1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
4  *
5  * U-Boot version:
6  * Copyright (C) 2014-2015 Stefan Roese <sr@denx.de>
7  *
8  * Based on the Linux version which is:
9  * Copyright (C) 2012 Marvell
10  *
11  * Rami Rosen <rosenr@marvell.com>
12  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
13  */
14 
15 #include <common.h>
16 #include <cpu_func.h>
17 #include <dm.h>
18 #include <log.h>
19 #include <net.h>
20 #include <netdev.h>
21 #include <config.h>
22 #include <malloc.h>
23 #include <asm/cache.h>
24 #include <asm/global_data.h>
25 #include <asm/io.h>
26 #include <dm/device_compat.h>
27 #include <dm/devres.h>
28 #include <linux/bitops.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/errno.h>
32 #include <phy.h>
33 #include <miiphy.h>
34 #include <watchdog.h>
35 #include <asm/arch/cpu.h>
36 #include <asm/arch/soc.h>
37 #include <linux/compat.h>
38 #include <linux/mbus.h>
39 #include <asm-generic/gpio.h>
40 
41 DECLARE_GLOBAL_DATA_PTR;
42 
43 #if !defined(CONFIG_PHYLIB)
44 # error Marvell mvneta requires PHYLIB
45 #endif
46 
47 #define CONFIG_NR_CPUS		1
48 #define ETH_HLEN		14	/* Total octets in header */
49 
50 /* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */
51 #define WRAP			(2 + ETH_HLEN + 4 + 32)
52 #define MTU			1500
53 #define RX_BUFFER_SIZE		(ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN))
54 
55 #define MVNETA_SMI_TIMEOUT			10000
56 
57 /* Registers */
58 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
59 #define	     MVNETA_RXQ_HW_BUF_ALLOC            BIT(1)
60 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
61 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
62 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
63 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
64 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
65 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
66 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
67 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
68 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
69 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
70 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
71 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
72 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
73 #define MVNETA_PORT_RX_RESET                    0x1cc0
74 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
75 #define MVNETA_PHY_ADDR                         0x2000
76 #define      MVNETA_PHY_ADDR_MASK               0x1f
77 #define MVNETA_SMI                              0x2004
78 #define      MVNETA_PHY_REG_MASK                0x1f
79 /* SMI register fields */
80 #define     MVNETA_SMI_DATA_OFFS		0	/* Data */
81 #define     MVNETA_SMI_DATA_MASK		(0xffff << MVNETA_SMI_DATA_OFFS)
82 #define     MVNETA_SMI_DEV_ADDR_OFFS		16	/* PHY device address */
83 #define     MVNETA_SMI_REG_ADDR_OFFS		21	/* PHY device reg addr*/
84 #define     MVNETA_SMI_OPCODE_OFFS		26	/* Write/Read opcode */
85 #define     MVNETA_SMI_OPCODE_READ		(1 << MVNETA_SMI_OPCODE_OFFS)
86 #define     MVNETA_SMI_READ_VALID		(1 << 27)	/* Read Valid */
87 #define     MVNETA_SMI_BUSY			(1 << 28)	/* Busy */
88 #define MVNETA_MBUS_RETRY                       0x2010
89 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
90 #define MVNETA_UNIT_CONTROL                     0x20B0
91 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
92 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
93 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
94 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
95 #define MVNETA_WIN_SIZE_MASK			(0xffff0000)
96 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
97 #define      MVNETA_BASE_ADDR_ENABLE_BIT	0x1
98 #define MVNETA_PORT_ACCESS_PROTECT              0x2294
99 #define      MVNETA_PORT_ACCESS_PROTECT_WIN0_RW	0x3
100 #define MVNETA_PORT_CONFIG                      0x2400
101 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
102 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
103 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
104 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
105 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
106 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
107 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
108 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
109 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
110 						 MVNETA_DEF_RXQ_ARP(q)	 | \
111 						 MVNETA_DEF_RXQ_TCP(q)	 | \
112 						 MVNETA_DEF_RXQ_UDP(q)	 | \
113 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
114 						 MVNETA_TX_UNSET_ERR_SUM | \
115 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
116 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
117 #define MVNETA_MAC_ADDR_LOW                      0x2414
118 #define MVNETA_MAC_ADDR_HIGH                     0x2418
119 #define MVNETA_SDMA_CONFIG                       0x241c
120 #define      MVNETA_SDMA_BRST_SIZE_16            4
121 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
122 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
123 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
124 #define      MVNETA_DESC_SWAP                    BIT(6)
125 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
126 #define MVNETA_PORT_STATUS                       0x2444
127 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
128 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
129 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
130 #define MVNETA_SERDES_CFG			 0x24A0
131 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
132 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
133 #define MVNETA_TYPE_PRIO                         0x24bc
134 #define      MVNETA_FORCE_UNI                    BIT(21)
135 #define MVNETA_TXQ_CMD_1                         0x24e4
136 #define MVNETA_TXQ_CMD                           0x2448
137 #define      MVNETA_TXQ_DISABLE_SHIFT            8
138 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
139 #define MVNETA_ACC_MODE                          0x2500
140 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
141 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
142 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
143 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
144 
145 /* Exception Interrupt Port/Queue Cause register */
146 
147 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
148 #define MVNETA_INTR_NEW_MASK                     0x25a4
149 
150 /* bits  0..7  = TXQ SENT, one bit per queue.
151  * bits  8..15 = RXQ OCCUP, one bit per queue.
152  * bits 16..23 = RXQ FREE, one bit per queue.
153  * bit  29 = OLD_REG_SUM, see old reg ?
154  * bit  30 = TX_ERR_SUM, one bit for 4 ports
155  * bit  31 = MISC_SUM,   one bit for 4 ports
156  */
157 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
158 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
159 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
160 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
161 
162 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
163 #define MVNETA_INTR_OLD_MASK                     0x25ac
164 
165 /* Data Path Port/Queue Cause Register */
166 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
167 #define MVNETA_INTR_MISC_MASK                    0x25b4
168 #define MVNETA_INTR_ENABLE                       0x25b8
169 
170 #define MVNETA_RXQ_CMD                           0x2680
171 #define      MVNETA_RXQ_DISABLE_SHIFT            8
172 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
173 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
174 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
175 #define MVNETA_GMAC_CTRL_0                       0x2c00
176 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
177 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
178 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
179 #define MVNETA_GMAC_CTRL_2                       0x2c08
180 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
181 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
182 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
183 #define MVNETA_GMAC_STATUS                       0x2c10
184 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
185 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
186 #define      MVNETA_GMAC_SPEED_100               BIT(2)
187 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
188 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
189 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
190 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
191 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
192 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
193 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
194 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
195 #define      MVNETA_GMAC_FORCE_LINK_UP           (BIT(0) | BIT(1))
196 #define      MVNETA_GMAC_IB_BYPASS_AN_EN         BIT(3)
197 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
198 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
199 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
200 #define      MVNETA_GMAC_SET_FC_EN               BIT(8)
201 #define      MVNETA_GMAC_ADVERT_FC_EN            BIT(9)
202 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
203 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
204 #define      MVNETA_GMAC_SAMPLE_TX_CFG_EN        BIT(15)
205 #define MVNETA_MIB_COUNTERS_BASE                 0x3080
206 #define      MVNETA_MIB_LATE_COLLISION           0x7c
207 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
208 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
209 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
210 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
211 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
212 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
213 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
214 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
215 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
216 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
217 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
218 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
219 #define MVNETA_PORT_TX_RESET                     0x3cf0
220 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
221 #define MVNETA_TX_MTU                            0x3e0c
222 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
223 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
224 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
225 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
226 
227 /* Descriptor ring Macros */
228 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
229 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
230 
231 /* Various constants */
232 
233 /* Coalescing */
234 #define MVNETA_TXDONE_COAL_PKTS		16
235 #define MVNETA_RX_COAL_PKTS		32
236 #define MVNETA_RX_COAL_USEC		100
237 
238 /* The two bytes Marvell header. Either contains a special value used
239  * by Marvell switches when a specific hardware mode is enabled (not
240  * supported by this driver) or is filled automatically by zeroes on
241  * the RX side. Those two bytes being at the front of the Ethernet
242  * header, they allow to have the IP header aligned on a 4 bytes
243  * boundary automatically: the hardware skips those two bytes on its
244  * own.
