1 // SPDX-License-Identifier: GPL-2.0+
2 
3 #include <common.h>
4 #include <env.h>
5 #include <malloc.h>
6 #include <net.h>
7 #include <netdev.h>
8 #include <pci.h>
9 #include <linux/bitops.h>
10 #include <linux/delay.h>
11 
12 #define SROM_DLEVEL	0
13 
14 #undef UPDATE_SROM
15 
16 /* PCI Registers. */
17 #define PCI_CFDA_PSM	0x43
18 
19 #define CFRV_RN		0x000000f0	/* Revision Number */
20 
21 #define WAKEUP		0x00		/* Power Saving Wakeup */
22 #define SLEEP		0x80		/* Power Saving Sleep Mode */
23 
24 #define DC2114x_BRK	0x0020	/* CFRV break between DC21142 & DC21143 */
25 
26 /* Ethernet chip registers. */
27 #define DE4X5_BMR	0x000		/* Bus Mode Register */
28 #define DE4X5_TPD	0x008		/* Transmit Poll Demand Reg */
29 #define DE4X5_RRBA	0x018		/* RX Ring Base Address Reg */
30 #define DE4X5_TRBA	0x020		/* TX Ring Base Address Reg */
31 #define DE4X5_STS	0x028		/* Status Register */
32 #define DE4X5_OMR	0x030		/* Operation Mode Register */
33 #define DE4X5_SICR	0x068		/* SIA Connectivity Register */
34 #define DE4X5_APROM	0x048		/* Ethernet Address PROM */
35 
36 /* Register bits. */
37 #define BMR_SWR		0x00000001	/* Software Reset */
38 #define STS_TS		0x00700000	/* Transmit Process State */
39 #define STS_RS		0x000e0000	/* Receive Process State */
40 #define OMR_ST		0x00002000	/* Start/Stop Transmission Command */
41 #define OMR_SR		0x00000002	/* Start/Stop Receive */
42 #define OMR_PS		0x00040000	/* Port Select */
43 #define OMR_SDP		0x02000000	/* SD Polarity - MUST BE ASSERTED */
44 #define OMR_PM		0x00000080	/* Pass All Multicast */
45 
46 /* Descriptor bits. */
47 #define R_OWN		0x80000000	/* Own Bit */
48 #define RD_RER		0x02000000	/* Receive End Of Ring */
49 #define RD_LS		0x00000100	/* Last Descriptor */
50 #define RD_ES		0x00008000	/* Error Summary */
51 #define TD_TER		0x02000000	/* Transmit End Of Ring */
52 #define T_OWN		0x80000000	/* Own Bit */
53 #define TD_LS		0x40000000	/* Last Segment */
54 #define TD_FS		0x20000000	/* First Segment */
55 #define TD_ES		0x00008000	/* Error Summary */
56 #define TD_SET		0x08000000	/* Setup Packet */
57 
58 /* The EEPROM commands include the alway-set leading bit. */
59 #define SROM_WRITE_CMD	5
60 #define SROM_READ_CMD	6
61 #define SROM_ERASE_CMD	7
62 
63 #define SROM_HWADD	0x0014		/* Hardware Address offset in SROM */
64 #define SROM_RD		0x00004000	/* Read from Boot ROM */
65 #define EE_DATA_WRITE	0x04		/* EEPROM chip data in. */
66 #define EE_WRITE_0	0x4801
67 #define EE_WRITE_1	0x4805
68 #define EE_DATA_READ	0x08		/* EEPROM chip data out. */
69 #define SROM_SR		0x00000800	/* Select Serial ROM when set */
70 
71 #define DT_IN		0x00000004	/* Serial Data In */
72 #define DT_CLK		0x00000002	/* Serial ROM Clock */
73 #define DT_CS		0x00000001	/* Serial ROM Chip Select */
74 
75 #define POLL_DEMAND	1
76 
77 #if defined(CONFIG_E500)
78 #define phys_to_bus(a) (a)
79 #else
80 #define phys_to_bus(a)	pci_phys_to_mem((pci_dev_t)dev->priv, a)
81 #endif
82 
83 #define NUM_RX_DESC PKTBUFSRX
84 #define NUM_TX_DESC 1			/* Number of TX descriptors   */
85 #define RX_BUFF_SZ  PKTSIZE_ALIGN
86 
87 #define TOUT_LOOP   1000000
88 
89 #define SETUP_FRAME_LEN 192
90 
91 struct de4x5_desc {
92 	volatile s32 status;
93 	u32 des1;
94 	u32 buf;
95 	u32 next;
96 };
97 
98 /* RX and TX descriptor ring */
99 static struct de4x5_desc rx_ring[NUM_RX_DESC] __aligned(32);
100 static struct de4x5_desc tx_ring[NUM_TX_DESC] __aligned(32);
101 static int rx_new;	/* RX descriptor ring pointer */
102 static int tx_new;	/* TX descriptor ring pointer */
103 
104 static char rx_ring_size;
105 static char tx_ring_size;
106 
dc2114x_inl(struct eth_device * dev,u32 addr)107 static u32 dc2114x_inl(struct eth_device *dev, u32 addr)
108 {
