1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2018 Synopsys, Inc. All rights reserved.
4  * Author: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
5  */
6 
7 #include <common.h>
8 #include <command.h>
9 #include <config.h>
10 #include <cpu_func.h>
11 #include <env.h>
12 #include <image.h>
13 #include <init.h>
14 #include <irq_func.h>
15 #include <log.h>
16 #include <asm/cache.h>
17 #include <asm/global_data.h>
18 #include <linux/bitops.h>
19 #include <linux/delay.h>
20 #include <linux/printk.h>
21 #include <linux/kernel.h>
22 #include <linux/io.h>
23 #include <asm/arcregs.h>
24 #include <fdt_support.h>
25 #include <dwmmc.h>
26 #include <malloc.h>
27 #include <usb.h>
28 
29 #include "clk-lib.h"
30 #include "env-lib.h"
31 
32 DECLARE_GLOBAL_DATA_PTR;
33 
34 #define ALL_CPU_MASK		GENMASK(NR_CPUS - 1, 0)
35 #define MASTER_CPU_ID		0
36 #define APERTURE_SHIFT		28
37 #define NO_CCM			0x10
38 #define SLAVE_CPU_READY		0x12345678
39 #define BOOTSTAGE_1		1 /* after SP, FP setup, before HW init */
40 #define BOOTSTAGE_2		2 /* after HW init, before self halt */
41 #define BOOTSTAGE_3		3 /* after self halt */
42 #define BOOTSTAGE_4		4 /* before app launch */
43 #define BOOTSTAGE_5		5 /* after app launch, unreachable */
44 
45 #define RESET_VECTOR_ADDR	0x0
46 
47 #define CREG_BASE		(ARC_PERIPHERAL_BASE + 0x1000)
48 #define CREG_CPU_START		(CREG_BASE + 0x400)
49 #define CREG_CPU_START_MASK	0xF
50 #define CREG_CPU_START_POL	BIT(4)
51 
52 #define CREG_CORE_BOOT_IMAGE	GENMASK(5, 4)
53 
54 #define CREG_CPU_0_ENTRY	(CREG_BASE + 0x404)
55 
56 #define SDIO_BASE		(ARC_PERIPHERAL_BASE + 0xA000)
57 #define SDIO_UHS_REG_EXT	(SDIO_BASE + 0x108)
58 #define SDIO_UHS_REG_EXT_DIV_2	(2 << 30)
59 
60 /* Uncached access macros */
61 #define arc_read_uncached_32(ptr)	\
62 ({					\
63 	unsigned int __ret;		\
64 	__asm__ __volatile__(		\
65 	"	ld.di %0, [%1]	\n"	\
66 	: "=r"(__ret)			\
67 	: "r"(ptr));			\
68 	__ret;				\
69 })
70 
71 #define arc_write_uncached_32(ptr, data)\
72 ({					\
73 	__asm__ __volatile__(		\
74 	"	st.di %0, [%1]	\n"	\
75 	:				\
76 	: "r"(data), "r"(ptr));		\
77 })
78 
79 struct hsdk_env_core_ctl {
80 	u32_env entry[NR_CPUS];
81 	u32_env iccm[NR_CPUS];
82 	u32_env dccm[NR_CPUS];
83 };
84 
85 struct hsdk_env_common_ctl {
86 	bool halt_on_boot;
87 	u32_env core_mask;
88 	u32_env cpu_freq;
89 	u32_env axi_freq;
90 	u32_env tun_freq;
91 	u32_env nvlim;
92 	u32_env icache;
93 	u32_env dcache;
94 	u32_env csm_location;
95 	u32_env l2_cache;
96 	u32_env haps_apb;
97 };
98 
99 /*
100  * Uncached cross-cpu structure. All CPUs must access to this structure fields
101  * only with arc_read_uncached_32() / arc_write_uncached_32() accessors (which
102  * implement ld.di / st.di instructions). Simultaneous cached and uncached
103  * access to this area will lead to data loss.
104  * We flush all data caches in board_early_init_r() as we don't want to have
105  * any dirty line in L1d$ or SL$ in this area.
106  */
107 struct hsdk_cross_cpu {
108 	/* slave CPU ready flag */
109 	u32 ready_flag;
110 	/* address of the area, which can be used for stack by slave CPU */
111 	u32 stack_ptr;
112 	/* slave CPU status - bootstage number */
113 	s32 status[NR_CPUS];
114 
115 	/*
116 	 * Slave CPU data - it is copy of corresponding fields in
117 	 * hsdk_env_core_ctl and hsdk_env_common_ctl structures which are
118 	 * required for slave CPUs initialization.
119 	 * This fields can be populated by copying from hsdk_env_core_ctl
120 	 * and hsdk_env_common_ctl structures with sync_cross_cpu_data()
121 	 * function.
122 	 */
123 	u32 entry[NR_CPUS];
124 	u32 iccm[NR_CPUS];
125 	u32 dccm[NR_CPUS];
126 
127 	u32 core_mask;
128 	u32 icache;
129 	u32 dcache;
130 
131 	u8 cache_padding[ARCH_DMA_MINALIGN];
132 } __aligned(ARCH_DMA_MINALIGN);
133 
134 /* Place for slave CPUs temporary stack */
135 static u32 slave_stack[256 * NR_CPUS] __aligned(ARCH_DMA_MINALIGN);
136 
137 static struct hsdk_env_common_ctl env_common = {};
138 static struct hsdk_env_core_ctl env_core = {};
139 static struct hsdk_cross_cpu cross_cpu_data;
140 
141 static const struct env_map_common env_map_common[] = {
142 	{ "core_mask",	ENV_HEX, true,	0x1, 0xF,	&env_common.core_mask },
143 	{ "non_volatile_limit", ENV_HEX, true, 0, 0xF,	&env_common.nvlim },
144 	{ "icache_ena",	ENV_HEX, true,	0, 1,		&env_common.icache },
145 	{ "dcache_ena",	ENV_HEX, true,	0, 1,		&env_common.dcache },
146 #if defined(CONFIG_BOARD_HSDK_4XD)
147 	{ "l2_cache_ena",	ENV_HEX, true,	0, 1,		&env_common.l2_cache },
148 	{ "csm_location",	ENV_HEX, true,	0, NO_CCM,	&env_common.csm_location },
149 	{ "haps_apb_location",	ENV_HEX, true,	0, 1,		&env_common.haps_apb },
150 #endif /* CONFIG_BOARD_HSDK_4XD */
151 	{}
152 };
153 
154 static const struct env_map_common env_map_clock[] = {
155 	{ "cpu_freq",	ENV_DEC, false,	100, 1000,	&env_common.cpu_freq },
156 	{ "axi_freq",	ENV_DEC, false,	200, 800,	&env_common.axi_freq },
157 	{ "tun_freq",	ENV_DEC, false,	0, 150,		&env_common.tun_freq },
158 	{}
159 };
160 
161 static const struct env_map_percpu env_map_core[] = {
162 	{ "core_iccm", ENV_HEX, true, {NO_CCM, 0, NO_CCM, 0}, {NO_CCM, 0xF, NO_CCM, 0xF}, &env_core.iccm },
