1 /* Parser generator */
2 
3 /* For a description, see the comments at end of this file */
4 
5 #include "Python.h"
6 #include "pgenheaders.h"
7 #include "token.h"
8 #include "node.h"
9 #include "grammar.h"
10 #include "metagrammar.h"
11 #include "pgen.h"
12 
13 extern int Py_DebugFlag;
14 extern int Py_IgnoreEnvironmentFlag; /* needed by Py_GETENV */
15 
16 
17 /* PART ONE -- CONSTRUCT NFA -- Cf. Algorithm 3.2 from [Aho&Ullman 77] */
18 
19 typedef struct _nfaarc {
20     int         ar_label;
21     int         ar_arrow;
22 } nfaarc;
23 
24 typedef struct _nfastate {
25     int         st_narcs;
26     nfaarc      *st_arc;
27 } nfastate;
28 
29 typedef struct _nfa {
30     int                 nf_type;
31     char                *nf_name;
32     int                 nf_nstates;
33     nfastate            *nf_state;
34     int                 nf_start, nf_finish;
35 } nfa;
36 
37 /* Forward */
38 static void compile_rhs(labellist *ll,
39                         nfa *nf, node *n, int *pa, int *pb);
40 static void compile_alt(labellist *ll,
41                         nfa *nf, node *n, int *pa, int *pb);
42 static void compile_item(labellist *ll,
43                          nfa *nf, node *n, int *pa, int *pb);
44 static void compile_atom(labellist *ll,
45                          nfa *nf, node *n, int *pa, int *pb);
46 
47 static int
addnfastate(nfa * nf)48 addnfastate(nfa *nf)
49 {
50     nfastate *st;
51 
52     nf->nf_state = (nfastate *)PyObject_REALLOC(nf->nf_state,
53                                 sizeof(nfastate) * (nf->nf_nstates + 1));
54     if (nf->nf_state == NULL)
55         Py_FatalError("out of mem");
56     st = &nf->nf_state[nf->nf_nstates++];
57     st->st_narcs = 0;
58     st->st_arc = NULL;
59     return st - nf->nf_state;
60 }
61 
62 static void
addnfaarc(nfa * nf,int from,int to,int lbl)63 addnfaarc(nfa *nf, int from, int to, int lbl)
64 {
65     nfastate *st;
66     nfaarc *ar;
67 
68     st = &nf->nf_state[from];
69     st->st_arc = (nfaarc *)PyObject_REALLOC(st->st_arc,
70                                   sizeof(nfaarc) * (st->st_narcs + 1));
71     if (st->st_arc == NULL)
72         Py_FatalError("out of mem");
73     ar = &st->st_arc[st->st_narcs++];
74     ar->ar_label = lbl;
75     ar->ar_arrow = to;
76 }
77 
78 static nfa *
newnfa(char * name)79 newnfa(char *name)
80 {
81     nfa *nf;
82     static int type = NT_OFFSET; /* All types will be disjunct */
83 
84     nf = (nfa *)PyObject_MALLOC(sizeof(nfa));
85     if (nf == NULL)
86         Py_FatalError("no mem for new nfa");
87     nf->nf_type = type++;
88     nf->nf_name = name; /* XXX strdup(name) ??? */
89     nf->nf_nstates = 0;
90     nf->nf_state = NULL;
91     nf->nf_start = nf->nf_finish = -1;
92     return nf;
93 }
94 
95 typedef struct _nfagrammar {
96     int                 gr_nnfas;
97     nfa                 **gr_nfa;
98     labellist           gr_ll;
99 } nfagrammar;
100 
101 /* Forward */
102 static void compile_rule(nfagrammar *gr, node *n);
103 
104 static nfagrammar *
newnfagrammar(void)105 newnfagrammar(void)
106 {
107     nfagrammar *gr;
108 
109     gr = (nfagrammar *)PyObject_MALLOC(sizeof(nfagrammar));
110     if (gr == NULL)
111         Py_FatalError("no mem for new nfa grammar");
112     gr->gr_nnfas = 0;
113     gr->gr_nfa = NULL;
114     gr->gr_ll.ll_nlabels = 0;
115     gr->gr_ll.ll_label = NULL;
116     addlabel(&gr->gr_ll, ENDMARKER, "EMPTY");
117     return gr;
118 }
119 
120 static nfa *
addnfa(nfagrammar * gr,char * name)121 addnfa(nfagrammar *gr, char *name)
122 {
123     nfa *nf;
124 
125     nf = newnfa(name);
