1 /*
2  *  linux/drivers/mtd/onenand/onenand_base.c
3  *
4  *  Copyright (C) 2005-2007 Samsung Electronics
5  *  Kyungmin Park <kyungmin.park@samsung.com>
6  *
7  *  Credits:
8  *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
9  *      auto-placement support, read-while load support, various fixes
10  *      Copyright (C) Nokia Corporation, 2007
11  *
12  *      Rohit Hagargundgi <h.rohit at samsung.com>,
13  *      Amul Kumar Saha <amul.saha@samsung.com>:
14  *      Flex-OneNAND support
15  *      Copyright (C) Samsung Electronics, 2009
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License version 2 as
19  * published by the Free Software Foundation.
20  */
21 
22 #include <common.h>
23 #include <log.h>
24 #include <watchdog.h>
25 #include <dm/devres.h>
26 #include <linux/bitops.h>
27 #include <linux/compat.h>
28 #include <linux/mtd/mtd.h>
29 #include "linux/mtd/flashchip.h"
30 #include <linux/mtd/onenand.h>
31 
32 #include <asm/io.h>
33 #include <linux/errno.h>
34 #include <malloc.h>
35 
36 /* It should access 16-bit instead of 8-bit */
memcpy_16(void * dst,const void * src,unsigned int len)37 static void *memcpy_16(void *dst, const void *src, unsigned int len)
38 {
39 	void *ret = dst;
40 	short *d = dst;
41 	const short *s = src;
42 
43 	len >>= 1;
44 	while (len-- > 0)
45 		*d++ = *s++;
46 	return ret;
47 }
48 
49 /**
50  *  onenand_oob_128 - oob info for Flex-Onenand with 4KB page
51  *  For now, we expose only 64 out of 80 ecc bytes
52  */
53 static struct nand_ecclayout onenand_oob_128 = {
54 	.eccbytes	= 64,
55 	.eccpos		= {
56 		6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
57 		22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
58 		38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
59 		54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
60 		70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
61 		86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
62 		102, 103, 104, 105
63 		},
64 	.oobfree	= {
65 		{2, 4}, {18, 4}, {34, 4}, {50, 4},
66 		{66, 4}, {82, 4}, {98, 4}, {114, 4}
67 	}
68 };
69 
70 /**
71  * onenand_oob_64 - oob info for large (2KB) page
72  */
73 static struct nand_ecclayout onenand_oob_64 = {
74 	.eccbytes	= 20,
75 	.eccpos		= {
76 		8, 9, 10, 11, 12,
77 		24, 25, 26, 27, 28,
78 		40, 41, 42, 43, 44,
79 		56, 57, 58, 59, 60,
80 		},
81 	.oobfree	= {
82 		{2, 3}, {14, 2}, {18, 3}, {30, 2},
83 		{34, 3}, {46, 2}, {50, 3}, {62, 2}
84 	}
85 };
86 
87 /**
88  * onenand_oob_32 - oob info for middle (1KB) page
89  */
90 static struct nand_ecclayout onenand_oob_32 = {
91 	.eccbytes	= 10,
92 	.eccpos		= {
93 		8, 9, 10, 11, 12,
94 		24, 25, 26, 27, 28,
95 		},
96 	.oobfree	= { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
97 };
98 
99 /*
100  * Warning! This array is used with the memcpy_16() function, thus
101  * it must be aligned to 2 bytes. GCC can make this array unaligned
102  * as the array is made of unsigned char, which memcpy16() doesn't
103  * like and will cause unaligned access.
104  */
105 static const unsigned char __aligned(2) ffchars[] = {
106 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
107 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 16 */
108 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
109 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 32 */
110 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
111 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 48 */
112 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
113 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 64 */
114 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
115 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 80 */
116 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
117 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 96 */
118 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
119 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 112 */
120 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
121 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 128 */
122 };
123 
124 /**
125  * onenand_readw - [OneNAND Interface] Read OneNAND register
126  * @param addr		address to read
127  *
128  * Read OneNAND register
129  */
onenand_readw(void __iomem * addr)130 static unsigned short onenand_readw(void __iomem * addr)
131 {
132 	return readw(addr);
133 }
134 
135 /**
136  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
137  * @param value		value to write
138  * @param addr		address to write
139  *
140  * Write OneNAND register with value
141  */
onenand_writew(unsigned short value,void __iomem * addr)142 static void onenand_writew(unsigned short value, void __iomem * addr)
143 {
144 	writew(value, addr);
145 }
146 
147 /**
148  * onenand_block_address - [DEFAULT] Get block address
149  * @param device	the device id
150  * @param block		the block
151  * @return		translated block address if DDP, otherwise same
152  *
153  * Setup Start Address 1 Register (F100h)
154  */
onenand_block_address(struct onenand_chip * this,int block)155 static int onenand_block_address(struct onenand_chip *this, int block)
156 {
157 	/* Device Flash Core select, NAND Flash Block Address */
158 	if (block & this->density_mask)
159 		return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
160 
161 	return block;
162 }
163 
164 /**
165  * onenand_bufferram_address - [DEFAULT] Get bufferram address
166  * @param device	the device id
167  * @param block		the block
168  * @return		set DBS value if DDP, otherwise 0
169  *
170  * Setup Start Address 2 Register (F101h) for DDP
171  */
onenand_bufferram_address(struct onenand_chip * this,int block)172 static int onenand_bufferram_address(struct onenand_chip *this, int block)
173 {
174 	/* Device BufferRAM Select */
175 	if (block & this->density_mask)
176 		return ONENAND_DDP_CHIP1;
177 
178 	return ONENAND_DDP_CHIP0;
179 }
180 
181 /**
182  * onenand_page_address - [DEFAULT] Get page address
183  * @param page		the page address
184  * @param sector	the sector address
185  * @return		combined page and sector address
186  *
187  * Setup Start Address 8 Register (F107h)
188  */
onenand_page_address(int page,int sector)189 static int onenand_page_address(int page, int sector)
190 {
191 	/* Flash Page Address, Flash Sector Address */
192 	int fpa, fsa;
193 
194 	fpa = page & ONENAND_FPA_MASK;
195 	fsa = sector & ONENAND_FSA_MASK;
196 
197 	return ((fpa << ONENAND_FPA_SHIFT) | fsa);
198 }
199 
200 /**
201  * onenand_buffer_address - [DEFAULT] Get buffer address
202  * @param dataram1	DataRAM index
203  * @param sectors	the sector address
204  * @param count		the number of sectors
205  * @return		the start buffer value
206  *
207  * Setup Start Buffer Register (F200h)
208  */
onenand_buffer_address(int dataram1,int sectors,int count)209 static int onenand_buffer_address(int dataram1, int sectors, int count)
210 {
211 	int bsa, bsc;
212 
213 	/* BufferRAM Sector Address */
214 	bsa = sectors & ONENAND_BSA_MASK;
215 
216 	if (dataram1)
217 		bsa |= ONENAND_BSA_DATARAM1;	/* DataRAM1 */
218 	else
219 		bsa |= ONENAND_BSA_DATARAM0;	/* DataRAM0 */
220 
221 	/* BufferRAM Sector Count */
222 	bsc = count & ONENAND_BSC_MASK;
223 
224 	return ((bsa << ONENAND_BSA_SHIFT) | bsc);
225 }
226 
227 /**
228  * flexonenand_block - Return block number for flash address
229  * @param this		- OneNAND device structure
230  * @param addr		- Address for which block number is needed
231  */
flexonenand_block(struct onenand_chip * this,loff_t addr)232 static unsigned int flexonenand_block(struct onenand_chip *this, loff_t addr)
233 {
234 	unsigned int boundary, blk, die = 0;
235 
236 	if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
237 		die = 1;
238 		addr -= this->diesize[0];
239 	}
240 
241 	boundary = this->boundary[die];
242 
243 	blk = addr >> (this->erase_shift - 1);
244 	if (blk > boundary)
245 		blk = (blk + boundary + 1) >> 1;
246 
247 	blk += die ? this->density_mask : 0;
248 	return blk;
249 }
250 
onenand_block(struct onenand_chip * this,loff_t addr)251 unsigned int onenand_block(struct onenand_chip *this, loff_t addr)
252 {
253 	if (!FLEXONENAND(this))
254 		return addr >> this->erase_shift;
255 	return flexonenand_block(this, addr);
256 }
257 
258 /**
259  * flexonenand_addr - Return address of the block
260  * @this:		OneNAND device structure
261  * @block:		Block number on Flex-OneNAND
262  *
263  * Return address of the block
264  */
flexonenand_addr(struct onenand_chip * this,int block)265 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
266 {
267 	loff_t ofs = 0;
268 	int die = 0, boundary;
269 
270 	if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
271 		block -= this->density_mask;
272 		die = 1;
273 		ofs = this->diesize[0];
274 	}
275 
276 	boundary = this->boundary[die];
277 	ofs += (loff_t) block << (this->erase_shift - 1);
278 	if (block > (boundary + 1))
279 		ofs += (loff_t) (block - boundary - 1)
280 			<< (this->erase_shift - 1);
281 	return ofs;
282 }
283 
onenand_addr(struct onenand_chip * this,int block)284 loff_t onenand_addr(struct onenand_chip *this, int block)
285 {
286 	if (!FLEXONENAND(this))
287 		return (loff_t) block << this->erase_shift;
288 	return flexonenand_addr(this, block);
289 }
290 
291 /**
292  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
293  * @param mtd		MTD device structure
294  * @param addr		address whose erase region needs to be identified
295  */
flexonenand_region(struct mtd_info * mtd,loff_t addr)296 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
297 {
298 	int i;
299 
300 	for (i = 0; i < mtd->numeraseregions; i++)
301 		if (addr < mtd->eraseregions[i].offset)
302 			break;
303 	return i - 1;
304 }
305 
306 /**
307  * onenand_get_density - [DEFAULT] Get OneNAND density
308  * @param dev_id        OneNAND device ID
309  *
310  * Get OneNAND density from device ID
311  */
onenand_get_density(int dev_id)312 static inline int onenand_get_density(int dev_id)
313 {
314 	int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
315 	return (density & ONENAND_DEVICE_DENSITY_MASK);
316 }
317 
318 /**
319  * onenand_command - [DEFAULT] Send command to OneNAND device
320  * @param mtd		MTD device structure
321  * @param cmd		the command to be sent
322  * @param addr		offset to read from or write to
323  * @param len		number of bytes to read or write
324  *
325  * Send command to OneNAND device. This function is used for middle/large page
326  * devices (1KB/2KB Bytes per page)
327  */
onenand_command(struct mtd_info * mtd,int cmd,loff_t addr,size_t len)328 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
329 			   size_t len)
330 {
331 	struct onenand_chip *this = mtd->priv;
332 	int value;
333 	int block, page;
334 
335 	/* Now we use page size operation */
336 	int sectors = 0, count = 0;
337 
338 	/* Address translation */
339 	switch (cmd) {
340 	case ONENAND_CMD_UNLOCK:
341 	case ONENAND_CMD_LOCK:
342 	case ONENAND_CMD_LOCK_TIGHT:
343 	case ONENAND_CMD_UNLOCK_ALL:
344 		block = -1;
345 		page = -1;
346 		break;
347 
348 	case FLEXONENAND_CMD_PI_ACCESS:
349 		/* addr contains die index */
350 		block = addr * this->density_mask;
351 		page = -1;
352 		break;
353 
354 	case ONENAND_CMD_ERASE:
355 	case ONENAND_CMD_BUFFERRAM:
356 		block = onenand_block(this, addr);
357 		page = -1;
358 		break;
359 
360 	case FLEXONENAND_CMD_READ_PI:
361 		cmd = ONENAND_CMD_READ;
362 		block = addr * this->density_mask;
363 		page = 0;
364 		break;
365 
366 	default:
367 		block = onenand_block(this, addr);
368 		page = (int) (addr
369 			- onenand_addr(this, block)) >> this->page_shift;
370 		page &= this->page_mask;
371 		break;
372 	}
373 
374 	/* NOTE: The setting order of the registers is very important! */
375 	if (cmd == ONENAND_CMD_BUFFERRAM) {
376 		/* Select DataRAM for DDP */
377 		value = onenand_bufferram_address(this, block);
378 		this->write_word(value,
379 				 this->base + ONENAND_REG_START_ADDRESS2);
380 
381 		if (ONENAND_IS_4KB_PAGE(this))
382 			ONENAND_SET_BUFFERRAM0(this);
383 		else
384 			/* Switch to the next data buffer */
385 			ONENAND_SET_NEXT_BUFFERRAM(this);
386 
387 		return 0;
388 	}
389 
390 	if (block != -1) {
391 		/* Write 'DFS, FBA' of Flash */
392 		value = onenand_block_address(this, block);
393 		this->write_word(value,
394 				 this->base + ONENAND_REG_START_ADDRESS1);
395 
396 		/* Select DataRAM for DDP */
397 		value = onenand_bufferram_address(this, block);
398 		this->write_word(value,
399 				 this->base + ONENAND_REG_START_ADDRESS2);
400 	}
401 
402 	if (page != -1) {
403 		int dataram;
404 
405 		switch (cmd) {
406 		case FLEXONENAND_CMD_RECOVER_LSB:
407 		case ONENAND_CMD_READ:
408 		case ONENAND_CMD_READOOB:
409 			if (ONENAND_IS_4KB_PAGE(this))