163 	{ "core_dccm", ENV_HEX, true, {NO_CCM, 0, NO_CCM, 0}, {NO_CCM, 0xF, NO_CCM, 0xF}, &env_core.dccm },
164 	{}
165 };
166 
167 static const struct env_map_common env_map_mask[] = {
168 	{ "core_mask",	ENV_HEX, false,	0x1, 0xF,	&env_common.core_mask },
169 	{}
170 };
171 
172 static const struct env_map_percpu env_map_go[] = {
173 	{ "core_entry", ENV_HEX, true, {0, 0, 0, 0}, {U32_MAX, U32_MAX, U32_MAX, U32_MAX}, &env_core.entry },
174 	{}
175 };
176 
177 enum board_type {
178 	T_BOARD_NONE,
179 	T_BOARD_HSDK,
180 	T_BOARD_HSDK_4XD
181 };
182 
get_board_type_runtime(void)183 static inline enum board_type get_board_type_runtime(void)
184 {
185 	u32 arc_id = read_aux_reg(ARC_AUX_IDENTITY) & 0xFF;
186 
187 	if (arc_id == 0x52)
188 		return T_BOARD_HSDK;
189 	else if (arc_id == 0x54)
190 		return T_BOARD_HSDK_4XD;
191 	else
192 		return T_BOARD_NONE;
193 }
194 
get_board_type_config(void)195 static inline enum board_type get_board_type_config(void)
196 {
197 	if (IS_ENABLED(CONFIG_BOARD_HSDK))
198 		return T_BOARD_HSDK;
199 	else if (IS_ENABLED(CONFIG_BOARD_HSDK_4XD))
200 		return T_BOARD_HSDK_4XD;
201 	else
202 		return T_BOARD_NONE;
203 }
204 
is_board_match_runtime(enum board_type type_req)205 static bool is_board_match_runtime(enum board_type type_req)
206 {
207 	return get_board_type_runtime() == type_req;
208 }
209 
is_board_match_config(enum board_type type_req)210 static bool is_board_match_config(enum board_type type_req)
211 {
212 	return get_board_type_config() == type_req;
213 }
214 
board_name(enum board_type type)215 static const char * board_name(enum board_type type)
216 {
217 	switch (type) {
218 		case T_BOARD_HSDK:
219 			return "ARC HS Development Kit";
220 		case T_BOARD_HSDK_4XD:
221 			return "ARC HS4x/HS4xD Development Kit";
222 		default:
223 			return "?";
224 	}
225 }
226 
board_mismatch(void)227 static bool board_mismatch(void)
228 {
229 	return get_board_type_config() != get_board_type_runtime();
230 }
231 
sync_cross_cpu_data(void)232 static void sync_cross_cpu_data(void)
233 {
234 	u32 value;
235 
236 	for (u32 i = 0; i < NR_CPUS; i++) {
237 		value = env_core.entry[i].val;
238 		arc_write_uncached_32(&cross_cpu_data.entry[i], value);
239 	}
240 
241 	for (u32 i = 0; i < NR_CPUS; i++) {
242 		value = env_core.iccm[i].val;
243 		arc_write_uncached_32(&cross_cpu_data.iccm[i], value);
244 	}
245 
246 	for (u32 i = 0; i < NR_CPUS; i++) {
247 		value = env_core.dccm[i].val;
248 		arc_write_uncached_32(&cross_cpu_data.dccm[i], value);
249 	}
250 
251 	value = env_common.core_mask.val;
252 	arc_write_uncached_32(&cross_cpu_data.core_mask, value);
253 
254 	value = env_common.icache.val;
255 	arc_write_uncached_32(&cross_cpu_data.icache, value);
256 
257 	value = env_common.dcache.val;
258 	arc_write_uncached_32(&cross_cpu_data.dcache, value);
259 }
260 
261 /* Can be used only on master CPU */
is_cpu_used(u32 cpu_id)262 static bool is_cpu_used(u32 cpu_id)
263 {
264 	return !!(env_common.core_mask.val & BIT(cpu_id));
265 }
266 
267 /* TODO: add ICCM BCR and DCCM BCR runtime check */
init_slave_cpu_func(u32 core)268 static void init_slave_cpu_func(u32 core)
269 {
270 	u32 val;
271 
272 	/* Remap ICCM to another memory region if it exists */
273 	val = arc_read_uncached_32(&cross_cpu_data.iccm[core]);
274 	if (val != NO_CCM)
275 		write_aux_reg(ARC_AUX_ICCM_BASE, val << APERTURE_SHIFT);
276 
277 	/* Remap DCCM to another memory region if it exists */
278 	val = arc_read_uncached_32(&cross_cpu_data.dccm[core]);
279 	if (val != NO_CCM)
280 		write_aux_reg(ARC_AUX_DCCM_BASE, val << APERTURE_SHIFT);
281 
282 	if (arc_read_uncached_32(&cross_cpu_data.icache))
283 		icache_enable();
284 	else
285 		icache_disable();
286 
287 	if (arc_read_uncached_32(&cross_cpu_data.dcache))
288 		dcache_enable();
289 	else
290 		dcache_disable();
291 }
292 
init_cluster_nvlim(void)293 static void init_cluster_nvlim(void)
294 {
295 	u32 val = env_common.nvlim.val << APERTURE_SHIFT;
296 
297 	flush_dcache_all();
298 	write_aux_reg(ARC_AUX_NON_VOLATILE_LIMIT, val);
299 	/* AUX_AUX_CACHE_LIMIT reg is missing starting from HS48 */
300 	if (is_board_match_runtime(T_BOARD_HSDK))
301 		write_aux_reg(AUX_AUX_CACHE_LIMIT, val);
302 	flush_n_invalidate_dcache_all();
303 }
304 
init_cluster_slc(void)305 static void init_cluster_slc(void)
306 {
307 	/* ARC HS38 doesn't support SLC disabling */
308 	if (!is_board_match_config(T_BOARD_HSDK_4XD))
309 		return;
310 
311 	if (env_common.l2_cache.val)
312 		slc_enable();
313 	else
314 		slc_disable();
315 }
316 
317 #define CREG_CSM_BASE		(CREG_BASE + 0x210)
318 
init_cluster_csm(void)319 static void init_cluster_csm(void)
320 {
321 	/* ARC HS38 in HSDK SoC doesn't include CSM */
322 	if (!is_board_match_config(T_BOARD_HSDK_4XD))
323 		return;
324 
325 	if (env_common.csm_location.val == NO_CCM) {
326 		write_aux_reg(ARC_AUX_CSM_ENABLE, 0);
327 	} else {
328 		/*
329 		 * CSM base address is 256kByte aligned but we allow to map
330 		 * CSM only to aperture start (256MByte aligned)
331 		 * The field in CREG_CSM_BASE is in 17:2 bits itself so we need
332 		 * to shift it.