109 	return le32_to_cpu(*(volatile u32 *)(addr + dev->iobase));
110 }
111 
dc2114x_outl(struct eth_device * dev,u32 command,u32 addr)112 static void dc2114x_outl(struct eth_device *dev, u32 command, u32 addr)
113 {
114 	*(volatile u32 *)(addr + dev->iobase) = cpu_to_le32(command);
115 }
116 
reset_de4x5(struct eth_device * dev)117 static void reset_de4x5(struct eth_device *dev)
118 {
119 	u32 i;
120 
121 	i = dc2114x_inl(dev, DE4X5_BMR);
122 	mdelay(1);
123 	dc2114x_outl(dev, i | BMR_SWR, DE4X5_BMR);
124 	mdelay(1);
125 	dc2114x_outl(dev, i, DE4X5_BMR);
126 	mdelay(1);
127 
128 	for (i = 0; i < 5; i++) {
129 		dc2114x_inl(dev, DE4X5_BMR);
130 		mdelay(10);
131 	}
132 
133 	mdelay(1);
134 }
135 
start_de4x5(struct eth_device * dev)136 static void start_de4x5(struct eth_device *dev)
137 {
138 	u32 omr;
139 
140 	omr = dc2114x_inl(dev, DE4X5_OMR);
141 	omr |= OMR_ST | OMR_SR;
142 	dc2114x_outl(dev, omr, DE4X5_OMR);	/* Enable the TX and/or RX */
143 }
144 
stop_de4x5(struct eth_device * dev)145 static void stop_de4x5(struct eth_device *dev)
146 {
147 	u32 omr;
148 
149 	omr = dc2114x_inl(dev, DE4X5_OMR);
150 	omr &= ~(OMR_ST | OMR_SR);
151 	dc2114x_outl(dev, omr, DE4X5_OMR);	/* Disable the TX and/or RX */
152 }
153 
154 /* SROM Read and write routines. */
sendto_srom(struct eth_device * dev,u_int command,u_long addr)155 static void sendto_srom(struct eth_device *dev, u_int command, u_long addr)
156 {
157 	dc2114x_outl(dev, command, addr);
158 	udelay(1);
159 }
160 
getfrom_srom(struct eth_device * dev,u_long addr)161 static int getfrom_srom(struct eth_device *dev, u_long addr)
162 {
163 	u32 tmp = dc2114x_inl(dev, addr);
164 
165 	udelay(1);
166 	return tmp;
167 }
168 
169 /* Note: this routine returns extra data bits for size detection. */
do_read_eeprom(struct eth_device * dev,u_long ioaddr,int location,int addr_len)170 static int do_read_eeprom(struct eth_device *dev, u_long ioaddr, int location,
171 			  int addr_len)
172 {
173 	int read_cmd = location | (SROM_READ_CMD << addr_len);
174 	unsigned int retval = 0;
175 	int i;
176 
177 	sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
178 	sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
179 
180 	debug_cond(SROM_DLEVEL >= 1, " EEPROM read at %d ", location);
181 
182 	/* Shift the read command bits out. */
183 	for (i = 4 + addr_len; i >= 0; i--) {
184 		short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
185 
186 		sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval,
187 			    ioaddr);
188 		udelay(10);
189 		sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval | DT_CLK,
190 			    ioaddr);
191 		udelay(10);
192 		debug_cond(SROM_DLEVEL >= 2, "%X",
193 			   getfrom_srom(dev, ioaddr) & 15);
194 		retval = (retval << 1) |
195 			 !!(getfrom_srom(dev, ioaddr) & EE_DATA_READ);
196 	}
197 
198 	sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
199 
200 	debug_cond(SROM_DLEVEL >= 2, " :%X:", getfrom_srom(dev, ioaddr) & 15);
201 
202 	for (i = 16; i > 0; i--) {
203 		sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
204 		udelay(10);
205 		debug_cond(SROM_DLEVEL >= 2, "%X",
206 			   getfrom_srom(dev, ioaddr) & 15);
207 		retval = (retval << 1) |
208 			 !!(getfrom_srom(dev, ioaddr) & EE_DATA_READ);
209 		sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
210 		udelay(10);
211 	}
212 
213 	/* Terminate the EEPROM access. */
214 	sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
215 
216 	debug_cond(SROM_DLEVEL >= 2, " EEPROM value at %d is %5.5x.\n",
217 		   location, retval);
218 
219 	return retval;
220 }
221 
222 /*
223  * This executes a generic EEPROM command, typically a write or write
224  * enable. It returns the data output from the EEPROM, and thus may
225  * also be used for reads.