410 				dataram = ONENAND_SET_BUFFERRAM0(this);
411 			else
412 				dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
413 
414 			break;
415 
416 		default:
417 			dataram = ONENAND_CURRENT_BUFFERRAM(this);
418 			break;
419 		}
420 
421 		/* Write 'FPA, FSA' of Flash */
422 		value = onenand_page_address(page, sectors);
423 		this->write_word(value,
424 				 this->base + ONENAND_REG_START_ADDRESS8);
425 
426 		/* Write 'BSA, BSC' of DataRAM */
427 		value = onenand_buffer_address(dataram, sectors, count);
428 		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
429 	}
430 
431 	/* Interrupt clear */
432 	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
433 	/* Write command */
434 	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
435 
436 	return 0;
437 }
438 
439 /**
440  * onenand_read_ecc - return ecc status
441  * @param this		onenand chip structure
442  */
onenand_read_ecc(struct onenand_chip * this)443 static int onenand_read_ecc(struct onenand_chip *this)
444 {
445 	int ecc, i;
446 
447 	if (!FLEXONENAND(this))
448 		return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
449 
450 	for (i = 0; i < 4; i++) {
451 		ecc = this->read_word(this->base
452 				+ ((ONENAND_REG_ECC_STATUS + i) << 1));
453 		if (likely(!ecc))
454 			continue;
455 		if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
456 			return ONENAND_ECC_2BIT_ALL;
457 	}
458 
459 	return 0;
460 }
461 
462 /**
463  * onenand_wait - [DEFAULT] wait until the command is done
464  * @param mtd		MTD device structure
465  * @param state		state to select the max. timeout value
466  *
467  * Wait for command done. This applies to all OneNAND command
468  * Read can take up to 30us, erase up to 2ms and program up to 350us
469  * according to general OneNAND specs
470  */
onenand_wait(struct mtd_info * mtd,int state)471 static int onenand_wait(struct mtd_info *mtd, int state)
472 {
473 	struct onenand_chip *this = mtd->priv;
474 	unsigned int interrupt = 0;
475 	unsigned int ctrl;
476 
477 	/* Wait at most 20ms ... */
478 	u32 timeo = (CONFIG_SYS_HZ * 20) / 1000;
479 	u32 time_start = get_timer(0);
480 	do {
481 		WATCHDOG_RESET();
482 		if (get_timer(time_start) > timeo)
483 			return -EIO;
484 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
485 	} while ((interrupt & ONENAND_INT_MASTER) == 0);
486 
487 	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
488 
489 	if (interrupt & ONENAND_INT_READ) {
490 		int ecc = onenand_read_ecc(this);
491 		if (ecc & ONENAND_ECC_2BIT_ALL) {
492 			printk("onenand_wait: ECC error = 0x%04x\n", ecc);
493 			return -EBADMSG;
494 		}
495 	}
496 
497 	if (ctrl & ONENAND_CTRL_ERROR) {
498 		printk("onenand_wait: controller error = 0x%04x\n", ctrl);
499 		if (ctrl & ONENAND_CTRL_LOCK)
500 			printk("onenand_wait: it's locked error = 0x%04x\n",
501 				ctrl);
502 
503 		return -EIO;
504 	}
505 
506 
507 	return 0;
508 }
509 
510 /**
511  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
512  * @param mtd		MTD data structure
513  * @param area		BufferRAM area
514  * @return		offset given area
515  *
516  * Return BufferRAM offset given area
517  */
onenand_bufferram_offset(struct mtd_info * mtd,int area)518 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
519 {
520 	struct onenand_chip *this = mtd->priv;
521 
522 	if (ONENAND_CURRENT_BUFFERRAM(this)) {
523 		if (area == ONENAND_DATARAM)
524 			return mtd->writesize;
525 		if (area == ONENAND_SPARERAM)
526 			return mtd->oobsize;
527 	}
528 
529 	return 0;
530 }
531 
532 /**
533  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
534  * @param mtd		MTD data structure
535  * @param area		BufferRAM area
536  * @param buffer	the databuffer to put/get data
537  * @param offset	offset to read from or write to
538  * @param count		number of bytes to read/write
539  *
540  * Read the BufferRAM area
541  */
onenand_read_bufferram(struct mtd_info * mtd,loff_t addr,int area,unsigned char * buffer,int offset,size_t count)542 static int onenand_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
543 				  unsigned char *buffer, int offset,
544 				  size_t count)
545 {
546 	struct onenand_chip *this = mtd->priv;
547 	void __iomem *bufferram;
548 
549 	bufferram = this->base + area;
550 	bufferram += onenand_bufferram_offset(mtd, area);
551 
552 	memcpy_16(buffer, bufferram + offset, count);
553 
554 	return 0;
555 }
556 
557 /**
558  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
559  * @param mtd		MTD data structure
560  * @param area		BufferRAM area
561  * @param buffer	the databuffer to put/get data
562  * @param offset	offset to read from or write to
563  * @param count		number of bytes to read/write
564  *
565  * Read the BufferRAM area with Sync. Burst Mode
566  */
onenand_sync_read_bufferram(struct mtd_info * mtd,loff_t addr,int area,unsigned char * buffer,int offset,size_t count)567 static int onenand_sync_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
568 				       unsigned char *buffer, int offset,
569 				       size_t count)
570 {
571 	struct onenand_chip *this = mtd->priv;
572 	void __iomem *bufferram;
573 
574 	bufferram = this->base + area;
575 	bufferram += onenand_bufferram_offset(mtd, area);
576 
577 	this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
578 
579 	memcpy_16(buffer, bufferram + offset, count);
580 
581 	this->mmcontrol(mtd, 0);
582 
583 	return 0;
584 }
585 
586 /**
587  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
588  * @param mtd		MTD data structure
589  * @param area		BufferRAM area
590  * @param buffer	the databuffer to put/get data
591  * @param offset	offset to read from or write to
592  * @param count		number of bytes to read/write
593  *
594  * Write the BufferRAM area
595  */
onenand_write_bufferram(struct mtd_info * mtd,loff_t addr,int area,const unsigned char * buffer,int offset,size_t count)596 static int onenand_write_bufferram(struct mtd_info *mtd, loff_t addr, int area,
597 				   const unsigned char *buffer, int offset,
598 				   size_t count)
599 {
600 	struct onenand_chip *this = mtd->priv;
601 	void __iomem *bufferram;
602 
603 	bufferram = this->base + area;
604 	bufferram += onenand_bufferram_offset(mtd, area);
605 
606 	memcpy_16(bufferram + offset, buffer, count);
607 
608 	return 0;
609 }
610 
611 /**
612  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
613  * @param mtd		MTD data structure
614  * @param addr		address to check
615  * @return		blockpage address
616  *
617  * Get blockpage address at 2x program mode
618  */
onenand_get_2x_blockpage(struct mtd_info * mtd,loff_t addr)619 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
620 {
621 	struct onenand_chip *this = mtd->priv;
622 	int blockpage, block, page;
623 
624 	/* Calculate the even block number */
625 	block = (int) (addr >> this->erase_shift) & ~1;
626 	/* Is it the odd plane? */
627 	if (addr & this->writesize)
628 		block++;
629 	page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
630 	blockpage = (block << 7) | page;
631 
632 	return blockpage;
633 }
634 
635 /**
636  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
637  * @param mtd		MTD data structure
638  * @param addr		address to check
639  * @return		1 if there are valid data, otherwise 0
640  *
641  * Check bufferram if there is data we required
642  */
onenand_check_bufferram(struct mtd_info * mtd,loff_t addr)643 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
644 {
645 	struct onenand_chip *this = mtd->priv;
646 	int blockpage, found = 0;
647 	unsigned int i;
648 
649 	if (ONENAND_IS_2PLANE(this))
650 		blockpage = onenand_get_2x_blockpage(mtd, addr);
651 	else
652 		blockpage = (int) (addr >> this->page_shift);
653 
654 	/* Is there valid data? */
655 	i = ONENAND_CURRENT_BUFFERRAM(this);
656 	if (this->bufferram[i].blockpage == blockpage)
657 		found = 1;
658 	else {
659 		/* Check another BufferRAM */
660 		i = ONENAND_NEXT_BUFFERRAM(this);
661 		if (this->bufferram[i].blockpage == blockpage) {
662 			ONENAND_SET_NEXT_BUFFERRAM(this);
663 			found = 1;
664 		}
665 	}
666 
667 	if (found && ONENAND_IS_DDP(this)) {
668 		/* Select DataRAM for DDP */
669 		int block = onenand_block(this, addr);
670 		int value = onenand_bufferram_address(this, block);
671 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
672 	}
673 
674 	return found;
675 }
676 
677 /**
678  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
679  * @param mtd		MTD data structure
680  * @param addr		address to update
681  * @param valid		valid flag
682  *
683  * Update BufferRAM information
684  */
onenand_update_bufferram(struct mtd_info * mtd,loff_t addr,int valid)685 static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
686 				    int valid)
687 {
688 	struct onenand_chip *this = mtd->priv;
689 	int blockpage;
690 	unsigned int i;
691 
692 	if (ONENAND_IS_2PLANE(this))
693 		blockpage = onenand_get_2x_blockpage(mtd, addr);
694 	else
695 		blockpage = (int)(addr >> this->page_shift);
696 
697 	/* Invalidate another BufferRAM */
698 	i = ONENAND_NEXT_BUFFERRAM(this);
699 	if (this->bufferram[i].blockpage == blockpage)
700 		this->bufferram[i].blockpage = -1;
701 
702 	/* Update BufferRAM */
703 	i = ONENAND_CURRENT_BUFFERRAM(this);
704 	if (valid)
705 		this->bufferram[i].blockpage = blockpage;
706 	else
707 		this->bufferram[i].blockpage = -1;
708 
709 	return 0;
710 }
711 
712 /**
713  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
714  * @param mtd           MTD data structure
715  * @param addr          start address to invalidate
716  * @param len           length to invalidate
717  *
718  * Invalidate BufferRAM information
719  */
onenand_invalidate_bufferram(struct mtd_info * mtd,loff_t addr,unsigned int len)720 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
721 					 unsigned int len)
722 {
723 	struct onenand_chip *this = mtd->priv;
724 	int i;
725 	loff_t end_addr = addr + len;
726 
727 	/* Invalidate BufferRAM */
728 	for (i = 0; i < MAX_BUFFERRAM; i++) {
729 		loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
730 
731 		if (buf_addr >= addr && buf_addr < end_addr)
732 			this->bufferram[i].blockpage = -1;
733 	}
734 }
735 
736 /**
737  * onenand_get_device - [GENERIC] Get chip for selected access
738  * @param mtd		MTD device structure
739  * @param new_state	the state which is requested
740  *
741  * Get the device and lock it for exclusive access
742  */
onenand_get_device(struct mtd_info * mtd,int new_state)743 static void onenand_get_device(struct mtd_info *mtd, int new_state)
744 {
745 	/* Do nothing */
746 }
747 
748 /**
749  * onenand_release_device - [GENERIC] release chip
750  * @param mtd		MTD device structure
751  *
752  * Deselect, release chip lock and wake up anyone waiting on the device
753  */
onenand_release_device(struct mtd_info * mtd)754 static void onenand_release_device(struct mtd_info *mtd)
755 {
756 	/* Do nothing */
757 }
758 
759 /**
760  * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
761  * @param mtd		MTD device structure
762  * @param buf		destination address
763  * @param column	oob offset to read from
764  * @param thislen	oob length to read
765  */
onenand_transfer_auto_oob(struct mtd_info * mtd,uint8_t * buf,int column,int thislen)766 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf,
767 					int column, int thislen)
768 {
769 	struct onenand_chip *this = mtd->priv;
770 	struct nand_oobfree *free;
771 	int readcol = column;
772 	int readend = column + thislen;
773 	int lastgap = 0;
774 	unsigned int i;
775 	uint8_t *oob_buf = this->oob_buf;
776 
777 	free = this->ecclayout->oobfree;
778 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
779 	     i++, free++) {
780 		if (readcol >= lastgap)
781 			readcol += free->offset - lastgap;
782 		if (readend >= lastgap)
783 			readend += free->offset - lastgap;
784 		lastgap = free->offset + free->length;
785 	}
786 	this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
787 	free = this->ecclayout->oobfree;
788 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
789 	     i++, free++) {
790 		int free_end = free->offset + free->length;
791 		if (free->offset < readend && free_end > readcol) {
792 			int st = max_t(int,free->offset,readcol);
793 			int ed = min_t(int,free_end,readend);
794 			int n = ed - st;
795 			memcpy(buf, oob_buf + st, n);
796 			buf += n;
797 		} else if (column == 0)
798 			break;
799 	}
800 	return 0;
801 }
802 
803 /**
804  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
805  * @param mtd		MTD device structure
806  * @param addr		address to recover
807  * @param status	return value from onenand_wait
808  *
809  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
810  * lower page address and MSB page has higher page address in paired pages.
