1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Copyright (c) 2011 The Chromium OS Authors.
4 */
5
6 #ifndef __fdtdec_h
7 #define __fdtdec_h
8
9 /*
10 * This file contains convenience functions for decoding useful and
11 * enlightening information from FDTs. It is intended to be used by device
12 * drivers and board-specific code within U-Boot. It aims to reduce the
13 * amount of FDT munging required within U-Boot itself, so that driver code
14 * changes to support FDT are minimized.
15 */
16
17 #include <linux/libfdt.h>
18 #include <pci.h>
19
20 /*
21 * A typedef for a physical address. Note that fdt data is always big
22 * endian even on a litle endian machine.
23 */
24 typedef phys_addr_t fdt_addr_t;
25 typedef phys_size_t fdt_size_t;
26
27 #define FDT_ADDR_T_NONE (-1U)
28 #define FDT_SIZE_T_NONE (-1U)
29
30 #ifdef CONFIG_PHYS_64BIT
31 #define fdt_addr_to_cpu(reg) be64_to_cpu(reg)
32 #define fdt_size_to_cpu(reg) be64_to_cpu(reg)
33 #define cpu_to_fdt_addr(reg) cpu_to_be64(reg)
34 #define cpu_to_fdt_size(reg) cpu_to_be64(reg)
35 typedef fdt64_t fdt_val_t;
36 #else
37 #define fdt_addr_to_cpu(reg) be32_to_cpu(reg)
38 #define fdt_size_to_cpu(reg) be32_to_cpu(reg)
39 #define cpu_to_fdt_addr(reg) cpu_to_be32(reg)
40 #define cpu_to_fdt_size(reg) cpu_to_be32(reg)
41 typedef fdt32_t fdt_val_t;
42 #endif
43
44 /* Information obtained about memory from the FDT */
45 struct fdt_memory {
46 fdt_addr_t start;
47 fdt_addr_t end;
48 };
49
50 struct bd_info;
51
52 #ifdef CONFIG_SPL_BUILD
53 #define SPL_BUILD 1
54 #else
55 #define SPL_BUILD 0
56 #endif
57
58 #ifdef CONFIG_OF_PRIOR_STAGE
59 extern phys_addr_t prior_stage_fdt_address;
60 #endif
61
62 /*
63 * Information about a resource. start is the first address of the resource
64 * and end is the last address (inclusive). The length of the resource will
65 * be equal to: end - start + 1.
66 */
67 struct fdt_resource {
68 fdt_addr_t start;
69 fdt_addr_t end;
70 };
71
72 enum fdt_pci_space {
73 FDT_PCI_SPACE_CONFIG = 0,
74 FDT_PCI_SPACE_IO = 0x01000000,
75 FDT_PCI_SPACE_MEM32 = 0x02000000,
76 FDT_PCI_SPACE_MEM64 = 0x03000000,
77 FDT_PCI_SPACE_MEM32_PREF = 0x42000000,
78 FDT_PCI_SPACE_MEM64_PREF = 0x43000000,
79 };
80
81 #define FDT_PCI_ADDR_CELLS 3
82 #define FDT_PCI_SIZE_CELLS 2
83 #define FDT_PCI_REG_SIZE \
84 ((FDT_PCI_ADDR_CELLS + FDT_PCI_SIZE_CELLS) * sizeof(u32))
85
86 /*
87 * The Open Firmware spec defines PCI physical address as follows:
88 *
89 * bits# 31 .... 24 23 .... 16 15 .... 08 07 .... 00
90 *
91 * phys.hi cell: npt000ss bbbbbbbb dddddfff rrrrrrrr
92 * phys.mid cell: hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
93 * phys.lo cell: llllllll llllllll llllllll llllllll
94 *
95 * where:
96 *
97 * n: is 0 if the address is relocatable, 1 otherwise
98 * p: is 1 if addressable region is prefetchable, 0 otherwise
99 * t: is 1 if the address is aliased (for non-relocatable I/O) below 1MB
100 * (for Memory), or below 64KB (for relocatable I/O)
101 * ss: is the space code, denoting the address space
102 * bbbbbbbb: is the 8-bit Bus Number
103 * ddddd: is the 5-bit Device Number
104 * fff: is the 3-bit Function Number
105 * rrrrrrrr: is the 8-bit Register Number
106 * hhhhhhhh: is a 32-bit unsigned number
107 * llllllll: is a 32-bit unsigned number
108 */
109 struct fdt_pci_addr {
110 u32 phys_hi;
111 u32 phys_mid;
112 u32 phys_lo;
113 };
114
115 extern u8 __dtb_dt_begin[]; /* embedded device tree blob */
116 extern u8 __dtb_dt_spl_begin[]; /* embedded device tree blob for SPL/TPL */
117
118 /**
119 * Compute the size of a resource.
120 *
121 * @param res the resource to operate on
122 * @return the size of the resource
123 */
fdt_resource_size(const struct fdt_resource * res)124 static inline fdt_size_t fdt_resource_size(const struct fdt_resource *res)
125 {
126 return res->end - res->start + 1;
127 }
128
129 /**
130 * Compat types that we know about and for which we might have drivers.
131 * Each is named COMPAT_<dir>_<filename> where <dir> is the directory
132 * within drivers.