126     gr->gr_nfa = (nfa **)PyObject_REALLOC(gr->gr_nfa,
127                                   sizeof(nfa*) * (gr->gr_nnfas + 1));
128     if (gr->gr_nfa == NULL)
129         Py_FatalError("out of mem");
130     gr->gr_nfa[gr->gr_nnfas++] = nf;
131     addlabel(&gr->gr_ll, NAME, nf->nf_name);
132     return nf;
133 }
134 
135 #ifdef Py_DEBUG
136 
137 static char REQNFMT[] = "metacompile: less than %d children\n";
138 
139 #define REQN(i, count) \
140     if (i < count) { \
141         fprintf(stderr, REQNFMT, count); \
142         Py_FatalError("REQN"); \
143     } else
144 
145 #else
146 #define REQN(i, count)  /* empty */
147 #endif
148 
149 static nfagrammar *
metacompile(node * n)150 metacompile(node *n)
151 {
152     nfagrammar *gr;
153     int i;
154 
155     if (Py_DebugFlag)
156         printf("Compiling (meta-) parse tree into NFA grammar\n");
157     gr = newnfagrammar();
158     REQ(n, MSTART);
159     i = n->n_nchildren - 1; /* Last child is ENDMARKER */
160     n = n->n_child;
161     for (; --i >= 0; n++) {
162         if (n->n_type != NEWLINE)
163             compile_rule(gr, n);
164     }
165     return gr;
166 }
167 
168 static void
compile_rule(nfagrammar * gr,node * n)169 compile_rule(nfagrammar *gr, node *n)
170 {
171     nfa *nf;
172 
173     REQ(n, RULE);
174     REQN(n->n_nchildren, 4);
175     n = n->n_child;
176     REQ(n, NAME);
177     nf = addnfa(gr, n->n_str);
178     n++;
179     REQ(n, COLON);
180     n++;
181     REQ(n, RHS);
182     compile_rhs(&gr->gr_ll, nf, n, &nf->nf_start, &nf->nf_finish);
183     n++;
184     REQ(n, NEWLINE);
185 }
186 
187 static void
compile_rhs(labellist * ll,nfa * nf,node * n,int * pa,int * pb)188 compile_rhs(labellist *ll, nfa *nf, node *n, int *pa, int *pb)
189 {
190     int i;
191     int a, b;
192 
193     REQ(n, RHS);
194     i = n->n_nchildren;
195     REQN(i, 1);
196     n = n->n_child;
197     REQ(n, ALT);
198     compile_alt(ll, nf, n, pa, pb);
199     if (--i <= 0)
200         return;
201     n++;
202     a = *pa;
203     b = *pb;
204     *pa = addnfastate(nf);
205     *pb = addnfastate(nf);
206     addnfaarc(nf, *pa, a, EMPTY);
207     addnfaarc(nf, b, *pb, EMPTY);
208     for (; --i >= 0; n++) {
209         REQ(n, VBAR);
210         REQN(i, 1);
211         --i;
212         n++;
213         REQ(n, ALT);
214         compile_alt(ll, nf, n, &a, &b);
215         addnfaarc(nf, *pa, a, EMPTY);
216         addnfaarc(nf, b, *pb, EMPTY);
217     }
218 }
219 
220 static void
compile_alt(labellist * ll,nfa * nf,node * n,int * pa,int * pb)221 compile_alt(labellist *ll, nfa *nf, node *n, int *pa, int *pb)
222 {
223     int i;
224     int a, b;
225 
226     REQ(n, ALT);
227     i = n->n_nchildren;
228     REQN(i, 1);
229     n = n->n_child;
230     REQ(n, ITEM);
231     compile_item(ll, nf, n, pa, pb);
232     --i;
233     n++;
234     for (; --i >= 0; n++) {
235         REQ(n, ITEM);
236         compile_item(ll, nf, n, &a, &b);
237         addnfaarc(nf, *pb, a, EMPTY);
238         *pb = b;
239     }
240 }
241 
242 static void
compile_item(labellist * ll,nfa * nf,node * n,int * pa,int * pb)243 compile_item(labellist *ll, nfa *nf, node *n, int *pa, int *pb)
244 {
245     int i;
246     int a, b;
247 
248     REQ(n, ITEM);
249     i = n->n_nchildren;
250     REQN(i, 1);
251     n = n->n_child;
252     if (n->n_type == LSQB) {
253         REQN(i, 3);
254         n++;
255         REQ(n, RHS);
256         *pa = addnfastate(nf);
257         *pb = addnfastate(nf);
258         addnfaarc(nf, *pa, *pb, EMPTY);
259         compile_rhs(ll, nf, n, &a, &b);