811  * If power off occurs during MSB page program, the paired LSB page data can
812  * become corrupt. LSB page recovery read is a way to read LSB page though page
813  * data are corrupted. When uncorrectable error occurs as a result of LSB page
814  * read after power up, issue LSB page recovery read.
815  */
onenand_recover_lsb(struct mtd_info * mtd,loff_t addr,int status)816 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
817 {
818 	struct onenand_chip *this = mtd->priv;
819 	int i;
820 
821 	/* Recovery is only for Flex-OneNAND */
822 	if (!FLEXONENAND(this))
823 		return status;
824 
825 	/* check if we failed due to uncorrectable error */
826 	if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
827 		return status;
828 
829 	/* check if address lies in MLC region */
830 	i = flexonenand_region(mtd, addr);
831 	if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
832 		return status;
833 
834 	printk("onenand_recover_lsb:"
835 		"Attempting to recover from uncorrectable read\n");
836 
837 	/* Issue the LSB page recovery command */
838 	this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
839 	return this->wait(mtd, FL_READING);
840 }
841 
842 /**
843  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
844  * @param mtd		MTD device structure
845  * @param from		offset to read from
846  * @param ops		oob operation description structure
847  *
848  * OneNAND read main and/or out-of-band data
849  */
onenand_read_ops_nolock(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)850 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
851 		struct mtd_oob_ops *ops)
852 {
853 	struct onenand_chip *this = mtd->priv;
854 	struct mtd_ecc_stats stats;
855 	size_t len = ops->len;
856 	size_t ooblen = ops->ooblen;
857 	u_char *buf = ops->datbuf;
858 	u_char *oobbuf = ops->oobbuf;
859 	int read = 0, column, thislen;
860 	int oobread = 0, oobcolumn, thisooblen, oobsize;
861 	int ret = 0, boundary = 0;
862 	int writesize = this->writesize;
863 
864 	pr_debug("onenand_read_ops_nolock: from = 0x%08x, len = %i\n",
865 		 (unsigned int) from, (int) len);
866 
867 	if (ops->mode == MTD_OPS_AUTO_OOB)
868 		oobsize = this->ecclayout->oobavail;
869 	else
870 		oobsize = mtd->oobsize;
871 
872 	oobcolumn = from & (mtd->oobsize - 1);
873 
874 	/* Do not allow reads past end of device */
875 	if ((from + len) > mtd->size) {
876 		printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n");
877 		ops->retlen = 0;
878 		ops->oobretlen = 0;
879 		return -EINVAL;
880 	}
881 
882 	stats = mtd->ecc_stats;
883 
884 	/* Read-while-load method */
885 	/* Note: We can't use this feature in MLC */
886 
887 	/* Do first load to bufferRAM */
888 	if (read < len) {
889 		if (!onenand_check_bufferram(mtd, from)) {
890 			this->main_buf = buf;
891 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
892 			ret = this->wait(mtd, FL_READING);
893 			if (unlikely(ret))
894 				ret = onenand_recover_lsb(mtd, from, ret);
895 			onenand_update_bufferram(mtd, from, !ret);
896 			if (ret == -EBADMSG)
897 				ret = 0;
898 		}
899 	}
900 
901 	thislen = min_t(int, writesize, len - read);
902 	column = from & (writesize - 1);
903 	if (column + thislen > writesize)
904 		thislen = writesize - column;
905 
906 	while (!ret) {
907 		/* If there is more to load then start next load */
908 		from += thislen;
909 		if (!ONENAND_IS_4KB_PAGE(this) && read + thislen < len) {
910 			this->main_buf = buf + thislen;
911 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
912 			/*
913 			 * Chip boundary handling in DDP
914 			 * Now we issued chip 1 read and pointed chip 1
915 			 * bufferam so we have to point chip 0 bufferam.
916 			 */
917 			if (ONENAND_IS_DDP(this) &&
918 					unlikely(from == (this->chipsize >> 1))) {
919 				this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
920 				boundary = 1;
921 			} else
922 				boundary = 0;
923 			ONENAND_SET_PREV_BUFFERRAM(this);
924 		}
925 
926 		/* While load is going, read from last bufferRAM */
927 		this->read_bufferram(mtd, from - thislen, ONENAND_DATARAM, buf, column, thislen);
928 
929 		/* Read oob area if needed */
930 		if (oobbuf) {
931 			thisooblen = oobsize - oobcolumn;
932 			thisooblen = min_t(int, thisooblen, ooblen - oobread);
933 
934 			if (ops->mode == MTD_OPS_AUTO_OOB)
935 				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
936 			else
937 				this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
938 			oobread += thisooblen;
939 			oobbuf += thisooblen;
940 			oobcolumn = 0;
941 		}
942 
943 		if (ONENAND_IS_4KB_PAGE(this) && (read + thislen < len)) {
944 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
945 			ret = this->wait(mtd, FL_READING);
946 			if (unlikely(ret))
947 				ret = onenand_recover_lsb(mtd, from, ret);
948 			onenand_update_bufferram(mtd, from, !ret);
949 			if (mtd_is_eccerr(ret))
950 				ret = 0;
951 		}
952 
953 		/* See if we are done */
954 		read += thislen;
955 		if (read == len)
956 			break;
957 		/* Set up for next read from bufferRAM */
958 		if (unlikely(boundary))
959 			this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
960 		if (!ONENAND_IS_4KB_PAGE(this))
961 			ONENAND_SET_NEXT_BUFFERRAM(this);
962 		buf += thislen;
963 		thislen = min_t(int, writesize, len - read);
964 		column = 0;
965 
966 		if (!ONENAND_IS_4KB_PAGE(this)) {
967 			/* Now wait for load */
968 			ret = this->wait(mtd, FL_READING);
969 			onenand_update_bufferram(mtd, from, !ret);
970 			if (mtd_is_eccerr(ret))
971 				ret = 0;
972 		}
973 	}
974 
975 	/*
976 	 * Return success, if no ECC failures, else -EBADMSG
977 	 * fs driver will take care of that, because
978 	 * retlen == desired len and result == -EBADMSG
979 	 */
980 	ops->retlen = read;
981 	ops->oobretlen = oobread;
982 
983 	if (ret)
984 		return ret;
985 
986 	if (mtd->ecc_stats.failed - stats.failed)
987 		return -EBADMSG;
988 
989 	/* return max bitflips per ecc step; ONENANDs correct 1 bit only */
990 	return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
991 }
992 
993 /**
994  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
995  * @param mtd		MTD device structure
996  * @param from		offset to read from
997  * @param ops		oob operation description structure
998  *
999  * OneNAND read out-of-band data from the spare area
1000  */
onenand_read_oob_nolock(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1001 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1002 		struct mtd_oob_ops *ops)
1003 {
1004 	struct onenand_chip *this = mtd->priv;
1005 	struct mtd_ecc_stats stats;
1006 	int read = 0, thislen, column, oobsize;
1007 	size_t len = ops->ooblen;
1008 	unsigned int mode = ops->mode;
1009 	u_char *buf = ops->oobbuf;
1010 	int ret = 0, readcmd;
1011 
1012 	from += ops->ooboffs;
1013 
1014 	pr_debug("onenand_read_oob_nolock: from = 0x%08x, len = %i\n",
1015 		 (unsigned int) from, (int) len);
1016 
1017 	/* Initialize return length value */
1018 	ops->oobretlen = 0;
1019 
1020 	if (mode == MTD_OPS_AUTO_OOB)
1021 		oobsize = this->ecclayout->oobavail;
1022 	else
1023 		oobsize = mtd->oobsize;
1024 
1025 	column = from & (mtd->oobsize - 1);
1026 
1027 	if (unlikely(column >= oobsize)) {
1028 		printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n");
1029 		return -EINVAL;
1030 	}
1031 
1032 	/* Do not allow reads past end of device */
1033 	if (unlikely(from >= mtd->size ||
1034 		column + len > ((mtd->size >> this->page_shift) -
1035 				(from >> this->page_shift)) * oobsize)) {
1036 		printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n");
1037 		return -EINVAL;
1038 	}
1039 
1040 	stats = mtd->ecc_stats;
1041 
1042 	readcmd = ONENAND_IS_4KB_PAGE(this) ?