133 */
134 enum fdt_compat_id {
135 COMPAT_UNKNOWN,
136 COMPAT_NVIDIA_TEGRA20_EMC, /* Tegra20 memory controller */
137 COMPAT_NVIDIA_TEGRA20_EMC_TABLE, /* Tegra20 memory timing table */
138 COMPAT_NVIDIA_TEGRA20_NAND, /* Tegra2 NAND controller */
139 COMPAT_NVIDIA_TEGRA124_XUSB_PADCTL,
140 /* Tegra124 XUSB pad controller */
141 COMPAT_NVIDIA_TEGRA210_XUSB_PADCTL,
142 /* Tegra210 XUSB pad controller */
143 COMPAT_SMSC_LAN9215, /* SMSC 10/100 Ethernet LAN9215 */
144 COMPAT_SAMSUNG_EXYNOS5_SROMC, /* Exynos5 SROMC */
145 COMPAT_SAMSUNG_EXYNOS_USB_PHY, /* Exynos phy controller for usb2.0 */
146 COMPAT_SAMSUNG_EXYNOS5_USB3_PHY,/* Exynos phy controller for usb3.0 */
147 COMPAT_SAMSUNG_EXYNOS_TMU, /* Exynos TMU */
148 COMPAT_SAMSUNG_EXYNOS_MIPI_DSI, /* Exynos mipi dsi */
149 COMPAT_SAMSUNG_EXYNOS_DWMMC, /* Exynos DWMMC controller */
150 COMPAT_GENERIC_SPI_FLASH, /* Generic SPI Flash chip */
151 COMPAT_SAMSUNG_EXYNOS_SYSMMU, /* Exynos sysmmu */
152 COMPAT_INTEL_MICROCODE, /* Intel microcode update */
153 COMPAT_INTEL_QRK_MRC, /* Intel Quark MRC */
154 COMPAT_ALTERA_SOCFPGA_DWMAC, /* SoCFPGA Ethernet controller */
155 COMPAT_ALTERA_SOCFPGA_DWMMC, /* SoCFPGA DWMMC controller */
156 COMPAT_ALTERA_SOCFPGA_DWC2USB, /* SoCFPGA DWC2 USB controller */
157 COMPAT_INTEL_BAYTRAIL_FSP, /* Intel Bay Trail FSP */
158 COMPAT_INTEL_BAYTRAIL_FSP_MDP, /* Intel FSP memory-down params */
159 COMPAT_INTEL_IVYBRIDGE_FSP, /* Intel Ivy Bridge FSP */
160 COMPAT_SUNXI_NAND, /* SUNXI NAND controller */
161 COMPAT_ALTERA_SOCFPGA_CLK, /* SoCFPGA Clock initialization */
162 COMPAT_ALTERA_SOCFPGA_PINCTRL_SINGLE, /* SoCFPGA pinctrl-single */
163 COMPAT_ALTERA_SOCFPGA_H2F_BRG, /* SoCFPGA hps2fpga bridge */
164 COMPAT_ALTERA_SOCFPGA_LWH2F_BRG, /* SoCFPGA lwhps2fpga bridge */
165 COMPAT_ALTERA_SOCFPGA_F2H_BRG, /* SoCFPGA fpga2hps bridge */
166 COMPAT_ALTERA_SOCFPGA_F2SDR0, /* SoCFPGA fpga2SDRAM0 bridge */
167 COMPAT_ALTERA_SOCFPGA_F2SDR1, /* SoCFPGA fpga2SDRAM1 bridge */
168 COMPAT_ALTERA_SOCFPGA_F2SDR2, /* SoCFPGA fpga2SDRAM2 bridge */
169 COMPAT_ALTERA_SOCFPGA_FPGA0, /* SOCFPGA FPGA manager */
170 COMPAT_ALTERA_SOCFPGA_NOC, /* SOCFPGA Arria 10 NOC */
171 COMPAT_ALTERA_SOCFPGA_CLK_INIT, /* SOCFPGA Arria 10 clk init */
172
173 COMPAT_COUNT,
174 };
175
176 #define MAX_PHANDLE_ARGS 16
177 struct fdtdec_phandle_args {
178 int node;
179 int args_count;
180 uint32_t args[MAX_PHANDLE_ARGS];
181 };
182
183 /**
184 * fdtdec_parse_phandle_with_args() - Find a node pointed by phandle in a list
185 *
186 * This function is useful to parse lists of phandles and their arguments.
187 *
188 * Example:
189 *
190 * phandle1: node1 {
191 * #list-cells = <2>;
192 * }
193 *
194 * phandle2: node2 {
195 * #list-cells = <1>;
196 * }
197 *
198 * node3 {
199 * list = <&phandle1 1 2 &phandle2 3>;
200 * }
201 *
202 * To get a device_node of the `node2' node you may call this:
203 * fdtdec_parse_phandle_with_args(blob, node3, "list", "#list-cells", 0, 1,
204 * &args);
205 *
206 * (This function is a modified version of __of_parse_phandle_with_args() from
207 * Linux 3.18)
208 *
209 * @blob: Pointer to device tree
210 * @src_node: Offset of device tree node containing a list
211 * @list_name: property name that contains a list
212 * @cells_name: property name that specifies the phandles' arguments count,
213 * or NULL to use @cells_count
214 * @cells_count: Cell count to use if @cells_name is NULL
215 * @index: index of a phandle to parse out
216 * @out_args: optional pointer to output arguments structure (will be filled)
217 * @return 0 on success (with @out_args filled out if not NULL), -ENOENT if
218 * @list_name does not exist, a phandle was not found, @cells_name
219 * could not be found, the arguments were truncated or there were too
220 * many arguments.
221 *
222 */
223 int fdtdec_parse_phandle_with_args(const void *blob, int src_node,
224 const char *list_name,
225 const char *cells_name,
226 int cell_count, int index,
227 struct fdtdec_phandle_args *out_args);
228
229 /**
230 * Find the next numbered alias for a peripheral. This is used to enumerate
231 * all the peripherals of a certain type.
232 *
233 * Do the first call with *upto = 0. Assuming /aliases/<name>0 exists then
234 * this function will return a pointer to the node the alias points to, and
235 * then update *upto to 1. Next time you call this function, the next node
236 * will be returned.
237 *
238 * All nodes returned will match the compatible ID, as it is assumed that
239 * all peripherals use the same driver.
240 *
241 * @param blob FDT blob to use
242 * @param name Root name of alias to search for
243 * @param id Compatible ID to look for
244 * @return offset of next compatible node, or -FDT_ERR_NOTFOUND if no more
245 */
246 int fdtdec_next_alias(const void *blob, const char *name,
247 enum fdt_compat_id id, int *upto);
248
249 /**
250 * Find the compatible ID for a given node.
251 *
252 * Generally each node has at least one compatible string attached to it.
253 * This function looks through our list of known compatible strings and
254 * returns the corresponding ID which matches the compatible string.
255 *
256 * @param blob FDT blob to use
257 * @param node Node containing compatible string to find
258 * @return compatible ID, or COMPAT_UNKNOWN if we cannot find a match
259 */
260 enum fdt_compat_id fdtdec_lookup(const void *blob, int node);
261
262 /**
263 * Find the next compatible node for a peripheral.
