1 /*
2  * Copyright (c) 2011 The Chromium OS Authors.
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  */
6 
7 /* Tegra20 Clock control functions */
8 
9 #include <common.h>
10 #include <errno.h>
11 #include <asm/io.h>
12 #include <asm/arch/clock.h>
13 #include <asm/arch/tegra.h>
14 #include <asm/arch-tegra/clk_rst.h>
15 #include <asm/arch-tegra/timer.h>
16 #include <div64.h>
17 #include <fdtdec.h>
18 
19 /*
20  * Clock types that we can use as a source. The Tegra20 has muxes for the
21  * peripheral clocks, and in most cases there are four options for the clock
22  * source. This gives us a clock 'type' and exploits what commonality exists
23  * in the device.
24  *
25  * Letters are obvious, except for T which means CLK_M, and S which means the
26  * clock derived from 32KHz. Beware that CLK_M (also called OSC in the
27  * datasheet) and PLL_M are different things. The former is the basic
28  * clock supplied to the SOC from an external oscillator. The latter is the
29  * memory clock PLL.
30  *
31  * See definitions in clock_id in the header file.
32  */
33 enum clock_type_id {
34 	CLOCK_TYPE_AXPT,	/* PLL_A, PLL_X, PLL_P, CLK_M */
35 	CLOCK_TYPE_MCPA,	/* and so on */
36 	CLOCK_TYPE_MCPT,
37 	CLOCK_TYPE_PCM,
38 	CLOCK_TYPE_PCMT,
39 	CLOCK_TYPE_PCMT16,	/* CLOCK_TYPE_PCMT with 16-bit divider */
40 	CLOCK_TYPE_PCXTS,
41 	CLOCK_TYPE_PDCT,
42 
43 	CLOCK_TYPE_COUNT,
44 	CLOCK_TYPE_NONE = -1,	/* invalid clock type */
45 };
46 
47 enum {
48 	CLOCK_MAX_MUX	= 4	/* number of source options for each clock */
49 };
50 
51 /*
52  * Clock source mux for each clock type. This just converts our enum into
53  * a list of mux sources for use by the code. Note that CLOCK_TYPE_PCXTS
54  * is special as it has 5 sources. Since it also has a different number of
55  * bits in its register for the source, we just handle it with a special
56  * case in the code.
57  */
58 #define CLK(x) CLOCK_ID_ ## x
59 static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX] = {
60 	{ CLK(AUDIO),	CLK(XCPU),	CLK(PERIPH),	CLK(OSC)	},
61 	{ CLK(MEMORY),	CLK(CGENERAL),	CLK(PERIPH),	CLK(AUDIO)	},
62 	{ CLK(MEMORY),	CLK(CGENERAL),	CLK(PERIPH),	CLK(OSC)	},
63 	{ CLK(PERIPH),	CLK(CGENERAL),	CLK(MEMORY),	CLK(NONE)	},
64 	{ CLK(PERIPH),	CLK(CGENERAL),	CLK(MEMORY),	CLK(OSC)	},
65 	{ CLK(PERIPH),	CLK(CGENERAL),	CLK(MEMORY),	CLK(OSC)	},
66 	{ CLK(PERIPH),	CLK(CGENERAL),	CLK(XCPU),	CLK(OSC)	},
67 	{ CLK(PERIPH),	CLK(DISPLAY),	CLK(CGENERAL),	CLK(OSC)	},
68 };
69 
70 /*
71  * Clock peripheral IDs which sadly don't match up with PERIPH_ID. This is
72  * not in the header file since it is for purely internal use - we want
73  * callers to use the PERIPH_ID for all access to peripheral clocks to avoid
74  * confusion bewteen PERIPH_ID_... and PERIPHC_...
75  *
76  * We don't call this CLOCK_PERIPH_ID or PERIPH_CLOCK_ID as it would just be
77  * confusing.
78  *
79  * Note to SOC vendors: perhaps define a unified numbering for peripherals and
80  * use it for reset, clock enable, clock source/divider and even pinmuxing
81  * if you can.