245  */
246 #define MVNETA_MH_SIZE			2
247 
248 #define MVNETA_VLAN_TAG_LEN             4
249 
250 #define MVNETA_CPU_D_CACHE_LINE_SIZE    32
251 #define MVNETA_TX_CSUM_MAX_SIZE		9800
252 #define MVNETA_ACC_MODE_EXT		1
253 
254 /* Timeout constants */
255 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
256 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
257 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
258 
259 #define MVNETA_TX_MTU_MAX		0x3ffff
260 
261 /* Max number of Rx descriptors */
262 #define MVNETA_MAX_RXD 16
263 
264 /* Max number of Tx descriptors */
265 #define MVNETA_MAX_TXD 16
266 
267 /* descriptor aligned size */
268 #define MVNETA_DESC_ALIGNED_SIZE	32
269 
270 struct mvneta_port {
271 	void __iomem *base;
272 	struct mvneta_rx_queue *rxqs;
273 	struct mvneta_tx_queue *txqs;
274 
275 	u8 mcast_count[256];
276 	u16 tx_ring_size;
277 	u16 rx_ring_size;
278 
279 	phy_interface_t phy_interface;
280 	unsigned int link;
281 	unsigned int duplex;
282 	unsigned int speed;
283 
284 	int init;
285 	int phyaddr;
286 	struct phy_device *phydev;
287 #if CONFIG_IS_ENABLED(DM_GPIO)
288 	struct gpio_desc phy_reset_gpio;
289 #endif
290 	struct mii_dev *bus;
291 };
292 
293 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
294  * layout of the transmit and reception DMA descriptors, and their
295  * layout is therefore defined by the hardware design
296  */
297 
298 #define MVNETA_TX_L3_OFF_SHIFT	0
299 #define MVNETA_TX_IP_HLEN_SHIFT	8
300 #define MVNETA_TX_L4_UDP	BIT(16)
301 #define MVNETA_TX_L3_IP6	BIT(17)
302 #define MVNETA_TXD_IP_CSUM	BIT(18)
303 #define MVNETA_TXD_Z_PAD	BIT(19)
304 #define MVNETA_TXD_L_DESC	BIT(20)
305 #define MVNETA_TXD_F_DESC	BIT(21)
306 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
307 				 MVNETA_TXD_L_DESC | \
308 				 MVNETA_TXD_F_DESC)
309 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
310 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
311 
312 #define MVNETA_RXD_ERR_CRC		0x0
313 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
314 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
315 #define MVNETA_RXD_ERR_LEN		BIT(18)
316 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
317 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
318 #define MVNETA_RXD_L3_IP4		BIT(25)
319 #define MVNETA_RXD_FIRST_LAST_DESC	(BIT(26) | BIT(27))
320 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
321 
322 struct mvneta_tx_desc {
323 	u32  command;		/* Options used by HW for packet transmitting.*/
324 	u16  reserverd1;	/* csum_l4 (for future use)		*/
325 	u16  data_size;		/* Data size of transmitted packet in bytes */
326 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
327 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
328 	u32  reserved3[4];	/* Reserved - (for future use)		*/
329 };
330 
331 struct mvneta_rx_desc {
332 	u32  status;		/* Info about received packet		*/
333 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
334 	u16  data_size;		/* Size of received packet in bytes	*/
335 
336 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
337 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
338 
339 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
340 	u16  reserved3;		/* prefetch_cmd, for future use		*/
341 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
342 
343 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
344 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
345 };
346 
347 struct mvneta_tx_queue {
348 	/* Number of this TX queue, in the range 0-7 */
349 	u8 id;
350 
351 	/* Number of TX DMA descriptors in the descriptor ring */
352 	int size;
353 
354 	/* Index of last TX DMA descriptor that was inserted */
355 	int txq_put_index;
356 
357 	/* Index of the TX DMA descriptor to be cleaned up */
358 	int txq_get_index;
359 
360 	/* Virtual address of the TX DMA descriptors array */
361 	struct mvneta_tx_desc *descs;
362 
363 	/* DMA address of the TX DMA descriptors array */
364 	dma_addr_t descs_phys;
365 
366 	/* Index of the last TX DMA descriptor */
367 	int last_desc;
368 
369 	/* Index of the next TX DMA descriptor to process */
370 	int next_desc_to_proc;
371 };
372 
373 struct mvneta_rx_queue {
374 	/* rx queue number, in the range 0-7 */
375 	u8 id;
376 
377 	/* num of rx descriptors in the rx descriptor ring */
378 	int size;
379 
380 	/* Virtual address of the RX DMA descriptors array */
381 	struct mvneta_rx_desc *descs;
382 
383 	/* DMA address of the RX DMA descriptors array */
384 	dma_addr_t descs_phys;
385 
386 	/* Index of the last RX DMA descriptor */
387 	int last_desc;
388 
389 	/* Index of the next RX DMA descriptor to process */
390 	int next_desc_to_proc;
391 };
392 
393 /* U-Boot doesn't use the queues, so set the number to 1 */
394 static int rxq_number = 1;
395 static int txq_number = 1;
396 static int rxq_def;
397 
398 struct buffer_location {
399 	struct mvneta_tx_desc *tx_descs;
400 	struct mvneta_rx_desc *rx_descs;
401 	u32 rx_buffers;
402 };
403 
404 /*
405  * All 4 interfaces use the same global buffer, since only one interface
406  * can be enabled at once
407  */
408 static struct buffer_location buffer_loc;
409 
410 /*
411  * Page table entries are set to 1MB, or multiples of 1MB
412  * (not < 1MB). driver uses less bd's so use 1MB bdspace.
413  */
414 #define BD_SPACE	(1 << 20)
415 
416 /*
417  * Dummy implementation that can be overwritten by a board
418  * specific function
419  */
board_network_enable(struct mii_dev * bus)420 __weak int board_network_enable(struct mii_dev *bus)
421 {
422 	return 0;
423 }
424 
425 /* Utility/helper methods */
426 
427 /* Write helper method */
mvreg_write(struct mvneta_port * pp,u32 offset,u32 data)428 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
429 {
430 	writel(data, pp->base + offset);
431 }
432 
433 /* Read helper method */
mvreg_read(struct mvneta_port * pp,u32 offset)434 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
435 {
436 	return readl(pp->base + offset);
437 }
438 
439 /* Clear all MIB counters */
mvneta_mib_counters_clear(struct mvneta_port * pp)440 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
441 {
442 	int i;
443 
444 	/* Perform dummy reads from MIB counters */
445 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
446 		mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
447 }
448 
449 /* Rx descriptors helper methods */
450 
451 /* Checks whether the RX descriptor having this status is both the first
452  * and the last descriptor for the RX packet. Each RX packet is currently
453  * received through a single RX descriptor, so not having each RX
454  * descriptor with its first and last bits set is an error
455  */
mvneta_rxq_desc_is_first_last(u32 status)456 static int mvneta_rxq_desc_is_first_last(u32 status)
457 {
458 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
459 		MVNETA_RXD_FIRST_LAST_DESC;
460 }
461 
462 /* Add number of descriptors ready to receive new packets */
mvneta_rxq_non_occup_desc_add(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int ndescs)463 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
464 					  struct mvneta_rx_queue *rxq,
465 					  int ndescs)
466 {
467 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
468 	 * be added at once
469 	 */
470 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
471 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
472 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
473 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
474 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
475 	}
476 
477 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
478 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
479 }
480 
481 /* Get number of RX descriptors occupied by received packets */
mvneta_rxq_busy_desc_num_get(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)482 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
483 					struct mvneta_rx_queue *rxq)
484 {
485 	u32 val;
486 
487 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
488 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
489 }
490 
491 /* Update num of rx desc called upon return from rx path or
492  * from mvneta_rxq_drop_pkts().
