1 /*
2  * (C) Copyright 2008
3  * Texas Instruments, <www.ti.com>
4  * Sukumar Ghorai <s-ghorai@ti.com>
5  *
6  * See file CREDITS for list of people who contributed to this
7  * project.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation's version 2 of
12  * the License.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
22  * MA 02111-1307 USA
23  */
24 
25 #include <config.h>
26 #include <common.h>
27 #include <cpu_func.h>
28 #include <log.h>
29 #include <malloc.h>
30 #include <memalign.h>
31 #include <mmc.h>
32 #include <part.h>
33 #include <i2c.h>
34 #if defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX)
35 #include <palmas.h>
36 #endif
37 #include <asm/cache.h>
38 #include <asm/global_data.h>
39 #include <asm/io.h>
40 #include <asm/arch/mmc_host_def.h>
41 #ifdef CONFIG_OMAP54XX
42 #include <asm/arch/mux_dra7xx.h>
43 #include <asm/arch/dra7xx_iodelay.h>
44 #endif
45 #if !defined(CONFIG_SOC_KEYSTONE)
46 #include <asm/gpio.h>
47 #include <asm/arch/sys_proto.h>
48 #endif
49 #ifdef CONFIG_MMC_OMAP36XX_PINS
50 #include <asm/arch/mux.h>
51 #endif
52 #include <dm.h>
53 #include <dm/devres.h>
54 #include <linux/bitops.h>
55 #include <linux/delay.h>
56 #include <linux/err.h>
57 #include <power/regulator.h>
58 #include <thermal.h>
59 
60 DECLARE_GLOBAL_DATA_PTR;
61 
62 /* simplify defines to OMAP_HSMMC_USE_GPIO */
63 #if (defined(CONFIG_OMAP_GPIO) && !defined(CONFIG_SPL_BUILD)) || \
64 	(defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_GPIO_SUPPORT))
65 #define OMAP_HSMMC_USE_GPIO
66 #else
67 #undef OMAP_HSMMC_USE_GPIO
68 #endif
69 
70 /* common definitions for all OMAPs */
71 #define SYSCTL_SRC	(1 << 25)
72 #define SYSCTL_SRD	(1 << 26)
73 
74 #ifdef CONFIG_IODELAY_RECALIBRATION
75 struct omap_hsmmc_pinctrl_state {
76 	struct pad_conf_entry *padconf;
77 	int npads;
78 	struct iodelay_cfg_entry *iodelay;
79 	int niodelays;
80 };
81 #endif
82 
83 struct omap_hsmmc_data {
84 	struct hsmmc *base_addr;
85 #if !CONFIG_IS_ENABLED(DM_MMC)
86 	struct mmc_config cfg;
87 #endif
88 	uint bus_width;
89 	uint clock;
90 	ushort last_cmd;
91 #ifdef OMAP_HSMMC_USE_GPIO
92 #if CONFIG_IS_ENABLED(DM_MMC)
93 	struct gpio_desc cd_gpio;	/* Change Detect GPIO */
94 	struct gpio_desc wp_gpio;	/* Write Protect GPIO */
95 #else
96 	int cd_gpio;
97 	int wp_gpio;
98 #endif
99 #endif
100 #if CONFIG_IS_ENABLED(DM_MMC)
101 	enum bus_mode mode;
102 #endif
103 	u8 controller_flags;
104 #ifdef CONFIG_MMC_OMAP_HS_ADMA
105 	struct omap_hsmmc_adma_desc *adma_desc_table;
106 	uint desc_slot;
107 #endif
108 	const char *hw_rev;
109 	struct udevice *pbias_supply;
110 	uint signal_voltage;
111 #ifdef CONFIG_IODELAY_RECALIBRATION
112 	struct omap_hsmmc_pinctrl_state *default_pinctrl_state;
113 	struct omap_hsmmc_pinctrl_state *hs_pinctrl_state;
114 	struct omap_hsmmc_pinctrl_state *hs200_1_8v_pinctrl_state;
115 	struct omap_hsmmc_pinctrl_state *ddr_1_8v_pinctrl_state;
116 	struct omap_hsmmc_pinctrl_state *sdr12_pinctrl_state;
117 	struct omap_hsmmc_pinctrl_state *sdr25_pinctrl_state;
118 	struct omap_hsmmc_pinctrl_state *ddr50_pinctrl_state;
119 	struct omap_hsmmc_pinctrl_state *sdr50_pinctrl_state;
120 	struct omap_hsmmc_pinctrl_state *sdr104_pinctrl_state;
121 #endif
122 };
123 
124 struct omap_mmc_of_data {
125 	u8 controller_flags;
126 };
127 
128 #ifdef CONFIG_MMC_OMAP_HS_ADMA
129 struct omap_hsmmc_adma_desc {
130 	u8 attr;
131 	u8 reserved;
132 	u16 len;
133 	u32 addr;
134 };
135 
136 #define ADMA_MAX_LEN	63488
137 
138 /* Decriptor table defines */
139 #define ADMA_DESC_ATTR_VALID		BIT(0)
140 #define ADMA_DESC_ATTR_END		BIT(1)
141 #define ADMA_DESC_ATTR_INT		BIT(2)
142 #define ADMA_DESC_ATTR_ACT1		BIT(4)
143 #define ADMA_DESC_ATTR_ACT2		BIT(5)
144 
145 #define ADMA_DESC_TRANSFER_DATA		ADMA_DESC_ATTR_ACT2
146 #define ADMA_DESC_LINK_DESC	(ADMA_DESC_ATTR_ACT1 | ADMA_DESC_ATTR_ACT2)
147 #endif
148 
149 /* If we fail after 1 second wait, something is really bad */
150 #define MAX_RETRY_MS	1000
151 #define MMC_TIMEOUT_MS	20
152 
153 /* DMA transfers can take a long time if a lot a data is transferred.
154  * The timeout must take in account the amount of data. Let's assume
155  * that the time will never exceed 333 ms per MB (in other word we assume
156  * that the bandwidth is always above 3MB/s).
157  */
158 #define DMA_TIMEOUT_PER_MB	333
159 #define OMAP_HSMMC_SUPPORTS_DUAL_VOLT		BIT(0)
160 #define OMAP_HSMMC_NO_1_8_V			BIT(1)
161 #define OMAP_HSMMC_USE_ADMA			BIT(2)
162 #define OMAP_HSMMC_REQUIRE_IODELAY		BIT(3)
163 
164 static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size);
165 static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
166 			unsigned int siz);
167 static void omap_hsmmc_start_clock(struct hsmmc *mmc_base);
168 static void omap_hsmmc_stop_clock(struct hsmmc *mmc_base);
169 static void mmc_reset_controller_fsm(struct hsmmc *mmc_base, u32 bit);
170 
omap_hsmmc_get_data(struct mmc * mmc)171 static inline struct omap_hsmmc_data *omap_hsmmc_get_data(struct mmc *mmc)
172 {
173 #if CONFIG_IS_ENABLED(DM_MMC)
174 	return dev_get_priv(mmc->dev);
175 #else
176 	return (struct omap_hsmmc_data *)mmc->priv;
177 #endif
178 }
179 
180 #if defined(CONFIG_OMAP34XX) || defined(CONFIG_IODELAY_RECALIBRATION)
omap_hsmmc_get_cfg(struct mmc * mmc)181 static inline struct mmc_config *omap_hsmmc_get_cfg(struct mmc *mmc)
182 {
183 #if CONFIG_IS_ENABLED(DM_MMC)
184 	struct omap_hsmmc_plat *plat = dev_get_plat(mmc->dev);
185 	return &plat->cfg;
186 #else
187 	return &((struct omap_hsmmc_data *)mmc->priv)->cfg;
188 #endif
189 }
190 #endif
191 
192 #if defined(OMAP_HSMMC_USE_GPIO) && !CONFIG_IS_ENABLED(DM_MMC)
omap_mmc_setup_gpio_in(int gpio,const char * label)193 static int omap_mmc_setup_gpio_in(int gpio, const char *label)
194 {
195 	int ret;
196 
197 #if !CONFIG_IS_ENABLED(DM_GPIO)
198 	if (!gpio_is_valid(gpio))
199 		return -1;
200 #endif
201 	ret = gpio_request(gpio, label);
202 	if (ret)
203 		return ret;
204 
205 	ret = gpio_direction_input(gpio);
206 	if (ret)
207 		return ret;
208 
209 	return gpio;
210 }
211 #endif
212 
mmc_board_init(struct mmc * mmc)213 static unsigned char mmc_board_init(struct mmc *mmc)
214 {
215 #if defined(CONFIG_OMAP34XX)
216 	struct mmc_config *cfg = omap_hsmmc_get_cfg(mmc);
217 	t2_t *t2_base = (t2_t *)T2_BASE;
218 	struct prcm *prcm_base = (struct prcm *)PRCM_BASE;
219 	u32 pbias_lite;
220 #ifdef CONFIG_MMC_OMAP36XX_PINS
221 	u32 wkup_ctrl = readl(OMAP34XX_CTRL_WKUP_CTRL);
222 #endif
223 
224 	pbias_lite = readl(&t2_base->pbias_lite);
225 	pbias_lite &= ~(PBIASLITEPWRDNZ1 | PBIASLITEPWRDNZ0);
226 #ifdef CONFIG_TARGET_OMAP3_CAIRO
227 	/* for cairo board, we need to set up 1.8 Volt bias level on MMC1 */
228 	pbias_lite &= ~PBIASLITEVMODE0;
229 #endif
230 #ifdef CONFIG_TARGET_OMAP3_LOGIC
231 	/* For Logic PD board, 1.8V bias to go enable gpio127 for mmc_cd */
232 	pbias_lite &= ~PBIASLITEVMODE1;
233 #endif
234 #ifdef CONFIG_MMC_OMAP36XX_PINS
235 	if (get_cpu_family() == CPU_OMAP36XX) {
236 		/* Disable extended drain IO before changing PBIAS */
237 		wkup_ctrl &= ~OMAP34XX_CTRL_WKUP_CTRL_GPIO_IO_PWRDNZ;
238 		writel(wkup_ctrl, OMAP34XX_CTRL_WKUP_CTRL);
239 	}
240 #endif
241 	writel(pbias_lite, &t2_base->pbias_lite);
242 
243 	writel(pbias_lite | PBIASLITEPWRDNZ1 |
