1 #ifndef _LINUX_KERNEL_H
2 #define _LINUX_KERNEL_H
3 
4 #include <linux/types.h>
5 #include <linux/printk.h> /* for printf/pr_* utilities */
6 
7 #define USHRT_MAX	((u16)(~0U))
8 #define SHRT_MAX	((s16)(USHRT_MAX>>1))
9 #define SHRT_MIN	((s16)(-SHRT_MAX - 1))
10 #define INT_MAX		((int)(~0U>>1))
11 #define INT_MIN		(-INT_MAX - 1)
12 #define UINT_MAX	(~0U)
13 #define LONG_MAX	((long)(~0UL>>1))
14 #define LONG_MIN	(-LONG_MAX - 1)
15 #define ULONG_MAX	(~0UL)
16 #define LLONG_MAX	((long long)(~0ULL>>1))
17 #define LLONG_MIN	(-LLONG_MAX - 1)
18 #define ULLONG_MAX	(~0ULL)
19 #ifndef SIZE_MAX
20 #define SIZE_MAX	(~(size_t)0)
21 #endif
22 #ifndef SSIZE_MAX
23 #define SSIZE_MAX	((ssize_t)(SIZE_MAX >> 1))
24 #endif
25 
26 #define U8_MAX		((u8)~0U)
27 #define S8_MAX		((s8)(U8_MAX>>1))
28 #define S8_MIN		((s8)(-S8_MAX - 1))
29 #define U16_MAX		((u16)~0U)
30 #define S16_MAX		((s16)(U16_MAX>>1))
31 #define S16_MIN		((s16)(-S16_MAX - 1))
32 #define U32_MAX		((u32)~0U)
33 #define S32_MAX		((s32)(U32_MAX>>1))
34 #define S32_MIN		((s32)(-S32_MAX - 1))
35 #define U64_MAX		((u64)~0ULL)
36 #define S64_MAX		((s64)(U64_MAX>>1))
37 #define S64_MIN		((s64)(-S64_MAX - 1))
38 
39 /* Aliases defined by stdint.h */
40 #define UINT32_MAX	U32_MAX
41 #define UINT64_MAX	U64_MAX
42 
43 #define INT32_MAX	S32_MAX
44 
45 #define STACK_MAGIC	0xdeadbeef
46 
47 #define REPEAT_BYTE(x)	((~0ul / 0xff) * (x))
48 
49 #define ALIGN(x,a)		__ALIGN_MASK((x),(typeof(x))(a)-1)
50 #define ALIGN_DOWN(x, a)	ALIGN((x) - ((a) - 1), (a))
51 #define __ALIGN_MASK(x,mask)	(((x)+(mask))&~(mask))
52 #define PTR_ALIGN(p, a)		((typeof(p))ALIGN((unsigned long)(p), (a)))
53 #define IS_ALIGNED(x, a)		(((x) & ((typeof(x))(a) - 1)) == 0)
54 
55 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
56 
57 /*
58  * This looks more complex than it should be. But we need to
59  * get the type for the ~ right in round_down (it needs to be
60  * as wide as the result!), and we want to evaluate the macro
61  * arguments just once each.
62  */
63 #define __round_mask(x, y) ((__typeof__(x))((y)-1))
64 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
65 #define round_down(x, y) ((x) & ~__round_mask(x, y))
66 
67 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
68 #define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
69 
70 #define DIV_ROUND_DOWN_ULL(ll, d) \
71 	({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
72 
73 #define DIV_ROUND_UP_ULL(ll, d)		DIV_ROUND_DOWN_ULL((ll) + (d) - 1, (d))
74 
75 #define ROUND(a, b)		(((a) + (b) - 1) & ~((b) - 1))
76 
77 #if BITS_PER_LONG == 32
78 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
79 #else
80 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
81 #endif
82 
83 /* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */
84 #define roundup(x, y) (					\
85 {							\
86 	const typeof(y) __y = y;			\
87 	(((x) + (__y - 1)) / __y) * __y;		\
88 }							\
89 )
90 #define rounddown(x, y) (				\
91 {							\
92 	typeof(x) __x = (x);				\
93 	__x - (__x % (y));				\
94 }							\
95 )
96 
97 /*
98  * Divide positive or negative dividend by positive divisor and round
99  * to closest integer. Result is undefined for negative divisors and
100  * for negative dividends if the divisor variable type is unsigned.
101  */
102 #define DIV_ROUND_CLOSEST(x, divisor)(			\
103 {							\
104 	typeof(x) __x = x;				\
105 	typeof(divisor) __d = divisor;			\
106 	(((typeof(x))-1) > 0 ||				\
107 	 ((typeof(divisor))-1) > 0 || (__x) > 0) ?	\
108 		(((__x) + ((__d) / 2)) / (__d)) :	\
109 		(((__x) - ((__d) / 2)) / (__d));	\
110 }							\
111 )
112 /*
113  * Same as above but for u64 dividends. divisor must be a 32-bit
114  * number.
115  */
116 #define DIV_ROUND_CLOSEST_ULL(x, divisor)(		\
117 {							\
118 	typeof(divisor) __d = divisor;			\
119 	unsigned long long _tmp = (x) + (__d) / 2;	\
120 	do_div(_tmp, __d);				\
121 	_tmp;						\
122 }							\
123 )
124 
125 /*
126  * Multiplies an integer by a fraction, while avoiding unnecessary
127  * overflow or loss of precision.