493  */
mvneta_rxq_desc_num_update(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int rx_done,int rx_filled)494 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
495 				       struct mvneta_rx_queue *rxq,
496 				       int rx_done, int rx_filled)
497 {
498 	u32 val;
499 
500 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
501 		val = rx_done |
502 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
503 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
504 		return;
505 	}
506 
507 	/* Only 255 descriptors can be added at once */
508 	while ((rx_done > 0) || (rx_filled > 0)) {
509 		if (rx_done <= 0xff) {
510 			val = rx_done;
511 			rx_done = 0;
512 		} else {
513 			val = 0xff;
514 			rx_done -= 0xff;
515 		}
516 		if (rx_filled <= 0xff) {
517 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
518 			rx_filled = 0;
519 		} else {
520 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
521 			rx_filled -= 0xff;
522 		}
523 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
524 	}
525 }
526 
527 /* Get pointer to next RX descriptor to be processed by SW */
528 static struct mvneta_rx_desc *
mvneta_rxq_next_desc_get(struct mvneta_rx_queue * rxq)529 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
530 {
531 	int rx_desc = rxq->next_desc_to_proc;
532 
533 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
534 	return rxq->descs + rx_desc;
535 }
536 
537 /* Tx descriptors helper methods */
538 
539 /* Update HW with number of TX descriptors to be sent */
mvneta_txq_pend_desc_add(struct mvneta_port * pp,struct mvneta_tx_queue * txq,int pend_desc)540 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
541 				     struct mvneta_tx_queue *txq,
542 				     int pend_desc)
543 {
544 	u32 val;
545 
546 	/* Only 255 descriptors can be added at once ; Assume caller
547 	 * process TX descriptors in quanta less than 256
548 	 */
549 	val = pend_desc;
550 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
551 }
552 
553 /* Get pointer to next TX descriptor to be processed (send) by HW */
554 static struct mvneta_tx_desc *
mvneta_txq_next_desc_get(struct mvneta_tx_queue * txq)555 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
556 {
557 	int tx_desc = txq->next_desc_to_proc;
558 
559 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
560 	return txq->descs + tx_desc;
561 }
562 
563 /* Set rxq buf size */
mvneta_rxq_buf_size_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int buf_size)564 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
565 				    struct mvneta_rx_queue *rxq,
566 				    int buf_size)
567 {
568 	u32 val;
569 
570 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
571 
572 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
573 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
574 
575 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
576 }
577 
mvneta_port_is_fixed_link(struct mvneta_port * pp)578 static int mvneta_port_is_fixed_link(struct mvneta_port *pp)
579 {
580 	/* phy_addr is set to invalid value for fixed link */
581 	return pp->phyaddr > PHY_MAX_ADDR;
582 }
583 
584 
585 /* Start the Ethernet port RX and TX activity */
mvneta_port_up(struct mvneta_port * pp)586 static void mvneta_port_up(struct mvneta_port *pp)
587 {
588 	int queue;
589 	u32 q_map;
590 
591 	/* Enable all initialized TXs. */
592 	mvneta_mib_counters_clear(pp);
593 	q_map = 0;
594 	for (queue = 0; queue < txq_number; queue++) {
595 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
596 		if (txq->descs != NULL)
597 			q_map |= (1 << queue);
598 	}
599 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
600 
601 	/* Enable all initialized RXQs. */
602 	q_map = 0;
603 	for (queue = 0; queue < rxq_number; queue++) {
604 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
605 		if (rxq->descs != NULL)
606 			q_map |= (1 << queue);
607 	}
608 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
609 }
610 
611 /* Stop the Ethernet port activity */
mvneta_port_down(struct mvneta_port * pp)612 static void mvneta_port_down(struct mvneta_port *pp)
613 {
614 	u32 val;
615 	int count;
616 
617 	/* Stop Rx port activity. Check port Rx activity. */
618 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
619 
620 	/* Issue stop command for active channels only */
621 	if (val != 0)
622 		mvreg_write(pp, MVNETA_RXQ_CMD,
623 			    val << MVNETA_RXQ_DISABLE_SHIFT);
624 
625 	/* Wait for all Rx activity to terminate. */
626 	count = 0;
627 	do {
628 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
629 			dev_warn(pp->phydev->dev,
630 				 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
631 				 val);
632 			break;
633 		}
634 		mdelay(1);
635 
636 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
637 	} while (val & 0xff);
638 
639 	/* Stop Tx port activity. Check port Tx activity. Issue stop
640 	 * command for active channels only
641 	 */
642 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
643 
644 	if (val != 0)
645 		mvreg_write(pp, MVNETA_TXQ_CMD,
646 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
647 
648 	/* Wait for all Tx activity to terminate. */
649 	count = 0;
650 	do {
651 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
652 			dev_warn(pp->phydev->dev,
653 				 "TIMEOUT for TX stopped status=0x%08x\n",
654 				 val);
655 			break;
656 		}
657 		mdelay(1);
658 
659 		/* Check TX Command reg that all Txqs are stopped */
660 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
661 
662 	} while (val & 0xff);
663 
664 	/* Double check to verify that TX FIFO is empty */
665 	count = 0;
666 	do {
667 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
668 			dev_warn(pp->phydev->dev,
669 				 "TX FIFO empty timeout status=0x08%x\n",
670 				 val);
671 			break;
672 		}
673 		mdelay(1);
674 
675 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
676 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
677 		 (val & MVNETA_TX_IN_PRGRS));
678 
679 	udelay(200);
680 }
681 
682 /* Enable the port by setting the port enable bit of the MAC control register */
mvneta_port_enable(struct mvneta_port * pp)683 static void mvneta_port_enable(struct mvneta_port *pp)
684 {
685 	u32 val;
686 
687 	/* Enable port */
688 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
689 	val |= MVNETA_GMAC0_PORT_ENABLE;
690 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
691 }
692 
693 /* Disable the port and wait for about 200 usec before retuning */
mvneta_port_disable(struct mvneta_port * pp)694 static void mvneta_port_disable(struct mvneta_port *pp)
695 {
696 	u32 val;
697 
698 	/* Reset the Enable bit in the Serial Control Register */
699 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
700 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
701 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
702 
703 	udelay(200);
704 }
705 
706 /* Multicast tables methods */
707 
708 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
mvneta_set_ucast_table(struct mvneta_port * pp,int queue)709 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
710 {
711 	int offset;
712 	u32 val;
713 
714 	if (queue == -1) {
715 		val = 0;
716 	} else {
717 		val = 0x1 | (queue << 1);
718 		val |= (val << 24) | (val << 16) | (val << 8);
719 	}
720 
721 	for (offset = 0; offset <= 0xc; offset += 4)
722 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
723 }
724 
725 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
mvneta_set_special_mcast_table(struct mvneta_port * pp,int queue)726 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
727 {
728 	int offset;
729 	u32 val;
730 
731 	if (queue == -1) {
732 		val = 0;
733 	} else {
734 		val = 0x1 | (queue << 1);
735 		val |= (val << 24) | (val << 16) | (val << 8);
736 	}
737 
738 	for (offset = 0; offset <= 0xfc; offset += 4)
739 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
740 }
741 
742 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
mvneta_set_other_mcast_table(struct mvneta_port * pp,int queue)743 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
744 {
745 	int offset;
746 	u32 val;
747 
748 	if (queue == -1) {
749 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
750 		val = 0;
751 	} else {
752 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
753 		val = 0x1 | (queue << 1);
754 		val |= (val << 24) | (val << 16) | (val << 8);
755 	}
756 
757 	for (offset = 0; offset <= 0xfc; offset += 4)
758 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
759 }
760 
761 /* This method sets defaults to the NETA port:
762  *	Clears interrupt Cause and Mask registers.