244 		PBIASSPEEDCTRL0 | PBIASLITEPWRDNZ0,
245 		&t2_base->pbias_lite);
246 
247 #ifdef CONFIG_MMC_OMAP36XX_PINS
248 	if (get_cpu_family() == CPU_OMAP36XX)
249 		/* Enable extended drain IO after changing PBIAS */
250 		writel(wkup_ctrl |
251 				OMAP34XX_CTRL_WKUP_CTRL_GPIO_IO_PWRDNZ,
252 				OMAP34XX_CTRL_WKUP_CTRL);
253 #endif
254 	writel(readl(&t2_base->devconf0) | MMCSDIO1ADPCLKISEL,
255 		&t2_base->devconf0);
256 
257 	writel(readl(&t2_base->devconf1) | MMCSDIO2ADPCLKISEL,
258 		&t2_base->devconf1);
259 
260 	/* Change from default of 52MHz to 26MHz if necessary */
261 	if (!(cfg->host_caps & MMC_MODE_HS_52MHz))
262 		writel(readl(&t2_base->ctl_prog_io1) & ~CTLPROGIO1SPEEDCTRL,
263 			&t2_base->ctl_prog_io1);
264 
265 	writel(readl(&prcm_base->fclken1_core) |
266 		EN_MMC1 | EN_MMC2 | EN_MMC3,
267 		&prcm_base->fclken1_core);
268 
269 	writel(readl(&prcm_base->iclken1_core) |
270 		EN_MMC1 | EN_MMC2 | EN_MMC3,
271 		&prcm_base->iclken1_core);
272 #endif
273 
274 #if (defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX)) &&\
275 	!CONFIG_IS_ENABLED(DM_REGULATOR)
276 	/* PBIAS config needed for MMC1 only */
277 	if (mmc_get_blk_desc(mmc)->devnum == 0)
278 		vmmc_pbias_config(LDO_VOLT_3V3);
279 #endif
280 
281 	return 0;
282 }
283 
mmc_init_stream(struct hsmmc * mmc_base)284 void mmc_init_stream(struct hsmmc *mmc_base)
285 {
286 	ulong start;
287 
288 	writel(readl(&mmc_base->con) | INIT_INITSTREAM, &mmc_base->con);
289 
290 	writel(MMC_CMD0, &mmc_base->cmd);
291 	start = get_timer(0);
292 	while (!(readl(&mmc_base->stat) & CC_MASK)) {
293 		if (get_timer(0) - start > MAX_RETRY_MS) {
294 			printf("%s: timedout waiting for cc!\n", __func__);
295 			return;
296 		}
297 	}
298 	writel(CC_MASK, &mmc_base->stat)
299 		;
300 	writel(MMC_CMD0, &mmc_base->cmd)
301 		;
302 	start = get_timer(0);
303 	while (!(readl(&mmc_base->stat) & CC_MASK)) {
304 		if (get_timer(0) - start > MAX_RETRY_MS) {
305 			printf("%s: timedout waiting for cc2!\n", __func__);
306 			return;
307 		}
308 	}
309 	writel(readl(&mmc_base->con) & ~INIT_INITSTREAM, &mmc_base->con);
310 }
311 
312 #if CONFIG_IS_ENABLED(DM_MMC)
313 #ifdef CONFIG_IODELAY_RECALIBRATION
omap_hsmmc_io_recalibrate(struct mmc * mmc)314 static void omap_hsmmc_io_recalibrate(struct mmc *mmc)
315 {
316 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
317 	struct omap_hsmmc_pinctrl_state *pinctrl_state;
318 
319 	switch (priv->mode) {
320 	case MMC_HS_200:
321 		pinctrl_state = priv->hs200_1_8v_pinctrl_state;
322 		break;
323 	case UHS_SDR104:
324 		pinctrl_state = priv->sdr104_pinctrl_state;
325 		break;
326 	case UHS_SDR50:
327 		pinctrl_state = priv->sdr50_pinctrl_state;
328 		break;
329 	case UHS_DDR50:
330 		pinctrl_state = priv->ddr50_pinctrl_state;
331 		break;
332 	case UHS_SDR25:
333 		pinctrl_state = priv->sdr25_pinctrl_state;
334 		break;
335 	case UHS_SDR12:
336 		pinctrl_state = priv->sdr12_pinctrl_state;
337 		break;
338 	case SD_HS:
339 	case MMC_HS:
340 	case MMC_HS_52:
341 		pinctrl_state = priv->hs_pinctrl_state;
342 		break;
343 	case MMC_DDR_52:
344 		pinctrl_state = priv->ddr_1_8v_pinctrl_state;
345 	default:
346 		pinctrl_state = priv->default_pinctrl_state;
347 		break;
348 	}
349 
350 	if (!pinctrl_state)
351 		pinctrl_state = priv->default_pinctrl_state;
352 
353 	if (priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY) {
354 		if (pinctrl_state->iodelay)
355 			late_recalibrate_iodelay(pinctrl_state->padconf,
356 						 pinctrl_state->npads,
357 						 pinctrl_state->iodelay,
358 						 pinctrl_state->niodelays);
359 		else
360 			do_set_mux32((*ctrl)->control_padconf_core_base,
361 				     pinctrl_state->padconf,
362 				     pinctrl_state->npads);
363 	}
364 }
365 #endif
omap_hsmmc_set_timing(struct mmc * mmc)366 static void omap_hsmmc_set_timing(struct mmc *mmc)
367 {
368 	u32 val;
369 	struct hsmmc *mmc_base;
370 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
371 
372 	mmc_base = priv->base_addr;
373 
374 	omap_hsmmc_stop_clock(mmc_base);
375 	val = readl(&mmc_base->ac12);
376 	val &= ~AC12_UHSMC_MASK;
377 	priv->mode = mmc->selected_mode;
378 
379 	if (mmc_is_mode_ddr(priv->mode))
380 		writel(readl(&mmc_base->con) | DDR, &mmc_base->con);
381 	else
382 		writel(readl(&mmc_base->con) & ~DDR, &mmc_base->con);
383 
384 	switch (priv->mode) {
385 	case MMC_HS_200:
386 	case UHS_SDR104:
387 		val |= AC12_UHSMC_SDR104;
388 		break;
389 	case UHS_SDR50:
390 		val |= AC12_UHSMC_SDR50;
391 		break;
392 	case MMC_DDR_52:
393 	case UHS_DDR50:
394 		val |= AC12_UHSMC_DDR50;
395 		break;
396 	case SD_HS:
397 	case MMC_HS_52:
398 	case UHS_SDR25:
399 		val |= AC12_UHSMC_SDR25;
400 		break;
401 	case MMC_LEGACY:
402 	case MMC_HS:
403 	case UHS_SDR12:
404 		val |= AC12_UHSMC_SDR12;
405 		break;
406 	default:
407 		val |= AC12_UHSMC_RES;
408 		break;
409 	}
410 	writel(val, &mmc_base->ac12);
411 
412 #ifdef CONFIG_IODELAY_RECALIBRATION
413 	omap_hsmmc_io_recalibrate(mmc);
414 #endif
415 	omap_hsmmc_start_clock(mmc_base);
416 }
417 
omap_hsmmc_conf_bus_power(struct mmc * mmc,uint signal_voltage)418 static void omap_hsmmc_conf_bus_power(struct mmc *mmc, uint signal_voltage)
419 {
420 	struct hsmmc *mmc_base;
421 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
422 	u32 hctl, ac12;
423 
424 	mmc_base = priv->base_addr;
425 
426 	hctl = readl(&mmc_base->hctl) & ~SDVS_MASK;
427 	ac12 = readl(&mmc_base->ac12) & ~AC12_V1V8_SIGEN;
428 
429 	switch (signal_voltage) {
430 	case MMC_SIGNAL_VOLTAGE_330:
431 		hctl |= SDVS_3V3;
432 		break;
433 	case MMC_SIGNAL_VOLTAGE_180:
434 		hctl |= SDVS_1V8;
435 		ac12 |= AC12_V1V8_SIGEN;
436 		break;
437 	}
438 
439 	writel(hctl, &mmc_base->hctl);
440 	writel(ac12, &mmc_base->ac12);
441 }
442 
omap_hsmmc_wait_dat0(struct udevice * dev,int state,int timeout_us)443 static int omap_hsmmc_wait_dat0(struct udevice *dev, int state, int timeout_us)
444 {
445 	int ret = -ETIMEDOUT;
446 	u32 con;
447 	bool dat0_high;
448 	bool target_dat0_high = !!state;
449 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
450 	struct hsmmc *mmc_base = priv->base_addr;
451 
452 	con = readl(&mmc_base->con);
453 	writel(con | CON_CLKEXTFREE | CON_PADEN, &mmc_base->con);
454 
455 	timeout_us = DIV_ROUND_UP(timeout_us, 10); /* check every 10 us. */
456 	while (timeout_us--) {
457 		dat0_high = !!(readl(&mmc_base->pstate) & PSTATE_DLEV_DAT0);
458 		if (dat0_high == target_dat0_high) {
459 			ret = 0;
460 			break;
461 		}
462 		udelay(10);
463 	}
464 	writel(con, &mmc_base->con);
465 
466 	return ret;
467 }
468 
469 #if CONFIG_IS_ENABLED(MMC_IO_VOLTAGE)
470 #if CONFIG_IS_ENABLED(DM_REGULATOR)
omap_hsmmc_set_io_regulator(struct mmc * mmc,int mV)471 static int omap_hsmmc_set_io_regulator(struct mmc *mmc, int mV)
472 {
473 	int ret = 0;
474 	int uV = mV * 1000;
475 
476 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
477 
478 	if (!mmc->vqmmc_supply)
479 		return 0;
480 
481 	/* Disable PBIAS */
482 	ret = regulator_set_enable_if_allowed(priv->pbias_supply, false);
483 	if (ret)
484 		return ret;
485 
486 	/* Turn off IO voltage */
487 	ret = regulator_set_enable_if_allowed(mmc->vqmmc_supply, false);
488 	if (ret)
489 		return ret;
490 	/* Program a new IO voltage value */
491 	ret = regulator_set_value(mmc->vqmmc_supply, uV);