82  */
83 enum periphc_internal_id {
84 	/* 0x00 */
85 	PERIPHC_I2S1,
86 	PERIPHC_I2S2,
87 	PERIPHC_SPDIF_OUT,
88 	PERIPHC_SPDIF_IN,
89 	PERIPHC_PWM,
90 	PERIPHC_SPI1,
91 	PERIPHC_SPI2,
92 	PERIPHC_SPI3,
93 
94 	/* 0x08 */
95 	PERIPHC_XIO,
96 	PERIPHC_I2C1,
97 	PERIPHC_DVC_I2C,
98 	PERIPHC_TWC,
99 	PERIPHC_0c,
100 	PERIPHC_10,	/* PERIPHC_SPI1, what is this really? */
101 	PERIPHC_DISP1,
102 	PERIPHC_DISP2,
103 
104 	/* 0x10 */
105 	PERIPHC_CVE,
106 	PERIPHC_IDE0,
107 	PERIPHC_VI,
108 	PERIPHC_1c,
109 	PERIPHC_SDMMC1,
110 	PERIPHC_SDMMC2,
111 	PERIPHC_G3D,
112 	PERIPHC_G2D,
113 
114 	/* 0x18 */
115 	PERIPHC_NDFLASH,
116 	PERIPHC_SDMMC4,
117 	PERIPHC_VFIR,
118 	PERIPHC_EPP,
119 	PERIPHC_MPE,
120 	PERIPHC_MIPI,
121 	PERIPHC_UART1,
122 	PERIPHC_UART2,
123 
124 	/* 0x20 */
125 	PERIPHC_HOST1X,
126 	PERIPHC_21,
127 	PERIPHC_TVO,
128 	PERIPHC_HDMI,
129 	PERIPHC_24,
130 	PERIPHC_TVDAC,
131 	PERIPHC_I2C2,
132 	PERIPHC_EMC,
133 
134 	/* 0x28 */
135 	PERIPHC_UART3,
136 	PERIPHC_29,
137 	PERIPHC_VI_SENSOR,
138 	PERIPHC_2b,
139 	PERIPHC_2c,
140 	PERIPHC_SPI4,
141 	PERIPHC_I2C3,
142 	PERIPHC_SDMMC3,
143 
144 	/* 0x30 */
145 	PERIPHC_UART4,
146 	PERIPHC_UART5,
147 	PERIPHC_VDE,
148 	PERIPHC_OWR,
149 	PERIPHC_NOR,
150 	PERIPHC_CSITE,
151 
152 	PERIPHC_COUNT,
153 
154 	PERIPHC_NONE = -1,
155 };
156 
157 /*
158  * Clock type for each peripheral clock source. We put the name in each
159  * record just so it is easy to match things up
160  */
161 #define TYPE(name, type) type
162 static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
163 	/* 0x00 */
164 	TYPE(PERIPHC_I2S1,	CLOCK_TYPE_AXPT),
165 	TYPE(PERIPHC_I2S2,	CLOCK_TYPE_AXPT),
166 	TYPE(PERIPHC_SPDIF_OUT,	CLOCK_TYPE_AXPT),
167 	TYPE(PERIPHC_SPDIF_IN,	CLOCK_TYPE_PCM),
168 	TYPE(PERIPHC_PWM,	CLOCK_TYPE_PCXTS),
169 	TYPE(PERIPHC_SPI1,	CLOCK_TYPE_PCMT),
170 	TYPE(PERIPHC_SPI22,	CLOCK_TYPE_PCMT),
171 	TYPE(PERIPHC_SPI3,	CLOCK_TYPE_PCMT),
172 
173 	/* 0x08 */
174 	TYPE(PERIPHC_XIO,	CLOCK_TYPE_PCMT),
175 	TYPE(PERIPHC_I2C1,	CLOCK_TYPE_PCMT16),
176 	TYPE(PERIPHC_DVC_I2C,	CLOCK_TYPE_PCMT16),
177 	TYPE(PERIPHC_TWC,	CLOCK_TYPE_PCMT),
178 	TYPE(PERIPHC_NONE,	CLOCK_TYPE_NONE),
179 	TYPE(PERIPHC_SPI1,	CLOCK_TYPE_PCMT),
