1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * board.c
4  *
5  * (C) Copyright 2016
6  * Heiko Schocher, DENX Software Engineering, hs@denx.de.
7  *
8  * Based on:
9  * Board functions for TI AM335X based boards
10  *
11  * Copyright (C) 2011, Texas Instruments, Incorporated - http://www.ti.com/
12  */
13 
14 #include <common.h>
15 #include <bootstage.h>
16 #include <cpu_func.h>
17 #include <env.h>
18 #include <errno.h>
19 #include <init.h>
20 #include <irq_func.h>
21 #include <net.h>
22 #include <spl.h>
23 #include <asm/arch/cpu.h>
24 #include <asm/arch/hardware.h>
25 #include <asm/arch/omap.h>
26 #include <asm/arch/ddr_defs.h>
27 #include <asm/arch/clock.h>
28 #include <asm/arch/gpio.h>
29 #include <asm/arch/mmc_host_def.h>
30 #include <asm/arch/sys_proto.h>
31 #include <asm/arch/mem.h>
32 #include <asm/global_data.h>
33 #include <asm/io.h>
34 #include <asm/emif.h>
35 #include <asm/gpio.h>
36 #include <i2c.h>
37 #include <miiphy.h>
38 #include <cpsw.h>
39 #include <linux/delay.h>
40 #include <power/tps65217.h>
41 #include <env_internal.h>
42 #include <watchdog.h>
43 #include "mmc.h"
44 #include "board.h"
45 
46 DECLARE_GLOBAL_DATA_PTR;
47 
48 static struct shc_eeprom __section(".data") header;
49 static int shc_eeprom_valid;
50 
51 /*
52  * Read header information from EEPROM into global structure.
53  */
read_eeprom(void)54 static int read_eeprom(void)
55 {
56 	/* Check if baseboard eeprom is available */
57 	if (i2c_probe(CONFIG_SYS_I2C_EEPROM_ADDR)) {
58 		puts("Could not probe the EEPROM; something fundamentally wrong on the I2C bus.\n");
59 		return -ENODEV;
60 	}
61 
62 	/* read the eeprom using i2c */
63 	if (i2c_read(CONFIG_SYS_I2C_EEPROM_ADDR, 0, 2, (uchar *)&header,
64 		     sizeof(header))) {
65 		puts("Could not read the EEPROM; something fundamentally wrong on the I2C bus.\n");
66 		return -EIO;
67 	}
68 
69 	if (header.magic != HDR_MAGIC) {
70 		printf("Incorrect magic number (0x%x) in EEPROM\n",
71 		       header.magic);
72 		return -EIO;
73 	}
74 
75 	shc_eeprom_valid = 1;
76 
77 	return 0;
78 }
79 
shc_request_gpio(void)80 static void shc_request_gpio(void)
81 {
82 	gpio_request(LED_PWR_BL_GPIO, "LED PWR BL");
83 	gpio_request(LED_PWR_RD_GPIO, "LED PWR RD");
84 	gpio_request(RESET_GPIO, "reset");
85 	gpio_request(WIFI_REGEN_GPIO, "WIFI REGEN");
86 	gpio_request(WIFI_RST_GPIO, "WIFI rst");
87 	gpio_request(ZIGBEE_RST_GPIO, "ZigBee rst");
88 	gpio_request(BIDCOS_RST_GPIO, "BIDCOS rst");
89 	gpio_request(ENOC_RST_GPIO, "ENOC rst");
90 #if defined CONFIG_B_SAMPLE
91 	gpio_request(LED_PWR_GN_GPIO, "LED PWR GN");
92 	gpio_request(LED_CONN_BL_GPIO, "LED CONN BL");
93 	gpio_request(LED_CONN_RD_GPIO, "LED CONN RD");
94 	gpio_request(LED_CONN_GN_GPIO, "LED CONN GN");
95 #else
96 	gpio_request(LED_LAN_BL_GPIO, "LED LAN BL");
97 	gpio_request(LED_LAN_RD_GPIO, "LED LAN RD");
98 	gpio_request(LED_CLOUD_BL_GPIO, "LED CLOUD BL");
99 	gpio_request(LED_CLOUD_RD_GPIO, "LED CLOUD RD");
100 	gpio_request(LED_PWM_GPIO, "LED PWM");
101 	gpio_request(Z_WAVE_RST_GPIO, "Z WAVE rst");
102 #endif
103 	gpio_request(BACK_BUTTON_GPIO, "Back button");
104 	gpio_request(FRONT_BUTTON_GPIO, "Front button");
105 }
106 
107 /*
108  * Function which forces all installed modules into running state for ICT
109  * testing. Called by SPL.