763  *	Clears all MAC tables.
764  *	Sets defaults to all registers.
765  *	Resets RX and TX descriptor rings.
766  *	Resets PHY.
767  * This method can be called after mvneta_port_down() to return the port
768  *	settings to defaults.
769  */
mvneta_defaults_set(struct mvneta_port * pp)770 static void mvneta_defaults_set(struct mvneta_port *pp)
771 {
772 	int cpu;
773 	int queue;
774 	u32 val;
775 
776 	/* Clear all Cause registers */
777 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
778 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
779 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
780 
781 	/* Mask all interrupts */
782 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
783 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
784 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
785 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
786 
787 	/* Enable MBUS Retry bit16 */
788 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
789 
790 	/* Set CPU queue access map - all CPUs have access to all RX
791 	 * queues and to all TX queues
792 	 */
793 	for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
794 		mvreg_write(pp, MVNETA_CPU_MAP(cpu),
795 			    (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
796 			     MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
797 
798 	/* Reset RX and TX DMAs */
799 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
800 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
801 
802 	/* Disable Legacy WRR, Disable EJP, Release from reset */
803 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
804 	for (queue = 0; queue < txq_number; queue++) {
805 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
806 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
807 	}
808 
809 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
810 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
811 
812 	/* Set Port Acceleration Mode */
813 	val = MVNETA_ACC_MODE_EXT;
814 	mvreg_write(pp, MVNETA_ACC_MODE, val);
815 
816 	/* Update val of portCfg register accordingly with all RxQueue types */
817 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
818 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
819 
820 	val = 0;
821 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
822 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
823 
824 	/* Build PORT_SDMA_CONFIG_REG */
825 	val = 0;
826 
827 	/* Default burst size */
828 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
829 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
830 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
831 
832 	/* Assign port SDMA configuration */
833 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
834 
835 	/* Enable PHY polling in hardware if not in fixed-link mode */
836 	if (!mvneta_port_is_fixed_link(pp)) {
837 		val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
838 		val |= MVNETA_PHY_POLLING_ENABLE;
839 		mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
840 	}
841 
842 	mvneta_set_ucast_table(pp, -1);
843 	mvneta_set_special_mcast_table(pp, -1);
844 	mvneta_set_other_mcast_table(pp, -1);
845 }
846 
847 /* Set unicast address */
mvneta_set_ucast_addr(struct mvneta_port * pp,u8 last_nibble,int queue)848 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
849 				  int queue)
850 {
851 	unsigned int unicast_reg;
852 	unsigned int tbl_offset;
853 	unsigned int reg_offset;
854 
855 	/* Locate the Unicast table entry */
856 	last_nibble = (0xf & last_nibble);
857 
858 	/* offset from unicast tbl base */
859 	tbl_offset = (last_nibble / 4) * 4;
860 
861 	/* offset within the above reg  */
862 	reg_offset = last_nibble % 4;
863 
864 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
865 
866 	if (queue == -1) {
867 		/* Clear accepts frame bit at specified unicast DA tbl entry */
868 		unicast_reg &= ~(0xff << (8 * reg_offset));
869 	} else {
870 		unicast_reg &= ~(0xff << (8 * reg_offset));
871 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
872 	}
873 
874 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
875 }
876 
877 /* Set mac address */
mvneta_mac_addr_set(struct mvneta_port * pp,unsigned char * addr,int queue)878 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
879 				int queue)
880 {
881 	unsigned int mac_h;
882 	unsigned int mac_l;
883 
884 	if (queue != -1) {
885 		mac_l = (addr[4] << 8) | (addr[5]);
886 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
887 			(addr[2] << 8) | (addr[3] << 0);
888 
889 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
890 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
891 	}
892 
893 	/* Accept frames of this address */
894 	mvneta_set_ucast_addr(pp, addr[5], queue);
895 }
896 
mvneta_write_hwaddr(struct udevice * dev)897 static int mvneta_write_hwaddr(struct udevice *dev)
898 {
899 	mvneta_mac_addr_set(dev_get_priv(dev),
900 		((struct eth_pdata *)dev_get_plat(dev))->enetaddr,
901 		rxq_def);
902 
903 	return 0;
904 }
905 
906 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
mvneta_rx_desc_fill(struct mvneta_rx_desc * rx_desc,u32 phys_addr,u32 cookie)907 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
908 				u32 phys_addr, u32 cookie)
909 {
910 	rx_desc->buf_cookie = cookie;
911 	rx_desc->buf_phys_addr = phys_addr;
912 }
913 
914 /* Decrement sent descriptors counter */
mvneta_txq_sent_desc_dec(struct mvneta_port * pp,struct mvneta_tx_queue * txq,int sent_desc)915 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
916 				     struct mvneta_tx_queue *txq,
917 				     int sent_desc)
918 {
919 	u32 val;
920 
921 	/* Only 255 TX descriptors can be updated at once */
922 	while (sent_desc > 0xff) {
923 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
924 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
925 		sent_desc = sent_desc - 0xff;
926 	}
927 
928 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
929 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
930 }
931 
932 /* Get number of TX descriptors already sent by HW */
mvneta_txq_sent_desc_num_get(struct mvneta_port * pp,struct mvneta_tx_queue * txq)933 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
934 					struct mvneta_tx_queue *txq)
935 {
936 	u32 val;
937 	int sent_desc;
938 
939 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
940 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
941 		MVNETA_TXQ_SENT_DESC_SHIFT;
942 
943 	return sent_desc;
944 }
945 
946 /* Display more error info */
mvneta_rx_error(struct mvneta_port * pp,struct mvneta_rx_desc * rx_desc)947 static void mvneta_rx_error(struct mvneta_port *pp,
948 			    struct mvneta_rx_desc *rx_desc)
949 {
950 	u32 status = rx_desc->status;
951 
952 	if (!mvneta_rxq_desc_is_first_last(status)) {
953 		dev_err(pp->phydev->dev,
954 			"bad rx status %08x (buffer oversize), size=%d\n",
955 			status, rx_desc->data_size);
956 		return;
957 	}
958 
959 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
960 	case MVNETA_RXD_ERR_CRC:
961 		dev_err(pp->phydev->dev,
962 			"bad rx status %08x (crc error), size=%d\n", status,
963 			rx_desc->data_size);
964 		break;
965 	case MVNETA_RXD_ERR_OVERRUN:
966 		dev_err(pp->phydev->dev,
967 			"bad rx status %08x (overrun error), size=%d\n", status,
968 			rx_desc->data_size);
969 		break;
970 	case MVNETA_RXD_ERR_LEN:
971 		dev_err(pp->phydev->dev,
972 			"bad rx status %08x (max frame length error), size=%d\n",
973 			status, rx_desc->data_size);
974 		break;
975 	case MVNETA_RXD_ERR_RESOURCE:
976 		dev_err(pp->phydev->dev,
977 			"bad rx status %08x (resource error), size=%d\n",
978 			status, rx_desc->data_size);
979 		break;
980 	}
981 }
982 
mvneta_rxq_handle_get(struct mvneta_port * pp,int rxq)983 static struct mvneta_rx_queue *mvneta_rxq_handle_get(struct mvneta_port *pp,
984 						     int rxq)
985 {
986 	return &pp->rxqs[rxq];
987 }
988 
989 
990 /* Drop packets received by the RXQ and free buffers */
mvneta_rxq_drop_pkts(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)991 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
992 				 struct mvneta_rx_queue *rxq)
993 {
994 	int rx_done;
995 
996 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
997 	if (rx_done)
998 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
999 }
1000 
1001 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
mvneta_rxq_fill(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int num)1002 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
1003 			   int num)
1004 {
1005 	int i;
1006 
1007 	for (i = 0; i < num; i++) {
1008 		u32 addr;
1009 
1010 		/* U-Boot special: Fill in the rx buffer addresses */
1011 		addr = buffer_loc.rx_buffers + (i * RX_BUFFER_SIZE);
1012 		mvneta_rx_desc_fill(rxq->descs + i, addr, addr);
1013 	}
1014 
