 			/* Now we call a subroutine to actually force the MAC
3836 			 * controller to use the correct flow control settings.
3837 			 */
3838 			ret_val = e1000_force_mac_fc(hw);
3839 			if (ret_val < 0) {
3840 				DEBUGOUT
3841 				    ("Error forcing flow control settings\n");
3842 				return ret_val;
3843 			}
3844 		} else {
3845 			DEBUGOUT
3846 			    ("Copper PHY and Auto Neg has not completed.\r\n");
3847 		}
3848 	}
3849 	return E1000_SUCCESS;
3850 }
3851 
3852 /******************************************************************************
3853  * Checks to see if the link status of the hardware has changed.
3854  *
3855  * hw - Struct containing variables accessed by shared code
3856  *
3857  * Called by any function that needs to check the link status of the adapter.
3858  *****************************************************************************/
3859 static int
e1000_check_for_link(struct e1000_hw * hw)3860 e1000_check_for_link(struct e1000_hw *hw)
3861 {
3862 	uint32_t rxcw;
3863 	uint32_t ctrl;
3864 	uint32_t status;
3865 	uint32_t rctl;
3866 	uint32_t signal;
3867 	int32_t ret_val;
3868 	uint16_t phy_data;
3869 	uint16_t lp_capability;
3870 
3871 	DEBUGFUNC();
3872 
3873 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3874 	 * set when the optics detect a signal. On older adapters, it will be
3875 	 * cleared when there is a signal
3876 	 */
3877 	ctrl = E1000_READ_REG(hw, CTRL);
3878 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3879 		signal = E1000_CTRL_SWDPIN1;
3880 	else
3881 		signal = 0;
3882 
3883 	status = E1000_READ_REG(hw, STATUS);
3884 	rxcw = E1000_READ_REG(hw, RXCW);
3885 	DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3886 
3887 	/* If we have a copper PHY then we only want to go out to the PHY
3888 	 * registers to see if Auto-Neg has completed and/or if our link
3889 	 * status has changed.	The get_link_status flag will be set if we
3890 	 * receive a Link Status Change interrupt or we have Rx Sequence
3891 	 * Errors.
3892 	 */
3893 	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3894 		/* First we want to see if the MII Status Register reports
3895 		 * link.  If so, then we want to get the current speed/duplex
3896 		 * of the PHY.
3897 		 * Read the register twice since the link bit is sticky.
3898 		 */
3899 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3900 			DEBUGOUT("PHY Read Error\n");
3901 			return -E1000_ERR_PHY;
3902 		}
3903 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3904 			DEBUGOUT("PHY Read Error\n");
3905 			return -E1000_ERR_PHY;
3906 		}
3907 
3908 		if (phy_data & MII_SR_LINK_STATUS) {
3909 			hw->get_link_status = false;
3910 		} else {
3911 			/* No link detected */
3912 			return -E1000_ERR_NOLINK;
3913 		}
3914 
3915 		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
3916 		 * have Si on board that is 82544 or newer, Auto
3917 		 * Speed Detection takes care of MAC speed/duplex
3918 		 * configuration.  So we only need to configure Collision
3919 		 * Distance in the MAC.  Otherwise, we need to force
3920 		 * speed/duplex on the MAC to the current PHY speed/duplex
3921 		 * settings.
3922 		 */
3923 		if (hw->mac_type >= e1000_82544)
3924 			e1000_config_collision_dist(hw);
3925 		else {
3926 			ret_val = e1000_config_mac_to_phy(hw);
3927 			if (ret_val < 0) {
3928 				DEBUGOUT
3929 				    ("Error configuring MAC to PHY settings\n");
3930 				return ret_val;
3931 			}
3932 		}
3933 
3934 		/* Configure Flow Control now that Auto-Neg has completed. First, we
3935 		 * need to restore the desired flow control settings because we may
3936 		 * have had to re-autoneg with a different link partner.
3937 		 */
3938 		ret_val = e1000_config_fc_after_link_up(hw);
3939 		if (ret_val < 0) {
3940 			DEBUGOUT("Error configuring flow control\n");
3941 			return ret_val;
3942 		}
3943 
3944 		/* At this point we know that we are on copper and we have
3945 		 * auto-negotiated link.  These are conditions for checking the link
3946 		 * parter capability register.	We use the link partner capability to
3947 		 * determine if TBI Compatibility needs to be turned on or off.  If
3948 		 * the link partner advertises any speed in addition to Gigabit, then
3949 		 * we assume that they are GMII-based, and TBI compatibility is not
3950 		 * needed. If no other speeds are advertised, we assume the link
3951 		 * partner is TBI-based, and we turn on TBI Compatibility.
3952 		 */
3953 		if (hw->tbi_compatibility_en) {
3954 			if (e1000_read_phy_reg
3955 			    (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3956 				DEBUGOUT("PHY Read Error\n");
3957 				return -E1000_ERR_PHY;
3958 			}
3959 			if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3960 					     NWAY_LPAR_10T_FD_CAPS |
3961 					     NWAY_LPAR_100TX_HD_CAPS |
3962 					     NWAY_LPAR_100TX_FD_CAPS |
3963 					     NWAY_LPAR_100T4_CAPS)) {
3964 				/* If our link partner advertises anything in addition to
3965 				 * gigabit, we do not need to enable TBI compatibility.
3966 				 */
3967 				if (hw->tbi_compatibility_on) {
3968 					/* If we previously were in the mode, turn it off. */
3969 					rctl = E1000_READ_REG(hw, RCTL);
3970 					rctl &= ~E1000_RCTL_SBP;
3971 					E1000_WRITE_REG(hw, RCTL, rctl);
3972 					hw->tbi_compatibility_on = false;
3973 				}
3974 			} else {
3975 				/* If TBI compatibility is was previously off, turn it on. For
3976 				 * compatibility with a TBI link partner, we will store bad
3977 				 * packets. Some frames have an additional byte on the end and
3978 				 * will look like CRC errors to to the hardware.
3979 				 */
3980 				if (!hw->tbi_compatibility_on) {
3981 					hw->tbi_compatibility_on = true;
3982 					rctl = E1000_READ_REG(hw, RCTL);
3983 					rctl |= E1000_RCTL_SBP;
3984 					E1000_WRITE_REG(hw, RCTL, rctl);
3985 				}
3986 			}
3987 		}
3988 	}
3989 	/* If we don't have link (auto-negotiation failed or link partner cannot
3990 	 * auto-negotiate), the cable is plugged in (we have signal), and our
3991 	 * link partner is not trying to auto-negotiate with us (we are receiving
3992 	 * idles or data), we need to force link up. We also need to give
3993 	 * auto-negotiation time to complete, in case the cable was just plugged
3994 	 * in. The autoneg_failed flag does this.
3995 	 */
3996 	else if ((hw->media_type == e1000_media_type_fiber) &&
3997 		 (!(status & E1000_STATUS_LU)) &&
3998 		 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3999 		 (!(rxcw & E1000_RXCW_C))) {
4000 		if (hw->autoneg_failed == 0) {
4001 			hw->autoneg_failed = 1;
4002 			return 0;
4003 		}
4004 		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
4005 
4006 		/* Disable auto-negotiation in the TXCW register */
4007 		E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
4008 
4009 		/* Force link-up and also force full-duplex. */
4010 		ctrl = E1000_READ_REG(hw, CTRL);
4011 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
4012 		E1000_WRITE_REG(hw, CTRL, ctrl);
4013 
4014 		/* Configure Flow Control after forcing link up. */
4015 		ret_val = e1000_config_fc_after_link_up(hw);
4016 		if (ret_val < 0) {
4017 			DEBUGOUT("Error configuring flow control\n");
4018 			return ret_val;
4019 		}
4020 	}
4021 	/* If we are forcing link and we are receiving /C/ ordered sets, re-enable
4022 	 * auto-negotiation in the TXCW register and disable forced link in the
4023 	 * Device Control register in an attempt to auto-negotiate with our link
4024 	 * partner.
4025 	 */
4026 	else if ((hw->media_type == e1000_media_type_fiber) &&
4027 		 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
4028 		DEBUGOUT
4029 		    ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
4030 		E1000_WRITE_REG(hw, TXCW, hw->txcw);
4031 		E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
4032 	}
4033 	return 0;
4034 }
4035 
4036 /******************************************************************************
4037 * Configure the MAC-to-PHY interface for 10/100Mbps
4038 *
4039 * hw - Struct containing variables accessed by shared code
4040 ******************************************************************************/
4041 static int32_t
e1000_configure_kmrn_for_10_100(struct e1000_hw * hw,uint16_t duplex)4042 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
4043 {
4044 	int32_t ret_val = E1000_SUCCESS;
4045 	uint32_t tipg;
4046 	uint16_t reg_data;
4047 
4048 	DEBUGFUNC();
4049 
4050 	reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
4051 	ret_val = e1000_write_kmrn_reg(hw,
4052 			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
4053 	if (ret_val)
4054 		return ret_val;
4055 
4056 	/* Configure Transmit Inter-Packet Gap */
4057 	tipg = E1000_READ_REG(hw, TIPG);
4058 	tipg &= ~E1000_TIPG_IPGT_MASK;
4059 	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
4060 	E1000_WRITE_REG(hw, TIPG, tipg);
4061 
4062 	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
4063 
4064 	if (ret_val)
4065 		return ret_val;
4066 
4067 	if (duplex == HALF_DUPLEX)
4068 		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
4069 	else
4070 		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
4071 
4072 	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
4073 
4074 	return ret_val;
4075 }
4076 
4077 static int32_t
e1000_configure_kmrn_for_1000(struct e1000_hw * hw)4078 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
4079 {
4080 	int32_t ret_val = E1000_SUCCESS;
4081 	uint16_t reg_data;
4082 	uint32_t tipg;
4083 
4084 	DEBUGFUNC();
4085 
4086 	reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
4087 	ret_val = e1000_write_kmrn_reg(hw,
4088 			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
4089 	if (ret_val)
4090 		return ret_val;
4091 
4092 	/* Configure Transmit Inter-Packet Gap */
4093 	tipg = E1000_READ_REG(hw, TIPG);
4094 	tipg &= ~E1000_TIPG_IPGT_MASK;
4095 	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
4096 	E1000_WRITE_REG(hw, TIPG, tipg);
4097 
4098 	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
4099 
4100 	if (ret_val)
4101 		return ret_val;
4102 
4103 	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
4104 	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
4105 
4106 	return ret_val;
4107 }
4108 
4109 /******************************************************************************
4110  * Detects the current speed and duplex settings of the hardware.