492 	if (ret)
493 		return ret;
494 	/* Turn on IO voltage */
495 	ret = regulator_set_enable_if_allowed(mmc->vqmmc_supply, true);
496 	if (ret)
497 		return ret;
498 
499 	/* Program PBIAS voltage*/
500 	ret = regulator_set_value(priv->pbias_supply, uV);
501 	if (ret && ret != -ENOSYS)
502 		return ret;
503 	/* Enable PBIAS */
504 	ret = regulator_set_enable_if_allowed(priv->pbias_supply, true);
505 	if (ret)
506 		return ret;
507 
508 	return 0;
509 }
510 #endif
511 
omap_hsmmc_set_signal_voltage(struct mmc * mmc)512 static int omap_hsmmc_set_signal_voltage(struct mmc *mmc)
513 {
514 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
515 	struct hsmmc *mmc_base = priv->base_addr;
516 	int mv = mmc_voltage_to_mv(mmc->signal_voltage);
517 	u32 capa_mask;
518 	__maybe_unused u8 palmas_ldo_volt;
519 	u32 val;
520 
521 	if (mv < 0)
522 		return -EINVAL;
523 
524 	if (mmc->signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
525 		mv = 3300;
526 		capa_mask = VS33_3V3SUP;
527 		palmas_ldo_volt = LDO_VOLT_3V3;
528 	} else if (mmc->signal_voltage == MMC_SIGNAL_VOLTAGE_180) {
529 		capa_mask = VS18_1V8SUP;
530 		palmas_ldo_volt = LDO_VOLT_1V8;
531 	} else {
532 		return -EOPNOTSUPP;
533 	}
534 
535 	val = readl(&mmc_base->capa);
536 	if (!(val & capa_mask))
537 		return -EOPNOTSUPP;
538 
539 	priv->signal_voltage = mmc->signal_voltage;
540 
541 	omap_hsmmc_conf_bus_power(mmc, mmc->signal_voltage);
542 
543 #if CONFIG_IS_ENABLED(DM_REGULATOR)
544 	return omap_hsmmc_set_io_regulator(mmc, mv);
545 #elif (defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX)) && \
546 	defined(CONFIG_PALMAS_POWER)
547 	if (mmc_get_blk_desc(mmc)->devnum == 0)
548 		vmmc_pbias_config(palmas_ldo_volt);
549 	return 0;
550 #else
551 	return 0;
552 #endif
553 }
554 #endif
555 
omap_hsmmc_set_capabilities(struct mmc * mmc)556 static uint32_t omap_hsmmc_set_capabilities(struct mmc *mmc)
557 {
558 	struct hsmmc *mmc_base;
559 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
560 	u32 val;
561 
562 	mmc_base = priv->base_addr;
563 	val = readl(&mmc_base->capa);
564 
565 	if (priv->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
566 		val |= (VS33_3V3SUP | VS18_1V8SUP);
567 	} else if (priv->controller_flags & OMAP_HSMMC_NO_1_8_V) {
568 		val |= VS33_3V3SUP;
569 		val &= ~VS18_1V8SUP;
570 	} else {
571 		val |= VS18_1V8SUP;
572 		val &= ~VS33_3V3SUP;
573 	}
574 
575 	writel(val, &mmc_base->capa);
576 
577 	return val;
578 }
579 
580 #ifdef MMC_SUPPORTS_TUNING
omap_hsmmc_disable_tuning(struct mmc * mmc)581 static void omap_hsmmc_disable_tuning(struct mmc *mmc)
582 {
583 	struct hsmmc *mmc_base;
584 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
585 	u32 val;
586 
587 	mmc_base = priv->base_addr;
588 	val = readl(&mmc_base->ac12);
589 	val &= ~(AC12_SCLK_SEL);
590 	writel(val, &mmc_base->ac12);
591 
592 	val = readl(&mmc_base->dll);
593 	val &= ~(DLL_FORCE_VALUE | DLL_SWT);
594 	writel(val, &mmc_base->dll);
595 }
596 
omap_hsmmc_set_dll(struct mmc * mmc,int count)597 static void omap_hsmmc_set_dll(struct mmc *mmc, int count)
598 {
599 	int i;
600 	struct hsmmc *mmc_base;
601 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
602 	u32 val;
603 
604 	mmc_base = priv->base_addr;
605 	val = readl(&mmc_base->dll);
606 	val |= DLL_FORCE_VALUE;
607 	val &= ~(DLL_FORCE_SR_C_MASK << DLL_FORCE_SR_C_SHIFT);
608 	val |= (count << DLL_FORCE_SR_C_SHIFT);
609 	writel(val, &mmc_base->dll);
610 
611 	val |= DLL_CALIB;
612 	writel(val, &mmc_base->dll);
613 	for (i = 0; i < 1000; i++) {
614 		if (readl(&mmc_base->dll) & DLL_CALIB)
615 			break;
616 	}
617 	val &= ~DLL_CALIB;
618 	writel(val, &mmc_base->dll);
619 }
620 
omap_hsmmc_execute_tuning(struct udevice * dev,uint opcode)621 static int omap_hsmmc_execute_tuning(struct udevice *dev, uint opcode)
622 {
623 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
624 	struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
625 	struct mmc *mmc = upriv->mmc;
626 	struct hsmmc *mmc_base;
627 	u32 val;
628 	u8 cur_match, prev_match = 0;
629 	int ret;
630 	u32 phase_delay = 0;
631 	u32 start_window = 0, max_window = 0;
632 	u32 length = 0, max_len = 0;
633 	bool single_point_failure = false;
634 	struct udevice *thermal_dev;
635 	int temperature;
636 	int i;
637 
638 	mmc_base = priv->base_addr;
639 	val = readl(&mmc_base->capa2);
640 
641 	/* clock tuning is not needed for upto 52MHz */
642 	if (!((mmc->selected_mode == MMC_HS_200) ||
643 	      (mmc->selected_mode == UHS_SDR104) ||
644 	      ((mmc->selected_mode == UHS_SDR50) && (val & CAPA2_TSDR50))))
645 		return 0;
646 
647 	ret = uclass_first_device(UCLASS_THERMAL, &thermal_dev);
648 	if (ret) {
649 		printf("Couldn't get thermal device for tuning\n");
650 		return ret;
651 	}
652 	ret = thermal_get_temp(thermal_dev, &temperature);
653 	if (ret) {
654 		printf("Couldn't get temperature for tuning\n");
655 		return ret;
656 	}
657 	val = readl(&mmc_base->dll);
658 	val |= DLL_SWT;
659 	writel(val, &mmc_base->dll);
660 
661 	/*
662 	 * Stage 1: Search for a maximum pass window ignoring any
663 	 * any single point failures. If the tuning value ends up
664 	 * near it, move away from it in stage 2 below
665 	 */
666 	while (phase_delay <= MAX_PHASE_DELAY) {
667 		omap_hsmmc_set_dll(mmc, phase_delay);
668 
669 		cur_match = !mmc_send_tuning(mmc, opcode, NULL);
670 
671 		if (cur_match) {
672 			if (prev_match) {
673 				length++;
674 			} else if (single_point_failure) {
675 				/* ignore single point failure */
676 				length++;
677 				single_point_failure = false;
678 			} else {
679 				start_window = phase_delay;
680 				length = 1;
681 			}
682 		} else {
683 			single_point_failure = prev_match;
684 		}
685 
686 		if (length > max_len) {
687 			max_window = start_window;
688 			max_len = length;
689 		}
690 
691 		prev_match = cur_match;
692 		phase_delay += 4;
693 	}
694 
695 	if (!max_len) {
696 		ret = -EIO;
697 		goto tuning_error;
698 	}
699 
700 	val = readl(&mmc_base->ac12);
701 	if (!(val & AC12_SCLK_SEL)) {
702 		ret = -EIO;
703 		goto tuning_error;
704 	}
705 	/*
706 	 * Assign tuning value as a ratio of maximum pass window based
707 	 * on temperature
708 	 */
709 	if (temperature < -20000)
710 		phase_delay = min(max_window + 4 * max_len - 24,
711 				  max_window +
712 				  DIV_ROUND_UP(13 * max_len, 16) * 4);
713 	else if (temperature < 20000)
714 		phase_delay = max_window + DIV_ROUND_UP(9 * max_len, 16) * 4;
715 	else if (temperature < 40000)
716 		phase_delay = max_window + DIV_ROUND_UP(8 * max_len, 16) * 4;
717 	else if (temperature < 70000)
718 		phase_delay = max_window + DIV_ROUND_UP(7 * max_len, 16) * 4;
719 	else if (temperature < 90000)
720 		phase_delay = max_window + DIV_ROUND_UP(5 * max_len, 16) * 4;
721 	else if (temperature < 120000)
722 		phase_delay = max_window + DIV_ROUND_UP(4 * max_len, 16) * 4;
723 	else
724 		phase_delay = max_window + DIV_ROUND_UP(3 * max_len, 16) * 4;
725 
726 	/*
727 	 * Stage 2: Search for a single point failure near the chosen tuning
728 	 * value in two steps. First in the +3 to +10 range and then in the
729 	 * +2 to -10 range. If found, move away from it in the appropriate
730 	 * direction by the appropriate amount depending on the temperature.