1015 	/* Add this number of RX descriptors as non occupied (ready to
1016 	 * get packets)
1017 	 */
1018 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
1019 
1020 	return 0;
1021 }
1022 
1023 /* Rx/Tx queue initialization/cleanup methods */
1024 
1025 /* Create a specified RX queue */
mvneta_rxq_init(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)1026 static int mvneta_rxq_init(struct mvneta_port *pp,
1027 			   struct mvneta_rx_queue *rxq)
1028 
1029 {
1030 	rxq->size = pp->rx_ring_size;
1031 
1032 	/* Allocate memory for RX descriptors */
1033 	rxq->descs_phys = (dma_addr_t)rxq->descs;
1034 	if (rxq->descs == NULL)
1035 		return -ENOMEM;
1036 
1037 	WARN_ON(rxq->descs != PTR_ALIGN(rxq->descs, ARCH_DMA_MINALIGN));
1038 
1039 	rxq->last_desc = rxq->size - 1;
1040 
1041 	/* Set Rx descriptors queue starting address */
1042 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
1043 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
1044 
1045 	/* Fill RXQ with buffers from RX pool */
1046 	mvneta_rxq_buf_size_set(pp, rxq, RX_BUFFER_SIZE);
1047 	mvneta_rxq_fill(pp, rxq, rxq->size);
1048 
1049 	return 0;
1050 }
1051 
1052 /* Cleanup Rx queue */
mvneta_rxq_deinit(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)1053 static void mvneta_rxq_deinit(struct mvneta_port *pp,
1054 			      struct mvneta_rx_queue *rxq)
1055 {
1056 	mvneta_rxq_drop_pkts(pp, rxq);
1057 
1058 	rxq->descs             = NULL;
1059 	rxq->last_desc         = 0;
1060 	rxq->next_desc_to_proc = 0;
1061 	rxq->descs_phys        = 0;
1062 }
1063 
1064 /* Create and initialize a tx queue */
mvneta_txq_init(struct mvneta_port * pp,struct mvneta_tx_queue * txq)1065 static int mvneta_txq_init(struct mvneta_port *pp,
1066 			   struct mvneta_tx_queue *txq)
1067 {
1068 	txq->size = pp->tx_ring_size;
1069 
1070 	/* Allocate memory for TX descriptors */
1071 	txq->descs_phys = (dma_addr_t)txq->descs;
1072 	if (txq->descs == NULL)
1073 		return -ENOMEM;
1074 
1075 	WARN_ON(txq->descs != PTR_ALIGN(txq->descs, ARCH_DMA_MINALIGN));
1076 
1077 	txq->last_desc = txq->size - 1;
1078 
1079 	/* Set maximum bandwidth for enabled TXQs */
1080 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
1081 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
1082 
1083 	/* Set Tx descriptors queue starting address */
1084 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
1085 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
1086 
1087 	return 0;
1088 }
1089 
1090 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
mvneta_txq_deinit(struct mvneta_port * pp,struct mvneta_tx_queue * txq)1091 static void mvneta_txq_deinit(struct mvneta_port *pp,
1092 			      struct mvneta_tx_queue *txq)
1093 {
1094 	txq->descs             = NULL;
1095 	txq->last_desc         = 0;
1096 	txq->next_desc_to_proc = 0;
1097 	txq->descs_phys        = 0;
1098 
1099 	/* Set minimum bandwidth for disabled TXQs */
1100 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
1101 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
1102 
1103 	/* Set Tx descriptors queue starting address and size */
1104 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
1105 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
1106 }
1107 
1108 /* Cleanup all Tx queues */
mvneta_cleanup_txqs(struct mvneta_port * pp)1109 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
1110 {
1111 	int queue;
1112 
1113 	for (queue = 0; queue < txq_number; queue++)
1114 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
1115 }
1116 
1117 /* Cleanup all Rx queues */
mvneta_cleanup_rxqs(struct mvneta_port * pp)1118 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
1119 {
1120 	int queue;
1121 
1122 	for (queue = 0; queue < rxq_number; queue++)
1123 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
1124 }
1125 
1126 
1127 /* Init all Rx queues */
mvneta_setup_rxqs(struct mvneta_port * pp)1128 static int mvneta_setup_rxqs(struct mvneta_port *pp)
1129 {
1130 	int queue;
1131 
1132 	for (queue = 0; queue < rxq_number; queue++) {
1133 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
1134 		if (err) {
1135 			dev_err(pp->phydev->dev, "%s: can't create rxq=%d\n",
1136 				__func__, queue);
1137 			mvneta_cleanup_rxqs(pp);
1138 			return err;
1139 		}
1140 	}
1141 
1142 	return 0;
1143 }
1144 
1145 /* Init all tx queues */
mvneta_setup_txqs(struct mvneta_port * pp)1146 static int mvneta_setup_txqs(struct mvneta_port *pp)
1147 {
1148 	int queue;
1149 
1150 	for (queue = 0; queue < txq_number; queue++) {
1151 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
1152 		if (err) {
1153 			dev_err(pp->phydev->dev, "%s: can't create txq=%d\n",
1154 				__func__, queue);
1155 			mvneta_cleanup_txqs(pp);
1156 			return err;
1157 		}
1158 	}
1159 
1160 	return 0;
1161 }
1162 
mvneta_start_dev(struct mvneta_port * pp)1163 static void mvneta_start_dev(struct mvneta_port *pp)
1164 {
1165 	/* start the Rx/Tx activity */
1166 	mvneta_port_enable(pp);
1167 }
1168 
mvneta_adjust_link(struct udevice * dev)1169 static void mvneta_adjust_link(struct udevice *dev)
1170 {
1171 	struct mvneta_port *pp = dev_get_priv(dev);
1172 	struct phy_device *phydev = pp->phydev;
1173 	int status_change = 0;
1174 
1175 	if (mvneta_port_is_fixed_link(pp)) {
1176 		debug("Using fixed link, skip link adjust\n");
1177 		return;
1178 	}
1179 
1180 	if (phydev->link) {
1181 		if ((pp->speed != phydev->speed) ||
1182 		    (pp->duplex != phydev->duplex)) {
1183 			u32 val;
1184 
1185 			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1186 			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
1187 				 MVNETA_GMAC_CONFIG_GMII_SPEED |
1188 				 MVNETA_GMAC_CONFIG_FULL_DUPLEX |
1189 				 MVNETA_GMAC_AN_SPEED_EN |
1190 				 MVNETA_GMAC_AN_DUPLEX_EN);
1191 
1192 			if (phydev->duplex)
1193 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
1194 
1195 			if (phydev->speed == SPEED_1000)
1196 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
1197 			else
1198 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
1199 
1200 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1201 
1202 			pp->duplex = phydev->duplex;
1203 			pp->speed  = phydev->speed;
1204 		}
1205 	}
1206 
1207 	if (phydev->link != pp->link) {
1208 		if (!phydev->link) {
1209 			pp->duplex = -1;
1210 			pp->speed = 0;
1211 		}
1212 
1213 		pp->link = phydev->link;
1214 		status_change = 1;
1215 	}
1216 
1217 	if (status_change) {
1218 		if (phydev->link) {
1219 			u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1220 			val |= (MVNETA_GMAC_FORCE_LINK_PASS |
1221 				MVNETA_GMAC_FORCE_LINK_DOWN);
1222 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1223 			mvneta_port_up(pp);
1224 		} else {
1225 			mvneta_port_down(pp);
1226 		}
1227 	}
1228 }
1229 
mvneta_open(struct udevice * dev)1230 static int mvneta_open(struct udevice *dev)
1231 {
1232 	struct mvneta_port *pp = dev_get_priv(dev);
1233 	int ret;
1234 
1235 	ret = mvneta_setup_rxqs(pp);
1236 	if (ret)
1237 		return ret;
1238 
1239 	ret = mvneta_setup_txqs(pp);
1240 	if (ret)
1241 		return ret;
1242 
1243 	mvneta_adjust_link(dev);
1244 
1245 	mvneta_start_dev(pp);
1246 
1247 	return 0;
1248 }
1249 
1250 /* Initialize hw */
mvneta_init2(struct mvneta_port * pp)1251 static int mvneta_init2(struct mvneta_port *pp)
1252 {
1253 	int queue;
1254 
1255 	/* Disable port */
1256 	mvneta_port_disable(pp);
1257 
1258 	/* Set port default values */
1259 	mvneta_defaults_set(pp);
1260 
1261 	pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue),
1262 			   GFP_KERNEL);
1263 	if (!pp->txqs)
1264 		return -ENOMEM;
1265 
1266 	/* U-Boot special: use preallocated area */
1267 	pp->txqs[0].descs = buffer_loc.tx_descs;
1268 
1269 	/* Initialize TX descriptor rings */
1270 	for (queue = 0; queue < txq_number; queue++) {
1271 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1272 		txq->id = queue;
1273 		txq->size = pp->tx_ring_size;
1274 	}
1275 
1276 	pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue),
1277 			   GFP_KERNEL);
1278 	if (!pp->rxqs) {
1279 		kfree(pp->txqs);
1280 		return -ENOMEM;
1281 	}
1282 
1283 	/* U-Boot special: use preallocated area */
1284 	pp->rxqs[0].descs = buffer_loc.rx_descs;
1285 
1286 	/* Create Rx descriptor rings */
1287 	for (queue = 0; queue < rxq_number; queue++) {
1288 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1289 		rxq->id = queue;
1290 		rxq->size = pp->rx_ring_size;
1291 	}
1292 
1293 	return 0;
1294 }
1295 
1296 /* platform glue : initialize decoding windows */
1297 
1298 /*
1299  * Not like A380, in Armada3700, there are two layers of decode windows for GBE:
1300  * First layer is:  GbE Address window that resides inside the GBE unit,
1301  * Second layer is: Fabric address window which is located in the NIC400
1302  *                  (South Fabric).