180 	TYPE(PERIPHC_DISP1,	CLOCK_TYPE_PDCT),
181 	TYPE(PERIPHC_DISP2,	CLOCK_TYPE_PDCT),
182 
183 	/* 0x10 */
184 	TYPE(PERIPHC_CVE,	CLOCK_TYPE_PDCT),
185 	TYPE(PERIPHC_IDE0,	CLOCK_TYPE_PCMT),
186 	TYPE(PERIPHC_VI,	CLOCK_TYPE_MCPA),
187 	TYPE(PERIPHC_NONE,	CLOCK_TYPE_NONE),
188 	TYPE(PERIPHC_SDMMC1,	CLOCK_TYPE_PCMT),
189 	TYPE(PERIPHC_SDMMC2,	CLOCK_TYPE_PCMT),
190 	TYPE(PERIPHC_G3D,	CLOCK_TYPE_MCPA),
191 	TYPE(PERIPHC_G2D,	CLOCK_TYPE_MCPA),
192 
193 	/* 0x18 */
194 	TYPE(PERIPHC_NDFLASH,	CLOCK_TYPE_PCMT),
195 	TYPE(PERIPHC_SDMMC4,	CLOCK_TYPE_PCMT),
196 	TYPE(PERIPHC_VFIR,	CLOCK_TYPE_PCMT),
197 	TYPE(PERIPHC_EPP,	CLOCK_TYPE_MCPA),
198 	TYPE(PERIPHC_MPE,	CLOCK_TYPE_MCPA),
199 	TYPE(PERIPHC_MIPI,	CLOCK_TYPE_PCMT),
200 	TYPE(PERIPHC_UART1,	CLOCK_TYPE_PCMT),
201 	TYPE(PERIPHC_UART2,	CLOCK_TYPE_PCMT),
202 
203 	/* 0x20 */
204 	TYPE(PERIPHC_HOST1X,	CLOCK_TYPE_MCPA),
205 	TYPE(PERIPHC_NONE,	CLOCK_TYPE_NONE),
206 	TYPE(PERIPHC_TVO,	CLOCK_TYPE_PDCT),
207 	TYPE(PERIPHC_HDMI,	CLOCK_TYPE_PDCT),
208 	TYPE(PERIPHC_NONE,	CLOCK_TYPE_NONE),
209 	TYPE(PERIPHC_TVDAC,	CLOCK_TYPE_PDCT),
210 	TYPE(PERIPHC_I2C2,	CLOCK_TYPE_PCMT16),
211 	TYPE(PERIPHC_EMC,	CLOCK_TYPE_MCPT),
212 
213 	/* 0x28 */
214 	TYPE(PERIPHC_UART3,	CLOCK_TYPE_PCMT),
215 	TYPE(PERIPHC_NONE,	CLOCK_TYPE_NONE),
216 	TYPE(PERIPHC_VI,	CLOCK_TYPE_MCPA),
217 	TYPE(PERIPHC_NONE,	CLOCK_TYPE_NONE),
218 	TYPE(PERIPHC_NONE,	CLOCK_TYPE_NONE),
219 	TYPE(PERIPHC_SPI4,	CLOCK_TYPE_PCMT),
220 	TYPE(PERIPHC_I2C3,	CLOCK_TYPE_PCMT16),
221 	TYPE(PERIPHC_SDMMC3,	CLOCK_TYPE_PCMT),
222 
223 	/* 0x30 */
224 	TYPE(PERIPHC_UART4,	CLOCK_TYPE_PCMT),
225 	TYPE(PERIPHC_UART5,	CLOCK_TYPE_PCMT),
226 	TYPE(PERIPHC_VDE,	CLOCK_TYPE_PCMT),
227 	TYPE(PERIPHC_OWR,	CLOCK_TYPE_PCMT),
228 	TYPE(PERIPHC_NOR,	CLOCK_TYPE_PCMT),
229 	TYPE(PERIPHC_CSITE,	CLOCK_TYPE_PCMT),
230 };
231 
232 /*
233  * This array translates a periph_id to a periphc_internal_id
234  *
235  * Not present/matched up:
236  *	uint vi_sensor;	 _VI_SENSOR_0,		0x1A8
237  *	SPDIF - which is both 0x08 and 0x0c
238  *
239  */
240 #define NONE(name) (-1)
241 #define OFFSET(name, value) PERIPHC_ ## name
242 static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
243 	/* Low word: 31:0 */
244 	NONE(CPU),
245 	NONE(RESERVED1),