264 *
265 * Do the first call with node = 0. This function will return a pointer to
266 * the next compatible node. Next time you call this function, pass the
267 * value returned, and the next node will be provided.
268 *
269 * @param blob FDT blob to use
270 * @param node Start node for search
271 * @param id Compatible ID to look for (enum fdt_compat_id)
272 * @return offset of next compatible node, or -FDT_ERR_NOTFOUND if no more
273 */
274 int fdtdec_next_compatible(const void *blob, int node,
275 enum fdt_compat_id id);
276
277 /**
278 * Find the next compatible subnode for a peripheral.
279 *
280 * Do the first call with node set to the parent and depth = 0. This
281 * function will return the offset of the next compatible node. Next time
282 * you call this function, pass the node value returned last time, with
283 * depth unchanged, and the next node will be provided.
284 *
285 * @param blob FDT blob to use
286 * @param node Start node for search
287 * @param id Compatible ID to look for (enum fdt_compat_id)
288 * @param depthp Current depth (set to 0 before first call)
289 * @return offset of next compatible node, or -FDT_ERR_NOTFOUND if no more
290 */
291 int fdtdec_next_compatible_subnode(const void *blob, int node,
292 enum fdt_compat_id id, int *depthp);
293
294 /*
295 * Look up an address property in a node and return the parsed address, and
296 * optionally the parsed size.
297 *
298 * This variant assumes a known and fixed number of cells are used to
299 * represent the address and size.
300 *
301 * You probably don't want to use this function directly except to parse
302 * non-standard properties, and never to parse the "reg" property. Instead,
303 * use one of the "auto" variants below, which automatically honor the
304 * #address-cells and #size-cells properties in the parent node.
305 *
306 * @param blob FDT blob
307 * @param node node to examine
308 * @param prop_name name of property to find
309 * @param index which address to retrieve from a list of addresses. Often 0.
310 * @param na the number of cells used to represent an address
311 * @param ns the number of cells used to represent a size
312 * @param sizep a pointer to store the size into. Use NULL if not required
313 * @param translate Indicates whether to translate the returned value
314 * using the parent node's ranges property.
315 * @return address, if found, or FDT_ADDR_T_NONE if not
316 */
317 fdt_addr_t fdtdec_get_addr_size_fixed(const void *blob, int node,
318 const char *prop_name, int index, int na, int ns,
319 fdt_size_t *sizep, bool translate);
320
321 /*
322 * Look up an address property in a node and return the parsed address, and
323 * optionally the parsed size.
324 *
325 * This variant automatically determines the number of cells used to represent
326 * the address and size by parsing the provided parent node's #address-cells
327 * and #size-cells properties.
328 *
329 * @param blob FDT blob
330 * @param parent parent node of @node
331 * @param node node to examine
332 * @param prop_name name of property to find
333 * @param index which address to retrieve from a list of addresses. Often 0.
334 * @param sizep a pointer to store the size into. Use NULL if not required
335 * @param translate Indicates whether to translate the returned value
336 * using the parent node's ranges property.
337 * @return address, if found, or FDT_ADDR_T_NONE if not
338 */
339 fdt_addr_t fdtdec_get_addr_size_auto_parent(const void *blob, int parent,
340 int node, const char *prop_name, int index, fdt_size_t *sizep,
341 bool translate);
342
343 /*
344 * Look up an address property in a node and return the parsed address, and
345 * optionally the parsed size.
346 *
347 * This variant automatically determines the number of cells used to represent
348 * the address and size by parsing the parent node's #address-cells
349 * and #size-cells properties. The parent node is automatically found.
350 *
351 * The automatic parent lookup implemented by this function is slow.
352 * Consequently, fdtdec_get_addr_size_auto_parent() should be used where
353 * possible.
354 *
355 * @param blob FDT blob
356 * @param parent parent node of @node
357 * @param node node to examine
358 * @param prop_name name of property to find
359 * @param index which address to retrieve from a list of addresses. Often 0.
360 * @param sizep a pointer to store the size into. Use NULL if not required
361 * @param translate Indicates whether to translate the returned value
362 * using the parent node's ranges property.
363 * @return address, if found, or FDT_ADDR_T_NONE if not
364 */
365 fdt_addr_t fdtdec_get_addr_size_auto_noparent(const void *blob, int node,
366 const char *prop_name, int index, fdt_size_t *sizep,
367 bool translate);
368
369 /*
370 * Look up an address property in a node and return the parsed address.
371 *
372 * This variant hard-codes the number of cells used to represent the address
373 * and size based on sizeof(fdt_addr_t) and sizeof(fdt_size_t). It also
374 * always returns the first address value in the property (index 0).
375 *
376 * Use of this function is not recommended due to the hard-coding of cell
377 * counts. There is no programmatic validation that these hard-coded values
378 * actually match the device tree content in any way at all. This assumption
379 * can be satisfied by manually ensuring CONFIG_PHYS_64BIT is appropriately
380 * set in the U-Boot build and exercising strict control over DT content to
381 * ensure use of matching #address-cells/#size-cells properties. However, this
382 * approach is error-prone; those familiar with DT will not expect the
383 * assumption to exist, and could easily invalidate it. If the assumption is
384 * invalidated, this function will not report the issue, and debugging will
385 * be required. Instead, use fdtdec_get_addr_size_auto_parent().
386 *
387 * @param blob FDT blob
388 * @param node node to examine
389 * @param prop_name name of property to find
390 * @return address, if found, or FDT_ADDR_T_NONE if not
391 */
392 fdt_addr_t fdtdec_get_addr(const void *blob, int node,
393 const char *prop_name);
394
395 /*
396 * Look up an address property in a node and return the parsed address, and
397 * optionally the parsed size.
398 *
399 * This variant hard-codes the number of cells used to represent the address
400 * and size based on sizeof(fdt_addr_t) and sizeof(fdt_size_t). It also
401 * always returns the first address value in the property (index 0).