731 	 */
732 	for (i = 3; i <= 10; i++) {
733 		omap_hsmmc_set_dll(mmc, phase_delay + i);
734 		if (mmc_send_tuning(mmc, opcode, NULL)) {
735 			if (temperature < 10000)
736 				phase_delay += i + 6;
737 			else if (temperature < 20000)
738 				phase_delay += i - 12;
739 			else if (temperature < 70000)
740 				phase_delay += i - 8;
741 			else if (temperature < 90000)
742 				phase_delay += i - 6;
743 			else
744 				phase_delay += i - 6;
745 
746 			goto single_failure_found;
747 		}
748 	}
749 
750 	for (i = 2; i >= -10; i--) {
751 		omap_hsmmc_set_dll(mmc, phase_delay + i);
752 		if (mmc_send_tuning(mmc, opcode, NULL)) {
753 			if (temperature < 10000)
754 				phase_delay += i + 12;
755 			else if (temperature < 20000)
756 				phase_delay += i + 8;
757 			else if (temperature < 70000)
758 				phase_delay += i + 8;
759 			else if (temperature < 90000)
760 				phase_delay += i + 10;
761 			else
762 				phase_delay += i + 12;
763 
764 			goto single_failure_found;
765 		}
766 	}
767 
768 single_failure_found:
769 
770 	omap_hsmmc_set_dll(mmc, phase_delay);
771 
772 	mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
773 	mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
774 
775 	return 0;
776 
777 tuning_error:
778 
779 	omap_hsmmc_disable_tuning(mmc);
780 	mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
781 	mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
782 
783 	return ret;
784 }
785 #endif
786 #endif
787 
mmc_enable_irq(struct mmc * mmc,struct mmc_cmd * cmd)788 static void mmc_enable_irq(struct mmc *mmc, struct mmc_cmd *cmd)
789 {
790 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
791 	struct hsmmc *mmc_base = priv->base_addr;
792 	u32 irq_mask = INT_EN_MASK;
793 
794 	/*
795 	 * TODO: Errata i802 indicates only DCRC interrupts can occur during
796 	 * tuning procedure and DCRC should be disabled. But see occurences
797 	 * of DEB, CIE, CEB, CCRC interupts during tuning procedure. These
798 	 * interrupts occur along with BRR, so the data is actually in the
799 	 * buffer. It has to be debugged why these interrutps occur
800 	 */
801 	if (cmd && mmc_is_tuning_cmd(cmd->cmdidx))
802 		irq_mask &= ~(IE_DEB | IE_DCRC | IE_CIE | IE_CEB | IE_CCRC);
803 
804 	writel(irq_mask, &mmc_base->ie);
805 }
806 
omap_hsmmc_init_setup(struct mmc * mmc)807 static int omap_hsmmc_init_setup(struct mmc *mmc)
808 {
809 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
810 	struct hsmmc *mmc_base;
811 	unsigned int reg_val;
812 	unsigned int dsor;
813 	ulong start;
814 
815 	mmc_base = priv->base_addr;
816 	mmc_board_init(mmc);
817 
818 	writel(readl(&mmc_base->sysconfig) | MMC_SOFTRESET,
819 		&mmc_base->sysconfig);
820 	start = get_timer(0);
821 	while ((readl(&mmc_base->sysstatus) & RESETDONE) == 0) {
822 		if (get_timer(0) - start > MAX_RETRY_MS) {
823 			printf("%s: timedout waiting for cc2!\n", __func__);
824 			return -ETIMEDOUT;
825 		}
826 	}
827 	writel(readl(&mmc_base->sysctl) | SOFTRESETALL, &mmc_base->sysctl);
828 	start = get_timer(0);
829 	while ((readl(&mmc_base->sysctl) & SOFTRESETALL) != 0x0) {
830 		if (get_timer(0) - start > MAX_RETRY_MS) {
831 			printf("%s: timedout waiting for softresetall!\n",
832 				__func__);
833 			return -ETIMEDOUT;
834 		}
835 	}
836 #ifdef CONFIG_MMC_OMAP_HS_ADMA
837 	reg_val = readl(&mmc_base->hl_hwinfo);
838 	if (reg_val & MADMA_EN)
839 		priv->controller_flags |= OMAP_HSMMC_USE_ADMA;
840 #endif
841 
842 #if CONFIG_IS_ENABLED(DM_MMC)
843 	reg_val = omap_hsmmc_set_capabilities(mmc);
844 	omap_hsmmc_conf_bus_power(mmc, (reg_val & VS33_3V3SUP) ?
845 			  MMC_SIGNAL_VOLTAGE_330 : MMC_SIGNAL_VOLTAGE_180);
846 #else
847 	writel(DTW_1_BITMODE | SDBP_PWROFF | SDVS_3V3, &mmc_base->hctl);
848 	writel(readl(&mmc_base->capa) | VS33_3V3SUP | VS18_1V8SUP,
849 		&mmc_base->capa);
850 #endif
851 
852 	reg_val = readl(&mmc_base->con) & RESERVED_MASK;
853 
854 	writel(CTPL_MMC_SD | reg_val | WPP_ACTIVEHIGH | CDP_ACTIVEHIGH |
855 		MIT_CTO | DW8_1_4BITMODE | MODE_FUNC | STR_BLOCK |
856 		HR_NOHOSTRESP | INIT_NOINIT | NOOPENDRAIN, &mmc_base->con);
857 
858 	dsor = 240;
859 	mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK | CEN_MASK),
860 		(ICE_STOP | DTO_15THDTO));
861 	mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
862 		(dsor << CLKD_OFFSET) | ICE_OSCILLATE);
863 	start = get_timer(0);
864 	while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
865 		if (get_timer(0) - start > MAX_RETRY_MS) {
866 			printf("%s: timedout waiting for ics!\n", __func__);
867 			return -ETIMEDOUT;
868 		}
869 	}
870 	writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
871 
872 	writel(readl(&mmc_base->hctl) | SDBP_PWRON, &mmc_base->hctl);
873 
874 	mmc_enable_irq(mmc, NULL);
875 
876 #if !CONFIG_IS_ENABLED(DM_MMC)
877 	mmc_init_stream(mmc_base);
878 #endif
879 
880 	return 0;
881 }
882 
883 /*
884  * MMC controller internal finite state machine reset
885  *
886  * Used to reset command or data internal state machines, using respectively
887  * SRC or SRD bit of SYSCTL register
888  */
mmc_reset_controller_fsm(struct hsmmc * mmc_base,u32 bit)889 static void mmc_reset_controller_fsm(struct hsmmc *mmc_base, u32 bit)
890 {
891 	ulong start;
892 
893 	mmc_reg_out(&mmc_base->sysctl, bit, bit);
894 
895 	/*
896 	 * CMD(DAT) lines reset procedures are slightly different
897 	 * for OMAP3 and OMAP4(AM335x,OMAP5,DRA7xx).
898 	 * According to OMAP3 TRM:
899 	 * Set SRC(SRD) bit in MMCHS_SYSCTL register to 0x1 and wait until it
900 	 * returns to 0x0.
901 	 * According to OMAP4(AM335x,OMAP5,DRA7xx) TRMs, CMD(DATA) lines reset
902 	 * procedure steps must be as follows:
903 	 * 1. Initiate CMD(DAT) line reset by writing 0x1 to SRC(SRD) bit in
904 	 *    MMCHS_SYSCTL register (SD_SYSCTL for AM335x).
905 	 * 2. Poll the SRC(SRD) bit until it is set to 0x1.
906 	 * 3. Wait until the SRC (SRD) bit returns to 0x0
907 	 *    (reset procedure is completed).
908 	 */
909 #if defined(CONFIG_OMAP44XX) || defined(CONFIG_OMAP54XX) || \
910 	defined(CONFIG_AM33XX) || defined(CONFIG_AM43XX)
911 	if (!(readl(&mmc_base->sysctl) & bit)) {
912 		start = get_timer(0);
913 		while (!(readl(&mmc_base->sysctl) & bit)) {
914 			if (get_timer(0) - start > MMC_TIMEOUT_MS)
915 				return;
916 		}
917 	}
918 #endif
919 	start = get_timer(0);
920 	while ((readl(&mmc_base->sysctl) & bit) != 0) {
921 		if (get_timer(0) - start > MAX_RETRY_MS) {
922 			printf("%s: timedout waiting for sysctl %x to clear\n",
923 				__func__, bit);
924 			return;
925 		}
926 	}
927 }
928 
929 #ifdef CONFIG_MMC_OMAP_HS_ADMA
omap_hsmmc_adma_desc(struct mmc * mmc,char * buf,u16 len,bool end)930 static void omap_hsmmc_adma_desc(struct mmc *mmc, char *buf, u16 len, bool end)
931 {
932 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
933 	struct omap_hsmmc_adma_desc *desc;
934 	u8 attr;
935 
936 	desc = &priv->adma_desc_table[priv->desc_slot];
937 
938 	attr = ADMA_DESC_ATTR_VALID | ADMA_DESC_TRANSFER_DATA;
939 	if (!end)
940 		priv->desc_slot++;
941 	else
942 		attr |= ADMA_DESC_ATTR_END;
943 
944 	desc->len = len;
945 	desc->addr = (u32)buf;
946 	desc->reserved = 0;
947 	desc->attr = attr;
948 }
949 
omap_hsmmc_prepare_adma_table(struct mmc * mmc,struct mmc_data * data)950 static void omap_hsmmc_prepare_adma_table(struct mmc *mmc,
951 					  struct mmc_data *data)
952 {
953 	uint total_len = data->blocksize * data->blocks;
954 	uint desc_count = DIV_ROUND_UP(total_len, ADMA_MAX_LEN);
955 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
956 	int i = desc_count;
957 	char *buf;
958 
959 	priv->desc_slot = 0;
960 	priv->adma_desc_table = (struct omap_hsmmc_adma_desc *)
961 				memalign(ARCH_DMA_MINALIGN, desc_count *
962 				sizeof(struct omap_hsmmc_adma_desc));
963 
964 	if (data->flags & MMC_DATA_READ)
965 		buf = data->dest;
966 	else
967 		buf = (char *)data->src;
968 
969 	while (--i) {
970 		omap_hsmmc_adma_desc(mmc, buf, ADMA_MAX_LEN, false);
971 		buf += ADMA_MAX_LEN;
972 		total_len -= ADMA_MAX_LEN;
973 	}
974 