260         addnfaarc(nf, *pa, a, EMPTY);
261         addnfaarc(nf, b, *pb, EMPTY);
262         REQN(i, 1);
263         n++;
264         REQ(n, RSQB);
265     }
266     else {
267         compile_atom(ll, nf, n, pa, pb);
268         if (--i <= 0)
269             return;
270         n++;
271         addnfaarc(nf, *pb, *pa, EMPTY);
272         if (n->n_type == STAR)
273             *pb = *pa;
274         else
275             REQ(n, PLUS);
276     }
277 }
278 
279 static void
compile_atom(labellist * ll,nfa * nf,node * n,int * pa,int * pb)280 compile_atom(labellist *ll, nfa *nf, node *n, int *pa, int *pb)
281 {
282     int i;
283 
284     REQ(n, ATOM);
285     i = n->n_nchildren;
286     REQN(i, 1);
287     n = n->n_child;
288     if (n->n_type == LPAR) {
289         REQN(i, 3);
290         n++;
291         REQ(n, RHS);
292         compile_rhs(ll, nf, n, pa, pb);
293         n++;
294         REQ(n, RPAR);
295     }
296     else if (n->n_type == NAME || n->n_type == STRING) {
297         *pa = addnfastate(nf);
298         *pb = addnfastate(nf);
299         addnfaarc(nf, *pa, *pb, addlabel(ll, n->n_type, n->n_str));
300     }
301     else
302         REQ(n, NAME);
303 }
304 
305 static void
dumpstate(labellist * ll,nfa * nf,int istate)306 dumpstate(labellist *ll, nfa *nf, int istate)
307 {
308     nfastate *st;
309     int i;
310     nfaarc *ar;
311 
312     printf("%c%2d%c",
313         istate == nf->nf_start ? '*' : ' ',
314         istate,
315         istate == nf->nf_finish ? '.' : ' ');
316     st = &nf->nf_state[istate];
317     ar = st->st_arc;
318     for (i = 0; i < st->st_narcs; i++) {
319         if (i > 0)
320             printf("\n    ");
321         printf("-> %2d  %s", ar->ar_arrow,
322             PyGrammar_LabelRepr(&ll->ll_label[ar->ar_label]));
323         ar++;
324     }
325     printf("\n");
326 }
327 
328 static void
dumpnfa(labellist * ll,nfa * nf)329 dumpnfa(labellist *ll, nfa *nf)
330 {
331     int i;
332 
333     printf("NFA '%s' has %d states; start %d, finish %d\n",
334         nf->nf_name, nf->nf_nstates, nf->nf_start, nf->nf_finish);
335     for (i = 0; i < nf->nf_nstates; i++)
336         dumpstate(ll, nf, i);
337 }
338 
339 
340 /* PART TWO -- CONSTRUCT DFA -- Algorithm 3.1 from [Aho&Ullman 77] */
341 
342 static void
addclosure(bitset ss,nfa * nf,int istate)343 addclosure(bitset ss, nfa *nf, int istate)
344 {
345     if (addbit(ss, istate)) {
346         nfastate *st = &nf->nf_state[istate];
347         nfaarc *ar = st->st_arc;
348         int i;
349 
350         for (i = st->st_narcs; --i >= 0; ) {
351             if (ar->ar_label == EMPTY)
352                 addclosure(ss, nf, ar->ar_arrow);
353             ar++;
354         }
355     }
356 }
357 
358 typedef struct _ss_arc {
359     bitset      sa_bitset;
360     int         sa_arrow;
361     int         sa_label;
362 } ss_arc;
363 
364 typedef struct _ss_state {
365     bitset      ss_ss;
366     int         ss_narcs;
367     struct _ss_arc      *ss_arc;
368     int         ss_deleted;
369     int         ss_finish;
370     int         ss_rename;
371 } ss_state;
372 
373 typedef struct _ss_dfa {
374     int         sd_nstates;
375     ss_state *sd_state;
376 } ss_dfa;
377 
378 /* Forward */
379 static void printssdfa(int xx_nstates, ss_state *xx_state, int nbits,
380                        labellist *ll, char *msg);
381 static void simplify(int xx_nstates, ss_state *xx_state);
382 static void convert(dfa *d, int xx_nstates, ss_state *xx_state);
383 
384 static void
makedfa(nfagrammar * gr,nfa * nf,dfa * d)385 makedfa(nfagrammar *gr, nfa *nf, dfa *d)
386 {