128  */
129 #define mult_frac(x, numer, denom)(			\
130 {							\
131 	typeof(x) quot = (x) / (denom);			\
132 	typeof(x) rem  = (x) % (denom);			\
133 	(quot * (numer)) + ((rem * (numer)) / (denom));	\
134 }							\
135 )
136 
137 /**
138  * upper_32_bits - return bits 32-63 of a number
139  * @n: the number we're accessing
140  *
141  * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
142  * the "right shift count >= width of type" warning when that quantity is
143  * 32-bits.
144  */
145 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
146 
147 /**
148  * lower_32_bits - return bits 0-31 of a number
149  * @n: the number we're accessing
150  */
151 #define lower_32_bits(n) ((u32)(n))
152 
153 /*
154  * abs() handles unsigned and signed longs, ints, shorts and chars.  For all
155  * input types abs() returns a signed long.
156  * abs() should not be used for 64-bit types (s64, u64, long long) - use abs64()
157  * for those.
158  */
159 #define abs(x) ({						\
160 		long ret;					\
161 		if (sizeof(x) == sizeof(long)) {		\
162 			long __x = (x);				\
163 			ret = (__x < 0) ? -__x : __x;		\
164 		} else {					\
165 			int __x = (x);				\
166 			ret = (__x < 0) ? -__x : __x;		\
167 		}						\
168 		ret;						\
169 	})
170 
171 #define abs64(x) ({				\
172 		s64 __x = (x);			\
173 		(__x < 0) ? -__x : __x;		\
174 	})
175 
176 /*
177  * min()/max()/clamp() macros that also do
178  * strict type-checking.. See the
179  * "unnecessary" pointer comparison.
180  */
181 #define min(x, y) ({				\
182 	typeof(x) _min1 = (x);			\
183 	typeof(y) _min2 = (y);			\
184 	(void) (&_min1 == &_min2);		\
185 	_min1 < _min2 ? _min1 : _min2; })
186 
187 #define max(x, y) ({				\
188 	typeof(x) _max1 = (x);			\
189 	typeof(y) _max2 = (y);			\
190 	(void) (&_max1 == &_max2);		\
191 	_max1 > _max2 ? _max1 : _max2; })
192 
193 #define min3(x, y, z) min((typeof(x))min(x, y), z)
194 #define max3(x, y, z) max((typeof(x))max(x, y), z)
195 
196 /**
197  * min_not_zero - return the minimum that is _not_ zero, unless both are zero
198  * @x: value1
199  * @y: value2
200  */
201 #define min_not_zero(x, y) ({			\
202 	typeof(x) __x = (x);			\
203 	typeof(y) __y = (y);			\
204 	__x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
205 
206 /**
207  * clamp - return a value clamped to a given range with strict typechecking
208  * @val: current value
209  * @lo: lowest allowable value
210  * @hi: highest allowable value
211  *
212  * This macro does strict typechecking of lo/hi to make sure they are of the
213  * same type as val.  See the unnecessary pointer comparisons.
214  */
215 #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
216 
217 /*
218  * ..and if you can't take the strict
219  * types, you can specify one yourself.
220  *
221  * Or not use min/max/clamp at all, of course.
222  */
223 #define min_t(type, x, y) ({			\
224 	type __min1 = (x);			\
225 	type __min2 = (y);			\
226 	__min1 < __min2 ? __min1: __min2; })
227 
228 #define max_t(type, x, y) ({			\
229 	type __max1 = (x);			\
230 	type __max2 = (y);			\
231 	__max1 > __max2 ? __max1: __max2; })
232 
233 /**
234  * clamp_t - return a value clamped to a given range using a given type
235  * @type: the type of variable to use
236  * @val: current value
237  * @lo: minimum allowable value
238  * @hi: maximum allowable value
239  *
240  * This macro does no typechecking and uses temporary variables of type
241  * 'type' to make all the comparisons.
242  */
243 #define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
244 
245 /**
246  * clamp_val - return a value clamped to a given range using val's type
247  * @val: current value
248  * @lo: minimum allowable value
249  * @hi: maximum allowable value
250  *
251  * This macro does no typechecking and uses temporary variables of whatever
252  * type the input argument 'val' is.  This is useful when val is an unsigned
253  * type and min and max are literals that will otherwise be assigned a signed
254  * integer type.
255  */
256 #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
257 
258 
259 /*
260  * swap - swap value of @a and @b
261  */
262 #define swap(a, b) \
263 	do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
264 
265 /**
266  * container_of - cast a member of a structure out to the containing structure
267  * @ptr:	the pointer to the member.
268  * @type:	the type of the container struct this is embedded in.
269  * @member:	the name of the member within the struct.
270  *
271  */
272 #define container_of(ptr, type, member) ({			\
273 	const typeof( ((type *)0)->member ) *__mptr = (ptr);	\
274 	(type *)( (char *)__mptr - offsetof(type,member) );})
275 
276 /*
277  * check_member() - Check the offset of a structure member
278  *
279  * @structure:	Name of structure (e.g. global_data)
280  * @member:	Name of member (e.g. baudrate)
281  * @offset:	Expected offset in bytes
282  */
283 #define check_member(structure, member, offset) _Static_assert( \
284 	offsetof(struct structure, member) == (offset), \
285 	"`struct " #structure "` offset for `" #member "` is not " #offset)
286 
287 #endif
288