226  */
do_eeprom_cmd(struct eth_device * dev,u_long ioaddr,int cmd,int cmd_len)227 static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr, int cmd,
228 			 int cmd_len)
229 {
230 	unsigned int retval = 0;
231 
232 	debug_cond(SROM_DLEVEL >= 1, " EEPROM op 0x%x: ", cmd);
233 
234 	sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
235 
236 	/* Shift the command bits out. */
237 	do {
238 		short dataval = (cmd & BIT(cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
239 
240 		sendto_srom(dev, dataval, ioaddr);
241 		udelay(10);
242 
243 		debug_cond(SROM_DLEVEL >= 2, "%X",
244 			   getfrom_srom(dev, ioaddr) & 15);
245 
246 		sendto_srom(dev, dataval | DT_CLK, ioaddr);
247 		udelay(10);
248 		retval = (retval << 1) |
249 			 !!(getfrom_srom(dev, ioaddr) & EE_DATA_READ);
250 	} while (--cmd_len >= 0);
251 
252 	sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
253 
254 	/* Terminate the EEPROM access. */
255 	sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
256 
257 	debug_cond(SROM_DLEVEL >= 1, " EEPROM result is 0x%5.5x.\n", retval);
258 
259 	return retval;
260 }
261 
read_srom(struct eth_device * dev,u_long ioaddr,int index)262 static int read_srom(struct eth_device *dev, u_long ioaddr, int index)
263 {
264 	int ee_addr_size;
265 
266 	ee_addr_size = (do_read_eeprom(dev, ioaddr, 0xff, 8) & BIT(18)) ? 8 : 6;
267 
268 	return do_eeprom_cmd(dev, ioaddr, 0xffff |
269 			     (((SROM_READ_CMD << ee_addr_size) | index) << 16),
270 			     3 + ee_addr_size + 16);
271 }
272 
273 #ifdef UPDATE_SROM
write_srom(struct eth_device * dev,u_long ioaddr,int index,int new_value)274 static int write_srom(struct eth_device *dev, u_long ioaddr, int index,
275 		      int new_value)
276 {
277 	unsigned short newval;
278 	int ee_addr_size;
279 	int i;
280 
281 	ee_addr_size = (do_read_eeprom(dev, ioaddr, 0xff, 8) & BIT(18)) ? 8 : 6;
282 
283 	udelay(10 * 1000); /* test-only */
284 
285 	debug_cond(SROM_DLEVEL >= 1, "ee_addr_size=%d.\n", ee_addr_size);
286 	debug_cond(SROM_DLEVEL >= 1,
287 		   "Writing new entry 0x%4.4x to offset %d.\n",
288 		   new_value, index);
289 
290 	/* Enable programming modes. */
291 	do_eeprom_cmd(dev, ioaddr, 0x4f << (ee_addr_size - 4),
292 		      3 + ee_addr_size);
293 
294 	/* Do the actual write. */
295 	do_eeprom_cmd(dev, ioaddr, new_value |
296 		      (((SROM_WRITE_CMD << ee_addr_size) | index) << 16),
297 		      3 + ee_addr_size + 16);
298 
299 	/* Poll for write finished. */
300 	sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
301 	for (i = 0; i < 10000; i++) {	/* Typical 2000 ticks */
302 		if (getfrom_srom(dev, ioaddr) & EE_DATA_READ)
303 			break;
304 	}
305 
306 	debug_cond(SROM_DLEVEL >= 1, " Write finished after %d ticks.\n", i);
307 
308 	/* Disable programming. */
309 	do_eeprom_cmd(dev, ioaddr, (0x40 << (ee_addr_size - 4)),
310 		      3 + ee_addr_size);
311 
312 	/* And read the result. */
313 	newval = do_eeprom_cmd(dev, ioaddr,
314 			       (((SROM_READ_CMD << ee_addr_size) | index) << 16)
315 			       | 0xffff, 3 + ee_addr_size + 16);
316 
317 	debug_cond(SROM_DLEVEL >= 1, "  New value at offset %d is %4.4x.\n",
318 		   index, newval);
319 
320 	return 1;
321 }
322 
update_srom(struct eth_device * dev,bd_t * bis)323 static void update_srom(struct eth_device *dev, bd_t *bis)