110  */
force_modules_running(void)111 static void __maybe_unused force_modules_running(void)
112 {
113 	/* Wi-Fi power regulator enable - high = enabled */
114 	gpio_direction_output(WIFI_REGEN_GPIO, 1);
115 	/*
116 	 * Wait for Wi-Fi power regulator to reach a stable voltage
117 	 * (soft-start time, max. 350 µs)
118 	 */
119 	__udelay(350);
120 
121 	/* Wi-Fi module reset - high = running */
122 	gpio_direction_output(WIFI_RST_GPIO, 1);
123 
124 	/* ZigBee reset - high = running */
125 	gpio_direction_output(ZIGBEE_RST_GPIO, 1);
126 
127 	/* BidCos reset - high = running */
128 	gpio_direction_output(BIDCOS_RST_GPIO, 1);
129 
130 #if !defined(CONFIG_B_SAMPLE)
131 	/* Z-Wave reset - high = running */
132 	gpio_direction_output(Z_WAVE_RST_GPIO, 1);
133 #endif
134 
135 	/* EnOcean reset - low = running */
136 	gpio_direction_output(ENOC_RST_GPIO, 0);
137 }
138 
139 /*
140  * Function which forces all installed modules into reset - to be released by
141  * the OS, called by SPL
142  */
force_modules_reset(void)143 static void __maybe_unused force_modules_reset(void)
144 {
145 	/* Wi-Fi module reset - low = reset */
146 	gpio_direction_output(WIFI_RST_GPIO, 0);
147 
148 	/* Wi-Fi power regulator enable - low = disabled */
149 	gpio_direction_output(WIFI_REGEN_GPIO, 0);
150 
151 	/* ZigBee reset - low = reset */
152 	gpio_direction_output(ZIGBEE_RST_GPIO, 0);
153 
154 	/* BidCos reset - low = reset */
155 	/*gpio_direction_output(BIDCOS_RST_GPIO, 0);*/
156 
157 #if !defined(CONFIG_B_SAMPLE)
158 	/* Z-Wave reset - low = reset */
159 	gpio_direction_output(Z_WAVE_RST_GPIO, 0);
160 #endif
161 
162 	/* EnOcean reset - high = reset*/
163 	gpio_direction_output(ENOC_RST_GPIO, 1);
164 }
165 
166 /*
167  * Function to set the LEDs in the state "Bootloader booting"
168  */
leds_set_booting(void)169 static void __maybe_unused leds_set_booting(void)
170 {
171 #if defined(CONFIG_B_SAMPLE)
172 
173 	/* Turn all red LEDs on */
174 	gpio_direction_output(LED_PWR_RD_GPIO, 1);
175 	gpio_direction_output(LED_CONN_RD_GPIO, 1);
176 
177 #else /* All other SHCs starting with B2-Sample */
178 	/* Set the PWM GPIO */
179 	gpio_direction_output(LED_PWM_GPIO, 1);
180 	/* Turn all red LEDs on */
181 	gpio_direction_output(LED_PWR_RD_GPIO, 1);
182 	gpio_direction_output(LED_LAN_RD_GPIO, 1);
183 	gpio_direction_output(LED_CLOUD_RD_GPIO, 1);
184 
185 #endif
186 }
187 
188 /*
189  * Function to set the LEDs in the state "Bootloader error"
190  */
leds_set_failure(int state)191 static void leds_set_failure(int state)
192 {
193 #if defined(CONFIG_B_SAMPLE)
194 	/* Turn all blue and green LEDs off */
195 	gpio_set_value(LED_PWR_BL_GPIO, 0);
196 	gpio_set_value(LED_PWR_GN_GPIO, 0);
197 	gpio_set_value(LED_CONN_BL_GPIO, 0);
198 	gpio_set_value(LED_CONN_GN_GPIO, 0);
199 
200 	/* Turn all red LEDs to 'state' */
201 	gpio_set_value(LED_PWR_RD_GPIO, state);
202 	gpio_set_value(LED_CONN_RD_GPIO, state);
203 
204 #else /* All other SHCs starting with B2-Sample */
205 	/* Set the PWM GPIO */
206 	gpio_direction_output(LED_PWM_GPIO, 1);
207 
208 	/* Turn all blue LEDs off */
209 	gpio_set_value(LED_PWR_BL_GPIO, 0);
210 	gpio_set_value(LED_LAN_BL_GPIO, 0);