1043 		ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1044 
1045 	while (read < len) {
1046 		thislen = oobsize - column;
1047 		thislen = min_t(int, thislen, len);
1048 
1049 		this->spare_buf = buf;
1050 		this->command(mtd, readcmd, from, mtd->oobsize);
1051 
1052 		onenand_update_bufferram(mtd, from, 0);
1053 
1054 		ret = this->wait(mtd, FL_READING);
1055 		if (unlikely(ret))
1056 			ret = onenand_recover_lsb(mtd, from, ret);
1057 
1058 		if (ret && ret != -EBADMSG) {
1059 			printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
1060 			break;
1061 		}
1062 
1063 		if (mode == MTD_OPS_AUTO_OOB)
1064 			onenand_transfer_auto_oob(mtd, buf, column, thislen);
1065 		else
1066 			this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1067 
1068 		read += thislen;
1069 
1070 		if (read == len)
1071 			break;
1072 
1073 		buf += thislen;
1074 
1075 		/* Read more? */
1076 		if (read < len) {
1077 			/* Page size */
1078 			from += mtd->writesize;
1079 			column = 0;
1080 		}
1081 	}
1082 
1083 	ops->oobretlen = read;
1084 
1085 	if (ret)
1086 		return ret;
1087 
1088 	if (mtd->ecc_stats.failed - stats.failed)
1089 		return -EBADMSG;
1090 
1091 	return 0;
1092 }
1093 
1094 /**
1095  * onenand_read - [MTD Interface] MTD compability function for onenand_read_ecc
1096  * @param mtd		MTD device structure
1097  * @param from		offset to read from
1098  * @param len		number of bytes to read
1099  * @param retlen	pointer to variable to store the number of read bytes
1100  * @param buf		the databuffer to put data
1101  *
1102  * This function simply calls onenand_read_ecc with oob buffer and oobsel = NULL
1103 */
onenand_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1104 int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1105 		 size_t * retlen, u_char * buf)
1106 {
1107 	struct mtd_oob_ops ops = {
1108 		.len    = len,
1109 		.ooblen = 0,
1110 		.datbuf = buf,
1111 		.oobbuf = NULL,
1112 	};
1113 	int ret;
1114 
1115 	onenand_get_device(mtd, FL_READING);
1116 	ret = onenand_read_ops_nolock(mtd, from, &ops);
1117 	onenand_release_device(mtd);
1118 
1119 	*retlen = ops.retlen;
1120 	return ret;
1121 }
1122 
1123 /**
1124  * onenand_read_oob - [MTD Interface] OneNAND read out-of-band
1125  * @param mtd		MTD device structure
1126  * @param from		offset to read from
1127  * @param ops		oob operations description structure
1128  *
1129  * OneNAND main and/or out-of-band
1130  */
onenand_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1131 int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1132 			struct mtd_oob_ops *ops)
1133 {
1134 	int ret;
1135 
1136 	switch (ops->mode) {
1137 	case MTD_OPS_PLACE_OOB:
1138 	case MTD_OPS_AUTO_OOB:
1139 		break;
1140 	case MTD_OPS_RAW:
1141 		/* Not implemented yet */
1142 	default:
1143 		return -EINVAL;
1144 	}
1145 
1146 	onenand_get_device(mtd, FL_READING);
1147 	if (ops->datbuf)
1148 		ret = onenand_read_ops_nolock(mtd, from, ops);
1149 	else
1150 		ret = onenand_read_oob_nolock(mtd, from, ops);
1151 	onenand_release_device(mtd);
1152 
1153 	return ret;
1154 }
1155 
1156 /**
1157  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1158  * @param mtd		MTD device structure
1159  * @param state		state to select the max. timeout value
1160  *
1161  * Wait for command done.
1162  */
onenand_bbt_wait(struct mtd_info * mtd,int state)1163 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1164 {
1165 	struct onenand_chip *this = mtd->priv;
1166 	unsigned int interrupt;
1167 	unsigned int ctrl;
1168 
1169 	/* Wait at most 20ms ... */
1170 	u32 timeo = (CONFIG_SYS_HZ * 20) / 1000;
1171 	u32 time_start = get_timer(0);
1172 	do {
1173 		WATCHDOG_RESET();
1174 		if (get_timer(time_start) > timeo)
1175 			return ONENAND_BBT_READ_FATAL_ERROR;
1176 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1177 	} while ((interrupt & ONENAND_INT_MASTER) == 0);
1178 
1179 	/* To get correct interrupt status in timeout case */
1180 	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1181 	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1182 
1183 	if (interrupt & ONENAND_INT_READ) {
1184 		int ecc = onenand_read_ecc(this);
1185 		if (ecc & ONENAND_ECC_2BIT_ALL) {
1186 			printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x"
1187 				", controller = 0x%04x\n", ecc, ctrl);
1188 			return ONENAND_BBT_READ_ERROR;
1189 		}
1190 	} else {
1191 		printk(KERN_ERR "onenand_bbt_wait: read timeout!"
1192 				"ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
1193 		return ONENAND_BBT_READ_FATAL_ERROR;
1194 	}
1195 
1196 	/* Initial bad block case: 0x2400 or 0x0400 */
1197 	if (ctrl & ONENAND_CTRL_ERROR) {
1198 		printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl);
1199 		return ONENAND_BBT_READ_ERROR;
1200 	}
1201 
1202 	return 0;
1203 }
1204 
1205 /**
1206  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1207  * @param mtd		MTD device structure
1208  * @param from		offset to read from
1209  * @param ops		oob operation description structure
1210  *
1211  * OneNAND read out-of-band data from the spare area for bbt scan
1212  */
onenand_bbt_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1213 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1214 		struct mtd_oob_ops *ops)
1215 {
1216 	struct onenand_chip *this = mtd->priv;
1217 	int read = 0, thislen, column;
1218 	int ret = 0, readcmd;
1219 	size_t len = ops->ooblen;
1220 	u_char *buf = ops->oobbuf;
1221 
1222 	pr_debug("onenand_bbt_read_oob: from = 0x%08x, len = %zi\n",
1223 		 (unsigned int) from, len);
1224 
1225 	readcmd = ONENAND_IS_4KB_PAGE(this) ?
1226 		ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1227 
1228 	/* Initialize return value */
1229 	ops->oobretlen = 0;
1230 
1231 	/* Do not allow reads past end of device */
1232 	if (unlikely((from + len) > mtd->size)) {
1233 		printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
1234 		return ONENAND_BBT_READ_FATAL_ERROR;
1235 	}
1236 
1237 	/* Grab the lock and see if the device is available */
1238 	onenand_get_device(mtd, FL_READING);
1239 
1240 	column = from & (mtd->oobsize - 1);
1241 
1242 	while (read < len) {
1243 
1244 		thislen = mtd->oobsize - column;
1245 		thislen = min_t(int, thislen, len);
1246 
1247 		this->spare_buf = buf;
1248 		this->command(mtd, readcmd, from, mtd->oobsize);
1249 
1250 		onenand_update_bufferram(mtd, from, 0);
1251 
1252 		ret = this->bbt_wait(mtd, FL_READING);
1253 		if (unlikely(ret))
1254 			ret = onenand_recover_lsb(mtd, from, ret);
1255 
1256 		if (ret)
1257 			break;
1258 
1259 		this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1260 		read += thislen;
1261 		if (read == len)
1262 			break;
1263 
1264 		buf += thislen;
1265 
1266 		/* Read more? */
1267 		if (read < len) {
1268 			/* Update Page size */
1269 			from += this->writesize;
1270 			column = 0;
1271 		}
1272 	}
1273 
1274 	/* Deselect and wake up anyone waiting on the device */
1275 	onenand_release_device(mtd);
1276 
1277 	ops->oobretlen = read;
1278 	return ret;
1279 }
1280 
1281 
1282 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1283 /**
1284  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1285  * @param mtd           MTD device structure
1286  * @param buf           the databuffer to verify
1287  * @param to            offset to read from
1288  */
onenand_verify_oob(struct mtd_info * mtd,const u_char * buf,loff_t to)1289 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1290 {
1291 	struct onenand_chip *this = mtd->priv;
1292 	u_char *oob_buf = this->oob_buf;
1293 	int status, i, readcmd;
1294 
1295 	readcmd = ONENAND_IS_4KB_PAGE(this) ?
1296 		ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1297 
1298 	this->command(mtd, readcmd, to, mtd->oobsize);
1299 	onenand_update_bufferram(mtd, to, 0);
1300 	status = this->wait(mtd, FL_READING);
1301 	if (status)
1302 		return status;
1303 
1304 	this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1305 	for (i = 0; i < mtd->oobsize; i++)
1306 		if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1307 			return -EBADMSG;
1308 
1309 	return 0;
1310 }
1311 
1312 /**
1313  * onenand_verify - [GENERIC] verify the chip contents after a write
1314  * @param mtd          MTD device structure
1315  * @param buf          the databuffer to verify
1316  * @param addr         offset to read from
1317  * @param len          number of bytes to read and compare
1318  */
onenand_verify(struct mtd_info * mtd,const u_char * buf,loff_t addr,size_t len)1319 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1320 {
1321 	struct onenand_chip *this = mtd->priv;
1322 	void __iomem *dataram;
1323 	int ret = 0;
1324 	int thislen, column;
1325 
1326 	while (len != 0) {
1327 		thislen = min_t(int, this->writesize, len);
1328 		column = addr & (this->writesize - 1);
1329 		if (column + thislen > this->writesize)
1330 			thislen = this->writesize - column;
1331 
1332 		this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1333 
1334 		onenand_update_bufferram(mtd, addr, 0);
1335 
1336 		ret = this->wait(mtd, FL_READING);
1337 		if (ret)
1338 			return ret;
1339 
1340 		onenand_update_bufferram(mtd, addr, 1);
1341 
1342 		dataram = this->base + ONENAND_DATARAM;
1343 		dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1344 
1345 		if (memcmp(buf, dataram + column, thislen))
1346 			return -EBADMSG;
1347 
1348 		len -= thislen;
1349 		buf += thislen;
1350 		addr += thislen;
1351 	}
1352 
1353 	return 0;
1354 }
1355 #else
1356 #define onenand_verify(...)             (0)
1357 #define onenand_verify_oob(...)         (0)
1358 #endif
1359 
1360 #define NOTALIGNED(x)	((x & (this->subpagesize - 1)) != 0)
1361 
1362 /**
1363  * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1364  * @param mtd           MTD device structure
1365  * @param oob_buf       oob buffer
1366  * @param buf           source address
1367  * @param column        oob offset to write to
1368  * @param thislen       oob length to write
1369  */
onenand_fill_auto_oob(struct mtd_info * mtd,u_char * oob_buf,const u_char * buf,int column,int thislen)1370 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1371 		const u_char *buf, int column, int thislen)
1372 {
1373 	struct onenand_chip *this = mtd->priv;
1374 	struct nand_oobfree *free;
1375 	int writecol = column;
1376 	int writeend = column + thislen;
1377 	int lastgap = 0;
1378 	unsigned int i;
1379 
1380 	free = this->ecclayout->oobfree;
1381 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
1382 	     i++, free++) {
1383 		if (writecol >= lastgap)
1384 			writecol += free->offset - lastgap;
1385 		if (writeend >= lastgap)
1386 			writeend += free->offset - lastgap;
1387 		lastgap = free->offset + free->length;
1388 	}
1389 	free = this->ecclayout->oobfree;
1390 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
1391 	     i++, free++) {
1392 		int free_end = free->offset + free->length;
1393 		if (free->offset < writeend && free_end > writecol) {
1394 			int st = max_t(int,free->offset,writecol);
1395 			int ed = min_t(int,free_end,writeend);
1396 			int n = ed - st;
1397 			memcpy(oob_buf + st, buf, n);
1398 			buf += n;
1399 		} else if (column == 0)
1400 			break;