402 *
403 * Use of this function is not recommended due to the hard-coding of cell
404 * counts. There is no programmatic validation that these hard-coded values
405 * actually match the device tree content in any way at all. This assumption
406 * can be satisfied by manually ensuring CONFIG_PHYS_64BIT is appropriately
407 * set in the U-Boot build and exercising strict control over DT content to
408 * ensure use of matching #address-cells/#size-cells properties. However, this
409 * approach is error-prone; those familiar with DT will not expect the
410 * assumption to exist, and could easily invalidate it. If the assumption is
411 * invalidated, this function will not report the issue, and debugging will
412 * be required. Instead, use fdtdec_get_addr_size_auto_parent().
413 *
414 * @param blob FDT blob
415 * @param node node to examine
416 * @param prop_name name of property to find
417 * @param sizep a pointer to store the size into. Use NULL if not required
418 * @return address, if found, or FDT_ADDR_T_NONE if not
419 */
420 fdt_addr_t fdtdec_get_addr_size(const void *blob, int node,
421 const char *prop_name, fdt_size_t *sizep);
422
423 /**
424 * Look at the compatible property of a device node that represents a PCI
425 * device and extract pci vendor id and device id from it.
426 *
427 * @param blob FDT blob
428 * @param node node to examine
429 * @param vendor vendor id of the pci device
430 * @param device device id of the pci device
431 * @return 0 if ok, negative on error
432 */
433 int fdtdec_get_pci_vendev(const void *blob, int node,
434 u16 *vendor, u16 *device);
435
436 /**
437 * Look at the pci address of a device node that represents a PCI device
438 * and return base address of the pci device's registers.
439 *
440 * @param dev device to examine
441 * @param addr pci address in the form of fdt_pci_addr
442 * @param bar returns base address of the pci device's registers
443 * @return 0 if ok, negative on error
444 */
445 int fdtdec_get_pci_bar32(const struct udevice *dev, struct fdt_pci_addr *addr,
446 u32 *bar);
447
448 /**
449 * Look at the bus range property of a device node and return the pci bus
450 * range for this node.
451 * The property must hold one fdt_pci_addr with a length.
452 * @param blob FDT blob
453 * @param node node to examine
454 * @param res the resource structure to return the bus range
455 * @return 0 if ok, negative on error
456 */
457
458 int fdtdec_get_pci_bus_range(const void *blob, int node,
459 struct fdt_resource *res);
460
461 /**
462 * Look up a 32-bit integer property in a node and return it. The property
463 * must have at least 4 bytes of data. The value of the first cell is
464 * returned.
465 *
466 * @param blob FDT blob
467 * @param node node to examine
468 * @param prop_name name of property to find
469 * @param default_val default value to return if the property is not found
470 * @return integer value, if found, or default_val if not
471 */
472 s32 fdtdec_get_int(const void *blob, int node, const char *prop_name,
473 s32 default_val);
474
475 /**
476 * Unsigned version of fdtdec_get_int. The property must have at least
477 * 4 bytes of data. The value of the first cell is returned.
478 *
479 * @param blob FDT blob
480 * @param node node to examine
481 * @param prop_name name of property to find
482 * @param default_val default value to return if the property is not found
483 * @return unsigned integer value, if found, or default_val if not
484 */
485 unsigned int fdtdec_get_uint(const void *blob, int node, const char *prop_name,
486 unsigned int default_val);
487
488 /**
489 * Get a variable-sized number from a property
490 *
491 * This reads a number from one or more cells.
492 *
493 * @param ptr Pointer to property
494 * @param cells Number of cells containing the number
495 * @return the value in the cells
496 */
497 u64 fdtdec_get_number(const fdt32_t *ptr, unsigned int cells);
498
499 /**
500 * Look up a 64-bit integer property in a node and return it. The property
501 * must have at least 8 bytes of data (2 cells). The first two cells are
502 * concatenated to form a 8 bytes value, where the first cell is top half and
503 * the second cell is bottom half.
504 *
505 * @param blob FDT blob
506 * @param node node to examine
507 * @param prop_name name of property to find
508 * @param default_val default value to return if the property is not found
509 * @return integer value, if found, or default_val if not
510 */
511 uint64_t fdtdec_get_uint64(const void *blob, int node, const char *prop_name,
512 uint64_t default_val);
513
514 /**
515 * Checks whether a node is enabled.
516 * This looks for a 'status' property. If this exists, then returns 1 if
517 * the status is 'ok' and 0 otherwise. If there is no status property,
518 * it returns 1 on the assumption that anything mentioned should be enabled
519 * by default.
520 *
521 * @param blob FDT blob
522 * @param node node to examine
523 * @return integer value 0 (not enabled) or 1 (enabled)
524 */
525 int fdtdec_get_is_enabled(const void *blob, int node);
526
527 /**
528 * Make sure we have a valid fdt available to control U-Boot.
529 *
530 * If not, a message is printed to the console if the console is ready.
531 *
532 * @return 0 if all ok, -1 if not
533 */
534 int fdtdec_prepare_fdt(void);
535
536 /**
537 * Checks that we have a valid fdt available to control U-Boot.
538
539 * However, if not then for the moment nothing is done, since this function
540 * is called too early to panic().
541 *
542 * @returns 0
543 */
544 int fdtdec_check_fdt(void);
545
546 /**
547 * Find the nodes for a peripheral and return a list of them in the correct
548 * order. This is used to enumerate all the peripherals of a certain type.
549 *
550 * To use this, optionally set up a /aliases node with alias properties for
551 * a peripheral. For example, for usb you could have:
552 *
553 * aliases {
554 * usb0 = "/ehci@c5008000";
555 * usb1 = "/ehci@c5000000";
556 * };
557 *
558 * Pass "usb" as the name to this function and will return a list of two
559 * nodes offsets: /ehci@c5008000 and ehci@c5000000.
560 *
561 * All nodes returned will match the compatible ID, as it is assumed that
562 * all peripherals use the same driver.
563 *
564 * If no alias node is found, then the node list will be returned in the
565 * order found in the fdt. If the aliases mention a node which doesn't
566 * exist, then this will be ignored. If nodes are found with no aliases,
567 * they will be added in any order.
568 *
569 * If there is a gap in the aliases, then this function return a 0 node at
570 * that position. The return value will also count these gaps.
571 *
572 * This function checks node properties and will not return nodes which are
573 * marked disabled (status = "disabled").