211 	gpio_set_value(LED_CLOUD_BL_GPIO, 0);
212 
213 	/* Turn all red LEDs to 'state' */
214 	gpio_set_value(LED_PWR_RD_GPIO, state);
215 	gpio_set_value(LED_LAN_RD_GPIO, state);
216 	gpio_set_value(LED_CLOUD_RD_GPIO, state);
217 #endif
218 }
219 
220 /*
221  * Function to set the LEDs in the state "Bootloader finished"
222  */
leds_set_finish(void)223 static void leds_set_finish(void)
224 {
225 #if defined(CONFIG_B_SAMPLE)
226 	/* Turn all LEDs off */
227 	gpio_set_value(LED_PWR_BL_GPIO, 0);
228 	gpio_set_value(LED_PWR_RD_GPIO, 0);
229 	gpio_set_value(LED_PWR_GN_GPIO, 0);
230 	gpio_set_value(LED_CONN_BL_GPIO, 0);
231 	gpio_set_value(LED_CONN_RD_GPIO, 0);
232 	gpio_set_value(LED_CONN_GN_GPIO, 0);
233 #else /* All other SHCs starting with B2-Sample */
234 	/* Turn all LEDs off */
235 	gpio_set_value(LED_PWR_BL_GPIO, 0);
236 	gpio_set_value(LED_PWR_RD_GPIO, 0);
237 	gpio_set_value(LED_LAN_BL_GPIO, 0);
238 	gpio_set_value(LED_LAN_RD_GPIO, 0);
239 	gpio_set_value(LED_CLOUD_BL_GPIO, 0);
240 	gpio_set_value(LED_CLOUD_RD_GPIO, 0);
241 
242 	/* Turn off the PWM GPIO and mux it to EHRPWM */
243 	gpio_set_value(LED_PWM_GPIO, 0);
244 	enable_shc_board_pwm_pin_mux();
245 #endif
246 }
247 
check_button_status(void)248 static void check_button_status(void)
249 {
250 	ulong value;
251 	gpio_direction_input(FRONT_BUTTON_GPIO);
252 	value = gpio_get_value(FRONT_BUTTON_GPIO);
253 
254 	if (value == 0) {
255 		printf("front button activated !\n");
256 		env_set("harakiri", "1");
257 	}
258 }
259 
260 #if defined(CONFIG_SPL_BUILD)
261 #ifdef CONFIG_SPL_OS_BOOT
spl_start_uboot(void)262 int spl_start_uboot(void)
263 {
264 	return 1;
265 }
266 #endif
267 
shc_board_early_init(void)268 static void shc_board_early_init(void)
269 {
270 	shc_request_gpio();
271 # ifdef CONFIG_SHC_ICT
272 	/* Force all modules into enabled state for ICT testing */
273 	force_modules_running();
274 # else
275 	/* Force all modules to enter Reset state until released by the OS */
276 	force_modules_reset();
277 # endif
278 	leds_set_booting();
279 }
280 
281 static struct ctrl_dev *cdev = (struct ctrl_dev *)CTRL_DEVICE_BASE;
282 
283 #define MPU_SPREADING_PERMILLE 18 /* Spread 1.8 percent */
284 #define OSC	(V_OSCK/1000000)
285 /* Bosch: Predivider must be fixed to 4, so N = 4-1 */
286 #define MPUPLL_N        (4-1)
287 /* Bosch: Fref = 24 MHz / (N+1) = 24 MHz / 4 = 6 MHz */
288 #define MPUPLL_FREF (OSC / (MPUPLL_N + 1))
289 
290 const struct dpll_params dpll_ddr_shc = {
291 		400, OSC-1, 1, -1, -1, -1, -1};
292 
get_dpll_ddr_params(void)293 const struct dpll_params *get_dpll_ddr_params(void)
294 {
295 	return &dpll_ddr_shc;
296 }
297 
298 /*
299  * As we enabled downspread SSC with 1.8%, the values needed to be corrected
300  * such that the 20% overshoot will not lead to too high frequencies.
301  * In all cases, this is achieved by subtracting one from M (6 MHz less).
302  * Example: 600 MHz CPU
303  *   Step size: 24 MHz OSC, N = 4 (fix) --> Fref = 6 MHz
304  *   600 MHz - 6 MHz (1x Fref) = 594 MHz
305  *   SSC: 594 MHz * 1.8% = 10.7 MHz SSC
306  *   Overshoot: 10.7 MHz * 20 % = 2.2 MHz
307  *   --> Fmax = 594 MHz + 2.2 MHz = 596.2 MHz, lower than 600 MHz --> OK!