4111  *
4112  * hw - Struct containing variables accessed by shared code
4113  * speed - Speed of the connection
4114  * duplex - Duplex setting of the connection
4115  *****************************************************************************/
4116 static int
e1000_get_speed_and_duplex(struct e1000_hw * hw,uint16_t * speed,uint16_t * duplex)4117 e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
4118 		uint16_t *duplex)
4119 {
4120 	uint32_t status;
4121 	int32_t ret_val;
4122 	uint16_t phy_data;
4123 
4124 	DEBUGFUNC();
4125 
4126 	if (hw->mac_type >= e1000_82543) {
4127 		status = E1000_READ_REG(hw, STATUS);
4128 		if (status & E1000_STATUS_SPEED_1000) {
4129 			*speed = SPEED_1000;
4130 			DEBUGOUT("1000 Mbs, ");
4131 		} else if (status & E1000_STATUS_SPEED_100) {
4132 			*speed = SPEED_100;
4133 			DEBUGOUT("100 Mbs, ");
4134 		} else {
4135 			*speed = SPEED_10;
4136 			DEBUGOUT("10 Mbs, ");
4137 		}
4138 
4139 		if (status & E1000_STATUS_FD) {
4140 			*duplex = FULL_DUPLEX;
4141 			DEBUGOUT("Full Duplex\r\n");
4142 		} else {
4143 			*duplex = HALF_DUPLEX;
4144 			DEBUGOUT(" Half Duplex\r\n");
4145 		}
4146 	} else {
4147 		DEBUGOUT("1000 Mbs, Full Duplex\r\n");
4148 		*speed = SPEED_1000;
4149 		*duplex = FULL_DUPLEX;
4150 	}
4151 
4152 	/* IGP01 PHY may advertise full duplex operation after speed downgrade
4153 	 * even if it is operating at half duplex.  Here we set the duplex
4154 	 * settings to match the duplex in the link partner's capabilities.
4155 	 */
4156 	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
4157 		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
4158 		if (ret_val)
4159 			return ret_val;
4160 
4161 		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
4162 			*duplex = HALF_DUPLEX;
4163 		else {
4164 			ret_val = e1000_read_phy_reg(hw,
4165 					PHY_LP_ABILITY, &phy_data);
4166 			if (ret_val)
4167 				return ret_val;
4168 			if ((*speed == SPEED_100 &&
4169 				!(phy_data & NWAY_LPAR_100TX_FD_CAPS))
4170 				|| (*speed == SPEED_10
4171 				&& !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
4172 				*duplex = HALF_DUPLEX;
4173 		}
4174 	}
4175 
4176 	if ((hw->mac_type == e1000_80003es2lan) &&
4177 		(hw->media_type == e1000_media_type_copper)) {
4178 		if (*speed == SPEED_1000)
4179 			ret_val = e1000_configure_kmrn_for_1000(hw);
4180 		else
4181 			ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
4182 		if (ret_val)
4183 			return ret_val;
4184 	}
4185 	return E1000_SUCCESS;
4186 }
4187 
4188 /******************************************************************************
4189 * Blocks until autoneg completes or times out (~4.5 seconds)
4190 *
4191 * hw - Struct containing variables accessed by shared code
4192 ******************************************************************************/
4193 static int
e1000_wait_autoneg(struct e1000_hw * hw)4194 e1000_wait_autoneg(struct e1000_hw *hw)
4195 {
4196 	uint16_t i;
4197 	uint16_t phy_data;
4198 
4199 	DEBUGFUNC();
4200 	DEBUGOUT("Waiting for Auto-Neg to complete.\n");
4201 
4202 	/* We will wait for autoneg to complete or timeout to expire. */
4203 	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
4204 		/* Read the MII Status Register and wait for Auto-Neg
4205 		 * Complete bit to be set.
4206 		 */
4207 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4208 			DEBUGOUT("PHY Read Error\n");
4209 			return -E1000_ERR_PHY;
4210 		}
4211 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4212 			DEBUGOUT("PHY Read Error\n");
4213 			return -E1000_ERR_PHY;
4214 		}
4215 		if (phy_data & MII_SR_AUTONEG_COMPLETE) {
4216 			DEBUGOUT("Auto-Neg complete.\n");
4217 			return 0;
4218 		}
4219 		mdelay(100);
4220 	}
4221 	DEBUGOUT("Auto-Neg timedout.\n");
4222 	return -E1000_ERR_TIMEOUT;
4223 }
4224 
4225 /******************************************************************************
4226 * Raises the Management Data Clock
4227 *
4228 * hw - Struct containing variables accessed by shared code
4229 * ctrl - Device control register's current value
4230 ******************************************************************************/
4231 static void
e1000_raise_mdi_clk(struct e1000_hw * hw,uint32_t * ctrl)4232 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4233 {
4234 	/* Raise the clock input to the Management Data Clock (by setting the MDC
4235 	 * bit), and then delay 2 microseconds.
4236 	 */
4237 	E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
4238 	E1000_WRITE_FLUSH(hw);
4239 	udelay(2);
4240 }
4241 
4242 /******************************************************************************
4243 * Lowers the Management Data Clock
4244 *
4245 * hw - Struct containing variables accessed by shared code
4246 * ctrl - Device control register's current value
4247 ******************************************************************************/
4248 static void
e1000_lower_mdi_clk(struct e1000_hw * hw,uint32_t * ctrl)4249 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4250 {
4251 	/* Lower the clock input to the Management Data Clock (by clearing the MDC
4252 	 * bit), and then delay 2 microseconds.
4253 	 */
4254 	E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
4255 	E1000_WRITE_FLUSH(hw);
4256 	udelay(2);
4257 }
4258 
4259 /******************************************************************************
4260 * Shifts data bits out to the PHY
4261 *
4262 * hw - Struct containing variables accessed by shared code
4263 * data - Data to send out to the PHY
4264 * count - Number of bits to shift out
4265 *
4266 * Bits are shifted out in MSB to LSB order.
4267 ******************************************************************************/
4268 static void
e1000_shift_out_mdi_bits(struct e1000_hw * hw,uint32_t data,uint16_t count)4269 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
4270 {
4271 	uint32_t ctrl;
4272 	uint32_t mask;
4273 
4274 	/* We need to shift "count" number of bits out to the PHY. So, the value
4275 	 * in the "data" parameter will be shifted out to the PHY one bit at a
4276 	 * time. In order to do this, "data" must be broken down into bits.
4277 	 */
4278 	mask = 0x01;
4279 	mask <<= (count - 1);
4280 
4281 	ctrl = E1000_READ_REG(hw, CTRL);
4282 
4283 	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
4284 	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
4285 
4286 	while (mask) {
4287 		/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
4288 		 * then raising and lowering the Management Data Clock. A "0" is
4289 		 * shifted out to the PHY by setting the MDIO bit to "0" and then
4290 		 * raising and lowering the clock.
4291 		 */
4292 		if (data & mask)
4293 			ctrl |= E1000_CTRL_MDIO;
4294 		else
4295 			ctrl &= ~E1000_CTRL_MDIO;
4296 
4297 		E1000_WRITE_REG(hw, CTRL, ctrl);
4298 		E1000_WRITE_FLUSH(hw);
4299 
4300 		udelay(2);
4301 
4302 		e1000_raise_mdi_clk(hw, &ctrl);
4303 		e1000_lower_mdi_clk(hw, &ctrl);
4304 
4305 		mask = mask >> 1;
4306 	}
4307 }
4308 
4309 /******************************************************************************
4310 * Shifts data bits in from the PHY
4311 *
4312 * hw - Struct containing variables accessed by shared code
4313 *
4314 * Bits are shifted in in MSB to LSB order.
4315 ******************************************************************************/
4316 static uint16_t
e1000_shift_in_mdi_bits(struct e1000_hw * hw)4317 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4318 {
4319 	uint32_t ctrl;
4320 	uint16_t data = 0;
4321 	uint8_t i;
4322 
4323 	/* In order to read a register from the PHY, we need to shift in a total
4324 	 * of 18 bits from the PHY. The first two bit (turnaround) times are used
4325 	 * to avoid contention on the MDIO pin when a read operation is performed.
4326 	 * These two bits are ignored by us and thrown away. Bits are "shifted in"
4327 	 * by raising the input to the Management Data Clock (setting the MDC bit),
4328 	 * and then reading the value of the MDIO bit.
4329 	 */
4330 	ctrl = E1000_READ_REG(hw, CTRL);
4331 
4332 	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4333 	ctrl &= ~E1000_CTRL_MDIO_DIR;
4334 	ctrl &= ~E1000_CTRL_MDIO;
4335 
4336 	E1000_WRITE_REG(hw, CTRL, ctrl);
4337 	E1000_WRITE_FLUSH(hw);
4338 
4339 	/* Raise and Lower the clock before reading in the data. This accounts for
4340 	 * the turnaround bits. The first clock occurred when we clocked out the
4341 	 * last bit of the Register Address.