574 *
575 * @param blob FDT blob to use
576 * @param name Root name of alias to search for
577 * @param id Compatible ID to look for
578 * @param node_list Place to put list of found nodes
579 * @param maxcount Maximum number of nodes to find
580 * @return number of nodes found on success, FDT_ERR_... on error
581 */
582 int fdtdec_find_aliases_for_id(const void *blob, const char *name,
583 enum fdt_compat_id id, int *node_list, int maxcount);
584
585 /*
586 * This function is similar to fdtdec_find_aliases_for_id() except that it
587 * adds to the node_list that is passed in. Any 0 elements are considered
588 * available for allocation - others are considered already used and are
589 * skipped.
590 *
591 * You can use this by calling fdtdec_find_aliases_for_id() with an
592 * uninitialised array, then setting the elements that are returned to -1,
593 * say, then calling this function, perhaps with a different compat id.
594 * Any elements you get back that are >0 are new nodes added by the call
595 * to this function.
596 *
597 * Note that if you have some nodes with aliases and some without, you are
598 * sailing close to the wind. The call to fdtdec_find_aliases_for_id() with
599 * one compat_id may fill in positions for which you have aliases defined
600 * for another compat_id. When you later call *this* function with the second
601 * compat_id, the alias positions may already be used. A debug warning may
602 * be generated in this case, but it is safest to define aliases for all
603 * nodes when you care about the ordering.
604 */
605 int fdtdec_add_aliases_for_id(const void *blob, const char *name,
606 enum fdt_compat_id id, int *node_list, int maxcount);
607
608 /**
609 * Get the alias sequence number of a node
610 *
611 * This works out whether a node is pointed to by an alias, and if so, the
612 * sequence number of that alias. Aliases are of the form <base><num> where
613 * <num> is the sequence number. For example spi2 would be sequence number
614 * 2.
615 *
616 * @param blob Device tree blob (if NULL, then error is returned)
617 * @param base Base name for alias (before the underscore)
618 * @param node Node to look up
619 * @param seqp This is set to the sequence number if one is found,
620 * but otherwise the value is left alone
621 * @return 0 if a sequence was found, -ve if not
622 */
623 int fdtdec_get_alias_seq(const void *blob, const char *base, int node,
624 int *seqp);
625
626 /**
627 * Get the highest alias number for susbystem.
628 *
629 * It parses all aliases and find out highest recorded alias for subsystem.
630 * Aliases are of the form <base><num> where <num> is the sequence number.
631 *
632 * @param blob Device tree blob (if NULL, then error is returned)
633 * @param base Base name for alias susbystem (before the number)
634 *
635 * @return 0 highest alias ID, -1 if not found
636 */
637 int fdtdec_get_alias_highest_id(const void *blob, const char *base);
638
639 /**
640 * Get a property from the /chosen node
641 *
642 * @param blob Device tree blob (if NULL, then NULL is returned)
643 * @param name Property name to look up
644 * @return Value of property, or NULL if it does not exist
645 */
646 const char *fdtdec_get_chosen_prop(const void *blob, const char *name);
647
648 /**
649 * Get the offset of the given /chosen node
650 *
651 * This looks up a property in /chosen containing the path to another node,
652 * then finds the offset of that node.
653 *
654 * @param blob Device tree blob (if NULL, then error is returned)
655 * @param name Property name, e.g. "stdout-path"
656 * @return Node offset referred to by that chosen node, or -ve FDT_ERR_...
657 */
658 int fdtdec_get_chosen_node(const void *blob, const char *name);
659
660 /*
661 * Get the name for a compatible ID
662 *
663 * @param id Compatible ID to look for
664 * @return compatible string for that id
665 */
666 const char *fdtdec_get_compatible(enum fdt_compat_id id);
667
668 /* Look up a phandle and follow it to its node. Then return the offset
669 * of that node.
670 *
671 * @param blob FDT blob
672 * @param node node to examine
673 * @param prop_name name of property to find
674 * @return node offset if found, -ve error code on error
675 */
676 int fdtdec_lookup_phandle(const void *blob, int node, const char *prop_name);
677
678 /**
679 * Look up a property in a node and return its contents in an integer
680 * array of given length. The property must have at least enough data for
681 * the array (4*count bytes). It may have more, but this will be ignored.
682 *
683 * @param blob FDT blob
684 * @param node node to examine
685 * @param prop_name name of property to find
686 * @param array array to fill with data
687 * @param count number of array elements
688 * @return 0 if ok, or -FDT_ERR_NOTFOUND if the property is not found,
689 * or -FDT_ERR_BADLAYOUT if not enough data
690 */
691 int fdtdec_get_int_array(const void *blob, int node, const char *prop_name,
692 u32 *array, int count);
693
694 /**
695 * Look up a property in a node and return its contents in an integer
696 * array of given length. The property must exist but may have less data that
697 * expected (4*count bytes). It may have more, but this will be ignored.
698 *
699 * @param blob FDT blob
700 * @param node node to examine
701 * @param prop_name name of property to find
702 * @param array array to fill with data
703 * @param count number of array elements
704 * @return number of array elements if ok, or -FDT_ERR_NOTFOUND if the
705 * property is not found
706 */
707 int fdtdec_get_int_array_count(const void *blob, int node,
708 const char *prop_name, u32 *array, int count);
709
710 /**
711 * Look up a property in a node and return a pointer to its contents as a
712 * unsigned int array of given length. The property must have at least enough
713 * data for the array ('count' cells). It may have more, but this will be
714 * ignored. The data is not copied.
715 *
716 * Note that you must access elements of the array with fdt32_to_cpu(),
717 * since the elements will be big endian even on a little endian machine.
718 *
719 * @param blob FDT blob
720 * @param node node to examine
721 * @param prop_name name of property to find
722 * @param count number of array elements
723 * @return pointer to array if found, or NULL if the property is not
724 * found or there is not enough data
725 */
726 const u32 *fdtdec_locate_array(const void *blob, int node,
727 const char *prop_name, int count);
728
729 /**
730 * Look up a boolean property in a node and return it.
731 *
732 * A boolean properly is true if present in the device tree and false if not
733 * present, regardless of its value.
734 *
735 * @param blob FDT blob
736 * @param node node to examine
737 * @param prop_name name of property to find
738 * @return 1 if the properly is present; 0 if it isn't present
739 */
740 int fdtdec_get_bool(const void *blob, int node, const char *prop_name);
741
742 /*
743 * Count child nodes of one parent node.