1303  * To simplify the address decode configuration for Armada3700, we bypass the
1304  * first layer of GBE decode window by setting the first window to 4GB.
1305  */
mvneta_bypass_mbus_windows(struct mvneta_port * pp)1306 static void mvneta_bypass_mbus_windows(struct mvneta_port *pp)
1307 {
1308 	/*
1309 	 * Set window size to 4GB, to bypass GBE address decode, leave the
1310 	 * work to MBUS decode window
1311 	 */
1312 	mvreg_write(pp, MVNETA_WIN_SIZE(0), MVNETA_WIN_SIZE_MASK);
1313 
1314 	/* Enable GBE address decode window 0 by set bit 0 to 0 */
1315 	clrbits_le32(pp->base + MVNETA_BASE_ADDR_ENABLE,
1316 		     MVNETA_BASE_ADDR_ENABLE_BIT);
1317 
1318 	/* Set GBE address decode window 0 to full Access (read or write) */
1319 	setbits_le32(pp->base + MVNETA_PORT_ACCESS_PROTECT,
1320 		     MVNETA_PORT_ACCESS_PROTECT_WIN0_RW);
1321 }
1322 
mvneta_conf_mbus_windows(struct mvneta_port * pp)1323 static void mvneta_conf_mbus_windows(struct mvneta_port *pp)
1324 {
1325 	const struct mbus_dram_target_info *dram;
1326 	u32 win_enable;
1327 	u32 win_protect;
1328 	int i;
1329 
1330 	dram = mvebu_mbus_dram_info();
1331 	for (i = 0; i < 6; i++) {
1332 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
1333 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
1334 
1335 		if (i < 4)
1336 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1337 	}
1338 
1339 	win_enable = 0x3f;
1340 	win_protect = 0;
1341 
1342 	for (i = 0; i < dram->num_cs; i++) {
1343 		const struct mbus_dram_window *cs = dram->cs + i;
1344 		mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
1345 			    (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
1346 
1347 		mvreg_write(pp, MVNETA_WIN_SIZE(i),
1348 			    (cs->size - 1) & 0xffff0000);
1349 
1350 		win_enable &= ~(1 << i);
1351 		win_protect |= 3 << (2 * i);
1352 	}
1353 
1354 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1355 }
1356 
1357 /* Power up the port */
mvneta_port_power_up(struct mvneta_port * pp,int phy_mode)1358 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
1359 {
1360 	u32 ctrl;
1361 
1362 	/* MAC Cause register should be cleared */
1363 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
1364 
1365 	ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1366 
1367 	/* Even though it might look weird, when we're configured in
1368 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
1369 	 */
1370 	switch (phy_mode) {
1371 	case PHY_INTERFACE_MODE_QSGMII:
1372 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
1373 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
1374 		break;
1375 	case PHY_INTERFACE_MODE_SGMII:
1376 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
1377 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
1378 		break;
1379 	case PHY_INTERFACE_MODE_RGMII:
1380 	case PHY_INTERFACE_MODE_RGMII_ID:
1381 		ctrl |= MVNETA_GMAC2_PORT_RGMII;
1382 		break;
1383 	default:
1384 		return -EINVAL;
1385 	}
1386 
1387 	/* Cancel Port Reset */
1388 	ctrl &= ~MVNETA_GMAC2_PORT_RESET;
1389 	mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
1390 
1391 	while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
1392 		MVNETA_GMAC2_PORT_RESET) != 0)
1393 		continue;
1394 
1395 	return 0;
1396 }
1397 
1398 /* Device initialization routine */
mvneta_init(struct udevice * dev)1399 static int mvneta_init(struct udevice *dev)
1400 {
1401 	struct eth_pdata *pdata = dev_get_plat(dev);
1402 	struct mvneta_port *pp = dev_get_priv(dev);
1403 	int err;
1404 
1405 	pp->tx_ring_size = MVNETA_MAX_TXD;
1406 	pp->rx_ring_size = MVNETA_MAX_RXD;
1407 
1408 	err = mvneta_init2(pp);
1409 	if (err < 0) {
1410 		dev_err(dev, "can't init eth hal\n");
1411 		return err;
1412 	}
1413 
1414 	mvneta_mac_addr_set(pp, pdata->enetaddr, rxq_def);
1415 
1416 	err = mvneta_port_power_up(pp, pp->phy_interface);
1417 	if (err < 0) {
1418 		dev_err(dev, "can't power up port\n");
1419 		return err;
1420 	}
1421 
1422 	/* Call open() now as it needs to be done before runing send() */
1423 	mvneta_open(dev);
1424 
1425 	return 0;
1426 }
1427 
1428 /* U-Boot only functions follow here */
1429 
1430 /* SMI / MDIO functions */
1431 
smi_wait_ready(struct mvneta_port * pp)1432 static int smi_wait_ready(struct mvneta_port *pp)
1433 {
1434 	u32 timeout = MVNETA_SMI_TIMEOUT;
1435 	u32 smi_reg;
1436 
1437 	/* wait till the SMI is not busy */
1438 	do {
1439 		/* read smi register */
1440 		smi_reg = mvreg_read(pp, MVNETA_SMI);
1441 		if (timeout-- == 0) {
1442 			printf("Error: SMI busy timeout\n");
1443 			return -EFAULT;
1444 		}
1445 	} while (smi_reg & MVNETA_SMI_BUSY);
1446 
1447 	return 0;
1448 }
1449 
1450 /*
1451  * mvneta_mdio_read - miiphy_read callback function.