4342 	 */
4343 	e1000_raise_mdi_clk(hw, &ctrl);
4344 	e1000_lower_mdi_clk(hw, &ctrl);
4345 
4346 	for (data = 0, i = 0; i < 16; i++) {
4347 		data = data << 1;
4348 		e1000_raise_mdi_clk(hw, &ctrl);
4349 		ctrl = E1000_READ_REG(hw, CTRL);
4350 		/* Check to see if we shifted in a "1". */
4351 		if (ctrl & E1000_CTRL_MDIO)
4352 			data |= 1;
4353 		e1000_lower_mdi_clk(hw, &ctrl);
4354 	}
4355 
4356 	e1000_raise_mdi_clk(hw, &ctrl);
4357 	e1000_lower_mdi_clk(hw, &ctrl);
4358 
4359 	return data;
4360 }
4361 
4362 /*****************************************************************************
4363 * Reads the value from a PHY register
4364 *
4365 * hw - Struct containing variables accessed by shared code
4366 * reg_addr - address of the PHY register to read
4367 ******************************************************************************/
4368 static int
e1000_read_phy_reg(struct e1000_hw * hw,uint32_t reg_addr,uint16_t * phy_data)4369 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4370 {
4371 	uint32_t i;
4372 	uint32_t mdic = 0;
4373 	const uint32_t phy_addr = 1;
4374 
4375 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
4376 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4377 		return -E1000_ERR_PARAM;
4378 	}
4379 
4380 	if (hw->mac_type > e1000_82543) {
4381 		/* Set up Op-code, Phy Address, and register address in the MDI
4382 		 * Control register.  The MAC will take care of interfacing with the
4383 		 * PHY to retrieve the desired data.
4384 		 */
4385 		mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4386 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
4387 			(E1000_MDIC_OP_READ));
4388 
4389 		E1000_WRITE_REG(hw, MDIC, mdic);
4390 
4391 		/* Poll the ready bit to see if the MDI read completed */
4392 		for (i = 0; i < 64; i++) {
4393 			udelay(10);
4394 			mdic = E1000_READ_REG(hw, MDIC);
4395 			if (mdic & E1000_MDIC_READY)
4396 				break;
4397 		}
4398 		if (!(mdic & E1000_MDIC_READY)) {
4399 			DEBUGOUT("MDI Read did not complete\n");
4400 			return -E1000_ERR_PHY;
4401 		}
4402 		if (mdic & E1000_MDIC_ERROR) {
4403 			DEBUGOUT("MDI Error\n");
4404 			return -E1000_ERR_PHY;
4405 		}
4406 		*phy_data = (uint16_t) mdic;
4407 	} else {
4408 		/* We must first send a preamble through the MDIO pin to signal the
4409 		 * beginning of an MII instruction.  This is done by sending 32
4410 		 * consecutive "1" bits.
4411 		 */
4412 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4413 
4414 		/* Now combine the next few fields that are required for a read
4415 		 * operation.  We use this method instead of calling the
4416 		 * e1000_shift_out_mdi_bits routine five different times. The format of
4417 		 * a MII read instruction consists of a shift out of 14 bits and is
4418 		 * defined as follows:
4419 		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4420 		 * followed by a shift in of 18 bits.  This first two bits shifted in
4421 		 * are TurnAround bits used to avoid contention on the MDIO pin when a
4422 		 * READ operation is performed.  These two bits are thrown away
4423 		 * followed by a shift in of 16 bits which contains the desired data.
4424 		 */
4425 		mdic = ((reg_addr) | (phy_addr << 5) |
4426 			(PHY_OP_READ << 10) | (PHY_SOF << 12));
4427 
4428 		e1000_shift_out_mdi_bits(hw, mdic, 14);
4429 
4430 		/* Now that we've shifted out the read command to the MII, we need to
4431 		 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4432 		 * register address.
4433 		 */
4434 		*phy_data = e1000_shift_in_mdi_bits(hw);
4435 	}
4436 	return 0;
4437 }
4438 
4439 /******************************************************************************
4440 * Writes a value to a PHY register
4441 *
4442 * hw - Struct containing variables accessed by shared code
4443 * reg_addr - address of the PHY register to write
4444 * data - data to write to the PHY
4445 ******************************************************************************/
4446 static int
e1000_write_phy_reg(struct e1000_hw * hw,uint32_t reg_addr,uint16_t phy_data)4447 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4448 {
4449 	uint32_t i;
4450 	uint32_t mdic = 0;
4451 	const uint32_t phy_addr = 1;
4452 
4453 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
4454 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4455 		return -E1000_ERR_PARAM;
4456 	}
4457 
4458 	if (hw->mac_type > e1000_82543) {
4459 		/* Set up Op-code, Phy Address, register address, and data intended
4460 		 * for the PHY register in the MDI Control register.  The MAC will take
4461 		 * care of interfacing with the PHY to send the desired data.
4462 		 */
4463 		mdic = (((uint32_t) phy_data) |
4464 			(reg_addr << E1000_MDIC_REG_SHIFT) |
4465 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
4466 			(E1000_MDIC_OP_WRITE));
4467 
4468 		E1000_WRITE_REG(hw, MDIC, mdic);
4469 
4470 		/* Poll the ready bit to see if the MDI read completed */
4471 		for (i = 0; i < 64; i++) {
4472 			udelay(10);
4473 			mdic = E1000_READ_REG(hw, MDIC);
4474 			if (mdic & E1000_MDIC_READY)
4475 				break;
4476 		}
4477 		if (!(mdic & E1000_MDIC_READY)) {
4478 			DEBUGOUT("MDI Write did not complete\n");
4479 			return -E1000_ERR_PHY;
4480 		}
4481 	} else {
4482 		/* We'll need to use the SW defined pins to shift the write command
4483 		 * out to the PHY. We first send a preamble to the PHY to signal the
4484 		 * beginning of the MII instruction.  This is done by sending 32
4485 		 * consecutive "1" bits.
4486 		 */
4487 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4488 
4489 		/* Now combine the remaining required fields that will indicate a
4490 		 * write operation. We use this method instead of calling the
4491 		 * e1000_shift_out_mdi_bits routine for each field in the command. The
4492 		 * format of a MII write instruction is as follows:
4493 		 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4494 		 */
4495 		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4496 			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4497 		mdic <<= 16;
4498 		mdic |= (uint32_t) phy_data;
4499 
4500 		e1000_shift_out_mdi_bits(hw, mdic, 32);
4501 	}
4502 	return 0;
4503 }
4504 
4505 /******************************************************************************
4506  * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4507  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
4508  * the caller to figure out how to deal with it.
4509  *
4510  * hw - Struct containing variables accessed by shared code
4511  *
4512  * returns: - E1000_BLK_PHY_RESET
4513  *            E1000_SUCCESS
4514  *
4515  *****************************************************************************/
4516 int32_t
e1000_check_phy_reset_block(struct e1000_hw * hw)4517 e1000_check_phy_reset_block(struct e1000_hw *hw)
4518 {
4519 	uint32_t manc = 0;
4520 	uint32_t fwsm = 0;
4521 
4522 	if (hw->mac_type == e1000_ich8lan) {
4523 		fwsm = E1000_READ_REG(hw, FWSM);
4524 		return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4525 						: E1000_BLK_PHY_RESET;
4526 	}
4527 
4528 	if (hw->mac_type > e1000_82547_rev_2)
4529 		manc = E1000_READ_REG(hw, MANC);
4530 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4531 		E1000_BLK_PHY_RESET : E1000_SUCCESS;
4532 }
4533 
4534 /***************************************************************************
4535  * Checks if the PHY configuration is done
4536  *
4537  * hw: Struct containing variables accessed by shared code
4538  *
4539  * returns: - E1000_ERR_RESET if fail to reset MAC
4540  *            E1000_SUCCESS at any other case.
4541  *
4542  ***************************************************************************/
4543 static int32_t
e1000_get_phy_cfg_done(struct e1000_hw * hw)4544 e1000_get_phy_cfg_done(struct e1000_hw *hw)
4545 {
4546 	int32_t timeout = PHY_CFG_TIMEOUT;
4547 	uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4548 
4549 	DEBUGFUNC();
4550 
4551 	switch (hw->mac_type) {
4552 	default:
4553 		mdelay(10);
4554 		break;
4555 
4556 	case e1000_80003es2lan:
4557 		/* Separate *_CFG_DONE_* bit for each port */
4558 		if (e1000_is_second_port(hw))
4559 			cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4560 		/* Fall Through */
4561 
4562 	case e1000_82571:
4563 	case e1000_82572:
4564 	case e1000_igb:
4565 		while (timeout) {
4566 			if (hw->mac_type == e1000_igb) {
4567 				if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask)
4568 					break;
4569 			} else {
4570 				if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4571 					break;
4572 			}
4573 			mdelay(1);
4574 			timeout--;
4575 		}
4576 		if (!timeout) {
4577 			DEBUGOUT("MNG configuration cycle has not "
4578 					"completed.\n");
4579 			return -E1000_ERR_RESET;
4580 		}
4581 		break;
4582 	}
4583 
4584 	return E1000_SUCCESS;
4585 }
4586 
4587 /******************************************************************************
4588 * Returns the PHY to the power-on reset state
4589 *
4590 * hw - Struct containing variables accessed by shared code
4591 ******************************************************************************/
4592 int32_t
e1000_phy_hw_reset(struct e1000_hw * hw)4593 e1000_phy_hw_reset(struct e1000_hw *hw)
4594 {
4595 	uint16_t swfw = E1000_SWFW_PHY0_SM;
4596 	uint32_t ctrl, ctrl_ext;
4597 	uint32_t led_ctrl;
4598 	int32_t ret_val;
4599 
4600 	DEBUGFUNC();
4601 
4602 	/* In the case of the phy reset being blocked, it's not an error, we
4603 	 * simply return success without performing the reset. */
4604 	ret_val = e1000_check_phy_reset_block(hw);
4605 	if (ret_val)
4606 		return E1000_SUCCESS;
4607 
4608 	DEBUGOUT("Resetting Phy...\n");
4609 
4610 	if (hw->mac_type > e1000_82543) {
4611 		if (e1000_is_second_port(hw))
4612 			swfw = E1000_SWFW_PHY1_SM;
4613 
4614 		if (e1000_swfw_sync_acquire(hw, swfw)) {
4615 			DEBUGOUT("Unable to acquire swfw sync\n");
4616 			return -E1000_ERR_SWFW_SYNC;
4617 		}
4618 
4619 		/* Read the device control register and assert the E1000_CTRL_PHY_RST
4620 		 * bit. Then, take it out of reset.