975 	omap_hsmmc_adma_desc(mmc, buf, total_len, true);
976 
977 	flush_dcache_range((long)priv->adma_desc_table,
978 			   (long)priv->adma_desc_table +
979 			   ROUND(desc_count *
980 			   sizeof(struct omap_hsmmc_adma_desc),
981 			   ARCH_DMA_MINALIGN));
982 }
983 
omap_hsmmc_prepare_data(struct mmc * mmc,struct mmc_data * data)984 static void omap_hsmmc_prepare_data(struct mmc *mmc, struct mmc_data *data)
985 {
986 	struct hsmmc *mmc_base;
987 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
988 	u32 val;
989 	char *buf;
990 
991 	mmc_base = priv->base_addr;
992 	omap_hsmmc_prepare_adma_table(mmc, data);
993 
994 	if (data->flags & MMC_DATA_READ)
995 		buf = data->dest;
996 	else
997 		buf = (char *)data->src;
998 
999 	val = readl(&mmc_base->hctl);
1000 	val |= DMA_SELECT;
1001 	writel(val, &mmc_base->hctl);
1002 
1003 	val = readl(&mmc_base->con);
1004 	val |= DMA_MASTER;
1005 	writel(val, &mmc_base->con);
1006 
1007 	writel((u32)priv->adma_desc_table, &mmc_base->admasal);
1008 
1009 	flush_dcache_range((u32)buf,
1010 			   (u32)buf +
1011 			   ROUND(data->blocksize * data->blocks,
1012 				 ARCH_DMA_MINALIGN));
1013 }
1014 
omap_hsmmc_dma_cleanup(struct mmc * mmc)1015 static void omap_hsmmc_dma_cleanup(struct mmc *mmc)
1016 {
1017 	struct hsmmc *mmc_base;
1018 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1019 	u32 val;
1020 
1021 	mmc_base = priv->base_addr;
1022 
1023 	val = readl(&mmc_base->con);
1024 	val &= ~DMA_MASTER;
1025 	writel(val, &mmc_base->con);
1026 
1027 	val = readl(&mmc_base->hctl);
1028 	val &= ~DMA_SELECT;
1029 	writel(val, &mmc_base->hctl);
1030 
1031 	kfree(priv->adma_desc_table);
1032 }
1033 #else
1034 #define omap_hsmmc_adma_desc
1035 #define omap_hsmmc_prepare_adma_table
1036 #define omap_hsmmc_prepare_data
1037 #define omap_hsmmc_dma_cleanup
1038 #endif
1039 
1040 #if !CONFIG_IS_ENABLED(DM_MMC)
omap_hsmmc_send_cmd(struct mmc * mmc,struct mmc_cmd * cmd,struct mmc_data * data)1041 static int omap_hsmmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
1042 			struct mmc_data *data)
1043 {
1044 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1045 #else
1046 static int omap_hsmmc_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
1047 			struct mmc_data *data)
1048 {
1049 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
1050 	struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
1051 	struct mmc *mmc = upriv->mmc;
1052 #endif
1053 	struct hsmmc *mmc_base;
1054 	unsigned int flags, mmc_stat;
1055 	ulong start;
1056 	priv->last_cmd = cmd->cmdidx;
1057 
1058 	mmc_base = priv->base_addr;
1059 
1060 	if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION)
1061 		return 0;
1062 
1063 	start = get_timer(0);
1064 	while ((readl(&mmc_base->pstate) & (DATI_MASK | CMDI_MASK)) != 0) {
1065 		if (get_timer(0) - start > MAX_RETRY_MS) {
1066 			printf("%s: timedout waiting on cmd inhibit to clear\n",
1067 					__func__);
1068 			mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
1069 			mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
1070 			return -ETIMEDOUT;
1071 		}
1072 	}
1073 	writel(0xFFFFFFFF, &mmc_base->stat);
1074 	if (readl(&mmc_base->stat)) {
1075 		mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
1076 		mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
1077 	}
1078 
1079 	/*
1080 	 * CMDREG
1081 	 * CMDIDX[13:8]	: Command index
1082 	 * DATAPRNT[5]	: Data Present Select
1083 	 * ENCMDIDX[4]	: Command Index Check Enable
1084 	 * ENCMDCRC[3]	: Command CRC Check Enable
1085 	 * RSPTYP[1:0]
1086 	 *	00 = No Response
1087 	 *	01 = Length 136
1088 	 *	10 = Length 48
1089 	 *	11 = Length 48 Check busy after response
1090 	 */
1091 	/* Delay added before checking the status of frq change
1092 	 * retry not supported by mmc.c(core file)
1093 	 */
1094 	if (cmd->cmdidx == SD_CMD_APP_SEND_SCR)
1095 		udelay(50000); /* wait 50 ms */
1096 
1097 	if (!(cmd->resp_type & MMC_RSP_PRESENT))
1098 		flags = 0;
1099 	else if (cmd->resp_type & MMC_RSP_136)
1100 		flags = RSP_TYPE_LGHT136 | CICE_NOCHECK;
1101 	else if (cmd->resp_type & MMC_RSP_BUSY)
1102 		flags = RSP_TYPE_LGHT48B;
1103 	else
1104 		flags = RSP_TYPE_LGHT48;
1105 
1106 	/* enable default flags */
1107 	flags =	flags | (CMD_TYPE_NORMAL | CICE_NOCHECK | CCCE_NOCHECK |
1108 			MSBS_SGLEBLK);
1109 	flags &= ~(ACEN_ENABLE | BCE_ENABLE | DE_ENABLE);
1110 
1111 	if (cmd->resp_type & MMC_RSP_CRC)
1112 		flags |= CCCE_CHECK;
1113 	if (cmd->resp_type & MMC_RSP_OPCODE)
1114 		flags |= CICE_CHECK;
1115 
1116 	if (data) {
1117 		if ((cmd->cmdidx == MMC_CMD_READ_MULTIPLE_BLOCK) ||
1118 			 (cmd->cmdidx == MMC_CMD_WRITE_MULTIPLE_BLOCK)) {
1119 			flags |= (MSBS_MULTIBLK | BCE_ENABLE | ACEN_ENABLE);
1120 			data->blocksize = 512;
1121 			writel(data->blocksize | (data->blocks << 16),
1122 							&mmc_base->blk);
1123 		} else
1124 			writel(data->blocksize | NBLK_STPCNT, &mmc_base->blk);
1125 
1126 		if (data->flags & MMC_DATA_READ)
1127 			flags |= (DP_DATA | DDIR_READ);
1128 		else
1129 			flags |= (DP_DATA | DDIR_WRITE);
1130 
1131 #ifdef CONFIG_MMC_OMAP_HS_ADMA
1132 		if ((priv->controller_flags & OMAP_HSMMC_USE_ADMA) &&
1133 		    !mmc_is_tuning_cmd(cmd->cmdidx)) {
1134 			omap_hsmmc_prepare_data(mmc, data);
1135 			flags |= DE_ENABLE;
1136 		}
1137 #endif
1138 	}
1139 
1140 	mmc_enable_irq(mmc, cmd);
1141 
1142 	writel(cmd->cmdarg, &mmc_base->arg);
1143 	udelay(20);		/* To fix "No status update" error on eMMC */
1144 	writel((cmd->cmdidx << 24) | flags, &mmc_base->cmd);
1145 
1146 	start = get_timer(0);
1147 	do {
1148 		mmc_stat = readl(&mmc_base->stat);
1149 		if (get_timer(start) > MAX_RETRY_MS) {
1150 			printf("%s : timeout: No status update\n", __func__);
1151 			return -ETIMEDOUT;
1152 		}
1153 	} while (!mmc_stat);
1154 
1155 	if ((mmc_stat & IE_CTO) != 0) {
1156 		mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
1157 		return -ETIMEDOUT;
1158 	} else if ((mmc_stat & ERRI_MASK) != 0)
1159 		return -1;
1160 
1161 	if (mmc_stat & CC_MASK) {
1162 		writel(CC_MASK, &mmc_base->stat);
1163 		if (cmd->resp_type & MMC_RSP_PRESENT) {
1164 			if (cmd->resp_type & MMC_RSP_136) {
1165 				/* response type 2 */
1166 				cmd->response[3] = readl(&mmc_base->rsp10);
1167 				cmd->response[2] = readl(&mmc_base->rsp32);
1168 				cmd->response[1] = readl(&mmc_base->rsp54);
1169 				cmd->response[0] = readl(&mmc_base->rsp76);
1170 			} else
1171 				/* response types 1, 1b, 3, 4, 5, 6 */
1172 				cmd->response[0] = readl(&mmc_base->rsp10);
1173 		}
1174 	}
1175 
1176 #ifdef CONFIG_MMC_OMAP_HS_ADMA
1177 	if ((priv->controller_flags & OMAP_HSMMC_USE_ADMA) && data &&
1178 	    !mmc_is_tuning_cmd(cmd->cmdidx)) {
1179 		u32 sz_mb, timeout;
1180 
1181 		if (mmc_stat & IE_ADMAE) {
1182 			omap_hsmmc_dma_cleanup(mmc);
1183 			return -EIO;
1184 		}
1185 
1186 		sz_mb = DIV_ROUND_UP(data->blocksize *  data->blocks, 1 << 20);
1187 		timeout = sz_mb * DMA_TIMEOUT_PER_MB;
1188 		if (timeout < MAX_RETRY_MS)
1189 			timeout = MAX_RETRY_MS;
1190 
1191 		start = get_timer(0);
1192 		do {
1193 			mmc_stat = readl(&mmc_base->stat);
1194 			if (mmc_stat & TC_MASK) {
1195 				writel(readl(&mmc_base->stat) | TC_MASK,
1196 				       &mmc_base->stat);
1197 				break;
1198 			}
1199 			if (get_timer(start) > timeout) {
1200 				printf("%s : DMA timeout: No status update\n",
1201 				       __func__);
1202 				return -ETIMEDOUT;
1203 			}
1204 		} while (1);
1205 
1206 		omap_hsmmc_dma_cleanup(mmc);
1207 		return 0;
1208 	}
1209 #endif
1210 
1211 	if (data && (data->flags & MMC_DATA_READ)) {
1212 		mmc_read_data(mmc_base,	data->dest,
1213 				data->blocksize * data->blocks);
1214 	} else if (data && (data->flags & MMC_DATA_WRITE)) {
1215 		mmc_write_data(mmc_base, data->src,
1216 				data->blocksize * data->blocks);
1217 	}
1218 	return 0;
1219 }
1220 
1221 static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size)
1222 {
1223 	unsigned int *output_buf = (unsigned int *)buf;
1224 	unsigned int mmc_stat;
1225 	unsigned int count;
1226 
1227 	/*
1228 	 * Start Polled Read