1401 	}
1402 	return 0;
1403 }
1404 
1405 /**
1406  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1407  * @param mtd           MTD device structure
1408  * @param to            offset to write to
1409  * @param ops           oob operation description structure
1410  *
1411  * Write main and/or oob with ECC
1412  */
onenand_write_ops_nolock(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1413 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1414 		struct mtd_oob_ops *ops)
1415 {
1416 	struct onenand_chip *this = mtd->priv;
1417 	int written = 0, column, thislen, subpage;
1418 	int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1419 	size_t len = ops->len;
1420 	size_t ooblen = ops->ooblen;
1421 	const u_char *buf = ops->datbuf;
1422 	const u_char *oob = ops->oobbuf;
1423 	u_char *oobbuf;
1424 	int ret = 0;
1425 
1426 	pr_debug("onenand_write_ops_nolock: to = 0x%08x, len = %i\n",
1427 		 (unsigned int) to, (int) len);
1428 
1429 	/* Initialize retlen, in case of early exit */
1430 	ops->retlen = 0;
1431 	ops->oobretlen = 0;
1432 
1433 	/* Reject writes, which are not page aligned */
1434 	if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1435 		printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n");
1436 		return -EINVAL;
1437 	}
1438 
1439 	if (ops->mode == MTD_OPS_AUTO_OOB)
1440 		oobsize = this->ecclayout->oobavail;
1441 	else
1442 		oobsize = mtd->oobsize;
1443 
1444 	oobcolumn = to & (mtd->oobsize - 1);
1445 
1446 	column = to & (mtd->writesize - 1);
1447 
1448 	/* Loop until all data write */
1449 	while (written < len) {
1450 		u_char *wbuf = (u_char *) buf;
1451 
1452 		thislen = min_t(int, mtd->writesize - column, len - written);
1453 		thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1454 
1455 		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1456 
1457 		/* Partial page write */
1458 		subpage = thislen < mtd->writesize;
1459 		if (subpage) {
1460 			memset(this->page_buf, 0xff, mtd->writesize);
1461 			memcpy(this->page_buf + column, buf, thislen);
1462 			wbuf = this->page_buf;
1463 		}
1464 
1465 		this->write_bufferram(mtd, to, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1466 
1467 		if (oob) {
1468 			oobbuf = this->oob_buf;
1469 
1470 			/* We send data to spare ram with oobsize
1471 			 *                          * to prevent byte access */
1472 			memset(oobbuf, 0xff, mtd->oobsize);
1473 			if (ops->mode == MTD_OPS_AUTO_OOB)
1474 				onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1475 			else
1476 				memcpy(oobbuf + oobcolumn, oob, thisooblen);
1477 
1478 			oobwritten += thisooblen;
1479 			oob += thisooblen;
1480 			oobcolumn = 0;
1481 		} else
1482 			oobbuf = (u_char *) ffchars;
1483 
1484 		this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1485 
1486 		this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1487 
1488 		ret = this->wait(mtd, FL_WRITING);
1489 
1490 		/* In partial page write we don't update bufferram */
1491 		onenand_update_bufferram(mtd, to, !ret && !subpage);
1492 		if (ONENAND_IS_2PLANE(this)) {
1493 			ONENAND_SET_BUFFERRAM1(this);
1494 			onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1495 		}
1496 
1497 		if (ret) {
1498 			printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret);
1499 			break;
1500 		}
1501 
1502 		/* Only check verify write turn on */
1503 		ret = onenand_verify(mtd, buf, to, thislen);
1504 		if (ret) {
1505 			printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1506 			break;
1507 		}
1508 
1509 		written += thislen;
1510 
1511 		if (written == len)
1512 			break;
1513 
1514 		column = 0;
1515 		to += thislen;
1516 		buf += thislen;
1517 	}
1518 
1519 	ops->retlen = written;
1520 
1521 	return ret;
1522 }
1523 
1524 /**
1525  * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
1526  * @param mtd           MTD device structure
1527  * @param to            offset to write to
1528  * @param len           number of bytes to write
1529  * @param retlen        pointer to variable to store the number of written bytes
1530  * @param buf           the data to write
1531  * @param mode          operation mode
1532  *
1533  * OneNAND write out-of-band
1534  */
onenand_write_oob_nolock(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1535 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1536 		struct mtd_oob_ops *ops)
1537 {
1538 	struct onenand_chip *this = mtd->priv;
1539 	int column, ret = 0, oobsize;
1540 	int written = 0, oobcmd;
1541 	u_char *oobbuf;
1542 	size_t len = ops->ooblen;
1543 	const u_char *buf = ops->oobbuf;
1544 	unsigned int mode = ops->mode;
1545 
1546 	to += ops->ooboffs;
1547 
1548 	pr_debug("onenand_write_oob_nolock: to = 0x%08x, len = %i\n",
1549 		 (unsigned int) to, (int) len);
1550 
1551 	/* Initialize retlen, in case of early exit */
1552 	ops->oobretlen = 0;
1553 
1554 	if (mode == MTD_OPS_AUTO_OOB)
1555 		oobsize = this->ecclayout->oobavail;
1556 	else
1557 		oobsize = mtd->oobsize;
1558 
1559 	column = to & (mtd->oobsize - 1);
1560 
1561 	if (unlikely(column >= oobsize)) {
1562 		printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n");
1563 		return -EINVAL;
1564 	}
1565 
1566 	/* For compatibility with NAND: Do not allow write past end of page */
1567 	if (unlikely(column + len > oobsize)) {
1568 		printk(KERN_ERR "onenand_write_oob_nolock: "
1569 				"Attempt to write past end of page\n");
1570 		return -EINVAL;
1571 	}
1572 
1573 	/* Do not allow reads past end of device */
1574 	if (unlikely(to >= mtd->size ||
1575 				column + len > ((mtd->size >> this->page_shift) -
1576 					(to >> this->page_shift)) * oobsize)) {
1577 		printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n");
1578 		return -EINVAL;
1579 	}
1580 
1581 	oobbuf = this->oob_buf;
1582 
1583 	oobcmd = ONENAND_IS_4KB_PAGE(this) ?
1584 		ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
1585 
1586 	/* Loop until all data write */
1587 	while (written < len) {
1588 		int thislen = min_t(int, oobsize, len - written);
1589 
1590 		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1591 
1592 		/* We send data to spare ram with oobsize
1593 		 * to prevent byte access */
1594 		memset(oobbuf, 0xff, mtd->oobsize);
1595 		if (mode == MTD_OPS_AUTO_OOB)
1596 			onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
1597 		else
1598 			memcpy(oobbuf + column, buf, thislen);
1599 		this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1600 
1601 		if (ONENAND_IS_4KB_PAGE(this)) {
1602 			/* Set main area of DataRAM to 0xff*/
1603 			memset(this->page_buf, 0xff, mtd->writesize);
1604 			this->write_bufferram(mtd, 0, ONENAND_DATARAM,
1605 				this->page_buf,	0, mtd->writesize);
1606 		}
1607 
1608 		this->command(mtd, oobcmd, to, mtd->oobsize);
1609 
1610 		onenand_update_bufferram(mtd, to, 0);
1611 		if (ONENAND_IS_2PLANE(this)) {
1612 			ONENAND_SET_BUFFERRAM1(this);
1613 			onenand_update_bufferram(mtd, to + this->writesize, 0);
1614 		}
1615 
1616 		ret = this->wait(mtd, FL_WRITING);
1617 		if (ret) {
1618 			printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret);
1619 			break;
1620 		}
1621 
1622 		ret = onenand_verify_oob(mtd, oobbuf, to);
1623 		if (ret) {
1624 			printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret);
1625 			break;
1626 		}
1627 
1628 		written += thislen;
1629 		if (written == len)
1630 			break;
1631 
1632 		to += mtd->writesize;
1633 		buf += thislen;
1634 		column = 0;
1635 	}
1636 
1637 	ops->oobretlen = written;
1638 
1639 	return ret;
1640 }
1641 
1642 /**
1643  * onenand_write - [MTD Interface] compability function for onenand_write_ecc
1644  * @param mtd		MTD device structure
1645  * @param to		offset to write to
1646  * @param len		number of bytes to write
1647  * @param retlen	pointer to variable to store the number of written bytes
1648  * @param buf		the data to write
1649  *
1650  * Write with ECC
1651  */
onenand_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1652 int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
1653 		  size_t * retlen, const u_char * buf)
1654 {
1655 	struct mtd_oob_ops ops = {
1656 		.len    = len,
1657 		.ooblen = 0,
1658 		.datbuf = (u_char *) buf,
1659 		.oobbuf = NULL,
1660 	};
1661 	int ret;
1662 
1663 	onenand_get_device(mtd, FL_WRITING);
1664 	ret = onenand_write_ops_nolock(mtd, to, &ops);
1665 	onenand_release_device(mtd);
1666 
1667 	*retlen = ops.retlen;
1668 	return ret;
1669 }
1670 
1671 /**
1672  * onenand_write_oob - [MTD Interface] OneNAND write out-of-band
1673  * @param mtd		MTD device structure
1674  * @param to		offset to write to
1675  * @param ops		oob operation description structure
1676  *
1677  * OneNAND write main and/or out-of-band
1678  */
onenand_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1679 int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1680 			struct mtd_oob_ops *ops)
1681 {
1682 	int ret;
1683 
1684 	switch (ops->mode) {
1685 	case MTD_OPS_PLACE_OOB:
1686 	case MTD_OPS_AUTO_OOB:
1687 		break;
1688 	case MTD_OPS_RAW:
1689 		/* Not implemented yet */
1690 	default:
1691 		return -EINVAL;
1692 	}
1693 
1694 	onenand_get_device(mtd, FL_WRITING);
1695 	if (ops->datbuf)
1696 		ret = onenand_write_ops_nolock(mtd, to, ops);
1697 	else
1698 		ret = onenand_write_oob_nolock(mtd, to, ops);
1699 	onenand_release_device(mtd);
1700 
1701 	return ret;
1702 
1703 }
1704 
1705 /**
1706  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
1707  * @param mtd		MTD device structure
1708  * @param ofs		offset from device start
1709  * @param allowbbt	1, if its allowed to access the bbt area
1710  *
1711  * Check, if the block is bad, Either by reading the bad block table or
1712  * calling of the scan function.
1713  */
onenand_block_isbad_nolock(struct mtd_info * mtd,loff_t ofs,int allowbbt)1714 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1715 {
1716 	struct onenand_chip *this = mtd->priv;
1717 	struct bbm_info *bbm = this->bbm;
1718 
1719 	/* Return info from the table */
1720 	return bbm->isbad_bbt(mtd, ofs, allowbbt);
1721 }
1722 
1723 
1724 /**
1725  * onenand_erase - [MTD Interface] erase block(s)
1726  * @param mtd		MTD device structure
1727  * @param instr		erase instruction
1728  *
1729  * Erase one ore more blocks
1730  */
onenand_erase(struct mtd_info * mtd,struct erase_info * instr)1731 int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1732 {
1733 	struct onenand_chip *this = mtd->priv;
1734 	unsigned int block_size;
1735 	loff_t addr = instr->addr;
1736 	unsigned int len = instr->len;
1737 	int ret = 0, i;
1738 	struct mtd_erase_region_info *region = NULL;
1739 	unsigned int region_end = 0;
1740 
1741 	pr_debug("onenand_erase: start = 0x%08x, len = %i\n",
1742 			(unsigned int) addr, len);
1743 
1744 	if (FLEXONENAND(this)) {
1745 		/* Find the eraseregion of this address */
1746 		i = flexonenand_region(mtd, addr);
1747 		region = &mtd->eraseregions[i];
1748 
1749 		block_size = region->erasesize;
1750 		region_end = region->offset
1751 			+ region->erasesize * region->numblocks;
1752 
1753 		/* Start address within region must align on block boundary.
1754 		 * Erase region's start offset is always block start address.