4621 		 */
4622 		ctrl = E1000_READ_REG(hw, CTRL);
4623 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4624 		E1000_WRITE_FLUSH(hw);
4625 
4626 		if (hw->mac_type < e1000_82571)
4627 			udelay(10);
4628 		else
4629 			udelay(100);
4630 
4631 		E1000_WRITE_REG(hw, CTRL, ctrl);
4632 		E1000_WRITE_FLUSH(hw);
4633 
4634 		if (hw->mac_type >= e1000_82571)
4635 			mdelay(10);
4636 
4637 	} else {
4638 		/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4639 		 * bit to put the PHY into reset. Then, take it out of reset.
4640 		 */
4641 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4642 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4643 		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4644 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4645 		E1000_WRITE_FLUSH(hw);
4646 		mdelay(10);
4647 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4648 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4649 		E1000_WRITE_FLUSH(hw);
4650 	}
4651 	udelay(150);
4652 
4653 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4654 		/* Configure activity LED after PHY reset */
4655 		led_ctrl = E1000_READ_REG(hw, LEDCTL);
4656 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
4657 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4658 		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4659 	}
4660 
4661 	e1000_swfw_sync_release(hw, swfw);
4662 
4663 	/* Wait for FW to finish PHY configuration. */
4664 	ret_val = e1000_get_phy_cfg_done(hw);
4665 	if (ret_val != E1000_SUCCESS)
4666 		return ret_val;
4667 
4668 	return ret_val;
4669 }
4670 
4671 /******************************************************************************
4672  * IGP phy init script - initializes the GbE PHY
4673  *
4674  * hw - Struct containing variables accessed by shared code
4675  *****************************************************************************/
4676 static void
e1000_phy_init_script(struct e1000_hw * hw)4677 e1000_phy_init_script(struct e1000_hw *hw)
4678 {
4679 	uint32_t ret_val;
4680 	uint16_t phy_saved_data;
4681 	DEBUGFUNC();
4682 
4683 	if (hw->phy_init_script) {
4684 		mdelay(20);
4685 
4686 		/* Save off the current value of register 0x2F5B to be
4687 		 * restored at the end of this routine. */
4688 		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4689 
4690 		/* Disabled the PHY transmitter */
4691 		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4692 
4693 		mdelay(20);
4694 
4695 		e1000_write_phy_reg(hw, 0x0000, 0x0140);
4696 
4697 		mdelay(5);
4698 
4699 		switch (hw->mac_type) {
4700 		case e1000_82541:
4701 		case e1000_82547:
4702 			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4703 
4704 			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4705 
4706 			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4707 
4708 			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4709 
4710 			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4711 
4712 			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4713 
4714 			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4715 
4716 			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4717 
4718 			e1000_write_phy_reg(hw, 0x2010, 0x0008);
4719 			break;
4720 
4721 		case e1000_82541_rev_2:
4722 		case e1000_82547_rev_2:
4723 			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4724 			break;
4725 		default:
4726 			break;
4727 		}
4728 
4729 		e1000_write_phy_reg(hw, 0x0000, 0x3300);
4730 
4731 		mdelay(20);
4732 
4733 		/* Now enable the transmitter */
4734 		if (!ret_val)
4735 			e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4736 
4737 		if (hw->mac_type == e1000_82547) {
4738 			uint16_t fused, fine, coarse;
4739 
4740 			/* Move to analog registers page */
4741 			e1000_read_phy_reg(hw,
4742 				IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4743 
4744 			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4745 				e1000_read_phy_reg(hw,
4746 					IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4747 
4748 				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4749 				coarse = fused
4750 					& IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4751 
4752 				if (coarse >
4753 					IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4754 					coarse -=
4755 					IGP01E1000_ANALOG_FUSE_COARSE_10;
4756 					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4757 				} else if (coarse
4758 					== IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4759 					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4760 
4761 				fused = (fused
4762 					& IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4763 					(fine
4764 					& IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4765 					(coarse
4766 					& IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4767 
4768 				e1000_write_phy_reg(hw,
4769 					IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4770 				e1000_write_phy_reg(hw,
4771 					IGP01E1000_ANALOG_FUSE_BYPASS,
4772 				IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4773 			}
4774 		}
4775 	}
4776 }
4777 
4778 /******************************************************************************
4779 * Resets the PHY
4780 *
4781 * hw - Struct containing variables accessed by shared code
4782 *
4783 * Sets bit 15 of the MII Control register
4784 ******************************************************************************/
4785 int32_t
e1000_phy_reset(struct e1000_hw * hw)4786 e1000_phy_reset(struct e1000_hw *hw)
4787 {
4788 	int32_t ret_val;
4789 	uint16_t phy_data;
4790 
4791 	DEBUGFUNC();
4792 
4793 	/* In the case of the phy reset being blocked, it's not an error, we
4794 	 * simply return success without performing the reset. */
4795 	ret_val = e1000_check_phy_reset_block(hw);
4796 	if (ret_val)
4797 		return E1000_SUCCESS;
4798 
4799 	switch (hw->phy_type) {
4800 	case e1000_phy_igp:
4801 	case e1000_phy_igp_2:
4802 	case e1000_phy_igp_3:
4803 	case e1000_phy_ife:
4804 	case e1000_phy_igb:
4805 		ret_val = e1000_phy_hw_reset(hw);
4806 		if (ret_val)
4807 			return ret_val;
4808 		break;
4809 	default:
4810 		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4811 		if (ret_val)
4812 			return ret_val;
4813 
4814 		phy_data |= MII_CR_RESET;
4815 		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4816 		if (ret_val)
4817 			return ret_val;
4818 
4819 		udelay(1);
4820 		break;
4821 	}
4822 
4823 	if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4824 		e1000_phy_init_script(hw);
4825 
4826 	return E1000_SUCCESS;
4827 }
4828 
e1000_set_phy_type(struct e1000_hw * hw)4829 static int e1000_set_phy_type (struct e1000_hw *hw)
4830 {
4831 	DEBUGFUNC ();
4832 
4833 	if (hw->mac_type == e1000_undefined)
4834 		return -E1000_ERR_PHY_TYPE;
4835 
4836 	switch (hw->phy_id) {
4837 	case M88E1000_E_PHY_ID:
4838 	case M88E1000_I_PHY_ID:
4839 	case M88E1011_I_PHY_ID:
4840 	case M88E1111_I_PHY_ID:
4841 		hw->phy_type = e1000_phy_m88;
4842 		break;
4843 	case IGP01E1000_I_PHY_ID:
4844 		if (hw->mac_type == e1000_82541 ||
4845 			hw->mac_type == e1000_82541_rev_2 ||
4846 			hw->mac_type == e1000_82547 ||
4847 			hw->mac_type == e1000_82547_rev_2) {
4848 			hw->phy_type = e1000_phy_igp;
4849 			break;
4850 		}
4851 	case IGP03E1000_E_PHY_ID:
4852 		hw->phy_type = e1000_phy_igp_3;
4853 		break;
4854 	case IFE_E_PHY_ID:
4855 	case IFE_PLUS_E_PHY_ID:
4856 	case IFE_C_E_PHY_ID:
4857 		hw->phy_type = e1000_phy_ife;
4858 		break;
4859 	case GG82563_E_PHY_ID:
4860 		if (hw->mac_type == e1000_80003es2lan) {
4861 			hw->phy_type = e1000_phy_gg82563;
4862 			break;
4863 		}
4864 	case BME1000_E_PHY_ID:
4865 		hw->phy_type = e1000_phy_bm;
4866 		break;
4867 	case I210_I_PHY_ID:
4868 		hw->phy_type = e1000_phy_igb;
4869 		break;
4870 		/* Fall Through */
4871 	default:
4872 		/* Should never have loaded on this device */
4873 		hw->phy_type = e1000_phy_undefined;
4874 		return -E1000_ERR_PHY_TYPE;
4875 	}
4876 
4877 	return E1000_SUCCESS;
4878 }
4879 
4880 /******************************************************************************
4881 * Probes the expected PHY address for known PHY IDs
4882 *
4883 * hw - Struct containing variables accessed by shared code
4884 ******************************************************************************/
4885 static int32_t
e1000_detect_gig_phy(struct e1000_hw * hw)4886 e1000_detect_gig_phy(struct e1000_hw *hw)
4887 {
4888 	int32_t phy_init_status, ret_val;
4889 	uint16_t phy_id_high, phy_id_low;
4890 	bool match = false;
4891 
4892 	DEBUGFUNC();
4893 
4894 	/* The 82571 firmware may still be configuring the PHY.  In this
4895 	 * case, we cannot access the PHY until the configuration is done.  So
4896 	 * we explicitly set the PHY values. */
4897 	if (hw->mac_type == e1000_82571 ||
4898 		hw->mac_type == e1000_82572) {
4899 		hw->phy_id = IGP01E1000_I_PHY_ID;
4900 		hw->phy_type = e1000_phy_igp_2;
4901 		return E1000_SUCCESS;
4902 	}
4903 
4904 	/* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4905 	 * work- around that forces PHY page 0 to be set or the reads fail.