1229 	 */
1230 	count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
1231 	count /= 4;
1232 
1233 	while (size) {
1234 		ulong start = get_timer(0);
1235 		do {
1236 			mmc_stat = readl(&mmc_base->stat);
1237 			if (get_timer(0) - start > MAX_RETRY_MS) {
1238 				printf("%s: timedout waiting for status!\n",
1239 						__func__);
1240 				return -ETIMEDOUT;
1241 			}
1242 		} while (mmc_stat == 0);
1243 
1244 		if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0)
1245 			mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
1246 
1247 		if ((mmc_stat & ERRI_MASK) != 0)
1248 			return 1;
1249 
1250 		if (mmc_stat & BRR_MASK) {
1251 			unsigned int k;
1252 
1253 			writel(readl(&mmc_base->stat) | BRR_MASK,
1254 				&mmc_base->stat);
1255 			for (k = 0; k < count; k++) {
1256 				*output_buf = readl(&mmc_base->data);
1257 				output_buf++;
1258 			}
1259 			size -= (count*4);
1260 		}
1261 
1262 		if (mmc_stat & BWR_MASK)
1263 			writel(readl(&mmc_base->stat) | BWR_MASK,
1264 				&mmc_base->stat);
1265 
1266 		if (mmc_stat & TC_MASK) {
1267 			writel(readl(&mmc_base->stat) | TC_MASK,
1268 				&mmc_base->stat);
1269 			break;
1270 		}
1271 	}
1272 	return 0;
1273 }
1274 
1275 #if CONFIG_IS_ENABLED(MMC_WRITE)
1276 static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
1277 			  unsigned int size)
1278 {
1279 	unsigned int *input_buf = (unsigned int *)buf;
1280 	unsigned int mmc_stat;
1281 	unsigned int count;
1282 
1283 	/*
1284 	 * Start Polled Write
1285 	 */
1286 	count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
1287 	count /= 4;
1288 
1289 	while (size) {
1290 		ulong start = get_timer(0);
1291 		do {
1292 			mmc_stat = readl(&mmc_base->stat);
1293 			if (get_timer(0) - start > MAX_RETRY_MS) {
1294 				printf("%s: timedout waiting for status!\n",
1295 						__func__);
1296 				return -ETIMEDOUT;
1297 			}
1298 		} while (mmc_stat == 0);
1299 
1300 		if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0)
1301 			mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
1302 
1303 		if ((mmc_stat & ERRI_MASK) != 0)
1304 			return 1;
1305 
1306 		if (mmc_stat & BWR_MASK) {
1307 			unsigned int k;
1308 
1309 			writel(readl(&mmc_base->stat) | BWR_MASK,
1310 					&mmc_base->stat);
1311 			for (k = 0; k < count; k++) {
1312 				writel(*input_buf, &mmc_base->data);
1313 				input_buf++;
1314 			}
1315 			size -= (count*4);
1316 		}
1317 
1318 		if (mmc_stat & BRR_MASK)
1319 			writel(readl(&mmc_base->stat) | BRR_MASK,
1320 				&mmc_base->stat);
1321 
1322 		if (mmc_stat & TC_MASK) {
1323 			writel(readl(&mmc_base->stat) | TC_MASK,
1324 				&mmc_base->stat);
1325 			break;
1326 		}
1327 	}
1328 	return 0;
1329 }
1330 #else
1331 static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
1332 			  unsigned int size)
1333 {
1334 	return -ENOTSUPP;
1335 }
1336 #endif
1337 static void omap_hsmmc_stop_clock(struct hsmmc *mmc_base)
1338 {
1339 	writel(readl(&mmc_base->sysctl) & ~CEN_ENABLE, &mmc_base->sysctl);
1340 }
1341 
1342 static void omap_hsmmc_start_clock(struct hsmmc *mmc_base)
1343 {
1344 	writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
1345 }
1346 
1347 static void omap_hsmmc_set_clock(struct mmc *mmc)
1348 {
1349 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1350 	struct hsmmc *mmc_base;
1351 	unsigned int dsor = 0;
1352 	ulong start;
1353 
1354 	mmc_base = priv->base_addr;
1355 	omap_hsmmc_stop_clock(mmc_base);
1356 
1357 	/* TODO: Is setting DTO required here? */
1358 	mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK),
1359 		    (ICE_STOP | DTO_15THDTO));
1360 
1361 	if (mmc->clock != 0) {
1362 		dsor = DIV_ROUND_UP(MMC_CLOCK_REFERENCE * 1000000, mmc->clock);
1363 		if (dsor > CLKD_MAX)
1364 			dsor = CLKD_MAX;
1365 	} else {
1366 		dsor = CLKD_MAX;
1367 	}
1368 
1369 	mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
1370 		    (dsor << CLKD_OFFSET) | ICE_OSCILLATE);
1371 
1372 	start = get_timer(0);
1373 	while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
1374 		if (get_timer(0) - start > MAX_RETRY_MS) {
1375 			printf("%s: timedout waiting for ics!\n", __func__);
1376 			return;
1377 		}
1378 	}
1379 
1380 	priv->clock = MMC_CLOCK_REFERENCE * 1000000 / dsor;
1381 	mmc->clock = priv->clock;
1382 	omap_hsmmc_start_clock(mmc_base);
1383 }
1384 
1385 static void omap_hsmmc_set_bus_width(struct mmc *mmc)
1386 {
1387 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1388 	struct hsmmc *mmc_base;
1389 
1390 	mmc_base = priv->base_addr;
1391 	/* configue bus width */
1392 	switch (mmc->bus_width) {
1393 	case 8:
1394 		writel(readl(&mmc_base->con) | DTW_8_BITMODE,
1395 			&mmc_base->con);
1396 		break;
1397 
1398 	case 4:
1399 		writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
1400 			&mmc_base->con);
1401 		writel(readl(&mmc_base->hctl) | DTW_4_BITMODE,
1402 			&mmc_base->hctl);
1403 		break;
1404 
1405 	case 1:
1406 	default:
1407 		writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
1408 			&mmc_base->con);
1409 		writel(readl(&mmc_base->hctl) & ~DTW_4_BITMODE,
1410 			&mmc_base->hctl);
1411 		break;
1412 	}
1413 
1414 	priv->bus_width = mmc->bus_width;
1415 }
1416 
1417 #if !CONFIG_IS_ENABLED(DM_MMC)
1418 static int omap_hsmmc_set_ios(struct mmc *mmc)
1419 {
1420 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1421 #else
1422 static int omap_hsmmc_set_ios(struct udevice *dev)
1423 {
1424 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
1425 	struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
1426 	struct mmc *mmc = upriv->mmc;
1427 #endif
1428 	struct hsmmc *mmc_base = priv->base_addr;
1429 	int ret = 0;
1430 
1431 	if (priv->bus_width != mmc->bus_width)
1432 		omap_hsmmc_set_bus_width(mmc);
1433 
1434 	if (priv->clock != mmc->clock)
1435 		omap_hsmmc_set_clock(mmc);
1436 
1437 	if (mmc->clk_disable)
1438 		omap_hsmmc_stop_clock(mmc_base);
1439 	else
1440 		omap_hsmmc_start_clock(mmc_base);
1441 
1442 #if CONFIG_IS_ENABLED(DM_MMC)
1443 	if (priv->mode != mmc->selected_mode)
1444 		omap_hsmmc_set_timing(mmc);
1445 
1446 #if CONFIG_IS_ENABLED(MMC_IO_VOLTAGE)
1447 	if (priv->signal_voltage != mmc->signal_voltage)
1448 		ret = omap_hsmmc_set_signal_voltage(mmc);
1449 #endif
1450 #endif
1451 	return ret;
1452 }
1453 
1454 #ifdef OMAP_HSMMC_USE_GPIO
1455 #if CONFIG_IS_ENABLED(DM_MMC)
1456 static int omap_hsmmc_getcd(struct udevice *dev)
1457 {
1458 	int value = -1;
1459 #if CONFIG_IS_ENABLED(DM_GPIO)
1460 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
1461 	value = dm_gpio_get_value(&priv->cd_gpio);
1462 #endif
1463 	/* if no CD return as 1 */
1464 	if (value < 0)
1465 		return 1;
1466 
1467 	return value;
1468 }
1469 
1470 static int omap_hsmmc_getwp(struct udevice *dev)
1471 {
1472 	int value = 0;
1473 #if CONFIG_IS_ENABLED(DM_GPIO)
1474 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
1475 	value = dm_gpio_get_value(&priv->wp_gpio);
1476 #endif
1477 	/* if no WP return as 0 */
1478 	if (value < 0)
1479 		return 0;
1480 	return value;
1481 }
1482 #else
1483 static int omap_hsmmc_getcd(struct mmc *mmc)
1484 {
1485 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1486 	int cd_gpio;
1487 
1488 	/* if no CD return as 1 */
1489 	cd_gpio = priv->cd_gpio;
1490 	if (cd_gpio < 0)
1491 		return 1;
1492 
1493 	/* NOTE: assumes card detect signal is active-low */
1494 	return !gpio_get_value(cd_gpio);
1495 }
1496 
1497 static int omap_hsmmc_getwp(struct mmc *mmc)
1498 {
1499 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1500 	int wp_gpio;
1501 
1502 	/* if no WP return as 0 */
1503 	wp_gpio = priv->wp_gpio;
1504 	if (wp_gpio < 0)
1505 		return 0;
1506 
1507 	/* NOTE: assumes write protect signal is active-high */
1508 	return gpio_get_value(wp_gpio);
1509 }
1510 #endif
1511 #endif
1512 
1513 #if CONFIG_IS_ENABLED(DM_MMC)
1514 static const struct dm_mmc_ops omap_hsmmc_ops = {
1515 	.send_cmd	= omap_hsmmc_send_cmd,
1516 	.set_ios	= omap_hsmmc_set_ios,
1517 #ifdef OMAP_HSMMC_USE_GPIO
1518 	.get_cd		= omap_hsmmc_getcd,