324 {
325 	static unsigned short eeprom[0x40] = {
326 		0x140b, 0x6610, 0x0000, 0x0000,	/* 00 */
327 		0x0000, 0x0000, 0x0000, 0x0000,	/* 04 */
328 		0x00a3, 0x0103, 0x0000, 0x0000,	/* 08 */
329 		0x0000, 0x1f00, 0x0000, 0x0000,	/* 0c */
330 		0x0108, 0x038d, 0x0000, 0x0000,	/* 10 */
331 		0xe078, 0x0001, 0x0040, 0x0018,	/* 14 */
332 		0x0000, 0x0000, 0x0000, 0x0000,	/* 18 */
333 		0x0000, 0x0000, 0x0000, 0x0000,	/* 1c */
334 		0x0000, 0x0000, 0x0000, 0x0000,	/* 20 */
335 		0x0000, 0x0000, 0x0000, 0x0000,	/* 24 */
336 		0x0000, 0x0000, 0x0000, 0x0000,	/* 28 */
337 		0x0000, 0x0000, 0x0000, 0x0000,	/* 2c */
338 		0x0000, 0x0000, 0x0000, 0x0000,	/* 30 */
339 		0x0000, 0x0000, 0x0000, 0x0000,	/* 34 */
340 		0x0000, 0x0000, 0x0000, 0x0000,	/* 38 */
341 		0x0000, 0x0000, 0x0000, 0x4e07,	/* 3c */
342 	};
343 	uchar enetaddr[6];
344 	int i;
345 
346 	/* Ethernet Addr... */
347 	if (!eth_env_get_enetaddr("ethaddr", enetaddr))
348 		return;
349 
350 	eeprom[0x0a] = (enetaddr[1] << 8) | enetaddr[0];
351 	eeprom[0x0b] = (enetaddr[3] << 8) | enetaddr[2];
352 	eeprom[0x0c] = (enetaddr[5] << 8) | enetaddr[4];
353 
354 	for (i = 0; i < 0x40; i++)
355 		write_srom(dev, DE4X5_APROM, i, eeprom[i]);
356 }
357 #endif /* UPDATE_SROM */
358 
send_setup_frame(struct eth_device * dev,bd_t * bis)359 static void send_setup_frame(struct eth_device *dev, bd_t *bis)
360 {
361 	char setup_frame[SETUP_FRAME_LEN];
362 	char *pa = &setup_frame[0];
363 	int i;
364 
365 	memset(pa, 0xff, SETUP_FRAME_LEN);
366 
367 	for (i = 0; i < ETH_ALEN; i++) {
368 		*(pa + (i & 1)) = dev->enetaddr[i];
369 		if (i & 0x01)
370 			pa += 4;
371 	}
372 
373 	for (i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
374 		if (i < TOUT_LOOP)
375 			continue;
376 
377 		printf("%s: tx error buffer not ready\n", dev->name);
378 		return;
379 	}
380 
381 	tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32)&setup_frame[0]));
382 	tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_SET | SETUP_FRAME_LEN);
383 	tx_ring[tx_new].status = cpu_to_le32(T_OWN);
384 
385 	dc2114x_outl(dev, POLL_DEMAND, DE4X5_TPD);
386 
387 	for (i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
388 		if (i < TOUT_LOOP)
389 			continue;
390 
391 		printf("%s: tx buffer not ready\n", dev->name);
392 		return;
393 	}
394 
395 	if (le32_to_cpu(tx_ring[tx_new].status) != 0x7FFFFFFF) {
396 		printf("TX error status2 = 0x%08X\n",
397 		       le32_to_cpu(tx_ring[tx_new].status));
398 	}
399 
400 	tx_new = (tx_new + 1) % NUM_TX_DESC;
401 }
402 
dc21x4x_send(struct eth_device * dev,void * packet,int length)403 static int dc21x4x_send(struct eth_device *dev, void *packet, int length)
404 {
405 	int status = -1;
406 	int i;
407 
408 	if (length <= 0) {
409 		printf("%s: bad packet size: %d\n", dev->name, length);
410 		goto done;
411 	}
412 
413 	for (i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
414 		if (i < TOUT_LOOP)
415 			continue;
416 
417 		printf("%s: tx error buffer not ready\n", dev->name);
418 		goto done;
419 	}
420 
421 	tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32)packet));
422 	tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_LS | TD_FS | length);