4906 	 * The rest of the code in this routine uses e1000_read_phy_reg to
4907 	 * read the PHY ID.  So for ESB-2 we need to have this set so our
4908 	 * reads won't fail.  If the attached PHY is not a e1000_phy_gg82563,
4909 	 * the routines below will figure this out as well. */
4910 	if (hw->mac_type == e1000_80003es2lan)
4911 		hw->phy_type = e1000_phy_gg82563;
4912 
4913 	/* Read the PHY ID Registers to identify which PHY is onboard. */
4914 	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4915 	if (ret_val)
4916 		return ret_val;
4917 
4918 	hw->phy_id = (uint32_t) (phy_id_high << 16);
4919 	udelay(20);
4920 	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4921 	if (ret_val)
4922 		return ret_val;
4923 
4924 	hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4925 	hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4926 
4927 	switch (hw->mac_type) {
4928 	case e1000_82543:
4929 		if (hw->phy_id == M88E1000_E_PHY_ID)
4930 			match = true;
4931 		break;
4932 	case e1000_82544:
4933 		if (hw->phy_id == M88E1000_I_PHY_ID)
4934 			match = true;
4935 		break;
4936 	case e1000_82540:
4937 	case e1000_82545:
4938 	case e1000_82545_rev_3:
4939 	case e1000_82546:
4940 	case e1000_82546_rev_3:
4941 		if (hw->phy_id == M88E1011_I_PHY_ID)
4942 			match = true;
4943 		break;
4944 	case e1000_82541:
4945 	case e1000_82541_rev_2:
4946 	case e1000_82547:
4947 	case e1000_82547_rev_2:
4948 		if(hw->phy_id == IGP01E1000_I_PHY_ID)
4949 			match = true;
4950 
4951 		break;
4952 	case e1000_82573:
4953 		if (hw->phy_id == M88E1111_I_PHY_ID)
4954 			match = true;
4955 		break;
4956 	case e1000_82574:
4957 		if (hw->phy_id == BME1000_E_PHY_ID)
4958 			match = true;
4959 		break;
4960 	case e1000_80003es2lan:
4961 		if (hw->phy_id == GG82563_E_PHY_ID)
4962 			match = true;
4963 		break;
4964 	case e1000_ich8lan:
4965 		if (hw->phy_id == IGP03E1000_E_PHY_ID)
4966 			match = true;
4967 		if (hw->phy_id == IFE_E_PHY_ID)
4968 			match = true;
4969 		if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4970 			match = true;
4971 		if (hw->phy_id == IFE_C_E_PHY_ID)
4972 			match = true;
4973 		break;
4974 	case e1000_igb:
4975 		if (hw->phy_id == I210_I_PHY_ID)
4976 			match = true;
4977 		break;
4978 	default:
4979 		DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4980 		return -E1000_ERR_CONFIG;
4981 	}
4982 
4983 	phy_init_status = e1000_set_phy_type(hw);
4984 
4985 	if ((match) && (phy_init_status == E1000_SUCCESS)) {
4986 		DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4987 		return 0;
4988 	}
4989 	DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4990 	return -E1000_ERR_PHY;
4991 }
4992 
4993 /*****************************************************************************
4994  * Set media type and TBI compatibility.
4995  *
4996  * hw - Struct containing variables accessed by shared code
4997  * **************************************************************************/
4998 void
e1000_set_media_type(struct e1000_hw * hw)4999 e1000_set_media_type(struct e1000_hw *hw)
5000 {
5001 	uint32_t status;
5002 
5003 	DEBUGFUNC();
5004 
5005 	if (hw->mac_type != e1000_82543) {
5006 		/* tbi_compatibility is only valid on 82543 */
5007 		hw->tbi_compatibility_en = false;
5008 	}
5009 
5010 	switch (hw->device_id) {
5011 	case E1000_DEV_ID_82545GM_SERDES:
5012 	case E1000_DEV_ID_82546GB_SERDES:
5013 	case E1000_DEV_ID_82571EB_SERDES:
5014 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
5015 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
5016 	case E1000_DEV_ID_82572EI_SERDES:
5017 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
5018 		hw->media_type = e1000_media_type_internal_serdes;
5019 		break;
5020 	default:
5021 		switch (hw->mac_type) {
5022 		case e1000_82542_rev2_0:
5023 		case e1000_82542_rev2_1:
5024 			hw->media_type = e1000_media_type_fiber;
5025 			break;
5026 		case e1000_ich8lan:
5027 		case e1000_82573:
5028 		case e1000_82574:
5029 		case e1000_igb:
5030 			/* The STATUS_TBIMODE bit is reserved or reused
5031 			 * for the this device.
5032 			 */
5033 			hw->media_type = e1000_media_type_copper;
5034 			break;
5035 		default:
5036 			status = E1000_READ_REG(hw, STATUS);
5037 			if (status & E1000_STATUS_TBIMODE) {
5038 				hw->media_type = e1000_media_type_fiber;
5039 				/* tbi_compatibility not valid on fiber */
5040 				hw->tbi_compatibility_en = false;
5041 			} else {
5042 				hw->media_type = e1000_media_type_copper;
5043 			}
5044 			break;
5045 		}
5046 	}
5047 }
5048 
5049 /**
5050  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
5051  *
5052  * e1000_sw_init initializes the Adapter private data structure.
5053  * Fields are initialized based on PCI device information and
5054  * OS network device settings (MTU size).
5055  **/
5056 
5057 static int
e1000_sw_init(struct e1000_hw * hw)5058 e1000_sw_init(struct e1000_hw *hw)
5059 {
5060 	int result;
5061 
5062 	/* PCI config space info */
5063 #ifdef CONFIG_DM_ETH
5064 	dm_pci_read_config16(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
5065 	dm_pci_read_config16(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
5066 	dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
5067 			     &hw->subsystem_vendor_id);
5068 	dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
5069 
5070 	dm_pci_read_config8(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
5071 	dm_pci_read_config16(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
5072 #else
5073 	pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
5074 	pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
5075 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
5076 			     &hw->subsystem_vendor_id);
5077 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
5078 
5079 	pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
5080 	pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
5081 #endif
5082 
5083 	/* identify the MAC */
5084 	result = e1000_set_mac_type(hw);
5085 	if (result) {
5086 		E1000_ERR(hw, "Unknown MAC Type\n");
5087 		return result;
5088 	}
5089 
5090 	switch (hw->mac_type) {
5091 	default:
5092 		break;
5093 	case e1000_82541:
5094 	case e1000_82547:
5095 	case e1000_82541_rev_2:
5096 	case e1000_82547_rev_2:
5097 		hw->phy_init_script = 1;
5098 		break;
5099 	}
5100 
5101 	/* flow control settings */
5102 	hw->fc_high_water = E1000_FC_HIGH_THRESH;
5103 	hw->fc_low_water = E1000_FC_LOW_THRESH;
5104 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
5105 	hw->fc_send_xon = 1;
5106 
5107 	/* Media type - copper or fiber */
5108 	hw->tbi_compatibility_en = true;
5109 	e1000_set_media_type(hw);
5110 
5111 	if (hw->mac_type >= e1000_82543) {
5112 		uint32_t status = E1000_READ_REG(hw, STATUS);
5113 
5114 		if (status & E1000_STATUS_TBIMODE) {
5115 			DEBUGOUT("fiber interface\n");
5116 			hw->media_type = e1000_media_type_fiber;
5117 		} else {
5118 			DEBUGOUT("copper interface\n");
5119 			hw->media_type = e1000_media_type_copper;
5120 		}
5121 	} else {
5122 		hw->media_type = e1000_media_type_fiber;
5123 	}
5124 
5125 	hw->wait_autoneg_complete = true;
5126 	if (hw->mac_type < e1000_82543)
5127 		hw->report_tx_early = 0;
5128 	else
5129 		hw->report_tx_early = 1;
5130 
5131 	return E1000_SUCCESS;
5132 }
5133 
5134 void
fill_rx(struct e1000_hw * hw)5135 fill_rx(struct e1000_hw *hw)
5136 {
5137 	struct e1000_rx_desc *rd;
5138 	unsigned long flush_start, flush_end;
5139 
5140 	rx_last = rx_tail;
5141 	rd = rx_base + rx_tail;
5142 	rx_tail = (rx_tail + 1) % 8;
5143 	memset(rd, 0, 16);
5144 	rd->buffer_addr = cpu_to_le64(virt_to_phys(packet));
5145 
5146 	/*
5147 	 * Make sure there are no stale data in WB over this area, which
5148 	 * might get written into the memory while the e1000 also writes
5149 	 * into the same memory area.
5150 	 */
5151 	invalidate_dcache_range((unsigned long)packet,
5152 				(unsigned long)packet + 4096);
5153 	/* Dump the DMA descriptor into RAM. */
5154 	flush_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
5155 	flush_end = flush_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
5156 	flush_dcache_range(flush_start, flush_end);
5157 
5158 	E1000_WRITE_REG(hw, RDT, rx_tail);
5159 }
5160 
5161 /**
5162  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
5163  * @adapter: board private structure
5164  *
5165  * Configure the Tx unit of the MAC after a reset.