333 		 */
334 		u32 csm_base = (env_common.csm_location.val * SZ_1K) << 2;
335 
336 		write_aux_reg(ARC_AUX_CSM_ENABLE, 1);
337 		writel(csm_base, (void __iomem *)CREG_CSM_BASE);
338 	}
339 }
340 
init_master_icache(void)341 static void init_master_icache(void)
342 {
343 	if (icache_status()) {
344 		/* I$ is enabled - we need to disable it */
345 		if (!env_common.icache.val)
346 			icache_disable();
347 	} else {
348 		/* I$ is disabled - we need to enable it */
349 		if (env_common.icache.val) {
350 			icache_enable();
351 
352 			/* invalidate I$ right after enable */
353 			invalidate_icache_all();
354 		}
355 	}
356 }
357 
init_master_dcache(void)358 static void init_master_dcache(void)
359 {
360 	if (dcache_status()) {
361 		/* D$ is enabled - we need to disable it */
362 		if (!env_common.dcache.val)
363 			dcache_disable();
364 	} else {
365 		/* D$ is disabled - we need to enable it */
366 		if (env_common.dcache.val)
367 			dcache_enable();
368 
369 		/* TODO: probably we need ti invalidate D$ right after enable */
370 	}
371 }
372 
cleanup_before_go(void)373 static int cleanup_before_go(void)
374 {
375 	disable_interrupts();
376 	sync_n_cleanup_cache_all();
377 
378 	return 0;
379 }
380 
slave_cpu_set_boot_addr(u32 addr)381 void slave_cpu_set_boot_addr(u32 addr)
382 {
383 	/* All cores have reset vector pointing to 0 */
384 	writel(addr, (void __iomem *)RESET_VECTOR_ADDR);
385 
386 	/* Make sure other cores see written value in memory */
387 	sync_n_cleanup_cache_all();
388 }
389 
halt_this_cpu(void)390 static inline void halt_this_cpu(void)
391 {
392 	__builtin_arc_flag(1);
393 }
394 
get_masked_cpu_ctart_reg(void)395 static u32 get_masked_cpu_ctart_reg(void)
396 {
397 	int cmd = readl((void __iomem *)CREG_CPU_START);
398 
399 	/*
400 	 * Quirk for HSDK-4xD - due to HW issues HSDK can use any pulse polarity
401 	 * and HSDK-4xD require active low polarity of cpu_start pulse.
402 	 */
403 	cmd &= ~CREG_CPU_START_POL;
404 
405 	cmd &= ~CREG_CPU_START_MASK;
406 
407 	return cmd;
408 }
409 
smp_kick_cpu_x(u32 cpu_id)410 static void smp_kick_cpu_x(u32 cpu_id)
411 {
412 	int cmd;
413 
414 	if (cpu_id > NR_CPUS)
415 		return;
416 
417 	cmd = get_masked_cpu_ctart_reg();
418 	cmd |= (1 << cpu_id);
419 	writel(cmd, (void __iomem *)CREG_CPU_START);
420 }
421 
prepare_cpu_ctart_reg(void)422 static u32 prepare_cpu_ctart_reg(void)
423 {
424 	return get_masked_cpu_ctart_reg() | env_common.core_mask.val;
425 }
426 
427 /* slave CPU entry for configuration */
hsdk_core_init_f(void)428 __attribute__((naked, noreturn, flatten)) noinline void hsdk_core_init_f(void)
429 {
430 	__asm__ __volatile__(
431 		"ld.di	r8,	[%0]\n"
432 		"mov	%%sp,	r8\n"
433 		"mov	%%fp,	%%sp\n"
434 		: /* no output */
435 		: "r" (&cross_cpu_data.stack_ptr));
436 
437 	invalidate_icache_all();
438 
439 	arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_1);
440 	init_slave_cpu_func(CPU_ID_GET());
441 
442 	arc_write_uncached_32(&cross_cpu_data.ready_flag, SLAVE_CPU_READY);
443 	arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_2);
444 
445 	/* Halt the processor until the master kick us again */
446 	halt_this_cpu();
447 
448 	/*
449 	 * 3 NOPs after FLAG 1 instruction are no longer required for ARCv2
450 	 * cores but we leave them for gebug purposes.
451 	 */
452 	__builtin_arc_nop();
453 	__builtin_arc_nop();
454 	__builtin_arc_nop();
455 
456 	arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_3);
457 
458 	/* get the updated entry - invalidate i$ */
459 	invalidate_icache_all();
460 
461 	arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_4);
462 
463 	/* Run our program */
464 	((void (*)(void))(arc_read_uncached_32(&cross_cpu_data.entry[CPU_ID_GET()])))();
465 
466 	/* This bootstage is unreachable as we don't return from app we launch */
467 	arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_5);
468 
469 	/* Something went terribly wrong */
470 	while (true)
471 		halt_this_cpu();
472 }
473 
clear_cross_cpu_data(void)474 static void clear_cross_cpu_data(void)
475 {
476 	arc_write_uncached_32(&cross_cpu_data.ready_flag, 0);
477 	arc_write_uncached_32(&cross_cpu_data.stack_ptr, 0);
478 
479 	for (u32 i = 0; i < NR_CPUS; i++)
480 		arc_write_uncached_32(&cross_cpu_data.status[i], 0);
481 }
482 
do_init_slave_cpu(u32 cpu_id)483 static noinline void do_init_slave_cpu(u32 cpu_id)
484 {
485 	/* attempts number for check clave CPU ready_flag */
486 	u32 attempts = 100;
487 	u32 stack_ptr = (u32)(slave_stack + (64 * cpu_id));
488 
489 	if (cpu_id >= NR_CPUS)
490 		return;
491 
492 	arc_write_uncached_32(&cross_cpu_data.ready_flag, 0);
493 
494 	/* Use global unique place for each slave cpu stack */
495 	arc_write_uncached_32(&cross_cpu_data.stack_ptr, stack_ptr);
496 
497 	debug("CPU %u: stack pool base: %p\n", cpu_id, slave_stack);
498 	debug("CPU %u: current slave stack base: %x\n", cpu_id, stack_ptr);
499 	slave_cpu_set_boot_addr((u32)hsdk_core_init_f);
500 
501 	smp_kick_cpu_x(cpu_id);
502 
503 	debug("CPU %u: cross-cpu flag: %x [before timeout]\n", cpu_id,
504 	      arc_read_uncached_32(&cross_cpu_data.ready_flag));
505 
506 	while (!arc_read_uncached_32(&cross_cpu_data.ready_flag) && attempts--)
507 		mdelay(10);
508 
509 	/* Just to be sure that slave cpu is halted after it set ready_flag */
510 	mdelay(20);
511 
512 	/*
513 	 * Only print error here if we reach timeout as there is no option to
514 	 * halt slave cpu (or check that slave cpu is halted)
515 	 */
516 	if (!attempts)
517 		pr_err("CPU %u is not responding after init!\n", cpu_id);
518 
519 	/* Check current stage of slave cpu */
520 	if (arc_read_uncached_32(&cross_cpu_data.status[cpu_id]) != BOOTSTAGE_2)
521 		pr_err("CPU %u status is unexpected: %d\n", cpu_id,
522 		       arc_read_uncached_32(&cross_cpu_data.status[cpu_id]));
523 
524 	debug("CPU %u: cross-cpu flag: %x [after timeout]\n", cpu_id,
525 	      arc_read_uncached_32(&cross_cpu_data.ready_flag));
526 	debug("CPU %u: status: %d [after timeout]\n", cpu_id,
527 	      arc_read_uncached_32(&cross_cpu_data.status[cpu_id]));
528 }
529 
do_init_slave_cpus(void)530 static void do_init_slave_cpus(void)
531 {
532 	clear_cross_cpu_data();
533 	sync_cross_cpu_data();
534 
535 	debug("cross_cpu_data location: %#x\n", (u32)&cross_cpu_data);
536 
537 	for (u32 i = MASTER_CPU_ID + 1; i < NR_CPUS; i++)
538 		if (is_cpu_used(i))
539 			do_init_slave_cpu(i);
540 }
541 