246 	NONE(RESERVED2),
247 	NONE(AC97),
248 	NONE(RTC),
249 	NONE(TMR),
250 	PERIPHC_UART1,
251 	PERIPHC_UART2,	/* and vfir 0x68 */
252 
253 	/* 0x08 */
254 	NONE(GPIO),
255 	PERIPHC_SDMMC2,
256 	NONE(SPDIF),		/* 0x08 and 0x0c, unclear which to use */
257 	PERIPHC_I2S1,
258 	PERIPHC_I2C1,
259 	PERIPHC_NDFLASH,
260 	PERIPHC_SDMMC1,
261 	PERIPHC_SDMMC4,
262 
263 	/* 0x10 */
264 	PERIPHC_TWC,
265 	PERIPHC_PWM,
266 	PERIPHC_I2S2,
267 	PERIPHC_EPP,
268 	PERIPHC_VI,
269 	PERIPHC_G2D,
270 	NONE(USBD),
271 	NONE(ISP),
272 
273 	/* 0x18 */
274 	PERIPHC_G3D,
275 	PERIPHC_IDE0,
276 	PERIPHC_DISP2,
277 	PERIPHC_DISP1,
278 	PERIPHC_HOST1X,
279 	NONE(VCP),
280 	NONE(RESERVED30),
281 	NONE(CACHE2),
282 
283 	/* Middle word: 63:32 */
284 	NONE(MEM),
285 	NONE(AHBDMA),
286 	NONE(APBDMA),
287 	NONE(RESERVED35),
288 	NONE(KBC),
289 	NONE(STAT_MON),
290 	NONE(PMC),
291 	NONE(FUSE),
292 
293 	/* 0x28 */
294 	NONE(KFUSE),
295 	NONE(SBC1),	/* SBC1, 0x34, is this SPI1? */
296 	PERIPHC_NOR,
297 	PERIPHC_SPI1,
298 	PERIPHC_SPI2,
299 	PERIPHC_XIO,
300 	PERIPHC_SPI3,
301 	PERIPHC_DVC_I2C,
302 
303 	/* 0x30 */
304 	NONE(DSI),
305 	PERIPHC_TVO,	/* also CVE 0x40 */
306 	PERIPHC_MIPI,
307 	PERIPHC_HDMI,
308 	PERIPHC_CSITE,
309 	PERIPHC_TVDAC,
310 	PERIPHC_I2C2,
311 	PERIPHC_UART3,
312 
313 	/* 0x38 */
314 	NONE(RESERVED56),
315 	PERIPHC_EMC,
316 	NONE(USB2),
317 	NONE(USB3),
318 	PERIPHC_MPE,
319 	PERIPHC_VDE,
320 	NONE(BSEA),
321 	NONE(BSEV),
322 
323 	/* Upper word 95:64 */
324 	NONE(SPEEDO),
325 	PERIPHC_UART4,
326 	PERIPHC_UART5,
327 	PERIPHC_I2C3,
328 	PERIPHC_SPI4,
329 	PERIPHC_SDMMC3,
330 	NONE(PCIE),
331 	PERIPHC_OWR,
332 
333 	/* 0x48 */
334 	NONE(AFI),
335 	NONE(CORESIGHT),
336 	NONE(PCIEXCLK),
337 	NONE(AVPUCQ),
338 	NONE(RESERVED76),
339 	NONE(RESERVED77),
340 	NONE(RESERVED78),
341 	NONE(RESERVED79),
342 
343 	/* 0x50 */
344 	NONE(RESERVED80),
345 	NONE(RESERVED81),
346 	NONE(RESERVED82),
347 	NONE(RESERVED83),
348 	NONE(IRAMA),
349 	NONE(IRAMB),
350 	NONE(IRAMC),
351 	NONE(IRAMD),
352 
353 	/* 0x58 */
354 	NONE(CRAM2),
355 };
356 
357 /*
358  * Get the oscillator frequency, from the corresponding hardware configuration
359  * field. T20 has 4 frequencies that it supports.