744 *
745 * @param blob FDT blob
746 * @param node parent node
747 * @return number of child node; 0 if there is not child node
748 */
749 int fdtdec_get_child_count(const void *blob, int node);
750
751 /**
752 * Look in the FDT for a config item with the given name and return its value
753 * as a 32-bit integer. The property must have at least 4 bytes of data. The
754 * value of the first cell is returned.
755 *
756 * @param blob FDT blob to use
757 * @param prop_name Node property name
758 * @param default_val default value to return if the property is not found
759 * @return integer value, if found, or default_val if not
760 */
761 int fdtdec_get_config_int(const void *blob, const char *prop_name,
762 int default_val);
763
764 /**
765 * Look in the FDT for a config item with the given name
766 * and return whether it exists.
767 *
768 * @param blob FDT blob
769 * @param prop_name property name to look up
770 * @return 1, if it exists, or 0 if not
771 */
772 int fdtdec_get_config_bool(const void *blob, const char *prop_name);
773
774 /**
775 * Look in the FDT for a config item with the given name and return its value
776 * as a string.
777 *
778 * @param blob FDT blob
779 * @param prop_name property name to look up
780 * @returns property string, NULL on error.
781 */
782 char *fdtdec_get_config_string(const void *blob, const char *prop_name);
783
784 /*
785 * Look up a property in a node and return its contents in a byte
786 * array of given length. The property must have at least enough data for
787 * the array (count bytes). It may have more, but this will be ignored.
788 *
789 * @param blob FDT blob
790 * @param node node to examine
791 * @param prop_name name of property to find
792 * @param array array to fill with data
793 * @param count number of array elements
794 * @return 0 if ok, or -FDT_ERR_MISSING if the property is not found,
795 * or -FDT_ERR_BADLAYOUT if not enough data
796 */
797 int fdtdec_get_byte_array(const void *blob, int node, const char *prop_name,
798 u8 *array, int count);
799
800 /**
801 * Look up a property in a node and return a pointer to its contents as a
802 * byte array of given length. The property must have at least enough data
803 * for the array (count bytes). It may have more, but this will be ignored.
804 * The data is not copied.
805 *
806 * @param blob FDT blob
807 * @param node node to examine
808 * @param prop_name name of property to find
809 * @param count number of array elements
810 * @return pointer to byte array if found, or NULL if the property is not
811 * found or there is not enough data
812 */
813 const u8 *fdtdec_locate_byte_array(const void *blob, int node,
814 const char *prop_name, int count);
815
816 /**
817 * Obtain an indexed resource from a device property.
818 *
819 * @param fdt FDT blob
820 * @param node node to examine
821 * @param property name of the property to parse
822 * @param index index of the resource to retrieve
823 * @param res returns the resource
824 * @return 0 if ok, negative on error
825 */
826 int fdt_get_resource(const void *fdt, int node, const char *property,
827 unsigned int index, struct fdt_resource *res);
828
829 /**
830 * Obtain a named resource from a device property.
831 *
832 * Look up the index of the name in a list of strings and return the resource
833 * at that index.
834 *
835 * @param fdt FDT blob
836 * @param node node to examine
837 * @param property name of the property to parse
838 * @param prop_names name of the property containing the list of names
839 * @param name the name of the entry to look up
840 * @param res returns the resource
841 */
842 int fdt_get_named_resource(const void *fdt, int node, const char *property,
843 const char *prop_names, const char *name,
844 struct fdt_resource *res);
845
846 /* Display timings from linux include/video/display_timing.h */
847 enum display_flags {
848 DISPLAY_FLAGS_HSYNC_LOW = 1 << 0,
849 DISPLAY_FLAGS_HSYNC_HIGH = 1 << 1,
850 DISPLAY_FLAGS_VSYNC_LOW = 1 << 2,
851 DISPLAY_FLAGS_VSYNC_HIGH = 1 << 3,
852
853 /* data enable flag */
854 DISPLAY_FLAGS_DE_LOW = 1 << 4,
855 DISPLAY_FLAGS_DE_HIGH = 1 << 5,
856 /* drive data on pos. edge */
857 DISPLAY_FLAGS_PIXDATA_POSEDGE = 1 << 6,
858 /* drive data on neg. edge */
859 DISPLAY_FLAGS_PIXDATA_NEGEDGE = 1 << 7,
860 DISPLAY_FLAGS_INTERLACED = 1 << 8,
861 DISPLAY_FLAGS_DOUBLESCAN = 1 << 9,
862 DISPLAY_FLAGS_DOUBLECLK = 1 << 10,
863 };
864
865 /*
866 * A single signal can be specified via a range of minimal and maximal values
867 * with a typical value, that lies somewhere inbetween.
868 */
869 struct timing_entry {
870 u32 min;
871 u32 typ;
872 u32 max;
873 };
874
875 /*
876 * Single "mode" entry. This describes one set of signal timings a display can
877 * have in one setting. This struct can later be converted to struct videomode
878 * (see include/video/videomode.h). As each timing_entry can be defined as a
879 * range, one struct display_timing may become multiple struct videomodes.
880 *
881 * Example: hsync active high, vsync active low
882 *
883 * Active Video
884 * Video ______________________XXXXXXXXXXXXXXXXXXXXXX_____________________
885 * |<- sync ->|<- back ->|<----- active ----->|<- front ->|<- sync..
886 * | | porch | | porch |
887 *
888 * HSync _|¯¯¯¯¯¯¯¯¯¯|___________________________________________|¯¯¯¯¯¯¯¯¯
889 *
890 * VSync ¯|__________|¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯|_________
891 */
892 struct display_timing {
893 struct timing_entry pixelclock;
894
895 struct timing_entry hactive; /* hor. active video */
896 struct timing_entry hfront_porch; /* hor. front porch */
897 struct timing_entry hback_porch; /* hor. back porch */
898 struct timing_entry hsync_len; /* hor. sync len */
899
900 struct timing_entry vactive; /* ver. active video */
901 struct timing_entry vfront_porch; /* ver. front porch */
902 struct timing_entry vback_porch; /* ver. back porch */
903 struct timing_entry vsync_len; /* ver. sync len */
904
905 enum display_flags flags; /* display flags */
906 bool hdmi_monitor; /* is hdmi monitor? */
907 };
908
909 /**
910 * fdtdec_decode_display_timing() - decode display timings
911 *
912 * Decode display timings from the supplied 'display-timings' node.