1755 		 */
1756 		if (unlikely((addr - region->offset) & (block_size - 1))) {
1757 			pr_debug("onenand_erase:" " Unaligned address\n");
1758 			return -EINVAL;
1759 		}
1760 	} else {
1761 		block_size = 1 << this->erase_shift;
1762 
1763 		/* Start address must align on block boundary */
1764 		if (unlikely(addr & (block_size - 1))) {
1765 			pr_debug("onenand_erase:" "Unaligned address\n");
1766 			return -EINVAL;
1767 		}
1768 	}
1769 
1770 	/* Length must align on block boundary */
1771 	if (unlikely(len & (block_size - 1))) {
1772 		pr_debug("onenand_erase: Length not block aligned\n");
1773 		return -EINVAL;
1774 	}
1775 
1776 	/* Grab the lock and see if the device is available */
1777 	onenand_get_device(mtd, FL_ERASING);
1778 
1779 	/* Loop throught the pages */
1780 	instr->state = MTD_ERASING;
1781 
1782 	while (len) {
1783 
1784 		/* Check if we have a bad block, we do not erase bad blocks */
1785 		if (instr->priv == 0 && onenand_block_isbad_nolock(mtd, addr, 0)) {
1786 			printk(KERN_WARNING "onenand_erase: attempt to erase"
1787 				" a bad block at addr 0x%08x\n",
1788 				(unsigned int) addr);
1789 			instr->state = MTD_ERASE_FAILED;
1790 			goto erase_exit;
1791 		}
1792 
1793 		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1794 
1795 		onenand_invalidate_bufferram(mtd, addr, block_size);
1796 
1797 		ret = this->wait(mtd, FL_ERASING);
1798 		/* Check, if it is write protected */
1799 		if (ret) {
1800 			if (ret == -EPERM)
1801 				pr_debug("onenand_erase: "
1802 					 "Device is write protected!!!\n");
1803 			else
1804 				pr_debug("onenand_erase: "
1805 					 "Failed erase, block %d\n",
1806 					 onenand_block(this, addr));
1807 			instr->state = MTD_ERASE_FAILED;
1808 			instr->fail_addr = addr;
1809 
1810 			goto erase_exit;
1811 		}
1812 
1813 		len -= block_size;
1814 		addr += block_size;
1815 
1816 		if (addr == region_end) {
1817 			if (!len)
1818 				break;
1819 			region++;
1820 
1821 			block_size = region->erasesize;
1822 			region_end = region->offset
1823 				+ region->erasesize * region->numblocks;
1824 
1825 			if (len & (block_size - 1)) {
1826 				/* This has been checked at MTD
1827 				 * partitioning level. */
1828 				printk("onenand_erase: Unaligned address\n");
1829 				goto erase_exit;
1830 			}
1831 		}
1832 	}
1833 
1834 	instr->state = MTD_ERASE_DONE;
1835 
1836 erase_exit:
1837 
1838 	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1839 	/* Do call back function */
1840 	if (!ret)
1841 		mtd_erase_callback(instr);
1842 
1843 	/* Deselect and wake up anyone waiting on the device */
1844 	onenand_release_device(mtd);
1845 
1846 	return ret;
1847 }
1848 
1849 /**
1850  * onenand_sync - [MTD Interface] sync
1851  * @param mtd		MTD device structure
1852  *
1853  * Sync is actually a wait for chip ready function
1854  */
onenand_sync(struct mtd_info * mtd)1855 void onenand_sync(struct mtd_info *mtd)
1856 {
1857 	pr_debug("onenand_sync: called\n");
1858 
1859 	/* Grab the lock and see if the device is available */
1860 	onenand_get_device(mtd, FL_SYNCING);
1861 
1862 	/* Release it and go back */
1863 	onenand_release_device(mtd);
1864 }
1865 
1866 /**
1867  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1868  * @param mtd		MTD device structure
1869  * @param ofs		offset relative to mtd start
1870  *
1871  * Check whether the block is bad
1872  */
onenand_block_isbad(struct mtd_info * mtd,loff_t ofs)1873 int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1874 {
1875 	int ret;
1876 
1877 	/* Check for invalid offset */
1878 	if (ofs > mtd->size)
1879 		return -EINVAL;
1880 
1881 	onenand_get_device(mtd, FL_READING);
1882 	ret = onenand_block_isbad_nolock(mtd,ofs, 0);
1883 	onenand_release_device(mtd);
1884 	return ret;
1885 }
1886 
1887 /**
1888  * onenand_default_block_markbad - [DEFAULT] mark a block bad
1889  * @param mtd           MTD device structure
1890  * @param ofs           offset from device start
1891  *
1892  * This is the default implementation, which can be overridden by
1893  * a hardware specific driver.
1894  */
onenand_default_block_markbad(struct mtd_info * mtd,loff_t ofs)1895 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1896 {
1897 	struct onenand_chip *this = mtd->priv;
1898 	struct bbm_info *bbm = this->bbm;
1899 	u_char buf[2] = {0, 0};
1900 	struct mtd_oob_ops ops = {
1901 		.mode = MTD_OPS_PLACE_OOB,
1902 		.ooblen = 2,
1903 		.oobbuf = buf,
1904 		.ooboffs = 0,
1905 	};
1906 	int block;
1907 
1908 	/* Get block number */
1909 	block = onenand_block(this, ofs);
1910 	if (bbm->bbt)
1911 		bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1912 
1913 	/* We write two bytes, so we dont have to mess with 16 bit access */
1914 	ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1915 	return onenand_write_oob_nolock(mtd, ofs, &ops);
1916 }
1917 
1918 /**
1919  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1920  * @param mtd		MTD device structure
1921  * @param ofs		offset relative to mtd start
1922  *
1923  * Mark the block as bad
1924  */
onenand_block_markbad(struct mtd_info * mtd,loff_t ofs)1925 int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1926 {
1927 	struct onenand_chip *this = mtd->priv;
1928 	int ret;
1929 
1930 	ret = onenand_block_isbad(mtd, ofs);
1931 	if (ret) {
1932 		/* If it was bad already, return success and do nothing */
1933 		if (ret > 0)
1934 			return 0;
1935 		return ret;
1936 	}
1937 
1938 	onenand_get_device(mtd, FL_WRITING);
1939 	ret = this->block_markbad(mtd, ofs);
1940 	onenand_release_device(mtd);
1941 
1942 	return ret;
1943 }
1944 
1945 /**
1946  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1947  * @param mtd           MTD device structure
1948  * @param ofs           offset relative to mtd start
1949  * @param len           number of bytes to lock or unlock
1950  * @param cmd           lock or unlock command
1951  *
1952  * Lock or unlock one or more blocks
1953  */
onenand_do_lock_cmd(struct mtd_info * mtd,loff_t ofs,size_t len,int cmd)1954 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1955 {
1956 	struct onenand_chip *this = mtd->priv;
1957 	int start, end, block, value, status;
1958 
1959 	start = onenand_block(this, ofs);
1960 	end = onenand_block(this, ofs + len);
1961 
1962 	/* Continuous lock scheme */
1963 	if (this->options & ONENAND_HAS_CONT_LOCK) {
1964 		/* Set start block address */
1965 		this->write_word(start,
1966 				 this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1967 		/* Set end block address */
1968 		this->write_word(end - 1,
1969 				 this->base + ONENAND_REG_END_BLOCK_ADDRESS);
1970 		/* Write unlock command */
1971 		this->command(mtd, cmd, 0, 0);
1972 
1973 		/* There's no return value */
1974 		this->wait(mtd, FL_UNLOCKING);
1975 
1976 		/* Sanity check */
1977 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1978 		       & ONENAND_CTRL_ONGO)
1979 			continue;
1980 
1981 		/* Check lock status */
1982 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1983 		if (!(status & ONENAND_WP_US))
1984 			printk(KERN_ERR "wp status = 0x%x\n", status);
1985 
1986 		return 0;
1987 	}
1988 
1989 	/* Block lock scheme */
1990 	for (block = start; block < end; block++) {
1991 		/* Set block address */
1992 		value = onenand_block_address(this, block);
1993 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1994 		/* Select DataRAM for DDP */
1995 		value = onenand_bufferram_address(this, block);
1996 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1997 
1998 		/* Set start block address */
1999 		this->write_word(block,
2000 				 this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2001 		/* Write unlock command */
2002 		this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0);
2003 
2004 		/* There's no return value */
2005 		this->wait(mtd, FL_UNLOCKING);
2006 
2007 		/* Sanity check */
2008 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2009 		       & ONENAND_CTRL_ONGO)
2010 			continue;
2011 
2012 		/* Check lock status */
2013 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2014 		if (!(status & ONENAND_WP_US))
2015 			printk(KERN_ERR "block = %d, wp status = 0x%x\n",
2016 			       block, status);
2017 	}
2018 
2019 	return 0;
2020 }
2021 
2022 #ifdef ONENAND_LINUX
2023 /**
2024  * onenand_lock - [MTD Interface] Lock block(s)
2025  * @param mtd           MTD device structure
2026  * @param ofs           offset relative to mtd start
2027  * @param len           number of bytes to unlock
2028  *
2029  * Lock one or more blocks
2030  */
onenand_lock(struct mtd_info * mtd,loff_t ofs,size_t len)2031 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
2032 {
2033 	int ret;
2034 
2035 	onenand_get_device(mtd, FL_LOCKING);
2036 	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2037 	onenand_release_device(mtd);
2038 	return ret;
2039 }
2040 
2041 /**
2042  * onenand_unlock - [MTD Interface] Unlock block(s)
2043  * @param mtd           MTD device structure
2044  * @param ofs           offset relative to mtd start
2045  * @param len           number of bytes to unlock
2046  *
2047  * Unlock one or more blocks
2048  */
onenand_unlock(struct mtd_info * mtd,loff_t ofs,size_t len)2049 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
2050 {
2051 	int ret;
2052 
2053 	onenand_get_device(mtd, FL_LOCKING);
2054 	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2055 	onenand_release_device(mtd);
2056 	return ret;
2057 }
2058 #endif
2059 
2060 /**
2061  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2062  * @param this          onenand chip data structure
2063  *
2064  * Check lock status
2065  */
onenand_check_lock_status(struct onenand_chip * this)2066 static int onenand_check_lock_status(struct onenand_chip *this)
2067 {
2068 	unsigned int value, block, status;
2069 	unsigned int end;
2070 
2071 	end = this->chipsize >> this->erase_shift;
2072 	for (block = 0; block < end; block++) {
2073 		/* Set block address */
2074 		value = onenand_block_address(this, block);
2075 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2076 		/* Select DataRAM for DDP */
2077 		value = onenand_bufferram_address(this, block);
2078 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2079 		/* Set start block address */
2080 		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2081 
2082 		/* Check lock status */
2083 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2084 		if (!(status & ONENAND_WP_US)) {
2085 			printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
2086 			return 0;
2087 		}
2088 	}
2089 
2090 	return 1;
2091 }
2092 
2093 /**
2094  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2095  * @param mtd           MTD device structure
2096  *