1452  *
1453  * Returns 16bit phy register value, or 0xffff on error
1454  */
mvneta_mdio_read(struct mii_dev * bus,int addr,int devad,int reg)1455 static int mvneta_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
1456 {
1457 	struct mvneta_port *pp = bus->priv;
1458 	u32 smi_reg;
1459 	u32 timeout;
1460 
1461 	/* check parameters */
1462 	if (addr > MVNETA_PHY_ADDR_MASK) {
1463 		printf("Error: Invalid PHY address %d\n", addr);
1464 		return -EFAULT;
1465 	}
1466 
1467 	if (reg > MVNETA_PHY_REG_MASK) {
1468 		printf("Err: Invalid register offset %d\n", reg);
1469 		return -EFAULT;
1470 	}
1471 
1472 	/* wait till the SMI is not busy */
1473 	if (smi_wait_ready(pp) < 0)
1474 		return -EFAULT;
1475 
1476 	/* fill the phy address and regiser offset and read opcode */
1477 	smi_reg = (addr << MVNETA_SMI_DEV_ADDR_OFFS)
1478 		| (reg << MVNETA_SMI_REG_ADDR_OFFS)
1479 		| MVNETA_SMI_OPCODE_READ;
1480 
1481 	/* write the smi register */
1482 	mvreg_write(pp, MVNETA_SMI, smi_reg);
1483 
1484 	/* wait till read value is ready */
1485 	timeout = MVNETA_SMI_TIMEOUT;
1486 
1487 	do {
1488 		/* read smi register */
1489 		smi_reg = mvreg_read(pp, MVNETA_SMI);
1490 		if (timeout-- == 0) {
1491 			printf("Err: SMI read ready timeout\n");
1492 			return -EFAULT;
1493 		}
1494 	} while (!(smi_reg & MVNETA_SMI_READ_VALID));
1495 
1496 	/* Wait for the data to update in the SMI register */
1497 	for (timeout = 0; timeout < MVNETA_SMI_TIMEOUT; timeout++)
1498 		;
1499 
1500 	return mvreg_read(pp, MVNETA_SMI) & MVNETA_SMI_DATA_MASK;
1501 }
1502 
1503 /*
1504  * mvneta_mdio_write - miiphy_write callback function.
1505  *
1506  * Returns 0 if write succeed, -EINVAL on bad parameters
1507  * -ETIME on timeout
1508  */
mvneta_mdio_write(struct mii_dev * bus,int addr,int devad,int reg,u16 value)1509 static int mvneta_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
1510 			     u16 value)
1511 {
1512 	struct mvneta_port *pp = bus->priv;
1513 	u32 smi_reg;
1514 
1515 	/* check parameters */
1516 	if (addr > MVNETA_PHY_ADDR_MASK) {
1517 		printf("Error: Invalid PHY address %d\n", addr);
1518 		return -EFAULT;
1519 	}
1520 
1521 	if (reg > MVNETA_PHY_REG_MASK) {
1522 		printf("Err: Invalid register offset %d\n", reg);
1523 		return -EFAULT;
1524 	}
1525 
1526 	/* wait till the SMI is not busy */
1527 	if (smi_wait_ready(pp) < 0)
1528 		return -EFAULT;
1529 
1530 	/* fill the phy addr and reg offset and write opcode and data */
1531 	smi_reg = value << MVNETA_SMI_DATA_OFFS;
1532 	smi_reg |= (addr << MVNETA_SMI_DEV_ADDR_OFFS)
1533 		| (reg << MVNETA_SMI_REG_ADDR_OFFS);
1534 	smi_reg &= ~MVNETA_SMI_OPCODE_READ;
1535 
1536 	/* write the smi register */
1537 	mvreg_write(pp, MVNETA_SMI, smi_reg);
1538 
1539 	return 0;
1540 }
1541 
mvneta_start(struct udevice * dev)1542 static int mvneta_start(struct udevice *dev)
1543 {
1544 	struct mvneta_port *pp = dev_get_priv(dev);
1545 	struct phy_device *phydev;
1546 
1547 	mvneta_port_power_up(pp, pp->phy_interface);
1548 
1549 	if (!pp->init || pp->link == 0) {
1550 		if (mvneta_port_is_fixed_link(pp)) {
1551 			u32 val;
1552 
1553 			pp->init = 1;
1554 			pp->link = 1;
1555 			mvneta_init(dev);
1556 
1557 			val = MVNETA_GMAC_FORCE_LINK_UP |
1558 			      MVNETA_GMAC_IB_BYPASS_AN_EN |
1559 			      MVNETA_GMAC_SET_FC_EN |
1560 			      MVNETA_GMAC_ADVERT_FC_EN |
1561 			      MVNETA_GMAC_SAMPLE_TX_CFG_EN;
1562 
1563 			if (pp->duplex)
1564 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
1565 
1566 			if (pp->speed == SPEED_1000)
1567 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
1568 			else if (pp->speed == SPEED_100)
1569 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
1570 
1571 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1572 		} else {
1573 			/* Set phy address of the port */
1574 			mvreg_write(pp, MVNETA_PHY_ADDR, pp->phyaddr);
1575 
1576 			phydev = phy_connect(pp->bus, pp->phyaddr, dev,
1577 					     pp->phy_interface);
1578 			if (!phydev) {
1579 				printf("phy_connect failed\n");
1580 				return -ENODEV;
1581 			}
1582 
1583 			pp->phydev = phydev;
1584 			phy_config(phydev);
1585 			phy_startup(phydev);
1586 			if (!phydev->link) {
1587 				printf("%s: No link.\n", phydev->dev->name);
1588 				return -1;
1589 			}
1590 
1591 			/* Full init on first call */
1592 			mvneta_init(dev);
1593 			pp->init = 1;
1594 			return 0;
1595 		}
1596 	}
1597 
1598 	/* Upon all following calls, this is enough */
1599 	mvneta_port_up(pp);
1600 	mvneta_port_enable(pp);
1601 
1602 	return 0;
1603 }
1604 
mvneta_send(struct udevice * dev,void * packet,int length)1605 static int mvneta_send(struct udevice *dev, void *packet, int length)
1606 {
1607 	struct mvneta_port *pp = dev_get_priv(dev);
1608 	struct mvneta_tx_queue *txq = &pp->txqs[0];
1609 	struct mvneta_tx_desc *tx_desc;
1610 	int sent_desc;
1611 	u32 timeout = 0;
1612 
1613 	/* Get a descriptor for the first part of the packet */
1614 	tx_desc = mvneta_txq_next_desc_get(txq);
1615 
1616 	tx_desc->buf_phys_addr = (u32)(uintptr_t)packet;
1617 	tx_desc->data_size = length;
1618 	flush_dcache_range((ulong)packet,
1619 			   (ulong)packet + ALIGN(length, PKTALIGN));
1620 
1621 	/* First and Last descriptor */
1622 	tx_desc->command = MVNETA_TX_L4_CSUM_NOT | MVNETA_TXD_FLZ_DESC;
1623 	mvneta_txq_pend_desc_add(pp, txq, 1);
1624 
1625 	/* Wait for packet to be sent (queue might help with speed here) */
1626 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1627 	while (!sent_desc) {
1628 		if (timeout++ > 10000) {
1629 			printf("timeout: packet not sent\n");
1630 			return -1;
1631 		}
1632 		sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1633 	}
1634 
1635 	/* txDone has increased - hw sent packet */
1636 	mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1637 
1638 	return 0;
1639 }
1640 
mvneta_recv(struct udevice * dev,int flags,uchar ** packetp)1641 static int mvneta_recv(struct udevice *dev, int flags, uchar **packetp)
1642 {
1643 	struct mvneta_port *pp = dev_get_priv(dev);
1644 	int rx_done;
1645 	struct mvneta_rx_queue *rxq;
1646 	int rx_bytes = 0;
1647 
1648 	/* get rx queue */