5166  **/
5167 
5168 static void
e1000_configure_tx(struct e1000_hw * hw)5169 e1000_configure_tx(struct e1000_hw *hw)
5170 {
5171 	unsigned long tctl;
5172 	unsigned long tipg, tarc;
5173 	uint32_t ipgr1, ipgr2;
5174 
5175 	E1000_WRITE_REG(hw, TDBAL, lower_32_bits(virt_to_phys(tx_base)));
5176 	E1000_WRITE_REG(hw, TDBAH, upper_32_bits(virt_to_phys(tx_base)));
5177 
5178 	E1000_WRITE_REG(hw, TDLEN, 128);
5179 
5180 	/* Setup the HW Tx Head and Tail descriptor pointers */
5181 	E1000_WRITE_REG(hw, TDH, 0);
5182 	E1000_WRITE_REG(hw, TDT, 0);
5183 	tx_tail = 0;
5184 
5185 	/* Set the default values for the Tx Inter Packet Gap timer */
5186 	if (hw->mac_type <= e1000_82547_rev_2 &&
5187 	    (hw->media_type == e1000_media_type_fiber ||
5188 	     hw->media_type == e1000_media_type_internal_serdes))
5189 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
5190 	else
5191 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
5192 
5193 	/* Set the default values for the Tx Inter Packet Gap timer */
5194 	switch (hw->mac_type) {
5195 	case e1000_82542_rev2_0:
5196 	case e1000_82542_rev2_1:
5197 		tipg = DEFAULT_82542_TIPG_IPGT;
5198 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
5199 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
5200 		break;
5201 	case e1000_80003es2lan:
5202 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
5203 		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
5204 		break;
5205 	default:
5206 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
5207 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
5208 		break;
5209 	}
5210 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
5211 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
5212 	E1000_WRITE_REG(hw, TIPG, tipg);
5213 	/* Program the Transmit Control Register */
5214 	tctl = E1000_READ_REG(hw, TCTL);
5215 	tctl &= ~E1000_TCTL_CT;
5216 	tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
5217 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
5218 
5219 	if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
5220 		tarc = E1000_READ_REG(hw, TARC0);
5221 		/* set the speed mode bit, we'll clear it if we're not at
5222 		 * gigabit link later */
5223 		/* git bit can be set to 1*/
5224 	} else if (hw->mac_type == e1000_80003es2lan) {
5225 		tarc = E1000_READ_REG(hw, TARC0);
5226 		tarc |= 1;
5227 		E1000_WRITE_REG(hw, TARC0, tarc);
5228 		tarc = E1000_READ_REG(hw, TARC1);
5229 		tarc |= 1;
5230 		E1000_WRITE_REG(hw, TARC1, tarc);
5231 	}
5232 
5233 
5234 	e1000_config_collision_dist(hw);
5235 	/* Setup Transmit Descriptor Settings for eop descriptor */
5236 	hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
5237 
5238 	/* Need to set up RS bit */
5239 	if (hw->mac_type < e1000_82543)
5240 		hw->txd_cmd |= E1000_TXD_CMD_RPS;
5241 	else
5242 		hw->txd_cmd |= E1000_TXD_CMD_RS;
5243 
5244 
5245 	if (hw->mac_type == e1000_igb) {
5246 		E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10);
5247 
5248 		uint32_t reg_txdctl = E1000_READ_REG(hw, TXDCTL);
5249 		reg_txdctl |= 1 << 25;
5250 		E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
5251 		mdelay(20);
5252 	}
5253 
5254 
5255 
5256 	E1000_WRITE_REG(hw, TCTL, tctl);
5257 
5258 
5259 }
5260 
5261 /**
5262  * e1000_setup_rctl - configure the receive control register
5263  * @adapter: Board private structure
5264  **/
5265 static void
e1000_setup_rctl(struct e1000_hw * hw)5266 e1000_setup_rctl(struct e1000_hw *hw)
5267 {
5268 	uint32_t rctl;
5269 
5270 	rctl = E1000_READ_REG(hw, RCTL);
5271 
5272 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
5273 
5274 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
5275 		| E1000_RCTL_RDMTS_HALF;	/* |
5276 			(hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
5277 
5278 	if (hw->tbi_compatibility_on == 1)
5279 		rctl |= E1000_RCTL_SBP;
5280 	else
5281 		rctl &= ~E1000_RCTL_SBP;
5282 
5283 	rctl &= ~(E1000_RCTL_SZ_4096);
5284 		rctl |= E1000_RCTL_SZ_2048;
5285 		rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
5286 	E1000_WRITE_REG(hw, RCTL, rctl);
5287 }
5288 
5289 /**
5290  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
5291  * @adapter: board private structure
5292  *
5293  * Configure the Rx unit of the MAC after a reset.
5294  **/
5295 static void
e1000_configure_rx(struct e1000_hw * hw)5296 e1000_configure_rx(struct e1000_hw *hw)
5297 {
5298 	unsigned long rctl, ctrl_ext;
5299 	rx_tail = 0;
5300 
5301 	/* make sure receives are disabled while setting up the descriptors */
5302 	rctl = E1000_READ_REG(hw, RCTL);
5303 	E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
5304 	if (hw->mac_type >= e1000_82540) {
5305 		/* Set the interrupt throttling rate.  Value is calculated
5306 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
5307 #define MAX_INTS_PER_SEC	8000
5308 #define DEFAULT_ITR		1000000000/(MAX_INTS_PER_SEC * 256)
5309 		E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
5310 	}
5311 
5312 	if (hw->mac_type >= e1000_82571) {
5313 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5314 		/* Reset delay timers after every interrupt */
5315 		ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
5316 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5317 		E1000_WRITE_FLUSH(hw);
5318 	}
5319 	/* Setup the Base and Length of the Rx Descriptor Ring */
5320 	E1000_WRITE_REG(hw, RDBAL, lower_32_bits(virt_to_phys(rx_base)));
5321 	E1000_WRITE_REG(hw, RDBAH, upper_32_bits(virt_to_phys(rx_base)));
5322 
5323 	E1000_WRITE_REG(hw, RDLEN, 128);
5324 
5325 	/* Setup the HW Rx Head and Tail Descriptor Pointers */
5326 	E1000_WRITE_REG(hw, RDH, 0);
5327 	E1000_WRITE_REG(hw, RDT, 0);
5328 	/* Enable Receives */
5329 
5330 	if (hw->mac_type == e1000_igb) {
5331 
5332 		uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL);
5333 		reg_rxdctl |= 1 << 25;
5334 		E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl);
5335 		mdelay(20);
5336 	}
5337 
5338 	E1000_WRITE_REG(hw, RCTL, rctl);
5339 
5340 	fill_rx(hw);
5341 }
5342 
5343 /**************************************************************************
5344 POLL - Wait for a frame
5345 ***************************************************************************/
5346 static int
_e1000_poll(struct e1000_hw * hw)5347 _e1000_poll(struct e1000_hw *hw)
5348 {
5349 	struct e1000_rx_desc *rd;
5350 	unsigned long inval_start, inval_end;
5351 	uint32_t len;
5352 
5353 	/* return true if there's an ethernet packet ready to read */
5354 	rd = rx_base + rx_last;
5355 
5356 	/* Re-load the descriptor from RAM. */
5357 	inval_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
5358 	inval_end = inval_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
5359 	invalidate_dcache_range(inval_start, inval_end);
5360 
5361 	if (!(rd->status & E1000_RXD_STAT_DD))
5362 		return 0;
5363 	/* DEBUGOUT("recv: packet len=%d\n", rd->length); */
5364 	/* Packet received, make sure the data are re-loaded from RAM. */
5365 	len = le16_to_cpu(rd->length);
5366 	invalidate_dcache_range((unsigned long)packet,
5367 				(unsigned long)packet +
5368 				roundup(len, ARCH_DMA_MINALIGN));
5369 	return len;
5370 }
5371 
_e1000_transmit(struct e1000_hw * hw,void * txpacket,int length)5372 static int _e1000_transmit(struct e1000_hw *hw, void *txpacket, int length)
5373 {
5374 	void *nv_packet = (void *)txpacket;
5375 	struct e1000_tx_desc *txp;
5376 	int i = 0;
5377 	unsigned long flush_start, flush_end;
5378 
5379 	txp = tx_base + tx_tail;
5380 	tx_tail = (tx_tail + 1) % 8;
5381 
5382 	txp->buffer_addr = cpu_to_le64(virt_to_phys(nv_packet));
5383 	txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
5384 	txp->upper.data = 0;
5385 
5386 	/* Dump the packet into RAM so e1000 can pick them. */
5387 	flush_dcache_range((unsigned long)nv_packet,
5388 			   (unsigned long)nv_packet +
5389 			   roundup(length, ARCH_DMA_MINALIGN));
5390 	/* Dump the descriptor into RAM as well. */
5391 	flush_start = ((unsigned long)txp) & ~(ARCH_DMA_MINALIGN - 1);
5392 	flush_end = flush_start + roundup(sizeof(*txp), ARCH_DMA_MINALIGN);
5393 	flush_dcache_range(flush_start, flush_end);
5394 
5395 	E1000_WRITE_REG(hw, TDT, tx_tail);
5396 
5397 	E1000_WRITE_FLUSH(hw);
5398 	while (1) {
5399 		invalidate_dcache_range(flush_start, flush_end);
5400 		if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)
5401 			break;
5402 		if (i++ > TOUT_LOOP) {
5403 			DEBUGOUT("e1000: tx timeout\n");
5404 			return 0;
5405 		}
5406 		udelay(10);	/* give the nic a chance to write to the register */
5407 	}
5408 	return 1;
5409 }
5410 
5411 static void
_e1000_disable(struct e1000_hw * hw)5412 _e1000_disable(struct e1000_hw *hw)
5413 {
5414 	/* Turn off the ethernet interface */
5415 	E1000_WRITE_REG(hw, RCTL, 0);
5416 	E1000_WRITE_REG(hw, TCTL, 0);
5417 
5418 	/* Clear the transmit ring */
5419 	E1000_WRITE_REG(hw, TDH, 0);
5420 	E1000_WRITE_REG(hw, TDT, 0);
5421 
5422 	/* Clear the receive ring */
5423 	E1000_WRITE_REG(hw, RDH, 0);
5424 	E1000_WRITE_REG(hw, RDT, 0);
5425 
5426 	mdelay(10);
5427 }
5428 
5429 /*reset function*/
5430 static inline int
e1000_reset(struct e1000_hw * hw,unsigned char enetaddr[6])5431 e1000_reset(struct e1000_hw *hw, unsigned char enetaddr[6])
5432 {
5433 	e1000_reset_hw(hw);
5434 	if (hw->mac_type >= e1000_82544)
5435 		E1000_WRITE_REG(hw, WUC, 0);
5436 
5437 	return e1000_init_hw(hw, enetaddr);
5438 }
5439 