387     int nbits = nf->nf_nstates;
388     bitset ss;
389     int xx_nstates;
390     ss_state *xx_state, *yy;
391     ss_arc *zz;
392     int istate, jstate, iarc, jarc, ibit;
393     nfastate *st;
394     nfaarc *ar;
395 
396     ss = newbitset(nbits);
397     addclosure(ss, nf, nf->nf_start);
398     xx_state = (ss_state *)PyObject_MALLOC(sizeof(ss_state));
399     if (xx_state == NULL)
400         Py_FatalError("no mem for xx_state in makedfa");
401     xx_nstates = 1;
402     yy = &xx_state[0];
403     yy->ss_ss = ss;
404     yy->ss_narcs = 0;
405     yy->ss_arc = NULL;
406     yy->ss_deleted = 0;
407     yy->ss_finish = testbit(ss, nf->nf_finish);
408     if (yy->ss_finish)
409         printf("Error: nonterminal '%s' may produce empty.\n",
410             nf->nf_name);
411 
412     /* This algorithm is from a book written before
413        the invention of structured programming... */
414 
415     /* For each unmarked state... */
416     for (istate = 0; istate < xx_nstates; ++istate) {
417         size_t size;
418         yy = &xx_state[istate];
419         ss = yy->ss_ss;
420         /* For all its states... */
421         for (ibit = 0; ibit < nf->nf_nstates; ++ibit) {
422             if (!testbit(ss, ibit))
423                 continue;
424             st = &nf->nf_state[ibit];
425             /* For all non-empty arcs from this state... */
426             for (iarc = 0; iarc < st->st_narcs; iarc++) {
427                 ar = &st->st_arc[iarc];
428                 if (ar->ar_label == EMPTY)
429                     continue;
430                 /* Look up in list of arcs from this state */
431                 for (jarc = 0; jarc < yy->ss_narcs; ++jarc) {
432                     zz = &yy->ss_arc[jarc];
433                     if (ar->ar_label == zz->sa_label)
434                         goto found;
435                 }
436                 /* Add new arc for this state */
437                 size = sizeof(ss_arc) * (yy->ss_narcs + 1);
438                 yy->ss_arc = (ss_arc *)PyObject_REALLOC(
439                                             yy->ss_arc, size);
440                 if (yy->ss_arc == NULL)
441                     Py_FatalError("out of mem");
442                 zz = &yy->ss_arc[yy->ss_narcs++];
443                 zz->sa_label = ar->ar_label;
444                 zz->sa_bitset = newbitset(nbits);
445                 zz->sa_arrow = -1;
446              found:             ;
447                 /* Add destination */
448                 addclosure(zz->sa_bitset, nf, ar->ar_arrow);
449             }
450         }
451         /* Now look up all the arrow states */
452         for (jarc = 0; jarc < xx_state[istate].ss_narcs; jarc++) {
453             zz = &xx_state[istate].ss_arc[jarc];
454             for (jstate = 0; jstate < xx_nstates; jstate++) {
455                 if (samebitset(zz->sa_bitset,
456                     xx_state[jstate].ss_ss, nbits)) {
457                     zz->sa_arrow = jstate;
458                     goto done;
459                 }
460             }
461             size = sizeof(ss_state) * (xx_nstates + 1);
462             xx_state = (ss_state *)PyObject_REALLOC(xx_state,
463                                                         size);
464             if (xx_state == NULL)
465                 Py_FatalError("out of mem");
466             zz->sa_arrow = xx_nstates;
467             yy = &xx_state[xx_nstates++];
468             yy->ss_ss = zz->sa_bitset;
469             yy->ss_narcs = 0;
470             yy->ss_arc = NULL;
471             yy->ss_deleted = 0;