308  */
309 const struct dpll_params dpll_mpu_shc_opp100 = {
310 		99, MPUPLL_N, 1, -1, -1, -1, -1};
311 
am33xx_spl_board_init(void)312 void am33xx_spl_board_init(void)
313 {
314 	int sil_rev;
315 	int mpu_vdd;
316 
317 	puts(BOARD_ID_STR);
318 
319 	/*
320 	 * Set CORE Frequency to OPP100
321 	 * Hint: DCDC3 (CORE) defaults to 1.100V (for OPP100)
322 	 */
323 	do_setup_dpll(&dpll_core_regs, &dpll_core_opp100);
324 
325 	sil_rev = readl(&cdev->deviceid) >> 28;
326 	if (sil_rev < 2) {
327 		puts("We do not support Silicon Revisions below 2.0!\n");
328 		return;
329 	}
330 
331 	dpll_mpu_opp100.m = am335x_get_efuse_mpu_max_freq(cdev);
332 	if (i2c_probe(TPS65217_CHIP_PM))
333 		return;
334 
335 	/*
336 	 * Retrieve the CPU max frequency by reading the efuse
337 	 * SHC-Default: 600 MHz
338 	 */
339 	switch (dpll_mpu_opp100.m) {
340 	case MPUPLL_M_1000:
341 		mpu_vdd = TPS65217_DCDC_VOLT_SEL_1325MV;
342 		break;
343 	case MPUPLL_M_800:
344 		mpu_vdd = TPS65217_DCDC_VOLT_SEL_1275MV;
345 		break;
346 	case MPUPLL_M_720:
347 		mpu_vdd = TPS65217_DCDC_VOLT_SEL_1200MV;
348 		break;
349 	case MPUPLL_M_600:
350 		mpu_vdd = TPS65217_DCDC_VOLT_SEL_1100MV;
351 		break;
352 	case MPUPLL_M_300:
353 		mpu_vdd = TPS65217_DCDC_VOLT_SEL_950MV;
354 		break;
355 	default:
356 		puts("Cannot determine the frequency, failing!\n");
357 		return;
358 	}
359 
360 	if (tps65217_voltage_update(TPS65217_DEFDCDC2, mpu_vdd)) {
361 		puts("tps65217_voltage_update failure\n");
362 		return;
363 	}
364 
365 	/* Set MPU Frequency to what we detected */
366 	printf("MPU reference clock runs at %d MHz\n", MPUPLL_FREF);
367 	printf("Setting MPU clock to %d MHz\n", MPUPLL_FREF *
368 	       dpll_mpu_shc_opp100.m);
369 	do_setup_dpll(&dpll_mpu_regs, &dpll_mpu_shc_opp100);
370 
371 	/* Enable Spread Spectrum for this freq to be clean on EMI side */
372 	set_mpu_spreadspectrum(MPU_SPREADING_PERMILLE);
373 
374 	/*
375 	 * Using the default voltages for the PMIC (TPS65217D)
376 	 * LS1 = 1.8V (VDD_1V8)
377 	 * LS2 = 3.3V (VDD_3V3A)
378 	 * LDO1 = 1.8V (VIO and VRTC)
379 	 * LDO2 = 3.3V (VDD_3V3AUX)
380 	 */
381 	shc_board_early_init();
382 }
383 
set_uart_mux_conf(void)384 void set_uart_mux_conf(void)
385 {
386 	enable_uart0_pin_mux();
387 }
388 
set_mux_conf_regs(void)389 void set_mux_conf_regs(void)
390 {
391 	enable_shc_board_pin_mux();
392 }
393 
394 const struct ctrl_ioregs ioregs_evmsk = {
395 	.cm0ioctl		= MT41K256M16HA125E_IOCTRL_VALUE,
396 	.cm1ioctl		= MT41K256M16HA125E_IOCTRL_VALUE,
397 	.cm2ioctl		= MT41K256M16HA125E_IOCTRL_VALUE,
398 	.dt0ioctl		= MT41K256M16HA125E_IOCTRL_VALUE,
399 	.dt1ioctl		= MT41K256M16HA125E_IOCTRL_VALUE,
400 };
401 
402 static const struct ddr_data ddr3_shc_data = {
403 	.datardsratio0 = MT41K256M16HA125E_RD_DQS,
404 	.datawdsratio0 = MT41K256M16HA125E_WR_DQS,
405 	.datafwsratio0 = MT41K256M16HA125E_PHY_FIFO_WE,
406 	.datawrsratio0 = MT41K256M16HA125E_PHY_WR_DATA,
407 };
408 
409 static const struct cmd_control ddr3_shc_cmd_ctrl_data = {
410 	.cmd0csratio = MT41K256M16HA125E_RATIO,
411 	.cmd0iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
412 
413 	.cmd1csratio = MT41K256M16HA125E_RATIO,
414 	.cmd1iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
415 
416 	.cmd2csratio = MT41K256M16HA125E_RATIO,
417 	.cmd2iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
418 };
419 
420 static struct emif_regs ddr3_shc_emif_reg_data = {
421 	.sdram_config = MT41K256M16HA125E_EMIF_SDCFG,
422 	.ref_ctrl = MT41K256M16HA125E_EMIF_SDREF,
423 	.sdram_tim1 = MT41K256M16HA125E_EMIF_TIM1,
424 	.sdram_tim2 = MT41K256M16HA125E_EMIF_TIM2,
425 	.sdram_tim3 = MT41K256M16HA125E_EMIF_TIM3,
426 	.zq_config = MT41K256M16HA125E_ZQ_CFG,
427 	.emif_ddr_phy_ctlr_1 = MT41K256M16HA125E_EMIF_READ_LATENCY |
428 				PHY_EN_DYN_PWRDN,
429 };
430 
sdram_init(void)431 void sdram_init(void)
432 {
433 	/* Configure the DDR3 RAM */
434 	config_ddr(400, &ioregs_evmsk, &ddr3_shc_data,
435 		   &ddr3_shc_cmd_ctrl_data, &ddr3_shc_emif_reg_data, 0);
436 }
437 #endif
438 
439 /*
440  * Basic board specific setup.  Pinmux has been handled already.