2097  * Unlock all blocks
2098  */
onenand_unlock_all(struct mtd_info * mtd)2099 static void onenand_unlock_all(struct mtd_info *mtd)
2100 {
2101 	struct onenand_chip *this = mtd->priv;
2102 	loff_t ofs = 0;
2103 	size_t len = mtd->size;
2104 
2105 	if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2106 		/* Set start block address */
2107 		this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2108 		/* Write unlock command */
2109 		this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2110 
2111 		/* There's no return value */
2112 		this->wait(mtd, FL_LOCKING);
2113 
2114 		/* Sanity check */
2115 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2116 				& ONENAND_CTRL_ONGO)
2117 			continue;
2118 
2119 		/* Check lock status */
2120 		if (onenand_check_lock_status(this))
2121 			return;
2122 
2123 		/* Workaround for all block unlock in DDP */
2124 		if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2125 			/* All blocks on another chip */
2126 			ofs = this->chipsize >> 1;
2127 			len = this->chipsize >> 1;
2128 		}
2129 	}
2130 
2131 	onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2132 }
2133 
2134 
2135 /**
2136  * onenand_check_features - Check and set OneNAND features
2137  * @param mtd           MTD data structure
2138  *
2139  * Check and set OneNAND features
2140  * - lock scheme
2141  * - two plane
2142  */
onenand_check_features(struct mtd_info * mtd)2143 static void onenand_check_features(struct mtd_info *mtd)
2144 {
2145 	struct onenand_chip *this = mtd->priv;
2146 	unsigned int density, process;
2147 
2148 	/* Lock scheme depends on density and process */
2149 	density = onenand_get_density(this->device_id);
2150 	process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
2151 
2152 	/* Lock scheme */
2153 	switch (density) {
2154 	case ONENAND_DEVICE_DENSITY_4Gb:
2155 		if (ONENAND_IS_DDP(this))
2156 			this->options |= ONENAND_HAS_2PLANE;
2157 		else
2158 			this->options |= ONENAND_HAS_4KB_PAGE;
2159 
2160 	case ONENAND_DEVICE_DENSITY_2Gb:
2161 		/* 2Gb DDP don't have 2 plane */
2162 		if (!ONENAND_IS_DDP(this))
2163 			this->options |= ONENAND_HAS_2PLANE;
2164 		this->options |= ONENAND_HAS_UNLOCK_ALL;
2165 
2166 	case ONENAND_DEVICE_DENSITY_1Gb:
2167 		/* A-Die has all block unlock */
2168 		if (process)
2169 			this->options |= ONENAND_HAS_UNLOCK_ALL;
2170 		break;
2171 
2172 	default:
2173 		/* Some OneNAND has continuous lock scheme */
2174 		if (!process)
2175 			this->options |= ONENAND_HAS_CONT_LOCK;
2176 		break;
2177 	}
2178 
2179 	if (ONENAND_IS_MLC(this))
2180 		this->options |= ONENAND_HAS_4KB_PAGE;
2181 
2182 	if (ONENAND_IS_4KB_PAGE(this))
2183 		this->options &= ~ONENAND_HAS_2PLANE;
2184 
2185 	if (FLEXONENAND(this)) {
2186 		this->options &= ~ONENAND_HAS_CONT_LOCK;
2187 		this->options |= ONENAND_HAS_UNLOCK_ALL;
2188 	}
2189 
2190 	if (this->options & ONENAND_HAS_CONT_LOCK)
2191 		printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
2192 	if (this->options & ONENAND_HAS_UNLOCK_ALL)
2193 		printk(KERN_DEBUG "Chip support all block unlock\n");
2194 	if (this->options & ONENAND_HAS_2PLANE)
2195 		printk(KERN_DEBUG "Chip has 2 plane\n");
2196 	if (this->options & ONENAND_HAS_4KB_PAGE)
2197 		printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
2198 
2199 }
2200 
2201 /**
2202  * onenand_print_device_info - Print device ID
2203  * @param device        device ID
2204  *
2205  * Print device ID
2206  */
onenand_print_device_info(int device,int version)2207 char *onenand_print_device_info(int device, int version)
2208 {
2209 	int vcc, demuxed, ddp, density, flexonenand;
2210 	char *dev_info = malloc(80);
2211 	char *p = dev_info;
2212 
2213 	vcc = device & ONENAND_DEVICE_VCC_MASK;
2214 	demuxed = device & ONENAND_DEVICE_IS_DEMUX;
2215 	ddp = device & ONENAND_DEVICE_IS_DDP;
2216 	density = onenand_get_density(device);
2217 	flexonenand = device & DEVICE_IS_FLEXONENAND;
2218 	p += sprintf(dev_info, "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)",
2219 	       demuxed ? "" : "Muxed ",
2220 	       flexonenand ? "Flex-" : "",
2221 	       ddp ? "(DDP)" : "",
2222 	       (16 << density), vcc ? "2.65/3.3" : "1.8", device);
2223 
2224 	sprintf(p, "\nOneNAND version = 0x%04x", version);
2225 	printk("%s\n", dev_info);
2226 
2227 	return dev_info;
2228 }
2229 
2230 static const struct onenand_manufacturers onenand_manuf_ids[] = {
2231 	{ONENAND_MFR_NUMONYX, "Numonyx"},
2232 	{ONENAND_MFR_SAMSUNG, "Samsung"},
2233 };
2234 
2235 /**
2236  * onenand_check_maf - Check manufacturer ID
2237  * @param manuf         manufacturer ID
2238  *
2239  * Check manufacturer ID
2240  */
onenand_check_maf(int manuf)2241 static int onenand_check_maf(int manuf)
2242 {
2243 	int size = ARRAY_SIZE(onenand_manuf_ids);
2244 	int i;
2245 #ifdef ONENAND_DEBUG
2246 	char *name;
2247 #endif
2248 
2249 	for (i = 0; i < size; i++)
2250 		if (manuf == onenand_manuf_ids[i].id)
2251 			break;
2252 
2253 #ifdef ONENAND_DEBUG
2254 	if (i < size)
2255 		name = onenand_manuf_ids[i].name;
2256 	else
2257 		name = "Unknown";
2258 
2259 	printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2260 #endif
2261 
2262 	return i == size;
2263 }
2264 
2265 /**
2266 * flexonenand_get_boundary	- Reads the SLC boundary
2267 * @param onenand_info		- onenand info structure
2268 *
2269 * Fill up boundary[] field in onenand_chip
2270 **/
flexonenand_get_boundary(struct mtd_info * mtd)2271 static int flexonenand_get_boundary(struct mtd_info *mtd)
2272 {
2273 	struct onenand_chip *this = mtd->priv;
2274 	unsigned int die, bdry;
2275 	int syscfg, locked;
2276 
2277 	/* Disable ECC */
2278 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2279 	this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
2280 
2281 	for (die = 0; die < this->dies; die++) {
2282 		this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2283 		this->wait(mtd, FL_SYNCING);
2284 
2285 		this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2286 		this->wait(mtd, FL_READING);
2287 
2288 		bdry = this->read_word(this->base + ONENAND_DATARAM);
2289 		if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
2290 			locked = 0;
2291 		else
2292 			locked = 1;
2293 		this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
2294 
2295 		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2296 		this->wait(mtd, FL_RESETING);
2297 
2298 		printk(KERN_INFO "Die %d boundary: %d%s\n", die,
2299 		       this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
2300 	}
2301 
2302 	/* Enable ECC */
2303 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2304 	return 0;
2305 }
2306 
2307 /**
2308  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
2309  * 			  boundary[], diesize[], mtd->size, mtd->erasesize,
2310  * 			  mtd->eraseregions
2311  * @param mtd		- MTD device structure
2312  */
flexonenand_get_size(struct mtd_info * mtd)2313 static void flexonenand_get_size(struct mtd_info *mtd)
2314 {
2315 	struct onenand_chip *this = mtd->priv;
2316 	int die, i, eraseshift, density;
2317 	int blksperdie, maxbdry;
2318 	loff_t ofs;
2319 
2320 	density = onenand_get_density(this->device_id);
2321 	blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
2322 	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2323 	maxbdry = blksperdie - 1;
2324 	eraseshift = this->erase_shift - 1;
2325 
2326 	mtd->numeraseregions = this->dies << 1;
2327 
2328 	/* This fills up the device boundary */
2329 	flexonenand_get_boundary(mtd);
2330 	die = 0;
2331 	ofs = 0;
2332 	i = -1;
2333 	for (; die < this->dies; die++) {
2334 		if (!die || this->boundary[die-1] != maxbdry) {
2335 			i++;
2336 			mtd->eraseregions[i].offset = ofs;
2337 			mtd->eraseregions[i].erasesize = 1 << eraseshift;
2338 			mtd->eraseregions[i].numblocks =
2339 							this->boundary[die] + 1;
2340 			ofs += mtd->eraseregions[i].numblocks << eraseshift;
2341 			eraseshift++;
2342 		} else {
2343 			mtd->numeraseregions -= 1;
2344 			mtd->eraseregions[i].numblocks +=
2345 							this->boundary[die] + 1;
2346 			ofs += (this->boundary[die] + 1) << (eraseshift - 1);
2347 		}
2348 		if (this->boundary[die] != maxbdry) {
2349 			i++;
2350 			mtd->eraseregions[i].offset = ofs;
2351 			mtd->eraseregions[i].erasesize = 1 << eraseshift;
2352 			mtd->eraseregions[i].numblocks = maxbdry ^
2353 							 this->boundary[die];
2354 			ofs += mtd->eraseregions[i].numblocks << eraseshift;
2355 			eraseshift--;
2356 		} else
2357 			mtd->numeraseregions -= 1;
2358 	}
2359 
2360 	/* Expose MLC erase size except when all blocks are SLC */
2361 	mtd->erasesize = 1 << this->erase_shift;
2362 	if (mtd->numeraseregions == 1)
2363 		mtd->erasesize >>= 1;
2364 
2365 	printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
2366 	for (i = 0; i < mtd->numeraseregions; i++)
2367 		printk(KERN_INFO "[offset: 0x%08llx, erasesize: 0x%05x,"
2368 			" numblocks: %04u]\n", mtd->eraseregions[i].offset,
2369 			mtd->eraseregions[i].erasesize,
2370 			mtd->eraseregions[i].numblocks);
2371 
2372 	for (die = 0, mtd->size = 0; die < this->dies; die++) {
2373 		this->diesize[die] = (loff_t) (blksperdie << this->erase_shift);
2374 		this->diesize[die] -= (loff_t) (this->boundary[die] + 1)
2375 						 << (this->erase_shift - 1);
2376 		mtd->size += this->diesize[die];
2377 	}
2378 }
2379 
2380 /**
2381  * flexonenand_check_blocks_erased - Check if blocks are erased
2382  * @param mtd_info	- mtd info structure
2383  * @param start		- first erase block to check
2384  * @param end		- last erase block to check
2385  *
2386  * Converting an unerased block from MLC to SLC
2387  * causes byte values to change. Since both data and its ECC
2388  * have changed, reads on the block give uncorrectable error.
2389  * This might lead to the block being detected as bad.
2390  *
2391  * Avoid this by ensuring that the block to be converted is
2392  * erased.
2393  */
flexonenand_check_blocks_erased(struct mtd_info * mtd,int start,int end)2394 static int flexonenand_check_blocks_erased(struct mtd_info *mtd,
2395 					int start, int end)
2396 {
2397 	struct onenand_chip *this = mtd->priv;
2398 	int i, ret;
2399 	int block;
2400 	struct mtd_oob_ops ops = {
2401 		.mode = MTD_OPS_PLACE_OOB,
2402 		.ooboffs = 0,
2403 		.ooblen	= mtd->oobsize,
2404 		.datbuf	= NULL,
2405 		.oobbuf	= this->oob_buf,
2406 	};
2407 	loff_t addr;
2408 
2409 	printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
2410 
2411 	for (block = start; block <= end; block++) {
2412 		addr = flexonenand_addr(this, block);
2413 		if (onenand_block_isbad_nolock(mtd, addr, 0))
2414 			continue;
2415 
2416 		/*
2417 		 * Since main area write results in ECC write to spare,
2418 		 * it is sufficient to check only ECC bytes for change.