360  */
clock_get_osc_freq(void)361 enum clock_osc_freq clock_get_osc_freq(void)
362 {
363 	struct clk_rst_ctlr *clkrst =
364 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
365 	u32 reg;
366 
367 	reg = readl(&clkrst->crc_osc_ctrl);
368 	return (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
369 }
370 
371 /* Returns a pointer to the clock source register for a peripheral */
get_periph_source_reg(enum periph_id periph_id)372 u32 *get_periph_source_reg(enum periph_id periph_id)
373 {
374 	struct clk_rst_ctlr *clkrst =
375 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
376 	enum periphc_internal_id internal_id;
377 
378 	assert(clock_periph_id_isvalid(periph_id));
379 	internal_id = periph_id_to_internal_id[periph_id];
380 	assert(internal_id != -1);
381 	return &clkrst->crc_clk_src[internal_id];
382 }
383 
384 /**
385  * Given a peripheral ID and the required source clock, this returns which
386  * value should be programmed into the source mux for that peripheral.
387  *
388  * There is special code here to handle the one source type with 5 sources.
389  *
390  * @param periph_id	peripheral to start
391  * @param source	PLL id of required parent clock
392  * @param mux_bits	Set to number of bits in mux register: 2 or 4
393  * @param divider_bits	Set to number of divider bits (8 or 16)
394  * @return mux value (0-4, or -1 if not found)
395  */
get_periph_clock_source(enum periph_id periph_id,enum clock_id parent,int * mux_bits,int * divider_bits)396 int get_periph_clock_source(enum periph_id periph_id,
397 		enum clock_id parent, int *mux_bits, int *divider_bits)
398 {
399 	enum clock_type_id type;
400 	enum periphc_internal_id internal_id;
401 	int mux;
402 
403 	assert(clock_periph_id_isvalid(periph_id));
404 
405 	internal_id = periph_id_to_internal_id[periph_id];
406 	assert(periphc_internal_id_isvalid(internal_id));
407 
408 	type = clock_periph_type[internal_id];
409 	assert(clock_type_id_isvalid(type));
410 
411 	/*
412 	 * Special cases here for the clock with a 4-bit source mux and I2C
413 	 * with its 16-bit divisor
414 	 */
415 	if (type == CLOCK_TYPE_PCXTS)
416 		*mux_bits = MASK_BITS_31_28;
417 	else
418 		*mux_bits = MASK_BITS_31_30;
419 	if (type == CLOCK_TYPE_PCMT16)
420 		*divider_bits = 16;
421 	else
422 		*divider_bits = 8;
423 
424 	for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
425 		if (clock_source[type][mux] == parent)
426 			return mux;
427 
428 	/*
429 	 * Not found: it might be looking for the 'S' in CLOCK_TYPE_PCXTS
430 	 * which is not in our table. If not, then they are asking for a
431 	 * source which this peripheral can't access through its mux.
432 	 */
433 	assert(type == CLOCK_TYPE_PCXTS);
434 	assert(parent == CLOCK_ID_SFROM32KHZ);
435 	if (type == CLOCK_TYPE_PCXTS && parent == CLOCK_ID_SFROM32KHZ)
436 		return 4;	/* mux value for this clock */
437 
438 	/* if we get here, either us or the caller has made a mistake */
439 	printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
440 		parent);
441 	return -1;
442 }
443 
clock_set_enable(enum periph_id periph_id,int enable)444 void clock_set_enable(enum periph_id periph_id, int enable)
445 {
446 	struct clk_rst_ctlr *clkrst =
447 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
448 	u32 *clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
449 	u32 reg;
450 
451 	/* Enable/disable the clock to this peripheral */
452 	assert(clock_periph_id_isvalid(periph_id));
453 	reg = readl(clk);
454 	if (enable)
455 		reg |= PERIPH_MASK(periph_id);
456 	else
457 		reg &= ~PERIPH_MASK(periph_id);
458 	writel(reg, clk);
459 }
460 
reset_set_enable(enum periph_id periph_id,int enable)461 void reset_set_enable(enum periph_id periph_id, int enable)
462 {
463 	struct clk_rst_ctlr *clkrst =
464 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
465 	u32 *reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
466 	u32 reg;
467 
468 	/* Enable/disable reset to the peripheral */
469 	assert(clock_periph_id_isvalid(periph_id));
470 	reg = readl(reset);
471 	if (enable)
472 		reg |= PERIPH_MASK(periph_id);
473 	else
474 		reg &= ~PERIPH_MASK(periph_id);
475 	writel(reg, reset);
476 }
477 
478 #ifdef CONFIG_OF_CONTROL
479 /*
480  * Convert a device tree clock ID to our peripheral ID. They are mostly
481  * the same but we are very cautious so we check that a valid clock ID is
482  * provided.