441  */
board_init(void)442 int board_init(void)
443 {
444 #if defined(CONFIG_HW_WATCHDOG)
445 	hw_watchdog_init();
446 #endif
447 	i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
448 	if (read_eeprom() < 0)
449 		puts("EEPROM Content Invalid.\n");
450 
451 	gd->bd->bi_boot_params = CONFIG_SYS_SDRAM_BASE + 0x100;
452 #if defined(CONFIG_NOR) || defined(CONFIG_MTD_RAW_NAND)
453 	gpmc_init();
454 #endif
455 	shc_request_gpio();
456 
457 	return 0;
458 }
459 
460 #ifdef CONFIG_BOARD_LATE_INIT
board_late_init(void)461 int board_late_init(void)
462 {
463 	check_button_status();
464 #ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG
465 	if (shc_eeprom_valid)
466 		if (is_valid_ethaddr(header.mac_addr))
467 			eth_env_set_enetaddr("ethaddr", header.mac_addr);
468 #endif
469 
470 	return 0;
471 }
472 #endif
473 
474 #if defined(CONFIG_USB_ETHER) && \
475 	(!defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_USB_ETHER))
board_eth_init(struct bd_info * bis)476 int board_eth_init(struct bd_info *bis)
477 {
478 	return usb_eth_initialize(bis);
479 }
480 #endif
481 
482 #ifdef CONFIG_SHOW_BOOT_PROGRESS
bosch_check_reset_pin(void)483 static void bosch_check_reset_pin(void)
484 {
485 	if (readl(GPIO1_BASE + OMAP_GPIO_IRQSTATUS_SET_0) & RESET_MASK) {
486 		printf("Resetting ...\n");
487 		writel(RESET_MASK, GPIO1_BASE + OMAP_GPIO_IRQSTATUS_SET_0);
488 		disable_interrupts();
489 		reset_cpu();
490 		/*NOTREACHED*/
491 	}
492 }
493 
hang_bosch(const char * cause,int code)494 static void hang_bosch(const char *cause, int code)
495 {
496 	int lv;
497 
498 	gpio_direction_input(RESET_GPIO);
499 
500 	/* Enable reset pin interrupt on falling edge */
501 	writel(RESET_MASK, GPIO1_BASE + OMAP_GPIO_IRQSTATUS_SET_0);
502 	writel(RESET_MASK, GPIO1_BASE + OMAP_GPIO_FALLINGDETECT);
503 	enable_interrupts();
504 
505 	puts(cause);
506 	for (;;) {
507 		for (lv = 0; lv < code; lv++) {
508 			bosch_check_reset_pin();
509 			leds_set_failure(1);
510 			__udelay(150 * 1000);
511 			leds_set_failure(0);
512 			__udelay(150 * 1000);
513 		}
514 #if defined(BLINK_CODE)
515 		__udelay(300 * 1000);
516 #endif
517 	}
518 }
519 
show_boot_progress(int val)520 void show_boot_progress(int val)
521 {
522 	switch (val) {
523 	case BOOTSTAGE_ID_NEED_RESET:
524 		hang_bosch("need reset", 4);
525 		break;
526 	}
527 }
528 
arch_preboot_os(void)529 void arch_preboot_os(void)
530 {
531 	leds_set_finish();
532 }
533 #endif
534