1519 	.get_wp		= omap_hsmmc_getwp,
1520 #endif
1521 #ifdef MMC_SUPPORTS_TUNING
1522 	.execute_tuning = omap_hsmmc_execute_tuning,
1523 #endif
1524 	.wait_dat0	= omap_hsmmc_wait_dat0,
1525 };
1526 #else
1527 static const struct mmc_ops omap_hsmmc_ops = {
1528 	.send_cmd	= omap_hsmmc_send_cmd,
1529 	.set_ios	= omap_hsmmc_set_ios,
1530 	.init		= omap_hsmmc_init_setup,
1531 #ifdef OMAP_HSMMC_USE_GPIO
1532 	.getcd		= omap_hsmmc_getcd,
1533 	.getwp		= omap_hsmmc_getwp,
1534 #endif
1535 };
1536 #endif
1537 
1538 #if !CONFIG_IS_ENABLED(DM_MMC)
1539 int omap_mmc_init(int dev_index, uint host_caps_mask, uint f_max, int cd_gpio,
1540 		int wp_gpio)
1541 {
1542 	struct mmc *mmc;
1543 	struct omap_hsmmc_data *priv;
1544 	struct mmc_config *cfg;
1545 	uint host_caps_val;
1546 
1547 	priv = calloc(1, sizeof(*priv));
1548 	if (priv == NULL)
1549 		return -1;
1550 
1551 	host_caps_val = MMC_MODE_4BIT | MMC_MODE_HS_52MHz | MMC_MODE_HS;
1552 
1553 	switch (dev_index) {
1554 	case 0:
1555 		priv->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
1556 		break;
1557 #ifdef OMAP_HSMMC2_BASE
1558 	case 1:
1559 		priv->base_addr = (struct hsmmc *)OMAP_HSMMC2_BASE;
1560 #if (defined(CONFIG_OMAP44XX) || defined(CONFIG_OMAP54XX) || \
1561 	defined(CONFIG_DRA7XX) || defined(CONFIG_AM33XX) || \
1562 	defined(CONFIG_AM43XX) || defined(CONFIG_SOC_KEYSTONE)) && \
1563 		defined(CONFIG_HSMMC2_8BIT)
1564 		/* Enable 8-bit interface for eMMC on OMAP4/5 or DRA7XX */
1565 		host_caps_val |= MMC_MODE_8BIT;
1566 #endif
1567 		break;
1568 #endif
1569 #ifdef OMAP_HSMMC3_BASE
1570 	case 2:
1571 		priv->base_addr = (struct hsmmc *)OMAP_HSMMC3_BASE;
1572 #if defined(CONFIG_DRA7XX) && defined(CONFIG_HSMMC3_8BIT)
1573 		/* Enable 8-bit interface for eMMC on DRA7XX */
1574 		host_caps_val |= MMC_MODE_8BIT;
1575 #endif
1576 		break;
1577 #endif
1578 	default:
1579 		priv->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
1580 		return 1;
1581 	}
1582 #ifdef OMAP_HSMMC_USE_GPIO
1583 	/* on error gpio values are set to -1, which is what we want */
1584 	priv->cd_gpio = omap_mmc_setup_gpio_in(cd_gpio, "mmc_cd");
1585 	priv->wp_gpio = omap_mmc_setup_gpio_in(wp_gpio, "mmc_wp");
1586 #endif
1587 
1588 	cfg = &priv->cfg;
1589 
1590 	cfg->name = "OMAP SD/MMC";
1591 	cfg->ops = &omap_hsmmc_ops;
1592 
1593 	cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
1594 	cfg->host_caps = host_caps_val & ~host_caps_mask;
1595 
1596 	cfg->f_min = 400000;
1597 
1598 	if (f_max != 0)
1599 		cfg->f_max = f_max;
1600 	else {
1601 		if (cfg->host_caps & MMC_MODE_HS) {
1602 			if (cfg->host_caps & MMC_MODE_HS_52MHz)
1603 				cfg->f_max = 52000000;
1604 			else
1605 				cfg->f_max = 26000000;
1606 		} else
1607 			cfg->f_max = 20000000;
1608 	}
1609 
1610 	cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
1611 
1612 #if defined(CONFIG_OMAP34XX)
1613 	/*
1614 	 * Silicon revs 2.1 and older do not support multiblock transfers.
1615 	 */
1616 	if ((get_cpu_family() == CPU_OMAP34XX) && (get_cpu_rev() <= CPU_3XX_ES21))
1617 		cfg->b_max = 1;
1618 #endif
1619 
1620 	mmc = mmc_create(cfg, priv);
1621 	if (mmc == NULL)
1622 		return -1;
1623 
1624 	return 0;
1625 }
1626 #else
1627 
1628 #ifdef CONFIG_IODELAY_RECALIBRATION
1629 static struct pad_conf_entry *
1630 omap_hsmmc_get_pad_conf_entry(const fdt32_t *pinctrl, int count)
1631 {
1632 	int index = 0;
1633 	struct pad_conf_entry *padconf;
1634 
1635 	padconf = (struct pad_conf_entry *)malloc(sizeof(*padconf) * count);
1636 	if (!padconf) {
1637 		debug("failed to allocate memory\n");
1638 		return 0;
1639 	}
1640 
1641 	while (index < count) {
1642 		padconf[index].offset = fdt32_to_cpu(pinctrl[2 * index]);
1643 		padconf[index].val = fdt32_to_cpu(pinctrl[2 * index + 1]);
1644 		index++;
1645 	}
1646 
1647 	return padconf;
1648 }
1649 
1650 static struct iodelay_cfg_entry *
1651 omap_hsmmc_get_iodelay_cfg_entry(const fdt32_t *pinctrl, int count)
1652 {
1653 	int index = 0;
1654 	struct iodelay_cfg_entry *iodelay;
1655 
1656 	iodelay = (struct iodelay_cfg_entry *)malloc(sizeof(*iodelay) * count);
1657 	if (!iodelay) {
1658 		debug("failed to allocate memory\n");
1659 		return 0;
1660 	}
1661 
1662 	while (index < count) {
1663 		iodelay[index].offset = fdt32_to_cpu(pinctrl[3 * index]);
1664 		iodelay[index].a_delay = fdt32_to_cpu(pinctrl[3 * index + 1]);
1665 		iodelay[index].g_delay = fdt32_to_cpu(pinctrl[3 * index + 2]);
1666 		index++;
1667 	}
1668 
1669 	return iodelay;
1670 }
1671 
1672 static const fdt32_t *omap_hsmmc_get_pinctrl_entry(u32  phandle,
1673 						   const char *name, int *len)
1674 {
1675 	const void *fdt = gd->fdt_blob;
1676 	int offset;
1677 	const fdt32_t *pinctrl;
1678 
1679 	offset = fdt_node_offset_by_phandle(fdt, phandle);
1680 	if (offset < 0) {
1681 		debug("failed to get pinctrl node %s.\n",
1682 		      fdt_strerror(offset));
1683 		return 0;
1684 	}
1685 
1686 	pinctrl = fdt_getprop(fdt, offset, name, len);
1687 	if (!pinctrl) {
1688 		debug("failed to get property %s\n", name);
1689 		return 0;
1690 	}
1691 
1692 	return pinctrl;
1693 }
1694 
1695 static uint32_t omap_hsmmc_get_pad_conf_phandle(struct mmc *mmc,
1696 						char *prop_name)
1697 {
1698 	const void *fdt = gd->fdt_blob;
1699 	const __be32 *phandle;
1700 	int node = dev_of_offset(mmc->dev);
1701 
1702 	phandle = fdt_getprop(fdt, node, prop_name, NULL);
1703 	if (!phandle) {
1704 		debug("failed to get property %s\n", prop_name);
1705 		return 0;
1706 	}
1707 
1708 	return fdt32_to_cpu(*phandle);
1709 }
1710 
1711 static uint32_t omap_hsmmc_get_iodelay_phandle(struct mmc *mmc,
1712 					       char *prop_name)
1713 {
1714 	const void *fdt = gd->fdt_blob;
1715 	const __be32 *phandle;
1716 	int len;
1717 	int count;
1718 	int node = dev_of_offset(mmc->dev);
1719 
1720 	phandle = fdt_getprop(fdt, node, prop_name, &len);
1721 	if (!phandle) {
1722 		debug("failed to get property %s\n", prop_name);
1723 		return 0;
1724 	}
1725 
1726 	/* No manual mode iodelay values if count < 2 */
1727 	count = len / sizeof(*phandle);
1728 	if (count < 2)
1729 		return 0;
1730 
1731 	return fdt32_to_cpu(*(phandle + 1));
1732 }
1733 
1734 static struct pad_conf_entry *
1735 omap_hsmmc_get_pad_conf(struct mmc *mmc, char *prop_name, int *npads)
1736 {
1737 	int len;
1738 	int count;
1739 	struct pad_conf_entry *padconf;
1740 	u32 phandle;
1741 	const fdt32_t *pinctrl;
1742 
1743 	phandle = omap_hsmmc_get_pad_conf_phandle(mmc, prop_name);
1744 	if (!phandle)
1745 		return ERR_PTR(-EINVAL);
1746 
1747 	pinctrl = omap_hsmmc_get_pinctrl_entry(phandle, "pinctrl-single,pins",
1748 					       &len);
1749 	if (!pinctrl)
1750 		return ERR_PTR(-EINVAL);
1751 
1752 	count = (len / sizeof(*pinctrl)) / 2;
1753 	padconf = omap_hsmmc_get_pad_conf_entry(pinctrl, count);
1754 	if (!padconf)
1755 		return ERR_PTR(-EINVAL);
1756 
1757 	*npads = count;
1758 
1759 	return padconf;
1760 }
1761 
1762 static struct iodelay_cfg_entry *
1763 omap_hsmmc_get_iodelay(struct mmc *mmc, char *prop_name, int *niodelay)
1764 {
1765 	int len;
1766 	int count;
1767 	struct iodelay_cfg_entry *iodelay;
1768 	u32 phandle;
1769 	const fdt32_t *pinctrl;
1770 
1771 	phandle = omap_hsmmc_get_iodelay_phandle(mmc, prop_name);
1772 	/* Not all modes have manual mode iodelay values. So its not fatal */
1773 	if (!phandle)
1774 		return 0;
1775 
1776 	pinctrl = omap_hsmmc_get_pinctrl_entry(phandle, "pinctrl-pin-array",
1777 					       &len);
1778 	if (!pinctrl)
1779 		return ERR_PTR(-EINVAL);
1780 
1781 	count = (len / sizeof(*pinctrl)) / 3;
1782 	iodelay = omap_hsmmc_get_iodelay_cfg_entry(pinctrl, count);
1783 	if (!iodelay)
1784 		return ERR_PTR(-EINVAL);
1785 
1786 	*niodelay = count;
1787 
1788 	return iodelay;
1789 }
1790 
1791 static struct omap_hsmmc_pinctrl_state *
1792 omap_hsmmc_get_pinctrl_by_mode(struct mmc *mmc, char *mode)
1793 {
1794 	int index;
1795 	int npads = 0;
1796 	int niodelays = 0;
1797 	const void *fdt = gd->fdt_blob;
1798 	int node = dev_of_offset(mmc->dev);
1799 	char prop_name[11];
1800 	struct omap_hsmmc_pinctrl_state *pinctrl_state;