483  *
484  * @param clk_id	Clock ID according to tegra20 device tree binding
485  * @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
486  */
clk_id_to_periph_id(int clk_id)487 enum periph_id clk_id_to_periph_id(int clk_id)
488 {
489 	if (clk_id > PERIPH_ID_COUNT)
490 		return PERIPH_ID_NONE;
491 
492 	switch (clk_id) {
493 	case PERIPH_ID_RESERVED1:
494 	case PERIPH_ID_RESERVED2:
495 	case PERIPH_ID_RESERVED30:
496 	case PERIPH_ID_RESERVED35:
497 	case PERIPH_ID_RESERVED56:
498 	case PERIPH_ID_PCIEXCLK:
499 	case PERIPH_ID_RESERVED76:
500 	case PERIPH_ID_RESERVED77:
501 	case PERIPH_ID_RESERVED78:
502 	case PERIPH_ID_RESERVED79:
503 	case PERIPH_ID_RESERVED80:
504 	case PERIPH_ID_RESERVED81:
505 	case PERIPH_ID_RESERVED82:
506 	case PERIPH_ID_RESERVED83:
507 	case PERIPH_ID_RESERVED91:
508 		return PERIPH_ID_NONE;
509 	default:
510 		return clk_id;
511 	}
512 }
513 #endif /* CONFIG_OF_CONTROL */
514 
clock_early_init(void)515 void clock_early_init(void)
516 {
517 	/*
518 	 * PLLP output frequency set to 216MHz
519 	 * PLLC output frequency set to 600Mhz
520 	 *
521 	 * TODO: Can we calculate these values instead of hard-coding?
522 	 */
523 	switch (clock_get_osc_freq()) {
524 	case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
525 		clock_set_rate(CLOCK_ID_PERIPH, 432, 12, 1, 8);
526 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8);
527 		break;
528 
529 	case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
530 		clock_set_rate(CLOCK_ID_PERIPH, 432, 26, 1, 8);
531 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
532 		break;
533 
534 	case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
535 		clock_set_rate(CLOCK_ID_PERIPH, 432, 13, 1, 8);
536 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
537 		break;
538 	case CLOCK_OSC_FREQ_19_2:
539 	default:
540 		/*
541 		 * These are not supported. It is too early to print a
542 		 * message and the UART likely won't work anyway due to the
543 		 * oscillator being wrong.
544 		 */
545 		break;
546 	}
547 }
548 
arch_timer_init(void)549 void arch_timer_init(void)
550 {
551 }
552 
553 #define PMC_SATA_PWRGT 0x1ac
554 #define  PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE (1 << 5)
555 #define  PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL (1 << 4)
556 
557 #define PLLE_SS_CNTL 0x68
558 #define  PLLE_SS_CNTL_SSCINCINTRV(x) (((x) & 0x3f) << 24)
559 #define  PLLE_SS_CNTL_SSCINC(x) (((x) & 0xff) << 16)
560 #define  PLLE_SS_CNTL_SSCBYP (1 << 12)
561 #define  PLLE_SS_CNTL_INTERP_RESET (1 << 11)
562 #define  PLLE_SS_CNTL_BYPASS_SS (1 << 10)
563 #define  PLLE_SS_CNTL_SSCMAX(x) (((x) & 0x1ff) << 0)
564 
565 #define PLLE_BASE 0x0e8
566 #define  PLLE_BASE_ENABLE_CML (1 << 31)
567 #define  PLLE_BASE_ENABLE (1 << 30)
568 #define  PLLE_BASE_PLDIV_CML(x) (((x) & 0xf) << 24)
569 #define  PLLE_BASE_PLDIV(x) (((x) & 0x3f) << 16)
570 #define  PLLE_BASE_NDIV(x) (((x) & 0xff) << 8)
571 #define  PLLE_BASE_MDIV(x) (((x) & 0xff) << 0)
572 
573 #define PLLE_MISC 0x0ec
574 #define  PLLE_MISC_SETUP_BASE(x) (((x) & 0xffff) << 16)
575 #define  PLLE_MISC_PLL_READY (1 << 15)
576 #define  PLLE_MISC_LOCK (1 << 11)
577 #define  PLLE_MISC_LOCK_ENABLE (1 << 9)
578 #define  PLLE_MISC_SETUP_EXT(x) (((x) & 0x3) << 2)
579 
tegra_plle_train(void)580 static int tegra_plle_train(void)
581 {
582 	unsigned int timeout = 2000;
583 	unsigned long value;