do_init_master_cpu(void)542 static void do_init_master_cpu(void)
543 {
544 	/*
545 	 * Setup master caches even if master isn't used as we want to use
546 	 * same cache configuration on all running CPUs
547 	 */
548 	init_master_icache();
549 	init_master_dcache();
550 }
551 
552 enum hsdk_axi_masters {
553 	M_HS_CORE = 0,
554 	M_HS_RTT,
555 	M_AXI_TUN,
556 	M_HDMI_VIDEO,
557 	M_HDMI_AUDIO,
558 	M_USB_HOST,
559 	M_ETHERNET,
560 	M_SDIO,
561 	M_GPU,
562 	M_DMAC_0,
563 	M_DMAC_1,
564 	M_DVFS
565 };
566 
567 #define UPDATE_VAL	1
568 
569 /*
570  * m	master		AXI_M_m_SLV0	AXI_M_m_SLV1	AXI_M_m_OFFSET0	AXI_M_m_OFFSET1
571  * 0	HS (CBU)	0x11111111	0x63111111	0xFEDCBA98	0x0E543210
572  * 1	HS (RTT)	0x77777777	0x77777777	0xFEDCBA98	0x76543210
573  * 2	AXI Tunnel	0x88888888	0x88888888	0xFEDCBA98	0x76543210
574  * 3	HDMI-VIDEO	0x77777777	0x77777777	0xFEDCBA98	0x76543210
575  * 4	HDMI-ADUIO	0x77777777	0x77777777	0xFEDCBA98	0x76543210
576  * 5	USB-HOST	0x77777777	0x77999999	0xFEDCBA98	0x76DCBA98
577  * 6	ETHERNET	0x77777777	0x77999999	0xFEDCBA98	0x76DCBA98
578  * 7	SDIO		0x77777777	0x77999999	0xFEDCBA98	0x76DCBA98
579  * 8	GPU		0x77777777	0x77777777	0xFEDCBA98	0x76543210
580  * 9	DMAC (port #1)	0x77777777	0x77777777	0xFEDCBA98	0x76543210
581  * 10	DMAC (port #2)	0x77777777	0x77777777	0xFEDCBA98	0x76543210
582  * 11	DVFS		0x00000000	0x60000000	0x00000000	0x00000000
583  *
584  * Please read ARC HS Development IC Specification, section 17.2 for more
585  * information about apertures configuration.
586  * NOTE: we intentionally modify default settings in U-boot. Default settings
587  * are specified in "Table 111 CREG Address Decoder register reset values".
588  */
589 
590 #define CREG_AXI_M_SLV0(m)  ((void __iomem *)(CREG_BASE + 0x020 * (m)))
591 #define CREG_AXI_M_SLV1(m)  ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x004))
592 #define CREG_AXI_M_OFT0(m)  ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x008))
593 #define CREG_AXI_M_OFT1(m)  ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x00C))
594 #define CREG_AXI_M_UPDT(m)  ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x014))
595 
596 #define CREG_AXI_M_HS_CORE_BOOT	((void __iomem *)(CREG_BASE + 0x010))
597 
598 #define CREG_PAE	((void __iomem *)(CREG_BASE + 0x180))
599 #define CREG_PAE_UPDT	((void __iomem *)(CREG_BASE + 0x194))
600 
init_memory_bridge(void)601 void init_memory_bridge(void)
602 {
603 	u32 reg;
604 
605 	/*
606 	 * M_HS_CORE has one unic register - BOOT.
607 	 * We need to clean boot mirror (BOOT[1:0]) bits in them.
608 	 */
609 	reg = readl(CREG_AXI_M_HS_CORE_BOOT) & (~0x3);
610 	writel(reg, CREG_AXI_M_HS_CORE_BOOT);
611 	writel(0x11111111, CREG_AXI_M_SLV0(M_HS_CORE));
612 	writel(0x63111111, CREG_AXI_M_SLV1(M_HS_CORE));
613 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HS_CORE));
614 	writel(0x0E543210, CREG_AXI_M_OFT1(M_HS_CORE));
615 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HS_CORE));
616 
617 	writel(0x77777777, CREG_AXI_M_SLV0(M_HS_RTT));
618 	writel(0x77777777, CREG_AXI_M_SLV1(M_HS_RTT));
619 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HS_RTT));
620 	writel(0x76543210, CREG_AXI_M_OFT1(M_HS_RTT));
621 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HS_RTT));
622 
623 	writel(0x88888888, CREG_AXI_M_SLV0(M_AXI_TUN));
624 	writel(0x88888888, CREG_AXI_M_SLV1(M_AXI_TUN));
625 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_AXI_TUN));
626 	writel(0x76543210, CREG_AXI_M_OFT1(M_AXI_TUN));
627 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_AXI_TUN));
628 
629 	writel(0x77777777, CREG_AXI_M_SLV0(M_HDMI_VIDEO));
630 	writel(0x77777777, CREG_AXI_M_SLV1(M_HDMI_VIDEO));
631 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HDMI_VIDEO));
632 	writel(0x76543210, CREG_AXI_M_OFT1(M_HDMI_VIDEO));
633 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HDMI_VIDEO));
634 
635 	writel(0x77777777, CREG_AXI_M_SLV0(M_HDMI_AUDIO));
636 	writel(0x77777777, CREG_AXI_M_SLV1(M_HDMI_AUDIO));
637 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HDMI_AUDIO));
638 	writel(0x76543210, CREG_AXI_M_OFT1(M_HDMI_AUDIO));
639 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HDMI_AUDIO));
640 
641 	writel(0x77777777, CREG_AXI_M_SLV0(M_USB_HOST));
642 	writel(0x77999999, CREG_AXI_M_SLV1(M_USB_HOST));
643 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_USB_HOST));
644 	writel(0x76DCBA98, CREG_AXI_M_OFT1(M_USB_HOST));
645 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_USB_HOST));
646 
647 	writel(0x77777777, CREG_AXI_M_SLV0(M_ETHERNET));
648 	writel(0x77999999, CREG_AXI_M_SLV1(M_ETHERNET));
649 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_ETHERNET));
650 	writel(0x76DCBA98, CREG_AXI_M_OFT1(M_ETHERNET));
651 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_ETHERNET));
652 
653 	writel(0x77777777, CREG_AXI_M_SLV0(M_SDIO));
654 	writel(0x77999999, CREG_AXI_M_SLV1(M_SDIO));
655 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_SDIO));
656 	writel(0x76DCBA98, CREG_AXI_M_OFT1(M_SDIO));
657 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_SDIO));
658 
659 	writel(0x77777777, CREG_AXI_M_SLV0(M_GPU));
660 	writel(0x77777777, CREG_AXI_M_SLV1(M_GPU));
661 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_GPU));
662 	writel(0x76543210, CREG_AXI_M_OFT1(M_GPU));
663 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_GPU));
664 
665 	writel(0x77777777, CREG_AXI_M_SLV0(M_DMAC_0));
666 	writel(0x77777777, CREG_AXI_M_SLV1(M_DMAC_0));
667 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_DMAC_0));
668 	writel(0x76543210, CREG_AXI_M_OFT1(M_DMAC_0));
669 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_DMAC_0));
670 
671 	writel(0x77777777, CREG_AXI_M_SLV0(M_DMAC_1));
672 	writel(0x77777777, CREG_AXI_M_SLV1(M_DMAC_1));
673 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_DMAC_1));
674 	writel(0x76543210, CREG_AXI_M_OFT1(M_DMAC_1));
675 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_DMAC_1));
676 
677 	writel(0x00000000, CREG_AXI_M_SLV0(M_DVFS));
678 	writel(0x60000000, CREG_AXI_M_SLV1(M_DVFS));
679 	writel(0x00000000, CREG_AXI_M_OFT0(M_DVFS));
680 	writel(0x00000000, CREG_AXI_M_OFT1(M_DVFS));
681 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_DVFS));
682 
683 	writel(0x00000000, CREG_PAE);
684 	writel(UPDATE_VAL, CREG_PAE_UPDT);
685 }
686 
687 /*
688  * For HSDK-4xD we do additional AXI bridge tweaking in hsdk_init command:
689  * - we shrink IOC region.