472             yy->ss_finish = testbit(yy->ss_ss, nf->nf_finish);
473          done:          ;
474         }
475     }
476 
477     if (Py_DebugFlag)
478         printssdfa(xx_nstates, xx_state, nbits, &gr->gr_ll,
479                                         "before minimizing");
480 
481     simplify(xx_nstates, xx_state);
482 
483     if (Py_DebugFlag)
484         printssdfa(xx_nstates, xx_state, nbits, &gr->gr_ll,
485                                         "after minimizing");
486 
487     convert(d, xx_nstates, xx_state);
488 
489     /* XXX cleanup */
490     PyObject_FREE(xx_state);
491 }
492 
493 static void
printssdfa(int xx_nstates,ss_state * xx_state,int nbits,labellist * ll,char * msg)494 printssdfa(int xx_nstates, ss_state *xx_state, int nbits,
495            labellist *ll, char *msg)
496 {
497     int i, ibit, iarc;
498     ss_state *yy;
499     ss_arc *zz;
500 
501     printf("Subset DFA %s\n", msg);
502     for (i = 0; i < xx_nstates; i++) {
503         yy = &xx_state[i];
504         if (yy->ss_deleted)
505             continue;
506         printf(" Subset %d", i);
507         if (yy->ss_finish)
508             printf(" (finish)");
509         printf(" { ");
510         for (ibit = 0; ibit < nbits; ibit++) {
511             if (testbit(yy->ss_ss, ibit))
512                 printf("%d ", ibit);
513         }
514         printf("}\n");
515         for (iarc = 0; iarc < yy->ss_narcs; iarc++) {
516             zz = &yy->ss_arc[iarc];
517             printf("  Arc to state %d, label %s\n",
518                 zz->sa_arrow,
519                 PyGrammar_LabelRepr(
520                     &ll->ll_label[zz->sa_label]));
521         }
522     }
523 }
524 
525 
526 /* PART THREE -- SIMPLIFY DFA */
527 
528 /* Simplify the DFA by repeatedly eliminating states that are
529    equivalent to another oner.  This is NOT Algorithm 3.3 from
530    [Aho&Ullman 77].  It does not always finds the minimal DFA,
531    but it does usually make a much smaller one...  (For an example
532    of sub-optimal behavior, try S: x a b+ | y a b+.)
533 */
534 
535 static int
samestate(ss_state * s1,ss_state * s2)536 samestate(ss_state *s1, ss_state *s2)
537 {
538     int i;
539 
540     if (s1->ss_narcs != s2->ss_narcs || s1->ss_finish != s2->ss_finish)
541         return 0;
542     for (i = 0; i < s1->ss_narcs; i++) {
543         if (s1->ss_arc[i].sa_arrow != s2->ss_arc[i].sa_arrow ||
544             s1->ss_arc[i].sa_label != s2->ss_arc[i].sa_label)
545             return 0;
546     }
547     return 1;
548 }
549 
550 static void
renamestates(int xx_nstates,ss_state * xx_state,int from,int to)551 renamestates(int xx_nstates, ss_state *xx_state, int from, int to)
552 {
553     int i, j;
554 
555     if (Py_DebugFlag)
556         printf("Rename state %d to %d.\n", from, to);
557     for (i = 0; i < xx_nstates; i++) {
558         if (xx_state[i].ss_deleted)
559             continue;
560         for (j = 0; j < xx_state[i].ss_narcs; j++) {
561             if (xx_state[i].ss_arc[j].sa_arrow == from)
562                 xx_state[i].ss_arc[j].sa_arrow = to;
563         }
564     }
565 }
566 
567 static void
simplify(int xx_nstates,ss_state * xx_state)568 simplify(int xx_nstates, ss_state *xx_state)
569 {
570     int changes;
571     int i, j;
572 
573     do {
574         changes = 0;
575         for (i = 1; i < xx_nstates; i++) {
576             if (xx_state[i].ss_deleted)
577                 continue;
578             for (j = 0; j < i; j++) {
579                 if (xx_state[j].ss_deleted)
580                     continue;
581                 if (samestate(&xx_state[i], &xx_state[j])) {