913 * See doc/device-tree-bindings/video/display-timing.txt for binding
914 * information.
915 *
916 * @param blob FDT blob
917 * @param node 'display-timing' node containing the timing subnodes
918 * @param index Index number to read (0=first timing subnode)
919 * @param config Place to put timings
920 * @return 0 if OK, -FDT_ERR_NOTFOUND if not found
921 */
922 int fdtdec_decode_display_timing(const void *blob, int node, int index,
923 struct display_timing *config);
924
925 /**
926 * fdtdec_setup_mem_size_base() - decode and setup gd->ram_size and
927 * gd->ram_start
928 *
929 * Decode the /memory 'reg' property to determine the size and start of the
930 * first memory bank, populate the global data with the size and start of the
931 * first bank of memory.
932 *
933 * This function should be called from a boards dram_init(). This helper
934 * function allows for boards to query the device tree for DRAM size and start
935 * address instead of hard coding the value in the case where the memory size
936 * and start address cannot be detected automatically.
937 *
938 * @return 0 if OK, -EINVAL if the /memory node or reg property is missing or
939 * invalid
940 */
941 int fdtdec_setup_mem_size_base(void);
942
943 /**
944 * fdtdec_setup_mem_size_base_lowest() - decode and setup gd->ram_size and
945 * gd->ram_start by lowest available memory base
946 *
947 * Decode the /memory 'reg' property to determine the lowest start of the memory
948 * bank bank and populate the global data with it.
949 *
950 * This function should be called from a boards dram_init(). This helper
951 * function allows for boards to query the device tree for DRAM size and start
952 * address instead of hard coding the value in the case where the memory size
953 * and start address cannot be detected automatically.
954 *
955 * @return 0 if OK, -EINVAL if the /memory node or reg property is missing or
956 * invalid
957 */
958 int fdtdec_setup_mem_size_base_lowest(void);
959
960 /**
961 * fdtdec_setup_memory_banksize() - decode and populate gd->bd->bi_dram
962 *
963 * Decode the /memory 'reg' property to determine the address and size of the
964 * memory banks. Use this data to populate the global data board info with the
965 * phys address and size of memory banks.
966 *
967 * This function should be called from a boards dram_init_banksize(). This
968 * helper function allows for boards to query the device tree for memory bank
969 * information instead of hard coding the information in cases where it cannot
970 * be detected automatically.
971 *
972 * @return 0 if OK, -EINVAL if the /memory node or reg property is missing or
973 * invalid
974 */
975 int fdtdec_setup_memory_banksize(void);
976
977 /**
978 * fdtdec_set_ethernet_mac_address() - set MAC address for default interface
979 *
980 * Looks up the default interface via the "ethernet" alias (in the /aliases
981 * node) and stores the given MAC in its "local-mac-address" property. This
982 * is useful on platforms that store the MAC address in a custom location.
983 * Board code can call this in the late init stage to make sure that the
984 * interface device tree node has the right MAC address configured for the
985 * Ethernet uclass to pick it up.
986 *
987 * Typically the FDT passed into this function will be U-Boot's control DTB.
988 * Given that a lot of code may be holding offsets to various nodes in that
989 * tree, this code will only set the "local-mac-address" property in-place,
990 * which means that it needs to exist and have space for the 6-byte address.
991 * This ensures that the operation is non-destructive and does not invalidate
992 * offsets that other drivers may be using.
993 *
994 * @param fdt FDT blob
995 * @param mac buffer containing the MAC address to set
996 * @param size size of MAC address
997 * @return 0 on success or a negative error code on failure
998 */
999 int fdtdec_set_ethernet_mac_address(void *fdt, const u8 *mac, size_t size);
1000
1001 /**
1002 * fdtdec_set_phandle() - sets the phandle of a given node
1003 *
1004 * @param blob FDT blob
1005 * @param node offset in the FDT blob of the node whose phandle is to
1006 * be set
1007 * @param phandle phandle to set for the given node
1008 * @return 0 on success or a negative error code on failure
1009 */
fdtdec_set_phandle(void * blob,int node,uint32_t phandle)1010 static inline int fdtdec_set_phandle(void *blob, int node, uint32_t phandle)
1011 {
1012 return fdt_setprop_u32(blob, node, "phandle", phandle);
1013 }
1014
1015 /**
1016 * fdtdec_add_reserved_memory() - add or find a reserved-memory node
1017 *
1018 * If a reserved-memory node already exists for the given carveout, a phandle
1019 * for that node will be returned. Otherwise a new node will be created and a
1020 * phandle corresponding to it will be returned.
1021 *
1022 * See Documentation/devicetree/bindings/reserved-memory/reserved-memory.txt
1023 * for details on how to use reserved memory regions.
1024 *
1025 * As an example, consider the following code snippet:
1026 *
1027 * struct fdt_memory fb = {
1028 * .start = 0x92cb3000,
1029 * .end = 0x934b2fff,
1030 * };
1031 * uint32_t phandle;
1032 *
1033 * fdtdec_add_reserved_memory(fdt, "framebuffer", &fb, &phandle, false);
1034 *
1035 * This results in the following subnode being added to the top-level
1036 * /reserved-memory node:
1037 *
1038 * reserved-memory {
1039 * #address-cells = <0x00000002>;
1040 * #size-cells = <0x00000002>;
1041 * ranges;
1042 *
1043 * framebuffer@92cb3000 {
1044 * reg = <0x00000000 0x92cb3000 0x00000000 0x00800000>;
1045 * phandle = <0x0000004d>;
1046 * };
1047 * };
1048 *
1049 * If the top-level /reserved-memory node does not exist, it will be created.
1050 * The phandle returned from the function call can be used to reference this
1051 * reserved memory region from other nodes.
1052 *
1053 * See fdtdec_set_carveout() for a more elaborate example.