423 	tx_ring[tx_new].status = cpu_to_le32(T_OWN);
424 
425 	dc2114x_outl(dev, POLL_DEMAND, DE4X5_TPD);
426 
427 	for (i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
428 		if (i < TOUT_LOOP)
429 			continue;
430 
431 		printf(".%s: tx buffer not ready\n", dev->name);
432 		goto done;
433 	}
434 
435 	if (le32_to_cpu(tx_ring[tx_new].status) & TD_ES) {
436 		tx_ring[tx_new].status = 0x0;
437 		goto done;
438 	}
439 
440 	status = length;
441 
442 done:
443 	tx_new = (tx_new + 1) % NUM_TX_DESC;
444 	return status;
445 }
446 
dc21x4x_recv(struct eth_device * dev)447 static int dc21x4x_recv(struct eth_device *dev)
448 {
449 	int length = 0;
450 	u32 status;
451 
452 	while (true) {
453 		status = le32_to_cpu(rx_ring[rx_new].status);
454 
455 		if (status & R_OWN)
456 			break;
457 
458 		if (status & RD_LS) {
459 			/* Valid frame status. */
460 			if (status & RD_ES) {
461 				/* There was an error. */
462 				printf("RX error status = 0x%08X\n", status);
463 			} else {
464 				/* A valid frame received. */
465 				length = (le32_to_cpu(rx_ring[rx_new].status)
466 					  >> 16);
467 
468 				/* Pass the packet up to the protocol layers */
469 				net_process_received_packet
470 					(net_rx_packets[rx_new], length - 4);
471 			}
472 
473 			/*
474 			 * Change buffer ownership for this frame,
475 			 * back to the adapter.
476 			 */
477 			rx_ring[rx_new].status = cpu_to_le32(R_OWN);
478 		}
479 
480 		/* Update entry information. */
481 		rx_new = (rx_new + 1) % rx_ring_size;
482 	}
483 
484 	return length;
485 }
486 
dc21x4x_init(struct eth_device * dev,bd_t * bis)487 static int dc21x4x_init(struct eth_device *dev, bd_t *bis)
488 {
489 	int i;
490 	int devbusfn = (int)dev->priv;
491 
492 	/* Ensure we're not sleeping. */
493 	pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
494 
495 	reset_de4x5(dev);
496 
497 	if (dc2114x_inl(dev, DE4X5_STS) & (STS_TS | STS_RS)) {
498 		printf("Error: Cannot reset ethernet controller.\n");
499 		return -1;
500 	}
501 
502 	dc2114x_outl(dev, OMR_SDP | OMR_PS | OMR_PM, DE4X5_OMR);
503 
504 	for (i = 0; i < NUM_RX_DESC; i++) {
505 		rx_ring[i].status = cpu_to_le32(R_OWN);
506 		rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
507 		rx_ring[i].buf =
508 			cpu_to_le32(phys_to_bus((u32)net_rx_packets[i]));
509 		rx_ring[i].next = 0;
510 	}
511 
512 	for (i = 0; i < NUM_TX_DESC; i++) {
513 		tx_ring[i].status = 0;
514 		tx_ring[i].des1 = 0;
515 		tx_ring[i].buf = 0;
516 		tx_ring[i].next = 0;
517 	}
518 
519 	rx_ring_size = NUM_RX_DESC;
520 	tx_ring_size = NUM_TX_DESC;
521 
522 	/* Write the end of list marker to the descriptor lists. */
523 	rx_ring[rx_ring_size - 1].des1 |= cpu_to_le32(RD_RER);
524 	tx_ring[tx_ring_size - 1].des1 |= cpu_to_le32(TD_TER);
525 
526 	/* Tell the adapter where the TX/RX rings are located. */
527 	dc2114x_outl(dev, phys_to_bus((u32)&rx_ring), DE4X5_RRBA);
528 	dc2114x_outl(dev, phys_to_bus((u32)&tx_ring), DE4X5_TRBA);
529 
530 	start_de4x5(dev);
531 
532 	tx_new = 0;
533 	rx_new = 0;
534 
535 	send_setup_frame(dev, bis);
536 
537 	return 0;
538 }
539 
dc21x4x_halt(struct eth_device * dev)540 static void dc21x4x_halt(struct eth_device *dev)
541 {
542 	int devbusfn = (int)dev->priv;
543 
544 	stop_de4x5(dev);
545 	dc2114x_outl(dev, 0, DE4X5_SICR);