5440 static int
_e1000_init(struct e1000_hw * hw,unsigned char enetaddr[6])5441 _e1000_init(struct e1000_hw *hw, unsigned char enetaddr[6])
5442 {
5443 	int ret_val = 0;
5444 
5445 	ret_val = e1000_reset(hw, enetaddr);
5446 	if (ret_val < 0) {
5447 		if ((ret_val == -E1000_ERR_NOLINK) ||
5448 		    (ret_val == -E1000_ERR_TIMEOUT)) {
5449 			E1000_ERR(hw, "Valid Link not detected: %d\n", ret_val);
5450 		} else {
5451 			E1000_ERR(hw, "Hardware Initialization Failed\n");
5452 		}
5453 		return ret_val;
5454 	}
5455 	e1000_configure_tx(hw);
5456 	e1000_setup_rctl(hw);
5457 	e1000_configure_rx(hw);
5458 	return 0;
5459 }
5460 
5461 /******************************************************************************
5462  * Gets the current PCI bus type of hardware
5463  *
5464  * hw - Struct containing variables accessed by shared code
5465  *****************************************************************************/
e1000_get_bus_type(struct e1000_hw * hw)5466 void e1000_get_bus_type(struct e1000_hw *hw)
5467 {
5468 	uint32_t status;
5469 
5470 	switch (hw->mac_type) {
5471 	case e1000_82542_rev2_0:
5472 	case e1000_82542_rev2_1:
5473 		hw->bus_type = e1000_bus_type_pci;
5474 		break;
5475 	case e1000_82571:
5476 	case e1000_82572:
5477 	case e1000_82573:
5478 	case e1000_82574:
5479 	case e1000_80003es2lan:
5480 	case e1000_ich8lan:
5481 	case e1000_igb:
5482 		hw->bus_type = e1000_bus_type_pci_express;
5483 		break;
5484 	default:
5485 		status = E1000_READ_REG(hw, STATUS);
5486 		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5487 				e1000_bus_type_pcix : e1000_bus_type_pci;
5488 		break;
5489 	}
5490 }
5491 
5492 #ifndef CONFIG_DM_ETH
5493 /* A list of all registered e1000 devices */
5494 static LIST_HEAD(e1000_hw_list);
5495 #endif
5496 
5497 #ifdef CONFIG_DM_ETH
e1000_init_one(struct e1000_hw * hw,int cardnum,struct udevice * devno,unsigned char enetaddr[6])5498 static int e1000_init_one(struct e1000_hw *hw, int cardnum,
5499 			  struct udevice *devno, unsigned char enetaddr[6])
5500 #else
5501 static int e1000_init_one(struct e1000_hw *hw, int cardnum, pci_dev_t devno,
5502 			  unsigned char enetaddr[6])
5503 #endif
5504 {
5505 	u32 val;
5506 
5507 	/* Assign the passed-in values */
5508 #ifdef CONFIG_DM_ETH
5509 	hw->pdev = devno;
5510 #else
5511 	hw->pdev = devno;
5512 #endif
5513 	hw->cardnum = cardnum;
5514 
5515 	/* Print a debug message with the IO base address */
5516 #ifdef CONFIG_DM_ETH
5517 	dm_pci_read_config32(devno, PCI_BASE_ADDRESS_0, &val);
5518 #else
5519 	pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5520 #endif
5521 	E1000_DBG(hw, "iobase 0x%08x\n", val & 0xfffffff0);
5522 
5523 	/* Try to enable I/O accesses and bus-mastering */
5524 	val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5525 #ifdef CONFIG_DM_ETH
5526 	dm_pci_write_config32(devno, PCI_COMMAND, val);
5527 #else
5528 	pci_write_config_dword(devno, PCI_COMMAND, val);
5529 #endif
5530 
5531 	/* Make sure it worked */
5532 #ifdef CONFIG_DM_ETH
5533 	dm_pci_read_config32(devno, PCI_COMMAND, &val);
5534 #else
5535 	pci_read_config_dword(devno, PCI_COMMAND, &val);
5536 #endif
5537 	if (!(val & PCI_COMMAND_MEMORY)) {
5538 		E1000_ERR(hw, "Can't enable I/O memory\n");
5539 		return -ENOSPC;
5540 	}
5541 	if (!(val & PCI_COMMAND_MASTER)) {
5542 		E1000_ERR(hw, "Can't enable bus-mastering\n");
5543 		return -EPERM;
5544 	}
5545 
5546 	/* Are these variables needed? */
5547 	hw->fc = e1000_fc_default;
5548 	hw->original_fc = e1000_fc_default;
5549 	hw->autoneg_failed = 0;
5550 	hw->autoneg = 1;
5551 	hw->get_link_status = true;
5552 #ifndef CONFIG_E1000_NO_NVM
5553 	hw->eeprom_semaphore_present = true;
5554 #endif
5555 #ifdef CONFIG_DM_ETH
5556 	hw->hw_addr = dm_pci_map_bar(devno,	PCI_BASE_ADDRESS_0,
5557 						PCI_REGION_MEM);
5558 #else
5559 	hw->hw_addr = pci_map_bar(devno,	PCI_BASE_ADDRESS_0,
5560 						PCI_REGION_MEM);
5561 #endif
5562 	hw->mac_type = e1000_undefined;
5563 
5564 	/* MAC and Phy settings */
5565 	if (e1000_sw_init(hw) < 0) {
5566 		E1000_ERR(hw, "Software init failed\n");
5567 		return -EIO;
5568 	}
5569 	if (e1000_check_phy_reset_block(hw))
5570 		E1000_ERR(hw, "PHY Reset is blocked!\n");
5571 
5572 	/* Basic init was OK, reset the hardware and allow SPI access */
5573 	e1000_reset_hw(hw);
5574 
5575 #ifndef CONFIG_E1000_NO_NVM
5576 	/* Validate the EEPROM and get chipset information */
5577 	if (e1000_init_eeprom_params(hw)) {
5578 		E1000_ERR(hw, "EEPROM is invalid!\n");
5579 		return -EINVAL;
5580 	}
5581 	if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) &&
5582 	    e1000_validate_eeprom_checksum(hw))
5583 		return -ENXIO;
5584 	e1000_read_mac_addr(hw, enetaddr);
5585 #endif
5586 	e1000_get_bus_type(hw);
5587 
5588 #ifndef CONFIG_E1000_NO_NVM
5589 	printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n       ",
5590 	       enetaddr[0], enetaddr[1], enetaddr[2],
5591 	       enetaddr[3], enetaddr[4], enetaddr[5]);
5592 #else
5593 	memset(enetaddr, 0, 6);
5594 	printf("e1000: no NVM\n");
5595 #endif
5596 
5597 	return 0;
5598 }
5599 
5600 /* Put the name of a device in a string */
e1000_name(char * str,int cardnum)5601 static void e1000_name(char *str, int cardnum)
5602 {
5603 	sprintf(str, "e1000#%u", cardnum);
5604 }
5605 
5606 #ifndef CONFIG_DM_ETH
5607 /**************************************************************************
5608 TRANSMIT - Transmit a frame
5609 ***************************************************************************/
e1000_transmit(struct eth_device * nic,void * txpacket,int length)5610 static int e1000_transmit(struct eth_device *nic, void *txpacket, int length)
5611 {
5612 	struct e1000_hw *hw = nic->priv;
5613 
5614 	return _e1000_transmit(hw, txpacket, length);
5615 }
5616 
5617 /**************************************************************************
5618 DISABLE - Turn off ethernet interface
5619 ***************************************************************************/
5620 static void
e1000_disable(struct eth_device * nic)5621 e1000_disable(struct eth_device *nic)
5622 {
5623 	struct e1000_hw *hw = nic->priv;
5624 
5625 	_e1000_disable(hw);
5626 }
5627 
5628 /**************************************************************************
5629 INIT - set up ethernet interface(s)
5630 ***************************************************************************/
5631 static int
e1000_init(struct eth_device * nic,struct bd_info * bis)5632 e1000_init(struct eth_device *nic, struct bd_info *bis)
5633 {
5634 	struct e1000_hw *hw = nic->priv;
5635 
5636 	return _e1000_init(hw, nic->enetaddr);
5637 }
5638 
5639 static int
e1000_poll(struct eth_device * nic)5640 e1000_poll(struct eth_device *nic)
5641 {
5642 	struct e1000_hw *hw = nic->priv;
5643 	int len;
5644 
5645 	len = _e1000_poll(hw);
5646 	if (len) {
5647 		net_process_received_packet((uchar *)packet, len);
5648 		fill_rx(hw);
5649 	}
5650 
5651 	return len ? 1 : 0;
5652 }
5653 #endif /* !CONFIG_DM_ETH */
5654 
5655 #ifdef CONFIG_DM_ETH
e1000_write_hwaddr(struct udevice * dev)5656 static int e1000_write_hwaddr(struct udevice *dev)
5657 #else
5658 static int e1000_write_hwaddr(struct eth_device *dev)
5659 #endif
5660 {
5661 #ifndef CONFIG_E1000_NO_NVM
5662 	unsigned char current_mac[6];
5663 #ifdef CONFIG_DM_ETH
5664 	struct eth_pdata *plat = dev_get_plat(dev);
5665 	struct e1000_hw *hw = dev_get_priv(dev);
5666 	u8 *mac = plat->enetaddr;
5667 #else
5668 	struct e1000_hw *hw = dev->priv;
5669 	u8 *mac = dev->enetaddr;
5670 #endif
5671 	uint16_t data[3];
5672 	int ret_val, i;
5673 
5674 	DEBUGOUT("%s: mac=%pM\n", __func__, mac);
5675 
5676 	if ((hw->eeprom.type == e1000_eeprom_invm) &&
5677 	    !(E1000_READ_REG(hw, EECD) & E1000_EECD_FLASH_DETECTED_I210))
5678 		return -ENOSYS;
5679 
5680 	memset(current_mac, 0, 6);
5681 
5682 	/* Read from EEPROM, not from registers, to make sure
5683 	 * the address is persistently configured
5684 	 */
5685 	ret_val = e1000_read_mac_addr_from_eeprom(hw, current_mac);
5686 	DEBUGOUT("%s: current mac=%pM\n", __func__, current_mac);
5687 
5688 	/* Only write to EEPROM if the given address is different or
5689 	 * reading the current address failed
5690 	 */
5691 	if (!ret_val && memcmp(current_mac, mac, 6) == 0)
5692 		return 0;
5693 
5694 	for (i = 0; i < 3; ++i)
5695 		data[i] = mac[i * 2 + 1] << 8 | mac[i * 2];
5696 
5697 	ret_val = e1000_write_eeprom_srwr(hw, 0x0, 3, data);
5698 
5699 	if (!ret_val)
5700 		ret_val = e1000_update_eeprom_checksum_i210(hw);
5701 
5702 	return ret_val;
5703 #else
5704 	return 0;
5705 #endif
5706 }
5707 
5708 #ifndef CONFIG_DM_ETH
5709 /**************************************************************************
5710 PROBE - Look for an adapter, this routine's visible to the outside
5711 You should omit the last argument struct pci_device * for a non-PCI NIC
5712 ***************************************************************************/
5713 int
e1000_initialize(struct bd_info * bis)5714 e1000_initialize(struct bd_info * bis)
5715 {
5716 	unsigned int i;
5717 	pci_dev_t devno;
5718 	int ret;
5719 
5720 	DEBUGFUNC();
5721 
5722 	/* Find and probe all the matching PCI devices */
5723 	for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
5724 		/*
5725 		 * These will never get freed due to errors, this allows us to
5726 		 * perform SPI EEPROM programming from U-Boot, for example.