690  * - we configure HS CORE SLV1 aperture depending on haps_apb_location
691  *   environment variable.
692  *
693  * As we've already configured AXI bridge in init_memory_bridge we don't
694  * do full configuration here but reconfigure changed part.
695  *
696  * m	master		AXI_M_m_SLV0	AXI_M_m_SLV1	AXI_M_m_OFFSET0	AXI_M_m_OFFSET1
697  * 0	HS (CBU)	0x11111111	0x63111111	0xFEDCBA98	0x0E543210	[haps_apb_location = 0]
698  * 0	HS (CBU)	0x11111111	0x61111111	0xFEDCBA98	0x06543210	[haps_apb_location = 1]
699  * 1	HS (RTT)	0x77777777	0x77777777	0xFEDCBA98	0x76543210
700  * 2	AXI Tunnel	0x88888888	0x88888888	0xFEDCBA98	0x76543210
701  * 3	HDMI-VIDEO	0x77777777	0x77777777	0xFEDCBA98	0x76543210
702  * 4	HDMI-ADUIO	0x77777777	0x77777777	0xFEDCBA98	0x76543210
703  * 5	USB-HOST	0x77777777	0x77779999	0xFEDCBA98	0x7654BA98
704  * 6	ETHERNET	0x77777777	0x77779999	0xFEDCBA98	0x7654BA98
705  * 7	SDIO		0x77777777	0x77779999	0xFEDCBA98	0x7654BA98
706  * 8	GPU		0x77777777	0x77777777	0xFEDCBA98	0x76543210
707  * 9	DMAC (port #1)	0x77777777	0x77777777	0xFEDCBA98	0x76543210
708  * 10	DMAC (port #2)	0x77777777	0x77777777	0xFEDCBA98	0x76543210
709  * 11	DVFS		0x00000000	0x60000000	0x00000000	0x00000000
710  */
tweak_memory_bridge_cfg(void)711 void tweak_memory_bridge_cfg(void)
712 {
713 	/*
714 	 * Only HSDK-4xD requre additional AXI bridge tweaking depending on
715 	 * haps_apb_location environment variable
716 	 */
717 	if (!is_board_match_config(T_BOARD_HSDK_4XD))
718 		return;
719 
720 	if (env_common.haps_apb.val) {
721 		writel(0x61111111, CREG_AXI_M_SLV1(M_HS_CORE));
722 		writel(0x06543210, CREG_AXI_M_OFT1(M_HS_CORE));
723 	} else {
724 		writel(0x63111111, CREG_AXI_M_SLV1(M_HS_CORE));
725 		writel(0x0E543210, CREG_AXI_M_OFT1(M_HS_CORE));
726 	}
727 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HS_CORE));
728 
729 	writel(0x77779999, CREG_AXI_M_SLV1(M_USB_HOST));
730 	writel(0x7654BA98, CREG_AXI_M_OFT1(M_USB_HOST));
731 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_USB_HOST));
732 
733 	writel(0x77779999, CREG_AXI_M_SLV1(M_ETHERNET));;
734 	writel(0x7654BA98, CREG_AXI_M_OFT1(M_ETHERNET));
735 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_ETHERNET));
736 
737 	writel(0x77779999, CREG_AXI_M_SLV1(M_SDIO));
738 	writel(0x7654BA98, CREG_AXI_M_OFT1(M_SDIO));
739 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_SDIO));
740 }
741 
setup_clocks(void)742 static void setup_clocks(void)
743 {
744 	ulong rate;
745 
746 	/* Setup CPU clock */
747 	if (env_common.cpu_freq.set) {
748 		rate = env_common.cpu_freq.val;
749 		soc_clk_ctl("cpu-clk", &rate, CLK_ON | CLK_SET | CLK_MHZ);
750 	}
751 
752 	/* Setup TUN clock */
753 	if (env_common.tun_freq.set) {
754 		rate = env_common.tun_freq.val;
755 		if (rate)
756 			soc_clk_ctl("tun-clk", &rate, CLK_ON | CLK_SET | CLK_MHZ);
757 		else
758 			soc_clk_ctl("tun-clk", NULL, CLK_OFF);
759 	}
760 
761 	if (env_common.axi_freq.set) {
762 		rate = env_common.axi_freq.val;
763 		soc_clk_ctl("axi-clk", &rate, CLK_SET | CLK_ON | CLK_MHZ);
764 	}
765 }
766 
do_init_cluster(void)767 static void do_init_cluster(void)
768 {
769 	/*
770 	 * A multi-core ARC HS configuration always includes only one
771 	 * ARC_AUX_NON_VOLATILE_LIMIT register, which is shared by all the
772 	 * cores.