2419 		 */
2420 		ret = onenand_read_oob_nolock(mtd, addr, &ops);
2421 		if (ret)
2422 			return ret;
2423 
2424 		for (i = 0; i < mtd->oobsize; i++)
2425 			if (this->oob_buf[i] != 0xff)
2426 				break;
2427 
2428 		if (i != mtd->oobsize) {
2429 			printk(KERN_WARNING "Block %d not erased.\n", block);
2430 			return 1;
2431 		}
2432 	}
2433 
2434 	return 0;
2435 }
2436 
2437 /**
2438  * flexonenand_set_boundary	- Writes the SLC boundary
2439  * @param mtd			- mtd info structure
2440  */
flexonenand_set_boundary(struct mtd_info * mtd,int die,int boundary,int lock)2441 int flexonenand_set_boundary(struct mtd_info *mtd, int die,
2442 				    int boundary, int lock)
2443 {
2444 	struct onenand_chip *this = mtd->priv;
2445 	int ret, density, blksperdie, old, new, thisboundary;
2446 	loff_t addr;
2447 
2448 	if (die >= this->dies)
2449 		return -EINVAL;
2450 
2451 	if (boundary == this->boundary[die])
2452 		return 0;
2453 
2454 	density = onenand_get_density(this->device_id);
2455 	blksperdie = ((16 << density) << 20) >> this->erase_shift;
2456 	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2457 
2458 	if (boundary >= blksperdie) {
2459 		printk("flexonenand_set_boundary:"
2460 			"Invalid boundary value. "
2461 			"Boundary not changed.\n");
2462 		return -EINVAL;
2463 	}
2464 
2465 	/* Check if converting blocks are erased */
2466 	old = this->boundary[die] + (die * this->density_mask);
2467 	new = boundary + (die * this->density_mask);
2468 	ret = flexonenand_check_blocks_erased(mtd, min(old, new)
2469 						+ 1, max(old, new));
2470 	if (ret) {
2471 		printk(KERN_ERR "flexonenand_set_boundary: Please erase blocks before boundary change\n");
2472 		return ret;
2473 	}
2474 
2475 	this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2476 	this->wait(mtd, FL_SYNCING);
2477 
2478 	/* Check is boundary is locked */
2479 	this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2480 	ret = this->wait(mtd, FL_READING);
2481 
2482 	thisboundary = this->read_word(this->base + ONENAND_DATARAM);
2483 	if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
2484 		printk(KERN_ERR "flexonenand_set_boundary: boundary locked\n");
2485 		goto out;
2486 	}
2487 
2488 	printk(KERN_INFO "flexonenand_set_boundary: Changing die %d boundary: %d%s\n",
2489 			die, boundary, lock ? "(Locked)" : "(Unlocked)");
2490 
2491 	boundary &= FLEXONENAND_PI_MASK;
2492 	boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
2493 
2494 	addr = die ? this->diesize[0] : 0;
2495 	this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
2496 	ret = this->wait(mtd, FL_ERASING);
2497 	if (ret) {
2498 		printk("flexonenand_set_boundary:"
2499 			"Failed PI erase for Die %d\n", die);
2500 		goto out;
2501 	}
2502 
2503 	this->write_word(boundary, this->base + ONENAND_DATARAM);
2504 	this->command(mtd, ONENAND_CMD_PROG, addr, 0);
2505 	ret = this->wait(mtd, FL_WRITING);
2506 	if (ret) {
2507 		printk("flexonenand_set_boundary:"
2508 			"Failed PI write for Die %d\n", die);
2509 		goto out;
2510 	}
2511 
2512 	this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
2513 	ret = this->wait(mtd, FL_WRITING);
2514 out:
2515 	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
2516 	this->wait(mtd, FL_RESETING);
2517 	if (!ret)
2518 		/* Recalculate device size on boundary change*/
2519 		flexonenand_get_size(mtd);
2520 
2521 	return ret;
2522 }
2523 
2524 /**
2525  * onenand_chip_probe - [OneNAND Interface] Probe the OneNAND chip
2526  * @param mtd		MTD device structure
2527  *
2528  * OneNAND detection method:
2529  *   Compare the the values from command with ones from register
2530  */
onenand_chip_probe(struct mtd_info * mtd)2531 static int onenand_chip_probe(struct mtd_info *mtd)
2532 {
2533 	struct onenand_chip *this = mtd->priv;
2534 	int bram_maf_id, bram_dev_id, maf_id, dev_id;
2535 	int syscfg;
2536 
2537 	/* Save system configuration 1 */
2538 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2539 
2540 	/* Clear Sync. Burst Read mode to read BootRAM */
2541 	this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ),
2542 			 this->base + ONENAND_REG_SYS_CFG1);
2543 
2544 	/* Send the command for reading device ID from BootRAM */
2545 	this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
2546 
2547 	/* Read manufacturer and device IDs from BootRAM */
2548 	bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
2549 	bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
2550 
2551 	/* Reset OneNAND to read default register values */
2552 	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
2553 
2554 	/* Wait reset */
2555 	if (this->wait(mtd, FL_RESETING))
2556 		return -ENXIO;
2557 
2558 	/* Restore system configuration 1 */
2559 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2560 
2561 	/* Check manufacturer ID */
2562 	if (onenand_check_maf(bram_maf_id))
2563 		return -ENXIO;
2564 
2565 	/* Read manufacturer and device IDs from Register */
2566 	maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
2567 	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2568 
2569 	/* Check OneNAND device */
2570 	if (maf_id != bram_maf_id || dev_id != bram_dev_id)
2571 		return -ENXIO;
2572 
2573 	return 0;
2574 }
2575 
2576 /**
2577  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
2578  * @param mtd		MTD device structure
2579  *
2580  * OneNAND detection method:
2581  *   Compare the the values from command with ones from register
2582  */
onenand_probe(struct mtd_info * mtd)2583 int onenand_probe(struct mtd_info *mtd)
2584 {
2585 	struct onenand_chip *this = mtd->priv;
2586 	int dev_id, ver_id;
2587 	int density;
2588 	int ret;
2589 
2590 	ret = this->chip_probe(mtd);
2591 	if (ret)
2592 		return ret;
2593 
2594 	/* Read device IDs from Register */
2595 	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2596 	ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2597 	this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
2598 
2599 	/* Flash device information */
2600 	mtd->name = onenand_print_device_info(dev_id, ver_id);
2601 	this->device_id = dev_id;
2602 	this->version_id = ver_id;
2603 
2604 	/* Check OneNAND features */
2605 	onenand_check_features(mtd);
2606 
2607 	density = onenand_get_density(dev_id);
2608 	if (FLEXONENAND(this)) {
2609 		this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
2610 		/* Maximum possible erase regions */
2611 		mtd->numeraseregions = this->dies << 1;
2612 		mtd->eraseregions = malloc(sizeof(struct mtd_erase_region_info)
2613 					* (this->dies << 1));
2614 		if (!mtd->eraseregions)
2615 			return -ENOMEM;
2616 	}
2617 
2618 	/*
2619 	 * For Flex-OneNAND, chipsize represents maximum possible device size.
2620 	 * mtd->size represents the actual device size.
2621 	 */
2622 	this->chipsize = (16 << density) << 20;
2623 
2624 	/* OneNAND page size & block size */
2625 	/* The data buffer size is equal to page size */
2626 	mtd->writesize =
2627 	    this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
2628 	/* We use the full BufferRAM */
2629 	if (ONENAND_IS_4KB_PAGE(this))
2630 		mtd->writesize <<= 1;
2631 
2632 	mtd->oobsize = mtd->writesize >> 5;
2633 	/* Pagers per block is always 64 in OneNAND */
2634 	mtd->erasesize = mtd->writesize << 6;
2635 	/*
2636 	 * Flex-OneNAND SLC area has 64 pages per block.
2637 	 * Flex-OneNAND MLC area has 128 pages per block.
2638 	 * Expose MLC erase size to find erase_shift and page_mask.
2639 	 */
2640 	if (FLEXONENAND(this))
2641 		mtd->erasesize <<= 1;
2642 
2643 	this->erase_shift = ffs(mtd->erasesize) - 1;
2644 	this->page_shift = ffs(mtd->writesize) - 1;
2645 	this->ppb_shift = (this->erase_shift - this->page_shift);
2646 	this->page_mask = (mtd->erasesize / mtd->writesize) - 1;
2647 	/* Set density mask. it is used for DDP */
2648 	if (ONENAND_IS_DDP(this))
2649 		this->density_mask = this->chipsize >> (this->erase_shift + 1);
2650 	/* It's real page size */
2651 	this->writesize = mtd->writesize;
2652 
2653 	/* REVIST: Multichip handling */
2654 
2655 	if (FLEXONENAND(this))
2656 		flexonenand_get_size(mtd);
2657 	else
2658 		mtd->size = this->chipsize;
2659 
2660 	mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
2661 	mtd->flags = MTD_CAP_NANDFLASH;
2662 	mtd->_erase = onenand_erase;
2663 	mtd->_read_oob = onenand_read_oob;
2664 	mtd->_write_oob = onenand_write_oob;
2665 	mtd->_sync = onenand_sync;
2666 	mtd->_block_isbad = onenand_block_isbad;
2667 	mtd->_block_markbad = onenand_block_markbad;
2668 	mtd->writebufsize = mtd->writesize;
2669 
2670 	return 0;
2671 }
2672 
2673 /**
2674  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2675  * @param mtd		MTD device structure
2676  * @param maxchips	Number of chips to scan for
2677  *
2678  * This fills out all the not initialized function pointers
2679  * with the defaults.
2680  * The flash ID is read and the mtd/chip structures are
2681  * filled with the appropriate values.
2682  */
onenand_scan(struct mtd_info * mtd,int maxchips)2683 int onenand_scan(struct mtd_info *mtd, int maxchips)
2684 {
2685 	int i;
2686 	struct onenand_chip *this = mtd->priv;
2687 
2688 	if (!this->read_word)
2689 		this->read_word = onenand_readw;
2690 	if (!this->write_word)
2691 		this->write_word = onenand_writew;
2692 
2693 	if (!this->command)
2694 		this->command = onenand_command;
2695 	if (!this->wait)
2696 		this->wait = onenand_wait;
2697 	if (!this->bbt_wait)
2698 		this->bbt_wait = onenand_bbt_wait;
2699 
2700 	if (!this->read_bufferram)
2701 		this->read_bufferram = onenand_read_bufferram;
2702 	if (!this->write_bufferram)
2703 		this->write_bufferram = onenand_write_bufferram;
2704 
2705 	if (!this->chip_probe)
2706 		this->chip_probe = onenand_chip_probe;
2707 
2708 	if (!this->block_markbad)
2709 		this->block_markbad = onenand_default_block_markbad;
2710 	if (!this->scan_bbt)
2711 		this->scan_bbt = onenand_default_bbt;
2712 
2713 	if (onenand_probe(mtd))
2714 		return -ENXIO;
2715 
2716 	/* Set Sync. Burst Read after probing */
2717 	if (this->mmcontrol) {
2718 		printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2719 		this->read_bufferram = onenand_sync_read_bufferram;
2720 	}
2721 
2722 	/* Allocate buffers, if necessary */
2723 	if (!this->page_buf) {
2724 		this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
2725 		if (!this->page_buf) {
2726 			printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2727 			return -ENOMEM;
2728 		}
2729 		this->options |= ONENAND_PAGEBUF_ALLOC;
2730 	}
2731 	if (!this->oob_buf) {
2732 		this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
2733 		if (!this->oob_buf) {
2734 			printk(KERN_ERR "onenand_scan: Can't allocate oob_buf\n");
2735 			if (this->options & ONENAND_PAGEBUF_ALLOC) {
2736 				this->options &= ~ONENAND_PAGEBUF_ALLOC;
2737 				kfree(this->page_buf);
2738 			}
2739 			return -ENOMEM;
2740 		}
2741 		this->options |= ONENAND_OOBBUF_ALLOC;
2742 	}
2743 
2744 	this->state = FL_READY;
2745 
2746 	/*
2747 	 * Allow subpage writes up to oobsize.
2748 	 */
2749 	switch (mtd->oobsize) {
2750 	case 128:
2751 		this->ecclayout = &onenand_oob_128;
2752 		mtd->subpage_sft = 0;
2753 		break;
2754 
2755 	case 64:
2756 		this->ecclayout = &onenand_oob_64;
2757 		mtd->subpage_sft = 2;
2758 		break;
2759 
2760 	case 32:
2761 		this->ecclayout = &onenand_oob_32;
2762 		mtd->subpage_sft = 1;
2763 		break;
2764 
2765 	default:
2766 		printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2767 			mtd->oobsize);
2768 		mtd->subpage_sft = 0;
2769 		/* To prevent kernel oops */
2770 		this->ecclayout = &onenand_oob_32;
2771 		break;
2772 	}
2773 
2774 	this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2775 
2776 	/*
2777 	 * The number of bytes available for a client to place data into
2778 	 * the out of band area
2779 	 */
2780 	this->ecclayout->oobavail = 0;
2781 
2782 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE &&
2783 	    this->ecclayout->oobfree[i].length; i++)
2784 		this->ecclayout->oobavail +=
2785 			this->ecclayout->oobfree[i].length;
2786 	mtd->oobavail = this->ecclayout->oobavail;
2787 
2788 	mtd->ecclayout = this->ecclayout;
2789 
2790 	/* Unlock whole block */
2791 	onenand_unlock_all(mtd);
2792 
2793 	return this->scan_bbt(mtd);
2794 }
2795 
2796 /**
2797  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2798  * @param mtd		MTD device structure
2799  */
onenand_release(struct mtd_info * mtd)2800 void onenand_release(struct mtd_info *mtd)
2801 {
2802 }
2803