584 
585 	value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
586 	value |= PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE;
587 	writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
588 
589 	value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
590 	value |= PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL;
591 	writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
592 
593 	value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
594 	value &= ~PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE;
595 	writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
596 
597 	do {
598 		value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
599 		if (value & PLLE_MISC_PLL_READY)
600 			break;
601 
602 		udelay(100);
603 	} while (--timeout);
604 
605 	if (timeout == 0) {
606 		error("timeout waiting for PLLE to become ready");
607 		return -ETIMEDOUT;
608 	}
609 
610 	return 0;
611 }
612 
tegra_plle_enable(void)613 int tegra_plle_enable(void)
614 {
615 	unsigned int timeout = 1000;
616 	u32 value;
617 	int err;
618 
619 	/* disable PLLE clock */
620 	value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
621 	value &= ~PLLE_BASE_ENABLE_CML;
622 	value &= ~PLLE_BASE_ENABLE;
623 	writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
624 
625 	/* clear lock enable and setup field */
626 	value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
627 	value &= ~PLLE_MISC_LOCK_ENABLE;
628 	value &= ~PLLE_MISC_SETUP_BASE(0xffff);
629 	value &= ~PLLE_MISC_SETUP_EXT(0x3);
630 	writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
631 
632 	value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
633 	if ((value & PLLE_MISC_PLL_READY) == 0) {
634 		err = tegra_plle_train();
635 		if (err < 0) {
636 			error("failed to train PLLE: %d", err);
637 			return err;
638 		}
639 	}
640 
641 	value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
642 	value |= PLLE_MISC_SETUP_BASE(0x7);
643 	value |= PLLE_MISC_LOCK_ENABLE;
644 	value |= PLLE_MISC_SETUP_EXT(0);
645 	writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
646 
647 	value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
648 	value |= PLLE_SS_CNTL_SSCBYP | PLLE_SS_CNTL_INTERP_RESET |
649 		 PLLE_SS_CNTL_BYPASS_SS;
650 	writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
651 
652 	value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
653 	value |= PLLE_BASE_ENABLE_CML | PLLE_BASE_ENABLE;
654 	writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
655 
656 	do {
657 		value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
658 		if (value & PLLE_MISC_LOCK)
659 			break;
660 
661 		udelay(2);
662 	} while (--timeout);
663 
664 	if (timeout == 0) {
665 		error("timeout waiting for PLLE to lock");
666 		return -ETIMEDOUT;
667 	}
668 
669 	udelay(50);
670 
671 	value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
672 	value &= ~PLLE_SS_CNTL_SSCINCINTRV(0x3f);
673 	value |= PLLE_SS_CNTL_SSCINCINTRV(0x18);
674 
675 	value &= ~PLLE_SS_CNTL_SSCINC(0xff);
676 	value |= PLLE_SS_CNTL_SSCINC(0x01);
677 
678 	value &= ~PLLE_SS_CNTL_SSCBYP;
679 	value &= ~PLLE_SS_CNTL_INTERP_RESET;
680 	value &= ~PLLE_SS_CNTL_BYPASS_SS;
681 
682 	value &= ~PLLE_SS_CNTL_SSCMAX(0x1ff);
683 	value |= PLLE_SS_CNTL_SSCMAX(0x24);
684 	writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
685 
686 	return 0;
687 }
688