1801 
1802 	pinctrl_state = (struct omap_hsmmc_pinctrl_state *)
1803 			 malloc(sizeof(*pinctrl_state));
1804 	if (!pinctrl_state) {
1805 		debug("failed to allocate memory\n");
1806 		return 0;
1807 	}
1808 
1809 	index = fdt_stringlist_search(fdt, node, "pinctrl-names", mode);
1810 	if (index < 0) {
1811 		debug("fail to find %s mode %s\n", mode, fdt_strerror(index));
1812 		goto err_pinctrl_state;
1813 	}
1814 
1815 	sprintf(prop_name, "pinctrl-%d", index);
1816 
1817 	pinctrl_state->padconf = omap_hsmmc_get_pad_conf(mmc, prop_name,
1818 							 &npads);
1819 	if (IS_ERR(pinctrl_state->padconf))
1820 		goto err_pinctrl_state;
1821 	pinctrl_state->npads = npads;
1822 
1823 	pinctrl_state->iodelay = omap_hsmmc_get_iodelay(mmc, prop_name,
1824 							&niodelays);
1825 	if (IS_ERR(pinctrl_state->iodelay))
1826 		goto err_padconf;
1827 	pinctrl_state->niodelays = niodelays;
1828 
1829 	return pinctrl_state;
1830 
1831 err_padconf:
1832 	kfree(pinctrl_state->padconf);
1833 
1834 err_pinctrl_state:
1835 	kfree(pinctrl_state);
1836 	return 0;
1837 }
1838 
1839 #define OMAP_HSMMC_SETUP_PINCTRL(capmask, mode, optional)		\
1840 	do {								\
1841 		struct omap_hsmmc_pinctrl_state *s = NULL;		\
1842 		char str[20];						\
1843 		if (!(cfg->host_caps & capmask))			\
1844 			break;						\
1845 									\
1846 		if (priv->hw_rev) {					\
1847 			sprintf(str, "%s-%s", #mode, priv->hw_rev);	\
1848 			s = omap_hsmmc_get_pinctrl_by_mode(mmc, str);	\
1849 		}							\
1850 									\
1851 		if (!s)							\
1852 			s = omap_hsmmc_get_pinctrl_by_mode(mmc, #mode);	\
1853 									\
1854 		if (!s && !optional) {					\
1855 			debug("%s: no pinctrl for %s\n",		\
1856 			      mmc->dev->name, #mode);			\
1857 			cfg->host_caps &= ~(capmask);			\
1858 		} else {						\
1859 			priv->mode##_pinctrl_state = s;			\
1860 		}							\
1861 	} while (0)
1862 
1863 static int omap_hsmmc_get_pinctrl_state(struct mmc *mmc)
1864 {
1865 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1866 	struct mmc_config *cfg = omap_hsmmc_get_cfg(mmc);
1867 	struct omap_hsmmc_pinctrl_state *default_pinctrl;
1868 
1869 	if (!(priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY))
1870 		return 0;
1871 
1872 	default_pinctrl = omap_hsmmc_get_pinctrl_by_mode(mmc, "default");
1873 	if (!default_pinctrl) {
1874 		printf("no pinctrl state for default mode\n");
1875 		return -EINVAL;
1876 	}
1877 
1878 	priv->default_pinctrl_state = default_pinctrl;
1879 
1880 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR104), sdr104, false);
1881 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR50), sdr50, false);
1882 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_DDR50), ddr50, false);
1883 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR25), sdr25, false);
1884 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR12), sdr12, false);
1885 
1886 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(MMC_HS_200), hs200_1_8v, false);
1887 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(MMC_DDR_52), ddr_1_8v, false);
1888 	OMAP_HSMMC_SETUP_PINCTRL(MMC_MODE_HS, hs, true);
1889 
1890 	return 0;
1891 }
1892 #endif
1893 
1894 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
1895 #ifdef CONFIG_OMAP54XX
1896 __weak const struct mmc_platform_fixups *platform_fixups_mmc(uint32_t addr)
1897 {
1898 	return NULL;
1899 }
1900 #endif
1901 
1902 static int omap_hsmmc_of_to_plat(struct udevice *dev)
1903 {
1904 	struct omap_hsmmc_plat *plat = dev_get_plat(dev);
1905 	struct omap_mmc_of_data *of_data = (void *)dev_get_driver_data(dev);
1906 
1907 	struct mmc_config *cfg = &plat->cfg;
1908 #ifdef CONFIG_OMAP54XX
1909 	const struct mmc_platform_fixups *fixups;
1910 #endif
1911 	const void *fdt = gd->fdt_blob;
1912 	int node = dev_of_offset(dev);
1913 	int ret;
1914 
1915 	plat->base_addr = map_physmem(dev_read_addr(dev),
1916 				      sizeof(struct hsmmc *),
1917 				      MAP_NOCACHE);
1918 
1919 	ret = mmc_of_parse(dev, cfg);
1920 	if (ret < 0)
1921 		return ret;
1922 
1923 	if (!cfg->f_max)
1924 		cfg->f_max = 52000000;
1925 	cfg->host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
1926 	cfg->f_min = 400000;
1927 	cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
1928 	cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
1929 	if (fdtdec_get_bool(fdt, node, "ti,dual-volt"))
1930 		plat->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1931 	if (fdtdec_get_bool(fdt, node, "no-1-8-v"))
1932 		plat->controller_flags |= OMAP_HSMMC_NO_1_8_V;
1933 	if (of_data)
1934 		plat->controller_flags |= of_data->controller_flags;
1935 
1936 #ifdef CONFIG_OMAP54XX
1937 	fixups = platform_fixups_mmc(dev_read_addr(dev));
1938 	if (fixups) {
1939 		plat->hw_rev = fixups->hw_rev;
1940 		cfg->host_caps &= ~fixups->unsupported_caps;
1941 		cfg->f_max = fixups->max_freq;
1942 	}
1943 #endif
1944 
1945 	return 0;
1946 }
1947 #endif
1948 
1949 #ifdef CONFIG_BLK
1950 
1951 static int omap_hsmmc_bind(struct udevice *dev)
1952 {
1953 	struct omap_hsmmc_plat *plat = dev_get_plat(dev);
1954 	plat->mmc = calloc(1, sizeof(struct mmc));
1955 	return mmc_bind(dev, plat->mmc, &plat->cfg);
1956 }
1957 #endif
1958 static int omap_hsmmc_probe(struct udevice *dev)
1959 {
1960 	struct omap_hsmmc_plat *plat = dev_get_plat(dev);
1961 	struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
1962 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
1963 	struct mmc_config *cfg = &plat->cfg;
1964 	struct mmc *mmc;
1965 #ifdef CONFIG_IODELAY_RECALIBRATION
1966 	int ret;
1967 #endif
1968 
1969 	cfg->name = "OMAP SD/MMC";
1970 	priv->base_addr = plat->base_addr;
1971 	priv->controller_flags = plat->controller_flags;
1972 	priv->hw_rev = plat->hw_rev;
1973 
1974 #ifdef CONFIG_BLK
1975 	mmc = plat->mmc;
1976 #else
1977 	mmc = mmc_create(cfg, priv);
1978 	if (mmc == NULL)
1979 		return -1;
1980 #endif
1981 #if CONFIG_IS_ENABLED(DM_REGULATOR)
1982 	device_get_supply_regulator(dev, "pbias-supply",
1983 				    &priv->pbias_supply);
1984 #endif
1985 #if defined(OMAP_HSMMC_USE_GPIO)
1986 #if CONFIG_IS_ENABLED(OF_CONTROL) && CONFIG_IS_ENABLED(DM_GPIO)
1987 	gpio_request_by_name(dev, "cd-gpios", 0, &priv->cd_gpio, GPIOD_IS_IN);
1988 	gpio_request_by_name(dev, "wp-gpios", 0, &priv->wp_gpio, GPIOD_IS_IN);
1989 #endif
1990 #endif
1991 
1992 	mmc->dev = dev;
1993 	upriv->mmc = mmc;
1994 
1995 #ifdef CONFIG_IODELAY_RECALIBRATION
1996 	ret = omap_hsmmc_get_pinctrl_state(mmc);
1997 	/*
1998 	 * disable high speed modes for the platforms that require IO delay
1999 	 * and for which we don't have this information
2000 	 */
2001 	if ((ret < 0) &&
2002 	    (priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY)) {
2003 		priv->controller_flags &= ~OMAP_HSMMC_REQUIRE_IODELAY;
2004 		cfg->host_caps &= ~(MMC_CAP(MMC_HS_200) | MMC_CAP(MMC_DDR_52) |
2005 				    UHS_CAPS);
2006 	}
2007 #endif
2008 
2009 	return omap_hsmmc_init_setup(mmc);
2010 }
2011 
2012 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
2013 
2014 static const struct omap_mmc_of_data dra7_mmc_of_data = {
2015 	.controller_flags = OMAP_HSMMC_REQUIRE_IODELAY,
2016 };
2017 
2018 static const struct udevice_id omap_hsmmc_ids[] = {
2019 	{ .compatible = "ti,omap3-hsmmc" },
2020 	{ .compatible = "ti,omap4-hsmmc" },
2021 	{ .compatible = "ti,am33xx-hsmmc" },
2022 	{ .compatible = "ti,dra7-hsmmc", .data = (ulong)&dra7_mmc_of_data },
2023 	{ }
2024 };
2025 #endif
2026 
2027 U_BOOT_DRIVER(omap_hsmmc) = {
2028 	.name	= "omap_hsmmc",
2029 	.id	= UCLASS_MMC,
2030 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
2031 	.of_match = omap_hsmmc_ids,
2032 	.of_to_plat = omap_hsmmc_of_to_plat,
2033 	.plat_auto	= sizeof(struct omap_hsmmc_plat),
2034 #endif
2035 #ifdef CONFIG_BLK
2036 	.bind = omap_hsmmc_bind,
2037 #endif
2038 	.ops = &omap_hsmmc_ops,
2039 	.probe	= omap_hsmmc_probe,
2040 	.priv_auto	= sizeof(struct omap_hsmmc_data),
2041 #if !CONFIG_IS_ENABLED(OF_CONTROL)
2042 	.flags	= DM_FLAG_PRE_RELOC,
2043 #endif
2044 };
2045 #endif
2046