773 	 */
774 	init_cluster_nvlim();
775 	init_cluster_csm();
776 	init_cluster_slc();
777 	tweak_memory_bridge_cfg();
778 }
779 
check_master_cpu_id(void)780 static int check_master_cpu_id(void)
781 {
782 	if (CPU_ID_GET() == MASTER_CPU_ID)
783 		return 0;
784 
785 	pr_err("u-boot runs on non-master cpu with id: %lu\n", CPU_ID_GET());
786 
787 	return -ENOENT;
788 }
789 
prepare_cpus(void)790 static noinline int prepare_cpus(void)
791 {
792 	int ret;
793 
794 	ret = check_master_cpu_id();
795 	if (ret)
796 		return ret;
797 
798 	ret = envs_process_and_validate(env_map_common, env_map_core, is_cpu_used);
799 	if (ret)
800 		return ret;
801 
802 	printf("CPU start mask is %#x\n", env_common.core_mask.val);
803 
804 	do_init_slave_cpus();
805 	do_init_master_cpu();
806 	do_init_cluster();
807 
808 	return 0;
809 }
810 
hsdk_go_run(u32 cpu_start_reg)811 static int hsdk_go_run(u32 cpu_start_reg)
812 {
813 	/* Cleanup caches, disable interrupts */
814 	cleanup_before_go();
815 
816 	if (env_common.halt_on_boot)
817 		halt_this_cpu();
818 
819 	/*
820 	 * 3 NOPs after FLAG 1 instruction are no longer required for ARCv2
821 	 * cores but we leave them for gebug purposes.
822 	 */
823 	__builtin_arc_nop();
824 	__builtin_arc_nop();
825 	__builtin_arc_nop();
826 
827 	/* Kick chosen slave CPUs */
828 	writel(cpu_start_reg, (void __iomem *)CREG_CPU_START);
829 
830 	if (is_cpu_used(MASTER_CPU_ID))
831 		((void (*)(void))(env_core.entry[MASTER_CPU_ID].val))();
832 	else
833 		halt_this_cpu();
834 
835 	pr_err("u-boot still runs on cpu [%ld]\n", CPU_ID_GET());
836 
837 	/*
838 	 * We will never return after executing our program if master cpu used
839 	 * otherwise halt master cpu manually.
840 	 */
841 	while (true)
842 		halt_this_cpu();
843 
844 	return 0;
845 }
846 
board_prep_linux(bootm_headers_t * images)847 int board_prep_linux(bootm_headers_t *images)
848 {
849 	int ret, ofst;
850 	char mask[15];
851 
852 	ret = envs_read_validate_common(env_map_mask);
853 	if (ret)
854 		return ret;
855 
856 	/* Rollback to default values */
857 	if (!env_common.core_mask.set) {
858 		env_common.core_mask.val = ALL_CPU_MASK;
859 		env_common.core_mask.set = true;
860 	}
861 
862 	printf("CPU start mask is %#x\n", env_common.core_mask.val);
863 
864 	if (!is_cpu_used(MASTER_CPU_ID))
865 		pr_err("ERR: try to launch linux with CPU[0] disabled! It doesn't work for ARC.\n");
866 
867 	/*
868 	 * If we want to launch linux on all CPUs we don't need to patch
869 	 * linux DTB as it is default configuration
870 	 */
871 	if (env_common.core_mask.val == ALL_CPU_MASK)
872 		return 0;
873 
874 	if (!IMAGE_ENABLE_OF_LIBFDT || !images->ft_len) {
875 		pr_err("WARN: core_mask setup will work properly only with external DTB!\n");
876 		return 0;
877 	}
878 
879 	/* patch '/possible-cpus' property according to cpu mask */
880 	ofst = fdt_path_offset(images->ft_addr, "/");
881 	sprintf(mask, "%s%s%s%s",
882 		is_cpu_used(0) ? "0," : "",
883 		is_cpu_used(1) ? "1," : "",
884 		is_cpu_used(2) ? "2," : "",
885 		is_cpu_used(3) ? "3," : "");
886 	ret = fdt_setprop_string(images->ft_addr, ofst, "possible-cpus", mask);
887 	/*
888 	 * If we failed to patch '/possible-cpus' property we don't need break
889 	 * linux loading process: kernel will handle it but linux will print
890 	 * warning like "Timeout: CPU1 FAILED to comeup !!!".
891 	 * So warn here about error, but return 0 like no error had occurred.
892 	 */
893 	if (ret)
894 		pr_err("WARN: failed to patch '/possible-cpus' property, ret=%d\n",
895 		       ret);
896 
897 	return 0;
898 }
899 
board_jump_and_run(ulong entry,int zero,int arch,uint params)900 void board_jump_and_run(ulong entry, int zero, int arch, uint params)
901 {
902 	void (*kernel_entry)(int zero, int arch, uint params);
903 	u32 cpu_start_reg;
904 
905 	kernel_entry = (void (*)(int, int, uint))entry;
906 
907 	/* Prepare CREG_CPU_START for kicking chosen CPUs */
908 	cpu_start_reg = prepare_cpu_ctart_reg();
909 
910 	/* In case of run without hsdk_init */
911 	slave_cpu_set_boot_addr(entry);
912 
913 	/* In case of run with hsdk_init */
914 	for (u32 i = 0; i < NR_CPUS; i++) {
915 		env_core.entry[i].val = entry;
916 		env_core.entry[i].set = true;
917 	}
918 	/* sync cross_cpu struct as we updated core-entry variables */
919 	sync_cross_cpu_data();
920 
921 	/* Kick chosen slave CPUs */
922 	writel(cpu_start_reg, (void __iomem *)CREG_CPU_START);
923 
924 	if (is_cpu_used(0))
925 		kernel_entry(zero, arch, params);
926 }
927 
hsdk_go_prepare_and_run(void)928 static int hsdk_go_prepare_and_run(void)
929 {
930 	/* Prepare CREG_CPU_START for kicking chosen CPUs */
931 	u32 reg = prepare_cpu_ctart_reg();
932 
933 	if (env_common.halt_on_boot)
934 		printf("CPU will halt before application start, start application with debugger.\n");
935 
936 	return hsdk_go_run(reg);
937 }
938 
do_hsdk_go(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])939 static int do_hsdk_go(struct cmd_tbl *cmdtp, int flag, int argc,
940 		      char *const argv[])
941 {
942 	int ret;
943 
944 	if (board_mismatch()) {
945 		printf("ERR: U-boot is not configured for this board!\n");
946 		return CMD_RET_FAILURE;
947 	}
948 
949 	/*
950 	 * Check for 'halt' parameter. 'halt' = enter halt-mode just before
951 	 * starting the application; can be used for debug.
952 	 */
953 	if (argc > 1) {
954 		env_common.halt_on_boot = !strcmp(argv[1], "halt");
955 		if (!env_common.halt_on_boot) {
956 			pr_err("Unrecognised parameter: \'%s\'\n", argv[1]);
957 			return CMD_RET_FAILURE;
958 		}
959 	}
960 
961 	ret = check_master_cpu_id();
962 	if (ret)
963 		return ret;
964 
965 	ret = envs_process_and_validate(env_map_mask, env_map_go, is_cpu_used);
966 	if (ret)
967 		return ret;
968 
969 	/* sync cross_cpu struct as we updated core-entry variables */
970 	sync_cross_cpu_data();
971 
972 	ret = hsdk_go_prepare_and_run();
973 
974 	return ret ? CMD_RET_FAILURE : CMD_RET_SUCCESS;
975 }
976 
977 U_BOOT_CMD(
978 	hsdk_go, 3, 0, do_hsdk_go,
979 	"Synopsys HSDK specific command",
980 	"     - Boot stand-alone application on HSDK\n"
981 	"hsdk_go halt - Boot stand-alone application on HSDK, halt CPU just before application run\n"
982 );
983 
984 /*
985  * We may simply use static variable here to store init status, but we also want
986  * to avoid the situation when we reload U-boot via MDB after previous
987  * init is done but HW reset (board reset) isn't done. So let's store the
988  * init status in any unused register (i.e CREG_CPU_0_ENTRY) so status will
989  * survive after U-boot is reloaded via MDB.