546 
547 	pci_write_config_byte(devbusfn, PCI_CFDA_PSM, SLEEP);
548 }
549 
read_hw_addr(struct eth_device * dev,bd_t * bis)550 static void read_hw_addr(struct eth_device *dev, bd_t *bis)
551 {
552 	u_short tmp, *p = (u_short *)(&dev->enetaddr[0]);
553 	int i, j = 0;
554 
555 	for (i = 0; i < (ETH_ALEN >> 1); i++) {
556 		tmp = read_srom(dev, DE4X5_APROM, (SROM_HWADD >> 1) + i);
557 		*p = le16_to_cpu(tmp);
558 		j += *p++;
559 	}
560 
561 	if (!j || j == 0x2fffd) {
562 		memset(dev->enetaddr, 0, ETH_ALEN);
563 		debug("Warning: can't read HW address from SROM.\n");
564 #ifdef UPDATE_SROM
565 		update_srom(dev, bis);
566 #endif
567 	}
568 }
569 
570 static struct pci_device_id supported[] = {
571 	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST },
572 	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142 },
573 	{ }
574 };
575 
dc21x4x_initialize(bd_t * bis)576 int dc21x4x_initialize(bd_t *bis)
577 {
578 	struct eth_device *dev;
579 	unsigned short status;
580 	unsigned char timer;
581 	unsigned int iobase;
582 	int card_number = 0;
583 	pci_dev_t devbusfn;
584 	unsigned int cfrv;
585 	int idx = 0;
586 
587 	while (1) {
588 		devbusfn = pci_find_devices(supported, idx++);
589 		if (devbusfn == -1)
590 			break;
591 
592 		/* Get the chip configuration revision register. */
593 		pci_read_config_dword(devbusfn, PCI_REVISION_ID, &cfrv);
594 
595 		if ((cfrv & CFRV_RN) < DC2114x_BRK) {
596 			printf("Error: The chip is not DC21143.\n");
597 			continue;
598 		}
599 
600 		pci_read_config_word(devbusfn, PCI_COMMAND, &status);
601 		status |= PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
602 		pci_write_config_word(devbusfn, PCI_COMMAND, status);
603 
604 		pci_read_config_word(devbusfn, PCI_COMMAND, &status);
605 		if (!(status & PCI_COMMAND_MEMORY)) {
606 			printf("Error: Can not enable MEMORY access.\n");
607 			continue;
608 		}
609 
610 		if (!(status & PCI_COMMAND_MASTER)) {
611 			printf("Error: Can not enable Bus Mastering.\n");
612 			continue;
613 		}
614 
615 		/* Check the latency timer for values >= 0x60. */
616 		pci_read_config_byte(devbusfn, PCI_LATENCY_TIMER, &timer);
617 
618 		if (timer < 0x60) {
619 			pci_write_config_byte(devbusfn, PCI_LATENCY_TIMER,
620 					      0x60);
621 		}
622 
623 		/* read BAR for memory space access */
624 		pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_1, &iobase);
625 		iobase &= PCI_BASE_ADDRESS_MEM_MASK;
626 		debug("dc21x4x: DEC 21142 PCI Device @0x%x\n", iobase);
627 
628 		dev = (struct eth_device *)malloc(sizeof(*dev));
629 		if (!dev) {
630 			printf("Can not allocalte memory of dc21x4x\n");
631 			break;
632 		}
633 
634 		memset(dev, 0, sizeof(*dev));
635 
636 		sprintf(dev->name, "dc21x4x#%d", card_number);
637 
638 		dev->iobase = pci_mem_to_phys(devbusfn, iobase);
639 		dev->priv = (void *)devbusfn;
640 		dev->init = dc21x4x_init;
641 		dev->halt = dc21x4x_halt;
642 		dev->send = dc21x4x_send;
643 		dev->recv = dc21x4x_recv;
644 
645 		/* Ensure we're not sleeping. */
646 		pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
647 
648 		udelay(10 * 1000);
649 
650 		read_hw_addr(dev, bis);
651 
652 		eth_register(dev);
653 
654 		card_number++;
655 	}
656 
657 	return card_number;
658 }
659