5727 		 */
5728 		struct eth_device *nic = malloc(sizeof(*nic));
5729 		struct e1000_hw *hw = malloc(sizeof(*hw));
5730 		if (!nic || !hw) {
5731 			printf("e1000#%u: Out of Memory!\n", i);
5732 			free(nic);
5733 			free(hw);
5734 			continue;
5735 		}
5736 
5737 		/* Make sure all of the fields are initially zeroed */
5738 		memset(nic, 0, sizeof(*nic));
5739 		memset(hw, 0, sizeof(*hw));
5740 		nic->priv = hw;
5741 
5742 		/* Generate a card name */
5743 		e1000_name(nic->name, i);
5744 		hw->name = nic->name;
5745 
5746 		ret = e1000_init_one(hw, i, devno, nic->enetaddr);
5747 		if (ret)
5748 			continue;
5749 		list_add_tail(&hw->list_node, &e1000_hw_list);
5750 
5751 		hw->nic = nic;
5752 
5753 		/* Set up the function pointers and register the device */
5754 		nic->init = e1000_init;
5755 		nic->recv = e1000_poll;
5756 		nic->send = e1000_transmit;
5757 		nic->halt = e1000_disable;
5758 		nic->write_hwaddr = e1000_write_hwaddr;
5759 		eth_register(nic);
5760 	}
5761 
5762 	return i;
5763 }
5764 
e1000_find_card(unsigned int cardnum)5765 struct e1000_hw *e1000_find_card(unsigned int cardnum)
5766 {
5767 	struct e1000_hw *hw;
5768 
5769 	list_for_each_entry(hw, &e1000_hw_list, list_node)
5770 		if (hw->cardnum == cardnum)
5771 			return hw;
5772 
5773 	return NULL;
5774 }
5775 #endif /* !CONFIG_DM_ETH */
5776 
5777 #ifdef CONFIG_CMD_E1000
do_e1000(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])5778 static int do_e1000(struct cmd_tbl *cmdtp, int flag, int argc,
5779 		    char *const argv[])
5780 {
5781 	unsigned char *mac = NULL;
5782 #ifdef CONFIG_DM_ETH
5783 	struct eth_pdata *plat;
5784 	struct udevice *dev;
5785 	char name[30];
5786 	int ret;
5787 #endif
5788 #if !defined(CONFIG_DM_ETH) || defined(CONFIG_E1000_SPI)
5789 	struct e1000_hw *hw;
5790 #endif
5791 	int cardnum;
5792 
5793 	if (argc < 3) {
5794 		cmd_usage(cmdtp);
5795 		return 1;
5796 	}
5797 
5798 	/* Make sure we can find the requested e1000 card */
5799 	cardnum = simple_strtoul(argv[1], NULL, 10);
5800 #ifdef CONFIG_DM_ETH
5801 	e1000_name(name, cardnum);
5802 	ret = uclass_get_device_by_name(UCLASS_ETH, name, &dev);
5803 	if (!ret) {
5804 		plat = dev_get_plat(dev);
5805 		mac = plat->enetaddr;
5806 	}
5807 #else
5808 	hw = e1000_find_card(cardnum);
5809 	if (hw)
5810 		mac = hw->nic->enetaddr;
5811 #endif
5812 	if (!mac) {
5813 		printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5814 		return 1;
5815 	}
5816 
5817 	if (!strcmp(argv[2], "print-mac-address")) {
5818 		printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5819 			mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5820 		return 0;
5821 	}
5822 
5823 #ifdef CONFIG_E1000_SPI
5824 #ifdef CONFIG_DM_ETH
5825 	hw = dev_get_priv(dev);
5826 #endif
5827 	/* Handle the "SPI" subcommand */
5828 	if (!strcmp(argv[2], "spi"))
5829 		return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5830 #endif
5831 
5832 	cmd_usage(cmdtp);
5833 	return 1;
5834 }
5835 
5836 U_BOOT_CMD(
5837 	e1000, 7, 0, do_e1000,
5838 	"Intel e1000 controller management",
5839 	/*  */"<card#> print-mac-address\n"
5840 #ifdef CONFIG_E1000_SPI
5841 	"e1000 <card#> spi show [<offset> [<length>]]\n"
5842 	"e1000 <card#> spi dump <addr> <offset> <length>\n"
5843 	"e1000 <card#> spi program <addr> <offset> <length>\n"
5844 	"e1000 <card#> spi checksum [update]\n"
5845 #endif
5846 	"       - Manage the Intel E1000 PCI device"
5847 );
5848 #endif /* not CONFIG_CMD_E1000 */
5849 
5850 #ifdef CONFIG_DM_ETH
e1000_eth_start(struct udevice * dev)5851 static int e1000_eth_start(struct udevice *dev)
5852 {
5853 	struct eth_pdata *plat = dev_get_plat(dev);
5854 	struct e1000_hw *hw = dev_get_priv(dev);
5855 
5856 	return _e1000_init(hw, plat->enetaddr);
5857 }
5858 
e1000_eth_stop(struct udevice * dev)5859 static void e1000_eth_stop(struct udevice *dev)
5860 {
5861 	struct e1000_hw *hw = dev_get_priv(dev);
5862 
5863 	_e1000_disable(hw);
5864 }
5865 
e1000_eth_send(struct udevice * dev,void * packet,int length)5866 static int e1000_eth_send(struct udevice *dev, void *packet, int length)
5867 {
5868 	struct e1000_hw *hw = dev_get_priv(dev);
5869 	int ret;
5870 
5871 	ret = _e1000_transmit(hw, packet, length);
5872 
5873 	return ret ? 0 : -ETIMEDOUT;
5874 }
5875 
e1000_eth_recv(struct udevice * dev,int flags,uchar ** packetp)5876 static int e1000_eth_recv(struct udevice *dev, int flags, uchar **packetp)
5877 {
5878 	struct e1000_hw *hw = dev_get_priv(dev);
5879 	int len;
5880 
5881 	len = _e1000_poll(hw);
5882 	if (len)
5883 		*packetp = packet;
5884 
5885 	return len ? len : -EAGAIN;
5886 }
5887 
e1000_free_pkt(struct udevice * dev,uchar * packet,int length)5888 static int e1000_free_pkt(struct udevice *dev, uchar *packet, int length)
5889 {
5890 	struct e1000_hw *hw = dev_get_priv(dev);
5891 
5892 	fill_rx(hw);
5893 
5894 	return 0;
5895 }
5896 
e1000_eth_probe(struct udevice * dev)5897 static int e1000_eth_probe(struct udevice *dev)
5898 {
5899 	struct eth_pdata *plat = dev_get_plat(dev);
5900 	struct e1000_hw *hw = dev_get_priv(dev);
5901 	int ret;
5902 
5903 	hw->name = dev->name;
5904 	ret = e1000_init_one(hw, trailing_strtol(dev->name),
5905 			     dev, plat->enetaddr);
5906 	if (ret < 0) {
5907 		printf(pr_fmt("failed to initialize card: %d\n"), ret);
5908 		return ret;
5909 	}
5910 
5911 	return 0;
5912 }
5913 
e1000_eth_bind(struct udevice * dev)5914 static int e1000_eth_bind(struct udevice *dev)
5915 {
5916 	char name[20];
5917 
5918 	/*
5919 	 * A simple way to number the devices. When device tree is used this
5920 	 * is unnecessary, but when the device is just discovered on the PCI
5921 	 * bus we need a name. We could instead have the uclass figure out
5922 	 * which devices are different and number them.
5923 	 */
5924 	e1000_name(name, num_cards++);
5925 
5926 	return device_set_name(dev, name);
5927 }
5928 
5929 static const struct eth_ops e1000_eth_ops = {
5930 	.start	= e1000_eth_start,
5931 	.send	= e1000_eth_send,
5932 	.recv	= e1000_eth_recv,
5933 	.stop	= e1000_eth_stop,
5934 	.free_pkt = e1000_free_pkt,
5935 	.write_hwaddr = e1000_write_hwaddr,
5936 };
5937 
5938 static const struct udevice_id e1000_eth_ids[] = {
5939 	{ .compatible = "intel,e1000" },
5940 	{ }
5941 };
5942 
5943 U_BOOT_DRIVER(eth_e1000) = {
5944 	.name	= "eth_e1000",
5945 	.id	= UCLASS_ETH,
5946 	.of_match = e1000_eth_ids,
5947 	.bind	= e1000_eth_bind,
5948 	.probe	= e1000_eth_probe,
5949 	.ops	= &e1000_eth_ops,
5950 	.priv_auto	= sizeof(struct e1000_hw),
5951 	.plat_auto	= sizeof(struct eth_pdata),
5952 };
5953 
5954 U_BOOT_PCI_DEVICE(eth_e1000, e1000_supported);
5955 #endif
5956