990  */
991 #define INIT_MARKER_REGISTER		((void __iomem *)CREG_CPU_0_ENTRY)
992 /* must be equal to INIT_MARKER_REGISTER reset value */
993 #define INIT_MARKER_PENDING		0
994 
init_marker_get(void)995 static bool init_marker_get(void)
996 {
997 	return readl(INIT_MARKER_REGISTER) != INIT_MARKER_PENDING;
998 }
999 
init_mark_done(void)1000 static void init_mark_done(void)
1001 {
1002 	writel(~INIT_MARKER_PENDING, INIT_MARKER_REGISTER);
1003 }
1004 
do_hsdk_init(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])1005 static int do_hsdk_init(struct cmd_tbl *cmdtp, int flag, int argc,
1006 			char *const argv[])
1007 {
1008 	int ret;
1009 
1010 	if (board_mismatch()) {
1011 		printf("ERR: U-boot is not configured for this board!\n");
1012 		return CMD_RET_FAILURE;
1013 	}
1014 
1015 	/* hsdk_init can be run only once */
1016 	if (init_marker_get()) {
1017 		printf("HSDK HW is already initialized! Please reset the board if you want to change the configuration.\n");
1018 		return CMD_RET_FAILURE;
1019 	}
1020 
1021 	ret = prepare_cpus();
1022 	if (!ret)
1023 		init_mark_done();
1024 
1025 	return ret ? CMD_RET_FAILURE : CMD_RET_SUCCESS;
1026 }
1027 
1028 U_BOOT_CMD(
1029 	hsdk_init, 1, 0, do_hsdk_init,
1030 	"Synopsys HSDK specific command",
1031 	"- Init HSDK HW\n"
1032 );
1033 
do_hsdk_clock_set(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])1034 static int do_hsdk_clock_set(struct cmd_tbl *cmdtp, int flag, int argc,
1035 			     char *const argv[])
1036 {
1037 	int ret = 0;
1038 
1039 	/* Strip off leading subcommand argument */
1040 	argc--;
1041 	argv++;
1042 
1043 	envs_cleanup_common(env_map_clock);
1044 
1045 	if (!argc) {
1046 		printf("Set clocks to values specified in environment\n");
1047 		ret = envs_read_common(env_map_clock);
1048 	} else {
1049 		printf("Set clocks to values specified in args\n");
1050 		ret = args_envs_enumerate(env_map_clock, 2, argc, argv);
1051 	}
1052 
1053 	if (ret)
1054 		return CMD_RET_FAILURE;
1055 
1056 	ret = envs_validate_common(env_map_clock);
1057 	if (ret)
1058 		return CMD_RET_FAILURE;
1059 
1060 	/* Setup clock tree HW */
1061 	setup_clocks();
1062 
1063 	return CMD_RET_SUCCESS;
1064 }
1065 
do_hsdk_clock_get(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])1066 static int do_hsdk_clock_get(struct cmd_tbl *cmdtp, int flag, int argc,
1067 			     char *const argv[])
1068 {
1069 	ulong rate;
1070 
1071 	if (soc_clk_ctl("cpu-clk", &rate, CLK_GET | CLK_MHZ))
1072 		return CMD_RET_FAILURE;
1073 
1074 	if (env_set_ulong("cpu_freq", rate))
1075 		return CMD_RET_FAILURE;
1076 
1077 	if (soc_clk_ctl("tun-clk", &rate, CLK_GET | CLK_MHZ))
1078 		return CMD_RET_FAILURE;
1079 
1080 	if (env_set_ulong("tun_freq", rate))
1081 		return CMD_RET_FAILURE;
1082 
1083 	if (soc_clk_ctl("axi-clk", &rate, CLK_GET | CLK_MHZ))
1084 		return CMD_RET_FAILURE;
1085 
1086 	if (env_set_ulong("axi_freq", rate))
1087 		return CMD_RET_FAILURE;
1088 
1089 	printf("Clock values are saved to environment\n");
1090 
1091 	return CMD_RET_SUCCESS;
1092 }
1093 
do_hsdk_clock_print(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])1094 static int do_hsdk_clock_print(struct cmd_tbl *cmdtp, int flag, int argc,
1095 			       char *const argv[])
1096 {
1097 	/* Main clocks */
1098 	soc_clk_ctl("cpu-clk", NULL, CLK_PRINT | CLK_MHZ);
1099 	soc_clk_ctl("tun-clk", NULL, CLK_PRINT | CLK_MHZ);
1100 	soc_clk_ctl("axi-clk", NULL, CLK_PRINT | CLK_MHZ);
1101 	soc_clk_ctl("ddr-clk", NULL, CLK_PRINT | CLK_MHZ);
1102 
1103 	return CMD_RET_SUCCESS;
1104 }
1105 
do_hsdk_clock_print_all(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])1106 static int do_hsdk_clock_print_all(struct cmd_tbl *cmdtp, int flag, int argc,
1107 				   char *const argv[])
1108 {
1109 	/*
1110 	 * NOTE: as of today we don't use some peripherals like HDMI / EBI
1111 	 * so we don't want to print their clocks ("hdmi-sys-clk", "hdmi-pll",
1112 	 * "hdmi-clk", "ebi-clk"). Nevertheless their clock subsystems is fully
1113 	 * functional and we can print their clocks if it is required
1114 	 */
1115 
1116 	/* CPU clock domain */
1117 	soc_clk_ctl("cpu-pll", NULL, CLK_PRINT | CLK_MHZ);
1118 	soc_clk_ctl("cpu-clk", NULL, CLK_PRINT | CLK_MHZ);
1119 	printf("\n");
1120 
1121 	/* SYS clock domain */
1122 	soc_clk_ctl("sys-pll", NULL, CLK_PRINT | CLK_MHZ);
1123 	soc_clk_ctl("apb-clk", NULL, CLK_PRINT | CLK_MHZ);
1124 	soc_clk_ctl("axi-clk", NULL, CLK_PRINT | CLK_MHZ);
1125 	soc_clk_ctl("eth-clk", NULL, CLK_PRINT | CLK_MHZ);
1126 	soc_clk_ctl("usb-clk", NULL, CLK_PRINT | CLK_MHZ);
1127 	soc_clk_ctl("sdio-clk", NULL, CLK_PRINT | CLK_MHZ);
1128 	if (is_board_match_runtime(T_BOARD_HSDK_4XD))
1129 		soc_clk_ctl("hdmi-sys-clk", NULL, CLK_PRINT | CLK_MHZ);
1130 	soc_clk_ctl("gfx-core-clk", NULL, CLK_PRINT | CLK_MHZ);
1131 	if (is_board_match_runtime(T_BOARD_HSDK)) {