1054 *
1055 * @param blob FDT blob
1056 * @param basename base name of the node to create
1057 * @param carveout information about the carveout region
1058 * @param phandlep return location for the phandle of the carveout region
1059 * can be NULL if no phandle should be added
1060 * @param no_map add "no-map" property if true
1061 * @return 0 on success or a negative error code on failure
1062 */
1063 int fdtdec_add_reserved_memory(void *blob, const char *basename,
1064 const struct fdt_memory *carveout,
1065 uint32_t *phandlep, bool no_map);
1066
1067 /**
1068 * fdtdec_get_carveout() - reads a carveout from an FDT
1069 *
1070 * Reads information about a carveout region from an FDT. The carveout is a
1071 * referenced by its phandle that is read from a given property in a given
1072 * node.
1073 *
1074 * @param blob FDT blob
1075 * @param node name of a node
1076 * @param name name of the property in the given node that contains
1077 * the phandle for the carveout
1078 * @param index index of the phandle for which to read the carveout
1079 * @param carveout return location for the carveout information
1080 * @return 0 on success or a negative error code on failure
1081 */
1082 int fdtdec_get_carveout(const void *blob, const char *node, const char *name,
1083 unsigned int index, struct fdt_memory *carveout);
1084
1085 /**
1086 * fdtdec_set_carveout() - sets a carveout region for a given node
1087 *
1088 * Sets a carveout region for a given node. If a reserved-memory node already
1089 * exists for the carveout, the phandle for that node will be reused. If no
1090 * such node exists, a new one will be created and a phandle to it stored in
1091 * a specified property of the given node.
1092 *
1093 * As an example, consider the following code snippet:
1094 *
1095 * const char *node = "/host1x@50000000/dc@54240000";
1096 * struct fdt_memory fb = {
1097 * .start = 0x92cb3000,
1098 * .end = 0x934b2fff,
1099 * };
1100 *
1101 * fdtdec_set_carveout(fdt, node, "memory-region", 0, "framebuffer", &fb);
1102 *
1103 * dc@54200000 is a display controller and was set up by the bootloader to
1104 * scan out the framebuffer specified by "fb". This would cause the following
1105 * reserved memory region to be added:
1106 *
1107 * reserved-memory {
1108 * #address-cells = <0x00000002>;
1109 * #size-cells = <0x00000002>;
1110 * ranges;
1111 *
1112 * framebuffer@92cb3000 {
1113 * reg = <0x00000000 0x92cb3000 0x00000000 0x00800000>;
1114 * phandle = <0x0000004d>;
1115 * };
1116 * };
1117 *
1118 * A "memory-region" property will also be added to the node referenced by the
1119 * offset parameter.
1120 *
1121 * host1x@50000000 {
1122 * ...
1123 *
1124 * dc@54240000 {
1125 * ...
1126 * memory-region = <0x0000004d>;
1127 * ...
1128 * };
1129 *
1130 * ...
1131 * };
1132 *
1133 * @param blob FDT blob
1134 * @param node name of the node to add the carveout to
1135 * @param prop_name name of the property in which to store the phandle of
1136 * the carveout
1137 * @param index index of the phandle to store
1138 * @param name base name of the reserved-memory node to create
1139 * @param carveout information about the carveout to add
1140 * @return 0 on success or a negative error code on failure
1141 */
1142 int fdtdec_set_carveout(void *blob, const char *node, const char *prop_name,
1143 unsigned int index, const char *name,
1144 const struct fdt_memory *carveout);
1145
1146 /**
1147 * Set up the device tree ready for use
1148 */
1149 int fdtdec_setup(void);
1150
1151 /**
1152 * Perform board-specific early DT adjustments
1153 */
1154 int fdtdec_board_setup(const void *fdt_blob);
1155
1156 #if CONFIG_IS_ENABLED(MULTI_DTB_FIT)
1157 /**
1158 * fdtdec_resetup() - Set up the device tree again
1159 *
1160 * The main difference with fdtdec_setup() is that it returns if the fdt has
1161 * changed because a better match has been found.
1162 * This is typically used for boards that rely on a DM driver to detect the
1163 * board type. This function sould be called by the board code after the stuff
1164 * needed by board_fit_config_name_match() to operate porperly is available.
1165 * If this functions signals that a rescan is necessary, the board code must
1166 * unbind all the drivers using dm_uninit() and then rescan the DT with
1167 * dm_init_and_scan().
1168 *
1169 * @param rescan Returns a flag indicating that fdt has changed and rescanning
1170 * the fdt is required
1171 *
1172 * @return 0 if OK, -ve on error
1173 */
1174 int fdtdec_resetup(int *rescan);
1175 #endif
1176
1177 /**
1178 * Board-specific FDT initialization. Returns the address to a device tree blob.
1179 * Called when CONFIG_OF_BOARD is defined, or if CONFIG_OF_SEPARATE is defined
1180 * and the board implements it.
1181 */
1182 void *board_fdt_blob_setup(void);
1183
1184 /*
1185 * Decode the size of memory
1186 *
1187 * RAM size is normally set in a /memory node and consists of a list of
1188 * (base, size) cells in the 'reg' property. This information is used to
1189 * determine the total available memory as well as the address and size
1190 * of each bank.
1191 *
1192 * Optionally the memory configuration can vary depending on a board id,
1193 * typically read from strapping resistors or an EEPROM on the board.
1194 *
1195 * Finally, memory size can be detected (within certain limits) by probing
1196 * the available memory. It is safe to do so within the limits provides by
1197 * the board's device tree information. This makes it possible to produce
1198 * boards with different memory sizes, where the device tree specifies the
1199 * maximum memory configuration, and the smaller memory configuration is
1200 * probed.
1201 *
1202 * This function decodes that information, returning the memory base address,
1203 * size and bank information. See the memory.txt binding for full
1204 * documentation.
1205 *
1206 * @param blob Device tree blob
1207 * @param area Name of node to check (NULL means "/memory")
1208 * @param board_id Board ID to look up
1209 * @param basep Returns base address of first memory bank (NULL to
1210 * ignore)
1211 * @param sizep Returns total memory size (NULL to ignore)
1212 * @param bd Updated with the memory bank information (NULL to skip)
1213 * @return 0 if OK, -ve on error
1214 */
1215 int fdtdec_decode_ram_size(const void *blob, const char *area, int board_id,
1216 phys_addr_t *basep, phys_size_t *sizep,
1217 struct bd_info *bd);
1218
1219 #endif
1220