1649 	rxq = mvneta_rxq_handle_get(pp, rxq_def);
1650 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1651 
1652 	if (rx_done) {
1653 		struct mvneta_rx_desc *rx_desc;
1654 		unsigned char *data;
1655 		u32 rx_status;
1656 
1657 		/*
1658 		 * No cache invalidation needed here, since the desc's are
1659 		 * located in a uncached memory region
1660 		 */
1661 		rx_desc = mvneta_rxq_next_desc_get(rxq);
1662 
1663 		rx_status = rx_desc->status;
1664 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1665 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1666 			mvneta_rx_error(pp, rx_desc);
1667 			/* leave the descriptor untouched */
1668 			return -EIO;
1669 		}
1670 
1671 		/* 2 bytes for marvell header. 4 bytes for crc */
1672 		rx_bytes = rx_desc->data_size - 6;
1673 
1674 		/* give packet to stack - skip on first 2 bytes */
1675 		data = (u8 *)(uintptr_t)rx_desc->buf_cookie + 2;
1676 		/*
1677 		 * No cache invalidation needed here, since the rx_buffer's are
1678 		 * located in a uncached memory region
1679 		 */
1680 		*packetp = data;
1681 
1682 		/*
1683 		 * Only mark one descriptor as free
1684 		 * since only one was processed
1685 		 */
1686 		mvneta_rxq_desc_num_update(pp, rxq, 1, 1);
1687 	}
1688 
1689 	return rx_bytes;
1690 }
1691 
mvneta_probe(struct udevice * dev)1692 static int mvneta_probe(struct udevice *dev)
1693 {
1694 	struct eth_pdata *pdata = dev_get_plat(dev);
1695 	struct mvneta_port *pp = dev_get_priv(dev);
1696 	void *blob = (void *)gd->fdt_blob;
1697 	int node = dev_of_offset(dev);
1698 	struct mii_dev *bus;
1699 	unsigned long addr;
1700 	void *bd_space;
1701 	int ret;
1702 	int fl_node;
1703 
1704 	/*
1705 	 * Allocate buffer area for descs and rx_buffers. This is only
1706 	 * done once for all interfaces. As only one interface can
1707 	 * be active. Make this area DMA safe by disabling the D-cache
1708 	 */
1709 	if (!buffer_loc.tx_descs) {
1710 		u32 size;
1711 
1712 		/* Align buffer area for descs and rx_buffers to 1MiB */
1713 		bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE);
1714 		flush_dcache_range((ulong)bd_space, (ulong)bd_space + BD_SPACE);
1715 		mmu_set_region_dcache_behaviour((phys_addr_t)bd_space, BD_SPACE,
1716 						DCACHE_OFF);
1717 		buffer_loc.tx_descs = (struct mvneta_tx_desc *)bd_space;
1718 		size = roundup(MVNETA_MAX_TXD * sizeof(struct mvneta_tx_desc),
1719 				ARCH_DMA_MINALIGN);
1720 		memset(buffer_loc.tx_descs, 0, size);
1721 		buffer_loc.rx_descs = (struct mvneta_rx_desc *)
1722 			((phys_addr_t)bd_space + size);
1723 		size += roundup(MVNETA_MAX_RXD * sizeof(struct mvneta_rx_desc),
1724 				ARCH_DMA_MINALIGN);
1725 		buffer_loc.rx_buffers = (phys_addr_t)(bd_space + size);
1726 	}
1727 
1728 	pp->base = (void __iomem *)pdata->iobase;
1729 
1730 	/* Configure MBUS address windows */
1731 	if (device_is_compatible(dev, "marvell,armada-3700-neta"))
1732 		mvneta_bypass_mbus_windows(pp);
1733 	else
1734 		mvneta_conf_mbus_windows(pp);
1735 
1736 	/* PHY interface is already decoded in mvneta_of_to_plat() */
1737 	pp->phy_interface = pdata->phy_interface;
1738 
1739 	/* fetch 'fixed-link' property from 'neta' node */
1740 	fl_node = fdt_subnode_offset(blob, node, "fixed-link");
1741 	if (fl_node != -FDT_ERR_NOTFOUND) {
1742 		/* set phy_addr to invalid value for fixed link */
1743 		pp->phyaddr = PHY_MAX_ADDR + 1;
1744 		pp->duplex = fdtdec_get_bool(blob, fl_node, "full-duplex");
1745 		pp->speed = fdtdec_get_int(blob, fl_node, "speed", 0);
1746 	} else {
1747 		/* Now read phyaddr from DT */
1748 		addr = fdtdec_get_int(blob, node, "phy", 0);
1749 		addr = fdt_node_offset_by_phandle(blob, addr);
1750 		pp->phyaddr = fdtdec_get_int(blob, addr, "reg", 0);
1751 	}
1752 
1753 	bus = mdio_alloc();
1754 	if (!bus) {
1755 		printf("Failed to allocate MDIO bus\n");
1756 		return -ENOMEM;
1757 	}
1758 
1759 	bus->read = mvneta_mdio_read;
1760 	bus->write = mvneta_mdio_write;
1761 	snprintf(bus->name, sizeof(bus->name), dev->name);
1762 	bus->priv = (void *)pp;
1763 	pp->bus = bus;
1764 
1765 	ret = mdio_register(bus);
1766 	if (ret)
1767 		return ret;
1768 
1769 #if CONFIG_IS_ENABLED(DM_GPIO)
1770 	gpio_request_by_name(dev, "phy-reset-gpios", 0,
1771 			     &pp->phy_reset_gpio, GPIOD_IS_OUT);
1772 
1773 	if (dm_gpio_is_valid(&pp->phy_reset_gpio)) {
1774 		dm_gpio_set_value(&pp->phy_reset_gpio, 1);
1775 		mdelay(10);
1776 		dm_gpio_set_value(&pp->phy_reset_gpio, 0);
1777 	}
1778 #endif
1779 
1780 	return board_network_enable(bus);
1781 }
1782 
mvneta_stop(struct udevice * dev)1783 static void mvneta_stop(struct udevice *dev)
1784 {
1785 	struct mvneta_port *pp = dev_get_priv(dev);
1786 
1787 	mvneta_port_down(pp);
1788 	mvneta_port_disable(pp);
1789 }
1790 
1791 static const struct eth_ops mvneta_ops = {
1792 	.start		= mvneta_start,
1793 	.send		= mvneta_send,
1794 	.recv		= mvneta_recv,
1795 	.stop		= mvneta_stop,
1796 	.write_hwaddr	= mvneta_write_hwaddr,
1797 };
1798 
mvneta_of_to_plat(struct udevice * dev)1799 static int mvneta_of_to_plat(struct udevice *dev)
1800 {
1801 	struct eth_pdata *pdata = dev_get_plat(dev);
1802 	const char *phy_mode;
1803 
1804 	pdata->iobase = dev_read_addr(dev);
1805 
1806 	/* Get phy-mode / phy_interface from DT */
1807 	pdata->phy_interface = -1;
1808 	phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode",
1809 			       NULL);
1810 	if (phy_mode)
1811 		pdata->phy_interface = phy_get_interface_by_name(phy_mode);
1812 	if (pdata->phy_interface == -1) {
1813 		debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
1814 		return -EINVAL;
1815 	}
1816 
1817 	return 0;
1818 }
1819 
1820 static const struct udevice_id mvneta_ids[] = {
1821 	{ .compatible = "marvell,armada-370-neta" },
1822 	{ .compatible = "marvell,armada-xp-neta" },
1823 	{ .compatible = "marvell,armada-3700-neta" },
1824 	{ }
1825 };
1826 
1827 U_BOOT_DRIVER(mvneta) = {
1828 	.name	= "mvneta",
1829 	.id	= UCLASS_ETH,
1830 	.of_match = mvneta_ids,
1831 	.of_to_plat = mvneta_of_to_plat,
1832 	.probe	= mvneta_probe,
1833 	.ops	= &mvneta_ops,
1834 	.priv_auto	= sizeof(struct mvneta_port),
1835 	.plat_auto	= sizeof(struct eth_pdata),
1836 };
1837