1132 		soc_clk_ctl("gfx-dma-clk", NULL, CLK_PRINT | CLK_MHZ);
1133 		soc_clk_ctl("gfx-cfg-clk", NULL, CLK_PRINT | CLK_MHZ);
1134 	}
1135 	soc_clk_ctl("dmac-core-clk", NULL, CLK_PRINT | CLK_MHZ);
1136 	soc_clk_ctl("dmac-cfg-clk", NULL, CLK_PRINT | CLK_MHZ);
1137 	soc_clk_ctl("sdio-ref-clk", NULL, CLK_PRINT | CLK_MHZ);
1138 	soc_clk_ctl("spi-clk", NULL, CLK_PRINT | CLK_MHZ);
1139 	soc_clk_ctl("i2c-clk", NULL, CLK_PRINT | CLK_MHZ);
1140 /*	soc_clk_ctl("ebi-clk", NULL, CLK_PRINT | CLK_MHZ); */
1141 	soc_clk_ctl("uart-clk", NULL, CLK_PRINT | CLK_MHZ);
1142 	printf("\n");
1143 
1144 	/* DDR clock domain */
1145 	soc_clk_ctl("ddr-clk", NULL, CLK_PRINT | CLK_MHZ);
1146 	printf("\n");
1147 
1148 	/* HDMI clock domain */
1149 	if (is_board_match_runtime(T_BOARD_HSDK_4XD)) {
1150 		soc_clk_ctl("hdmi-pll", NULL, CLK_PRINT | CLK_MHZ);
1151 		soc_clk_ctl("hdmi-clk", NULL, CLK_PRINT | CLK_MHZ);
1152 		printf("\n");
1153 	}
1154 
1155 	/* TUN clock domain */
1156 	soc_clk_ctl("tun-pll", NULL, CLK_PRINT | CLK_MHZ);
1157 	soc_clk_ctl("tun-clk", NULL, CLK_PRINT | CLK_MHZ);
1158 	soc_clk_ctl("rom-clk", NULL, CLK_PRINT | CLK_MHZ);
1159 	soc_clk_ctl("pwm-clk", NULL, CLK_PRINT | CLK_MHZ);
1160 	if (is_board_match_runtime(T_BOARD_HSDK_4XD))
1161 		soc_clk_ctl("timer-clk", NULL, CLK_PRINT | CLK_MHZ);
1162 	printf("\n");
1163 
1164 	return CMD_RET_SUCCESS;
1165 }
1166 
1167 struct cmd_tbl cmd_hsdk_clock[] = {
1168 	U_BOOT_CMD_MKENT(set, 3, 0, do_hsdk_clock_set, "", ""),
1169 	U_BOOT_CMD_MKENT(get, 3, 0, do_hsdk_clock_get, "", ""),
1170 	U_BOOT_CMD_MKENT(print, 4, 0, do_hsdk_clock_print, "", ""),
1171 	U_BOOT_CMD_MKENT(print_all, 4, 0, do_hsdk_clock_print_all, "", ""),
1172 };
1173 
do_hsdk_clock(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])1174 static int do_hsdk_clock(struct cmd_tbl *cmdtp, int flag, int argc,
1175 			 char *const argv[])
1176 {
1177 	struct cmd_tbl *c;
1178 
1179 	if (argc < 2)
1180 		return CMD_RET_USAGE;
1181 
1182 	/* Strip off leading 'hsdk_clock' command argument */
1183 	argc--;
1184 	argv++;
1185 
1186 	c = find_cmd_tbl(argv[0], cmd_hsdk_clock, ARRAY_SIZE(cmd_hsdk_clock));
1187 	if (!c)
1188 		return CMD_RET_USAGE;
1189 
1190 	return c->cmd(cmdtp, flag, argc, argv);
1191 }
1192 
1193 U_BOOT_CMD(
1194 	hsdk_clock, CONFIG_SYS_MAXARGS, 0, do_hsdk_clock,
1195 	"Synopsys HSDK specific clock command",
1196 	"set   - Set clock to values specified in environment / command line arguments\n"
1197 	"hsdk_clock get   - Save clock values to environment\n"
1198 	"hsdk_clock print - Print main clock values to console\n"
1199 	"hsdk_clock print_all - Print all clock values to console\n"
1200 );
1201 
1202 /* init calls */
board_early_init_f(void)1203 int board_early_init_f(void)
1204 {
1205 	/*
1206 	 * Setup AXI apertures unconditionally as we want to have DDR
1207 	 * in 0x00000000 region when we are kicking slave cpus.
1208 	 */
1209 	init_memory_bridge();
1210 
1211 	/*
1212 	 * Switch SDIO external ciu clock divider from default div-by-8 to
1213 	 * minimum possible div-by-2.
1214 	 */
1215 	writel(SDIO_UHS_REG_EXT_DIV_2, (void __iomem *)SDIO_UHS_REG_EXT);
1216 
1217 	return 0;
1218 }
1219 
board_early_init_r(void)1220 int board_early_init_r(void)
1221 {
1222 	/*
1223 	 * TODO: Init USB here to be able read environment from USB MSD.
1224 	 * It can be done with usb_init() call. We can't do it right now
1225 	 * due to brocken USB IP SW reset and lack of USB IP HW reset in
1226 	 * linux kernel (if we init USB here we will break USB in linux)
1227 	 */
1228 
1229 	/*
1230 	 * Flush all d$ as we want to use uncached area with st.di / ld.di
1231 	 * instructions and we don't want to have any dirty line in L1d$ or SL$
1232 	 * in this area. It is enough to flush all d$ once here as we access to
1233 	 * uncached area with regular st (non .di) instruction only when we copy
1234 	 * data during u-boot relocation.
1235 	 */
1236 	flush_dcache_all();
1237 
1238 	printf("Relocation Offset is: %08lx\n", gd->reloc_off);
1239 
1240 	return 0;
1241 }
1242 
board_late_init(void)1243 int board_late_init(void)
1244 {
1245 	/*
1246 	 * Populate environment with clock frequency values -
1247 	 * run hsdk_clock get callback without uboot command run.
1248 	 */
1249 	do_hsdk_clock_get(NULL, 0, 0, NULL);
1250 
1251 	return 0;
1252 }
1253 
checkboard(void)1254 int checkboard(void)
1255 {
1256 	u32 reg;
1257 
1258 	printf("Board: Synopsys %s\n", board_name(get_board_type_runtime()));
1259 
1260 	if (board_mismatch())
1261 		printf("WARN: U-boot is configured NOT for this board but for %s!\n",
1262 		       board_name(get_board_type_config()));
1263 
1264 	reg = readl(CREG_AXI_M_HS_CORE_BOOT) & CREG_CORE_BOOT_IMAGE;
1265 	printf("U-boot autostart: %s\n", reg ? "enabled" : "disabled");
1266 
1267 	return 0;
1268 };
1269