582                     xx_state[i].ss_deleted++;
583                     renamestates(xx_nstates, xx_state,
584                                  i, j);
585                     changes++;
586                     break;
587                 }
588             }
589         }
590     } while (changes);
591 }
592 
593 
594 /* PART FOUR -- GENERATE PARSING TABLES */
595 
596 /* Convert the DFA into a grammar that can be used by our parser */
597 
598 static void
convert(dfa * d,int xx_nstates,ss_state * xx_state)599 convert(dfa *d, int xx_nstates, ss_state *xx_state)
600 {
601     int i, j;
602     ss_state *yy;
603     ss_arc *zz;
604 
605     for (i = 0; i < xx_nstates; i++) {
606         yy = &xx_state[i];
607         if (yy->ss_deleted)
608             continue;
609         yy->ss_rename = addstate(d);
610     }
611 
612     for (i = 0; i < xx_nstates; i++) {
613         yy = &xx_state[i];
614         if (yy->ss_deleted)
615             continue;
616         for (j = 0; j < yy->ss_narcs; j++) {
617             zz = &yy->ss_arc[j];
618             addarc(d, yy->ss_rename,
619                 xx_state[zz->sa_arrow].ss_rename,
620                 zz->sa_label);
621         }
622         if (yy->ss_finish)
623             addarc(d, yy->ss_rename, yy->ss_rename, 0);
624     }
625 
626     d->d_initial = 0;
627 }
628 
629 
630 /* PART FIVE -- GLUE IT ALL TOGETHER */
631 
632 static grammar *
maketables(nfagrammar * gr)633 maketables(nfagrammar *gr)
634 {
635     int i;
636     nfa *nf;
637     dfa *d;
638     grammar *g;
639 
640     if (gr->gr_nnfas == 0)
641         return NULL;
642     g = newgrammar(gr->gr_nfa[0]->nf_type);
643                     /* XXX first rule must be start rule */
644     g->g_ll = gr->gr_ll;
645 
646     for (i = 0; i < gr->gr_nnfas; i++) {
647         nf = gr->gr_nfa[i];
648         if (Py_DebugFlag) {
649             printf("Dump of NFA for '%s' ...\n", nf->nf_name);
650             dumpnfa(&gr->gr_ll, nf);
651             printf("Making DFA for '%s' ...\n", nf->nf_name);
652         }
653         d = adddfa(g, nf->nf_type, nf->nf_name);
654         makedfa(gr, gr->gr_nfa[i], d);
655     }
656 
657     return g;
658 }
659 
660 grammar *
pgen(node * n)661 pgen(node *n)
662 {
663     nfagrammar *gr;
664     grammar *g;
665 
666     gr = metacompile(n);
667     g = maketables(gr);
668     translatelabels(g);
669     addfirstsets(g);
670     PyObject_FREE(gr);
671     return g;
672 }
673 
674 grammar *
Py_pgen(node * n)675 Py_pgen(node *n)
676 {
677   return pgen(n);
678 }
679 
680 /*
681 
682 Description
683 -----------
684 
685 Input is a grammar in extended BNF (using * for repetition, + for
686 at-least-once repetition, [] for optional parts, | for alternatives and
687 () for grouping).  This has already been parsed and turned into a parse
688 tree.
689 
690 Each rule is considered as a regular expression in its own right.
691 It is turned into a Non-deterministic Finite Automaton (NFA), which
692 is then turned into a Deterministic Finite Automaton (DFA), which is then
693 optimized to reduce the number of states.  See [Aho&Ullman 77] chapter 3,
694 or similar compiler books (this technique is more often used for lexical
695 analyzers).
696 
697 The DFA's are used by the parser as parsing tables in a special way
698 that's probably unique.  Before they are usable, the FIRST sets of all
699 non-terminals are computed.
700 
701 Reference
702 ---------
703 
704 [Aho&Ullman 77]
705     Aho&Ullman, Principles of Compiler Design, Addison-Wesley 1977
706     (first edition)
707 
708 */
709